Skip to main content

Full text of "Monthly and seasonal climatology of the northern winter over the global tropics and subtropics for the period 1974 to 1983. Volume IV, 700 mb winds"

See other formats


NPS- 63-86-003 



FedDocs 
D 208.14/2 
NPS-63-86-003 



NAVAL 



POSTGRADUATE SCHOOL 

Monlepey, California 




Monthly and Seasonal Climatology of the Northern 
Winter over the Global Tropics and 
Subtropics for the Period 197^ to 1983 

Volume IV. 700 mb Winds 

by 

James S. Boyle and C.-P. Chang 
May 1986 

Technical Report May 1985 - May 1986 



Approved for public release; distribution unlimited. 

Prepared for: National Oceanic and Atmospheric Administration 

Washington, D.C. 20233 





F id Am, 



o 

9 ^ 
u ► 



093 



NAVAL POSTGRADUATE SCHOOL 
Monterey, California 93943 



Rear Admiral 1 1 . H. Shumaker 
Superintendent 



U. A. Schradv 
Provost 



The work reported herein was supported by the National Oceanic and Atmospheri 
Administration, under Research Contracts NA83AAG03828 and 40AANW503656. 



This report was prepared by: 



c ' 



UNCLASSIFIED 



SECURITY CLASSIFICATION OF THIS PAGE D*tm linfrmd) 



REPORT DOCUMENTATION PAGE 


RKAD INSTRUCTIONS 
nei-ORR COMPLETING FORM 


*• REPORT NUMUEM 2. GOVT ACCESSION NO 

NPS-63-86-003 


3. RECIPIENT’S CATALOG NUMBER 


« TITLE (tnj Subllll») 

Monthly and Seasonal Cl imatology of the Northern 
Winter over the Global Tropics and Subtropics for 
the Period 1974 to 1983. Volume IV. 700 mb Winds 


5. TYPE OF REPORT * PERIOO COVERED 

Technical Report for 
May 1985 - May 1986 


6. PERFORMING ORG. REPORT NUMBER 


1. AUTHORf,) 

James S. Boyle and C.-P. Chang 


S. CONTRACT OR GRANT NUM8ERC<> 

NOAA Research Contracts 
NA83AAG03828 & 40AANW503656 


9. PERFORMING ORGANIZATION NAME ANO ADDRESS 

Naval Postgraduate School 
Monterey, California 93943 


10. PROGRAM ELEMENT, PROJECT, TASK 
AREA 6 WORK UNIT NUMBERS 


II. CONTROLLING OFFICE NAME ANO AOORESS 

Climate Analysis Center/NMC 

National Oceanic and Atmospheric Administration 
Washington, D.C. 20233 


12. report date 

May 1986 


11. NUMBER OF PAGES 

140 


u. MONITORING AGENCY NAME a ADDRESS^/ dUfofnt from Controlling Office) 


IS. SECURITY CLASS, (o 1 IM, rtfxm) 

UNCLASSIFIED 


1 5*. DECL ASSIFICATION/OOWNGRAOINO 

schedule 



16. DISTRIBUTION STATEMENT (of rtfs Htpott) 



Approved for public release; distribution unlimited. 



17 DISTRIBUTION STATEMENT (of tho mbatrsct 9nftod in fl/oc* 20, if dHUtoni from Riport) 



Ifl. supplementary NOTES 



19, KEY WORDS (Continue on tmwf mid* if n#c#*#*i 7 * «id Identify by block nutnbor) 

Interannual Variations 
Tropical Climatology 
Winter Circulations 



20. ABSTRACT (Continuo on r#w of old* 1/ n#c##*«/y *nd Id9ntify by block numborj 

This atlas of the 700 mb circulation field contains northern winter 
monthly and seasonal mean wind analyses, velocity potential and 
streamfunction from 40° S to 60° N over a global belt for the period 1974 
through 1983. In addition, the deviations of the individual annual 
seasonal and monthly means from their respective nine— year means are 
presented for the same variables. The basic wind data used are the 
operational Global Band Analyses of the United States Navy’s Fleet 
Numerical Oceanography Cpnte.r_. 



DD t JAN*TJ 1473 EOITION OF 1 MOV «S IS OBSOLETE 

S/N 0102*014* »«01 | 



UNCLASSIFIED 



SECURITY CLASSIFICATION OF THIS PAGE Umtm Kntorod) 




CONTENTS 



Abstract / 

page 

1. INTRODUCTION / 

2. DATA SOURCES , ANALYSIS AND COMPUTATIONAL PROCEDURES 2 

Global Hand Analysis . . . . 2 

Computation of streamfunction and velocity potential 3 

j. DISCUSSION 4 

REFERENCES 7 

Figure l 10 

Figure II |q 

Figure III \\ 

Figure IV \\ 

Figure V 11 

Figures A l - A3 : 12 

Figures BI to B27 13 

Figures Cl to C9 14 



Figures Dl to DSI 



14 



ABSTRACT 

This atlas of the 700 nib circulation Held contains northern winter monthly and seasonal mean wind 
analyses, velocity potential and streainfunction from 40°S to 60°N over a global belt for the period 1974 
through 1983. In addition the deviations of the individual annual seasonal and monthly means from their 
respective nine-year means are presented for the same variables. The basic wind data used are the 
operational Global Band Analyses of the United States Navy's Ideet Numerical Oceanography Center. 



1 



/. INTRODUCTION 



This atlas depicts the wintertime (December, January, February) seasonal and monthly mean 
atmospheric 700 mb motion fields for the period 1974/1975 to 1982/1983. The charts display 700 mb 
streamfunction, wind vectors, isotachs, and velocity potential from 40°S to 60°N. In addition to the 
nine-year seasonal and monthly means and the individual annual seasonal and monthly averages, the 
deviations of the individual seasonal and monthly means from their nine-year averages are also presented. 
The seasonal calculations are based on the months of December, January, and February. The data used 
as the basis for these motion fields are the Global Band Analysis (GBA) of the United States Navy's Fleet 
Numerical Oceanography Center (FNOC). The procedure used in producing these analyses are described 
in section 2. 

