NPS- 63-86-003
FedDocs
D 208.14/2
NPS-63-86-003
NAVAL
POSTGRADUATE SCHOOL
Monlepey, California
Monthly and Seasonal Climatology of the Northern
Winter over the Global Tropics and
Subtropics for the Period 197^ to 1983
Volume IV. 700 mb Winds
by
James S. Boyle and C.-P. Chang
May 1986
Technical Report May 1985 - May 1986
Approved for public release; distribution unlimited.
Prepared for: National Oceanic and Atmospheric Administration
Washington, D.C. 20233
F id Am,
o
9 ^
u ►
093
NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943
Rear Admiral 1 1 . H. Shumaker
Superintendent
U. A. Schradv
Provost
The work reported herein was supported by the National Oceanic and Atmospheri
Administration, under Research Contracts NA83AAG03828 and 40AANW503656.
This report was prepared by:
c '
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE D*tm linfrmd)
REPORT DOCUMENTATION PAGE
RKAD INSTRUCTIONS
nei-ORR COMPLETING FORM
*• REPORT NUMUEM 2. GOVT ACCESSION NO
NPS-63-86-003
3. RECIPIENT’S CATALOG NUMBER
« TITLE (tnj Subllll»)
Monthly and Seasonal Cl imatology of the Northern
Winter over the Global Tropics and Subtropics for
the Period 1974 to 1983. Volume IV. 700 mb Winds
5. TYPE OF REPORT * PERIOO COVERED
Technical Report for
May 1985 - May 1986
6. PERFORMING ORG. REPORT NUMBER
1. AUTHORf,)
James S. Boyle and C.-P. Chang
S. CONTRACT OR GRANT NUM8ERC<>
NOAA Research Contracts
NA83AAG03828 & 40AANW503656
9. PERFORMING ORGANIZATION NAME ANO ADDRESS