The motion fields for the winters from 1974/75 to 1982/83 are of interest since the data cover a 
period not previously examined in other collections of data. Other works such as Oort (1983) and 
Krishnamurti el. al. (1983) have presented detailed analysis of the decade prior to 1974. The 1974 - 1983 
period contains two FI Nino/Southem Oscillation (FNSO) events, one occurring in 1976/77 and the other 
in 1982/83. The latter event is the most intense FNSO event yet observed. Also, the analyses presented 
here allow the FGGF winter to be placed in a longer term perspective since the FGGE experiment took 
place in the midst of the period. 



- I - 



2. DATA SOURCES , ANALYSIS AND COMPUTATIONAL PROCEDURES 



2,1 G LORAL RAND ANAL YSIS 

The wind data set used in this work are the operational analyses of the Global Hand Analyses of 
LNOC. These data are produced four times daily by objective procedures on a incrcator grid which 
extends from 40°S to 60° N. The use of the mcrcator secant projection results in a change in the actual 
distance between grid points from 140 km at 60°N to a maximum value of 280 km at the equator. The 
objective seheme is designed to take advantage of all the reports in the operational data base, surface 
synoptie, aircraft, pilot ballons, rawindsonde and satellite data. 

The analysis is performed every six hours for the surface, 700, 400, 250 and 200 mb levels. The first 
guess field used as input for the objective analysis is the six hour persistence field. The approach is to first 
interpolate the irregularly spaced data to grid points using a successive corrections technique based on 
Cressman's (1959) method. The successive corrections method takes several scans through the data 
reducing the sean radius on each successive scan. Analyses arc performed of both wind and temperature 
by this method. These fields arc then adjusted to be consistent with a set of numerical variational analysis 
(NVA) equations which have incorporated the dynamical constraints of the momentum equations with 
friction included in the surface layer, (Lewis and Grayson, 1972). Temperature and wand fields are 
adjusted subjeet to mutual constraints on the fields. However, the surface and 200 mb wind data serve 
only as a lower and upper boundary condition for the NVA and arc not subject to an adjustment. 

- 2 - 



2.2 COMPUTATION OF SI REAM FUNCTION AND VELOCITY POTENTIAL 

The streamfunction ( Vjf ) and velocity potential ( X ) were computed from the following equations: 



V 2 x = 6 
V 2 y = ^ 



where: 

£ is the relative vorticity = d\i/dy - du/dx and 

5 is the divergence — du/dx + dv/dy. Both and 5 were computed using centered differences on 
the GBA mercator grid taking the appropriate map scale factor into account. 

liquation (2) was solved using the boundary condition that / = 0 on the north and south 
boundaries which are at 60° N and 40°S respectively. The method used to compute V| / was essentially 
the method II of Shukla and Saha (1974). This technique uses the previously computed values of X t° 
formulate boundary conditions for l| / . 



- 3 - 



The depiction of the divergence field appears reasonable away from the boundary. Comparison with 
the global fields produced by the National Meteorological Center (NMC) for the years since the NMC X 
fields have become available indicate that the effect of the boundary conditions on X * s not significant 
between 40°N and 30°S. Thus the \\l and X fields in the equatorial regions are sufficently removed from 
the boundaries that we can assume that these values are not unduly affected by the choice of boundary 
conditions. 

In addition the windfield was directly decomposed into its rotational and divergent components using 
the method of Endlich (1967). This method does not require any assumption about the boundary 
conditions. The divergent wind vectors shown in the figures are not computed from X but are those 
computed by the Endlich technique. The excellent agreement between the X field and die divergent 
winds over the entire grid, gives confidence in the accuracy of the computations. 

3. DISCUSSION 

The winter (DJF) mean nine year data (Figs. A1 - A3) arc in reasonable agreement with the data of 
Newell et. al. (1974) and Oort (1983). The 700 mb wind field field is not a common field in most data 
collections. The familiar features of all these data compilations are prominent in the present work. The 
X field ( Fig. A3 ) shows a broad band of equatorial convergence, with maxima over South America, 
Africa and a zonally elongated maxima centered on New Guinea. This pattern is similar to the surface X 



- 4 - 



field shown in Boyle and Chang (1986), but the gradients and divergent wind is much weaker at 700 mb. 
There is a rapid decrease in the gradient of X and thus the divergent wind magnitude in going from the 
surface to 700 mb. The largest values of / and divergent wind at 700 mb are found in the Equatorial 
West Pacific. This is in agreement with the findings of Thompson et. al. (1979), who found that the 
divergence diminished rapidly with height in the east Atlantic but was nearly as strong at 700 mb as at the 
surface in the west Pacific. It would appear that two major convective centers, equatorial Africa and 
South America have their lower level convergence largely restricted to below 700 mb. These features are 
consistent with the tropical outgoing longwave radiation (OLR) data, Boyle and Lau (1984). However, 
the South Pacific convergence zone (SPCZ) wliich is in evidence in the OLR data and the 200 mb X field 
does not appear to be a distinct feature in the 700 mb X field. 

Figure I is a plot of the magnitude of the low level ( surface to 700 mb ) wind shear. In regions 
where the geostrophic approximation is valid, this is related to the mean low level thermal gradient. Not 
unexpectedly, the largest values are found along and to the east of the Asian and North American 
continents. There are also large values across the Northern Africa region. The positioning of the strong 
baroelinicity in the western ocean basins is consistent with these regions as being considered as source 
regions for baroclinic waves. In the Southern Hemisphere ( summer ) the strongest gradients tend to be 
on the west coasts of the continents, evidently related to the very cool waters olf these coasts. 



- 5 - 



Figure II is a time, longitude plot of X winter, seasonal anomalies along the Equator. Hie sense of 
anomalies is that positive anomaly maxima imply convergence relative to the mean. In contrast to the 
surface and 200. mb , Boyle and Chang (1986), Boyle and Chang (1984), the 700 mb anomalies do not 
show large deviations during the 1982/83 FNSO event. Evidently, the major circulation changes are 
above and below 700 mb leaving this level largely unchanged. Examination of the anomalies do not 
indicate as good a relationship between the X 7 QQ an ^ the OLR anomalies as exhibited between the X 20 O 
and the OLR anomalies. 

Further overviews of the interannual, seasonal variations are provided by Figs. Ill, IV and V. These 
are time, longitude plots of the 700 mb wind winter season anomalies along the Equator, 20°N, and 
40°N, respectively. I 11 Fig. Ill the 82/83 ENSO event is barely in evidence. As in the X held, the 700 mb 
zonal wind ( Fig. Ilia ) shows almost no sign of the rather dramatic anomalies observed at the surface. 
The subtropical flow of Fig. IV indicates that the most active region at this level is over the Pacific basin. 
The midlatitude flow in Fig. V has the largest variations on the eastern sides of the major ocean basins in 
the zonal wind field. The meridional wind anomalies have a wavelike nature to them east of about 180° 
to about 30°E. 



- 6 - 



REFERENCES 



Doyle, J. S. and C.-P. Chang, 1984: Monthly ami seasonal climatology over the global tropics and 
subtropics for the decade 1973 to 1983. Vol. I: 200 mb winds, lech. Rep. NPS-63-84-006, Dept, of 
Meteorology, Naval Postgraduate School, Monterey, CA 93943, 172 pp. 

Boyle, J. S. and C.-P. Chang, 1986: Monthly and seasonal climatology over the global tropics and 
subtropics for the decade 1973 to 1983. Vol. III. Surface winds. Tech. Rep. NPS-63-84-006, Dept, of 
Meteorology, Naval Postgraduate School, Monterey, CA 93943, 172 pp. 

Doyle, J. S. and K.-M. Iau, 1984: Monthly and seasonal climatology over the global tropics and 
subtropics for the decade 1973 to 1983. Vol. II: Outgoing longwave radiation. Tech. Rep. 
NPS-63-84-006, Dept, of Meteorology, Naval Postgraduate School, Monterey, CA 93943, 112 pp. 

Cressman, G. P.,1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367-374. 

Endlich, R. M., 1967: An iterative method for altering the kinematic properties of wind fields. J. Appl. 
Meteor., 6, 837-844. 



Fu, C., J. Fletcher and R. Slutz, 1983. The structure of the Asian monsoon surface wind held over the 
ocean. J. Clim. Appl. Met., 22, 1242-1252. 

Krishnamurti, T. N., II.-L. Fan, R. Pasch and D. Suhrahmanyam, 1983: Intcrannunl variability of the 
tropical motion field. FSU Report No. 83-3, Department of Meteorology, Florida State University, 
Tallahassee, Florida 32306. 

Lewis, J. M. and T. II. Grayson, 1972: The adjustment of surface wind and pressure by Sasaki's 
variational matching technique. J. Appl. Meteor. ,11, 586-597. 

Newell, R.E., J. W. Kidson, D. G. Vineent and G. J. Boer, 1974; Hie General Circulation of the Tropical 
Atmosphere Vol. 2. Massachusetts Institute of Technology, Boston, MA 02139, 371pp. 

Oort, A. H. f 1983: Global atmospheric circulation statistics, 1958 - 1973. NOAA Professional Paper 14. 
U. S. Department of Commerce (available from the Superintendent of Documents, U. S. Government 
Printing Ofhee, Washington, D. C. 20402 

Shukla, J. and K. R. Saha, 1974: Computation of non-divergent streamfunction and irrotational velocity 
potential from the observed winds. Mon. VVea. Rev., 102, 419-425. 

Thompson, R. M., S. W. Payne, E. E. Recker and R. J. Reed, 1979: Structure and properties of 
synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. 
Sci., 36, 53-72. 

Wright, P. B., T. P. Mitchell and J. M. Wallace, 1985: Relationships between surface observations over 
the global oceans and the southern oscillation. NOAA Data Report ERL PMEL-12, Pacific Marine 
Environmental Laboratory, Seattle, Washington, 61pp. 



- 8 - 



FIGURES 



FIGURE I 



Nine winter season (1974/75 - 1982/83 ) mean wind shear speed for the layer from the surface 
to 700 mb. Contour interval for the wind shear magnitude is 2 ins'*. The black dots on the 
plot indicate terrain heights greater or equal to 1500 m, smoothed to the G13A grid. 



FIGURE II 



Time versus longitude plot of winter season anomalies of 700 mb velocity potential averaged 
from 5°N to 5°S about the Equator. The ordinate labels refer to the year of the January of 
the winter involved. The contour interval is 0.25 x 10° ms‘ z . Dashed lines are negative, solid 
lines are positive values. The zero contour is supressed. 



- 9 - 



FIGURE III 



(a) As in Fig. I except for the zonal wind component. The contour interval is 0.25 ms’* (b) 
As in (a) except for the meridional wind component. 



FIGURE IV 



As in Fig. II exeept the reference latitude is 20° N. 



FIGURE V 



As in Fig. II exeept the reference latitude is 40°N. 



10 - 



FIGURES A/ - A3 



Nine winter season (1974/75 - 1982/83 ) mean circulation fields at the 700 mb. Variables 
displayed are wind vectors and isotachs, strean function, and velocity potential. Contour 
interval for the streamfunction is 2.0 x 10° in z s , for the velocity potential it is 1.0 x 
10° mV , and for the isotachs it is 2.5 ms* . The vector scale is given in the upper right 
portion of the wind vector isotach plots. The grid intervals of the FNOC Global Band 
Analysis mereator grid are shown on the left hand side and bottom of each figure. The 
longitude grid is marked every 30° from the Greenwich meridian on the extreme left and the 
latitude is marked every 10° from 40°S at the bottom of the figure. The black dots on the 
wind vector plots indicate terrain heights greater or equal to 1000 m, smoothed to the GBA 
grid. The contour plots use the convention that negative values are dashed, positive values are 
solid. Although the sign of the streamfunction and velocity potential has no meaning in itself, 
this plotting convention allows the principle maxima and minima in these fields to be more 
readily discerned. 



11 



FIGURES Bl TO B27 



— — „ _ - ~ 
from 1974/75 to 1982/83. lhc dev ^“^ ^ ^ ^ corresponding to the year of the 
Figs. M to A3). I he figures arc a ^ vectors and isotaehs, streamfunction, 

January of the winter to clntour interval for the streamfunction is 2.0 * 

and velocity potential. For n antl for the isotaehs it is 2.5 ms' 1 . For 

10 6 mV 1 , for velocity potential it is x ’ l 0 x I0 6 mV 1 , for velocity 

lhe deviation fields the contour interval for the {hc dcvialion plots the 

potential it is 1.0 x 10 6 m s' , and for the *otac^ ^ corrcsponding to positive values 
contours corresponding to -gat- -ues are^ ^ ^ ^ ^ uppcr ^ part of 

are solid. The zero contour is not dra\ n. 
the wind vector plots. 



12 



FIGURES Cl TO C9 



Nine year (1974 to 1983) monthly mean circulation fields at the 700 mb. 1 he months 
displayed are December, January, and Pebruary. Variables displayed are the wind vectors and 
isolachs, streamfunction, and velocity potential. The contour interval for the streamfunction is 
2.0 x 10^ m^s’*, for velocity potential it is 1.0 x 10^ m^s \ and for the isolachs it is 2.5 ms 
The vector scale is given in the upper right part of the wind vector plots. 



FIGURES D1 TO D8I 



Individual monthly mean and deviation circulation fields at the 700 mb for the months from 

December 1974 to Pebruary 1983. The deviations are differences from the nine year monthly 

mean ( Pigs. Cl to C9). The months displayed are December, January, and Pebruary. 

Variables displayed are the wind vectors and isolachs, streamfunction, and velocity potential. 

Por the mean fields the contour interval for the streamfunction is 2.0 x 10° m^s* 1 , for velocity 

potential it is 1.0 x 10° m^s , and for the isolachs it is 2.5 ms* 1 Por the deviation fields the 

f\ 9-1 

contour interval for the streamfunction is 1.0 x 10° m^s , for velocity potential it is 1.0 x 

s 9 i I 

10° m^s' 1 , and for the isolachs it is 1.5 ms. On the deviation plots the contours 
corresponding to negative values are dashed, those corresponding to positive values are solid. 
File zero contour is not drawn on the deviations. The vector scale is given in the upper right 
part of the wind vector plots. 



13 - 




Figure I 









15 






83 



LLf 




00 30E 60E 



90E 120E 150E 180 150W 1.20W BOW COW 30W 

LONGITUDE F(g ure „ 



00 



16 




l.OlKiiUJDE Figure Ilia 



17 





10 f !G ITU ID it 



Figure 1 1 1 b 



18 



83 

82 

81 

80 

79 

78 

77 

76 

75 

( 




1.GO*in°TOT DF I AT^ 20.0 AVfi- 2 




30E 



30£ 120E 160E 130 150W 120W 30\A I 60W 30W 00 



LON 0171 IDE 



Figure IVa 



19 




LOf IGUTUDE Figure IVb 



20 



LLI 

I- 



n/nniiHFinr h.if 




00 30E 60E 



UOE 



100b 100 10 OW M 

1.0 f 1011 IJDE 



iiOl'7 60 W 30 

Figure Va 



l I I LH I'l I I 








' ? > 



10 00 



21 



83 

82 

81 

80 

79 

78 

77 

76 

75 



/700 UWFILT DJF 



11)83 V700 Cf 1 J 'I.n0”|0 TOT f »F ! AT : -10!) o,« T 2 




22 








60° M 

40° N 

30°N 

20°N 

10°N 

EQ 

10°S 

20° S 

30°S 

40°S 



23 




60° N 

40°N 

30°N 

20° N 

10°N 

E0 

10°S 

20°S 

30°S 

40° S 



24 



B1 




U.V7475 UNF 70QMB DJF 1975 DRV 



CON = 



2.50*10 



SCALE = 5.000*10 



60 N 




160 W 



120 W 



80 W 



eo w 






25 




B2 




60° N 

40° N 
30°N 
20*N 
10°N 
EQ 
10*S 
20* S 
30*S 
40* S 

0* 30° E 60° E 90° E 120° E 160* E 160° E 160° W 120° W 90° W 60° W 30° W 0° 




26 




B3 





27 



B4 



U.V7Q0MBUNF 7Q0MB DJF 1976 CON ~ 5.00*10° 



SCALE = 1.000*10 




30 f 



80 E 



90 E 



120 E 



160 E 



180 E 



160 W 



120 W 



90 W 



80 W 



30 W 



U.V 7576 UNF 700MB DJF 1976 DEV CON = 2.50 *10' 



SCALE = 5.000*10 




28 



B5 






29 



B6 



CHI UD.VD 700 MB UNF 700MB DJF 1976 CON = 1.00*10” 

y— *r— — — — '■■ ■ ■■ 1 — • I e — ■ j 



SCALE = 2.000*10 

7 *" 




30 E 



60 E 



00 E 



120 E 



160 E 



1B0 E 



160 W 



120 W 



00 W 



80 W 



30 W 




60° N 

40° N 

30°N 

20°N 

10°N 

EQ 

10°S 

20° S 

30°S 

40° S 



30 





B7 





31 



B8 




50°N 

40° N 

30° N 

20 b N 

10°N 

E0 

10°S 

20°S 

30°S 

40°S 




60°N 

40° N 

30°N 

20° N 

10°N 

EO 

lO^S 

20°S 

30 # S 

40° S 



32 







B9 





60°N 

40° N 

30°N 

20*N 

10°N 

EQ 

10°S 

20° S 

30°S 

40*S 



33 



BIO 




34 



B 1 1 





35 



B 12 




50°N 

40°N 

30°N 

20°N 

10°N 

EO 

10°S 

20°S 

30°S 

4-0°S 




36 




B13 



U.V 700MB UNF /00MB DJF 1979 COM — 5.00*10° 



SCALE = 1.000*10 - 



a -MN \n \ \\ t i ' - - v\ i • vv v . 

■ ^! N N — -V * v - Aa 



60 N 




U.V 7879 UNF 700MB DJF 1979 DEV CON = 2.50*10' 



SCALE = 5. 000*10 - 



60° N 




30 E 



60 E 



90 E 



120 E 



160 E 



100 E 



160 W 



120 W 



80 W 



80 W 



30 W 






37 




B14 





50°N 

*0 C N 

30°N 

20° N 

10°N 

E0 

10°S 

20°S 

30°S 

40°S 



38 




B15 





39 



B16 





40 




B17 





60°N 

40°N 

30°N 

20*N 

10°N 

EO 

10°S 

20° S 

30°S 

40°S 



1 



41 



B18 



CHI UD.VD 70QMB UNF 7Q0MB Djf 1980 CON ~ 1.00*10° 



SCALE = 2.000*1 0 - 




CHI UD.VD 7980 UNF 700MB DJF 1980 DEV CON = 5.00*10'' SCALE = 1.000*10° - 




42 




B19 



U V 700MB UNF /00MB 1981 COIN = 5.00*10 



SCALE = 1.000*10' 




30 E 



60 E 



80° E 



120 E 



160* E 



160° E 



160 W 



120 W 



80° W 



80 W 



30° W 



U.V 8081 UNF 700MB DJF 1981 DEV CON = 2.50 *10' 



SCALE = 5.000*10 - 




160 W 



120 W 



80 W 



80 W 



30 W 









43 



B20 




BO°N 

40°N 

30°N 

20°N 

10°N 

EO 

10°S 

20°S 

30°S 

40°S 




50° N 

40°N 

30°N 

20*N 

10° N 

EO 

10°S 

20°S 

30°S 

40° S 



44 




B21 




60°N 

40°N 
30°N 
20*N 
10° N 
EQ 
10°S 
20° S 
30°S 
40* S 




45 



B22 




46 




B23 








47 



B24 




50°N 

40°N 
30°N 
20°N 
10° N 
EQ 
lO a S 
20°S 
30*S 
40°S 

0° 30° E eo" E 90° E 120° E 160° E 100° E 160° W 120° W 90° W 00° W 30° W 0° 




48 




B25 





f 



49 



B26 





60° N 

40° N 
30° N 
20°N 
10° N 
E0 
10’S 
20° S 
30°S 
40° S 



50 



B27 




CHI UD.VD 8283 UNF 70QMB D.JF 1983 DEV CON = 5.00»1Q~ 



SCALE = 1.000*10“ - 




180 E 



160 W 



120 W 



80 W 



80 W 



30 W 



51 





52 




I 




60°N 

40° N 

30°N 

20°N 

10°H 

EQ 

10°S 

20*S 

30°S 

40®S 






53 





54 




CHI UD.VD 700MB GAV UNF 700MB JAN 



SCALE = 1.000*10 - 




30 E 



60 E 



90 E 



120 E 



160 E 



1B0 E 



160 W 



120 W 



flO W 



60 W 



30 W 






55 



C7 





56 






57 



D1 





58 





PSI 700MB UNF- 700MB DfcC 1974 COM = 4.00*10 



D2 




30 E 



CO E 



00 E 



PSI 7475 UNF 700MB DEC 1974 DEV C0N = 2.00*10 



30 E 



60 E 



00 E 



120 E 



160 E 



180 E 



160 W 



120 W 



00° W 



60 W 



30° W 



60 N 




59 




CHI UD.VD 7475 UNF 700MB DEC 1974 DEV CON = frOCW 1 SCALE = 1000*10° - 



• I ~ • ' \ l ll/ J | i ' * 

vl|/ / | | *• - N • . 1 \ V / / . ✓ - 1 . N \ , 

— # • J • \ / s — 

* - •" ~ r - # - 1 ~ i"* i~ -Sr -V "V "V- -f- *-/• -<r-~ f - f - 

1^0’ Vk-TW.i -j - ' — 

- r - 7 -/-* V ~V J- r 

n* ^ ^ ^ 

.. _ x 4 _ -V L- 

" <' >-k£i' >*" L># • * 



/ Y~' ~ ' * • • - - 

i *.<'// v v i * \*\ < 

■a i \ r. . . i . « 



T^T 



' ' \ Jaw- i - 

i * * - vZ-i a--/- -*A - ' 1 . 

-.{Mv-aov-k:. 

j * «- # J i ✓ ^ 4 S 1 v'l I 
-N! • 




i I 



50 M 



' 7 '?"V,T 



:. a :;' 





- -V • Is/.'. -V Vi v\X *s '! A' \ 1 \ I i- AY- ‘ f ‘ i r ' "a^ v ’ " 

. a A A a i.-o-_ N . : . '; aV\ -_V •- L i A^.tj 7 T?P- -V- -L97 :T^> - -' J -'- -•- --- -'- -'- -•- i< A. V - - ^- - 

- /^VvU* — t V.H 1 '- N i ' n \ S-i./i/ < '•i' * - - y^’-' y - - ■ 

TT At4±a*ir.<r. : . : .ri/.^trA .'. a!a A a: j . :j 3: t i '/ J. . A .-. :: Xjh -. - \: ' -' 

- 1 * ' ! 1 A *" 1 1 ' /'A -/ '!- vT:-' • \X/V 



m \ \ r\/r^- 
r-rvr^ft j\ 



r,.- ■ ^vv-rvr;-rr^r^v^?'r! / . . 

NlW a A A At \-U-.l. tM-h L J. 1 .'. >/A 1 /! . A. 
V ^ 1 - — ' n; ' » / w /j^ \ 1 

.:_r]A?:vrM.<K 

* ^ ^ 




30 E 



eo p 



90 F 



120 P 



160 



180 P 



160 W 



120 W 



00 W 



60 W 



30 W 



60 





D4 



SCALE = 1.000*10' - 




30 E 



60 E 



90 E 



U.V 7475 UNF 700MB JAN 1975 DEV CON = 2.50*10' 



SCALE = 5.000*10 - 



60 N 




160 W 



120 W 



00 W 



00 W 



30 W 



61 



D5 





60° N 

40° N 

30°N 

20°H 

10°N 

EQ 

10°S 

20°S 

30°S 

40 ®$ 



62 




D6 




/D7475 UNF 700MB JAN 1975 DEV CON = kOO^O' 1 SCALE = 1000*10° - 




30 E 



80 E 



80° E 



120 E 






63 



50° N 

40°N 
30°N 
20° N 
10° N 
EQ 

to°s 

20° S 
30®$ 
40° S 

0° 30° E 60° E 90° E 120° E 150° E 180° E 150° W 120° W 90° W 00° W 30° W 0° 



50° H 

40° N 
30°N 
20° N 
10°N 
EQ 
10° S 
20® S 
30°S 
40° S 

0° 30° E 00* E 90° E 120° E 160" E 180° E 160° W 120° W 80° W 00° W 30° W 0° 






1975 DEV CON = 2.50*10 



SCALE = 5.000*10 - 




D7 




64 






II 



65 



Tnn 



D9 




50° N 

40° N 

30°N 

20°N 

10°N 

EQ 

10°S 

20°S 

30 # S 

40°S 




66 





DIO 




)"N 

)°N 
3°N 
)*N 
l°N 
) 

»®S 
)®S 
>®S 
) 8 S 

0* 30® E 60® E 60° E 120° E 160® E 1B0° E 160° W 120° W 80° W 60® W 30° W 0° 







67 



Dll 





68 





D12 




CHI UD.VD 7578 UNF 700MB DEC 1975 DEV COM = 5.00*10’ 



SCALE = 1.000*10 - 




160 W 



120 W 



00 W 



60 W 



30 W 



69 



D13 



U.V 700MB UNF 700MB JAN 1976 CON- 5.00*10 



SCALE 



1 . 000*10 




30 E 



00 F 



90 E 



170 F 



160 F 



180 F 



160 W 



120 W 



90 W 



60" W 



30 W 



700MB JAN 1976 DEV CON = 2.50*10 



SCALE = 5.000*10 - 




30 F 



00 E 



00 E 



120 F 



160 F 



180 F 



160 W 



90 W 



60 W 



30 W 



70 





D14 








71 



D15 




CHI UD.VD 7576 UNF 700MB JAN 1976 DEV CON = 5.00 *10° SCALE ~ 1.000 # 10 - 



60 N 




30 E 



00 E 



90 E 



120 “ 



160 E 



180 



160 W 



120 W 



90 W 



80 W 



30 W 



72 




D16 




U,V 7576 UNF 700MB FEB 1976 DEV CON - 2.50*10 

7T? 



SCAL E = 5,000*10 



60 N 




30 E 



60 E 



GO E 



120 E 



160 E 











V > 1 n/K / 

1 / 1 

- z .1 ir “t i i ■ 








V i / J / * * • - 


i V i \ i 


i \s/T iVrr-rtn 


rW 1 > i t i 1 1 i 1 r i i t 




1B0° E 


160 ° w i: 



120 W 



GO W 



60 W 



30 W 



73 





D17 





50 D N 

40° N 
30° N 
20° N 
10°N 
E0 
10°S 
20° S 
30°S 
40° S 



74 



TTXF 



D18 




CHI UD.VD 7576 UNF 700MB FEB 1976 DEV CON = 5.00*10'’ SCALE = 1.000*10 

^ ” 




■ 



'I- 1 ' ' \ V \JA.JL j >< / 

.• yf. xv- -<y. 

i \ i J >. ‘O'- n ! v i 
" ‘ 4 \ I ‘ f* ^ n » • Z- *' 

UT f 

-"{K/ / ^ * ! • ' 

^vvyyjy ;y-y^c.y^ 

V*-^ \ 



jJ-L-Ll-Llij ml f i i 1 1 1 1 i ) 




T )\ V; ' < ' ' ' 

■ »•*. ' ' v \ • •!•' \NHf- -t 



~ /V 



' ' jv x j 

-r-*-?-'|-?i2r r ' 



/ XjJ 

1 1 1 il l 1 j 1 1 ^ i i 1 h h 1 ill I.ill Ij j M i 



180 E 



160 W 



120 W 



80 W 



00 W 



30 W 



75 



D19 




U.V 7677 UMF 7Q0MB DEC 1976 DEV CON = 2.50*10 



SCALE = 5.000*10 




76 




D20 





60°H 

♦0°N 

30°N 

20*N 

10 # N 

EQ * 

10°S 

20° S 

30°S 

40°S 



I 



77 



D21 





78 





D22 



SCALE = 1.000*10 




UMF 700MB JAN 1977 DEV COM - 2.50*10 



SCALE = 5.000*10 - 




30 E 



CO E 



90 E 



120 E 



160 E 



180 E 



160 W 



120 W 



90 W 



CO W 



30 W 



79 



D23 




60° N 

40°N 

30°N 

20°N 

10°N 

EO 

10°S 

20* S 

30 °S 

40 fl S 




60° N 

40° N 

30°N 

20°N 

10°N 

EO 

10 P S 

20* S 

30°S 

40°S 



80 



D24 





D25 



U.V 700MB UNF 700MB FEB 197/ CON ~ 5.00*10 



SCALE = 1.000*10 




1B0 E 



160 W 



170 W 



90 W 



80 W 



82 



D26 





60°N 

40°N 
30°N 
20* N 
I0°N 
EQ 
10°S 
20® S 
30°S 
40® S 



83 



D27 





60 N 

40° N 
30°N 
20° N 
10°N 
E0 
10°S 
20° S 
30 # S 
40° S 



84 




D28 




U.V 7778 UNF. 700MB DEC 1977 DEV 



250*10 



SCALE = 5.000*10 - 




iO"S 



85 



D29 



50° N 

40°N 
30°N 
20°N 
10°N 
EQ 
10°S 
20°S 
30*S 
40°S 

0° 30° E eo° E 00° E 120° E 160° E 180° E 160° W 120° W 00° W 60° W 30° W 0° 





86 




D30 





i 






87 



D31 



U.V 700MB UNF 700MB JAN 1970 COM — 5.00*10 



SCALE = 1.000*10 



60° N 




U.V 7778 UNF 700MB JAN 1978 DEV CON = 2.50*10 



SCALE = 5.000*10 - 



60°N 



40° N 




88 




D32 





I 



89 



D33 




i 

i 




60°N 

40°N 

30°N 

20° N 

10°N 

EQ 

10°S 

20° S 

30°S 

40®S 



90 




D34 








60°N 



40°N 

30°N 

20 # N 

10*N 

EQ 

10 # S 

20° S 

30°S 

40 # S 



91 






D35 





92 



D36 





60°N 

40° N 

30°N 

20° N 

10®N 

EQ 

I0°S 

20° S 

30°S 

40°S 




93 



D37 



U.V 700MB UNF 700MB DEC 1978 CON - 5.00*10 



SCALE - 1.000*10 - 




30 E 



00 E 



90 E 




50°N 

r 40°N 
30°N 
20® N 
10°N 
EO 
10® S 
20®S 
30®S 
40® S 



30° E 00* E 



90 E 



120° E 160* E 180° E 



160° W 120° W 90° W 



80° W 30° W 



0 ° 



94 




D38 





k 



95 



D39 




CHI UD.VD 7879 UNF 700MB DEC 



1978 DEV CON - S.OO^IO' 1 



SCALE = 1.000*10 - 




»/ / / 

✓ / / \ \ i 

-r-r-r‘7 
- ' ' 

- - 1 - L l - 1 - 1 - 

\\ i r 



60°N 



40 C N 






t 

r“ x ' ■ 

: V'\ \ ' * t 

liliVil i \ i ) 1 \ 1 1 1 \ 1 1 1 



i - 1 1 - - v v ~r r f 

i »!' 1 - - ' 
JLjJjJjJjJjJj-IjXLL 



\ / 
✓ 


^ - s j ' - • 

'KJ V---- 


/ 7\] 


-V- ^ ^ ; - / I VT 1 1 ' 

t V 'U ’ ' 


i • 

"T 


/ >v r- ■ ' y* ^ \ > - 


? • Tiff X N. — f ^ 
^ ' /• • | \ ^ x >f i V 


^ -j7 / . . \ ^ y \ l J 

s ' / / \ 

‘-•A* * ■ • \ NO. X 1 ✓ 

/ 1 / / 



IlLl LlLl 2 JxlLlLU Uxu IlLU li i iflli ilil ilil il 



1 1 Li 1 i 1 1 \ i f 1 1 1 1 1 T 1 f 1 1 1 1 ill i T i m 1 1 1 1 1 1 



• ■ ry wi 

LlJUJjJj lilljLili-l 



40 S 



30 E 



eo e 



00 E 



170 E 



160 E 



1B0 E 



160 W 



170 W 



00 W 



80 W 



30 W 



96 



D40 



60° M 

40° N 
30°H 
20*N 
10® N 
EQ 
10°S 
20 * 6 
30®S 
40°S 

0° 30* E e0° E 90° E 120° E 150* E 180° E 160° W 120° W 80° W 80° W 30° W 0° 



60° M 

40®N 
30°N 
20*N 
10®N 
EQ 
10®S 
20® S 
30®S 
40®S 

0° 30° E 60° E 90° E 120° E 160° E 180° E 150° W 120° W 80° W 60° W 30° W 0° 





» 




97 



D41 





60°M 

40° N 
30°N 
20 # N 
10°N 
EQ 
10° S 
20° S 
30°S 
40* S 



98 




D42 





i 



J 



99 



D43 



U.V 700MB UNF 700MB FEB 1979 CON — 5.00*10* 



SCALE == 1.000*10 




30 E 



©0° E 



00° E 



120 E 



160 E 



180 E 



160 W 



120 W 



90 W 



60 W 



30 W 




100 




D44 








101 



D45 





102 




D46 





D47 





104 




D48 





( 



105 



D49 



U.V 700MB UNF 700MB JAN 1980 CON- 5.00*10 



SCALE ” 1.000*10 




30 E 



00 E 



00 E 



120 E 



160 E 



180 E 



160 W 



120 W 



90 W 



60 W 



30 W 




30 E 



00 E 



90 E 



120 E 



160 E 



180 E 



160 W 



120 W 



90 W 



80 W 



30 W 



106 




D50 





60° N 

40°N 

30°N 

20*N 

10° N 

EQ 

10°S 

20°S 

30°S 

40° S 




107 



D51 





108 




D52 



60°N 

40°N 
30°N 
20*N 
10*N 
EQ 
IO # S 
20*S 
30°S 
40°S 

0° 30° E ©0* E 80° E 120° E 160 - E 180° E 160° W 120° W 80° W 80° W 30° W 0° 



60°N 

40°N 
30°N 
20* N 
10°N 
EO 
10°S 
20* S 
30°S 
40°S 

0° 30° E 60° E 90° E 120° E 160° E 180° E 160° W 120° W 80° W 60° W 30° W 0° 





D53 





1 



no 




D54 





111 



D55 





BO°N 

40° N 

30°N 

20°N 

10°N 

EQ 

10°S 

20*S 

30°S 

40® S 



0° 30° E 00* E 00° E 120° E 160* E 180° E 160° W 120° W 80° W 60° W 30° W 0° 



112 




D56 








113 



D57 





I 



114 





D58 



U.V 700MB UNF 700MB JAM 1981 CON ~ 5.00*10 



SCALE 



1 . 000*10 




30 E 



60 E 



120 E 



160 E 



180 E 



160 W 



120 W 



00 W 



60 W 



30 W 



U t V 8081 UNF 700MB JAM 1961 DEV COM = 2.50 *10* 



SCALE = 5.000*10 - 




30 E 



60 E 



90 E 



120 E 



160 E 



100 E 



160 W 



120 W 



90 W 



30 W 



115 



D59 





116 




D60 




CHjUP.VD 8081 UNF 700MB JAN 1981 DFV COM = 5.00*10" SCALE = 1 000*10° - 



60 N 




30 E 



60 E 



ien c 












117 



D61 




60°N 

♦0°N 
30°N 
20°N 
10°N 
EQ 
10°S 
20° S 
30 9 S 
40*S 

0° 30° E 60* E 60° E 120° E 160* E 190° E t60° W 120° W 00° W 00° W 30° W 0° 




118 





D62 





\ 



i 



119 



D63 





120 



D64 





J 






121 



D65 



50" N 

40° N 
30°N 
20*N 
10°N 
EQ 
10°S 
20°S 
30°S 
40°S 

0° 30° E «0° E 00° E 120° E 150° E 100° E 160° W 170° W 80° W 00° W 30° W 0° 



50°N 

40" N 
30°N 
20*N 
10°N 
EO 
10°S 
20° S 
30°S 
40°S 

0° 30° E «0*E 80° E 120° E 160" E 100° E 160° W 120° W 80° W 60° W 30° W 0° 





I 



122 



i 




D66 




CHI UD.VD 8182 UNF 70QMB DEC 1981 DjFV CON = 5.00*10'' SCALE = 1 000*10° - 



50°N 




160 W 



120 W 



90 W 



60 W 



30 W 



L 



123 



D67 





124 



D68 





L 



125 



D69 




CHI UD.VD 8182 UNF 700MB JAN 1982 DEV CON 



5.00*10' 



SCALE = 1.000*10 - 

.A , 




■*. \ l 

j ■ > ■ > ■ i . rrf n* > , i ■ i ■ iVrrrrfrt^rri ■ > i i , i 



30 E 



eo* e 



170 E 



160 E 



126 



l 




D70 





. 



127 



D71 





60°N 

40°N 

30°N 

20® N 

10°N 

EQ 

10®S 

20® S 

30®S 

40®S 






I 



128 



, 



D72 




CHI UP.VD 8182 UNF 700MB FFB 1982 DEV CON = S.OO^O' 1 SCALE = 1.000*10° - 




30 E 



60 E 



120 E 



160 E 



180 E 



160 W 



120 W 



BO W 



60 W 



30 W 



. 



129 



D73 




U.V 8283 UNF 7Q0MB DEC 1982 DEV CON - _ 2.50*10 



SCALE ~ 5.000*10 - 

TTT 




30 E 



90 E 



170 E 



160 E 



180 E 



160 W 



170 W 



00 W 



60 W 



30 W 



130 



I 




D74 





60°N 

40° N 

30°N 

2G*N 

10°N 

EQ 

10 # S 

20*S 

30°S 

40° S 






131 



D75 



50°N 

♦0°N 
30°N 
20°N 
tO°H 
EQ 
10*S 
20 e S 
30 e S 
40*S 

0° 30* E 60° E 90° E 120° E 160" E 1B0* E 160* W 120° W 90° W 60° W 30° W 0° 



50°N 

40°N 
30®N 
20*N 
10® N 
EQ 
10°S 
20 8 S 
30 e S 
40* S 

0* 30* E «0*E 90* E 120* E 160* E 1B0* E 160* W 120* W 90* W 60* W 30* W 0* 





132 






D76 






U,V 700MB UNF 700MB JAN 1983 CON = 5.00*10 



SCALE = 1.000*10 




30 E 



U.V 8283 UNF 700MB JAN 1983 DRV CON /= 2.50*1 



SCALE = 5.000*10 - 




30 E 



60 E 



00 E 



120 E 



160 E 



180 E 



160 W 



120 W 



00 W 



60 W 



30 W 



133 



D77 




PSI 8283 UNF 700MB JAN 1983 DEV CON - 2.00*10 




90° W 



60 W 



134 



D78 






, 





CHI UD.VD 8283 UNF 700MB JAN 1983 DEV CON = 5.00*10” SCALE = 1.000*10 - 

. 11 » 1 * ■ I I . 11 1 1 111 .-III. .1 , « i „ ■ » T — r>r - 1 , » » ■ ■ — . r i — ■ » ' 




30* E 60° E 80* E 120° E 160° E 180° E 160° W 120° W 90° W #0° W 30° W 



135 



079 



U.V70QMBUNF 700MB REB 1983 CON ~ 5.00*10 
Tu 



SCALE 



1 . 000*10 - 



60”N 




30 E 



U.V 8283 UNF 700MB FEB 1983 DEV CON - 2.50*10 



SCALE = 5.000*10 . - 




30 E 



•0 E 



90 E 



1?0 E 



160 E 



1B0 E 



160 W 



90 W 



60 W 



30 W 



136 













137 



D81 





138 





DISTRIBUTION LIST 



No. of copies 



1. Defense Technical Information Center 2 

Cameron Station 

Alexandria, Vir ginia 22 SO i hi 15 

2. Library, Code 0142 2 

Naval Postgraduate School 

Monterey, California 92943-5100 

3. Department of Meteorology Library, Code 63 1 

Naval Postgraduate School 

Monterey, California 93943-5100 

4. Climate Analysis Center 3 

NMC/NOAA 

Washington, D.C. 20233 

5. Professor R. J. Henard, Code 63Rd 1 

Naval Postgraduate School 

Monterey, California 93943 5100 

6. Professor C.-P. Chang, Code 63Cp 50 

Naval Postgraduate School 

Monterey, California 93943-5100 

7. Professor J. S. Boyle, Code 63By 2 

Naval Postgraduate School 

Monterey, California 93943 5100 

b. Dr. K. M. Lau 2 

Goddard Space Plight Center 
Climate and Radiation branch 
NASA, Code 613 
Greenbelt, Maryland 20771 



1 



9. Research Administration Office 
Code 012 

Naval Postgraduate School 
Monterey, CA 93943-5000 



140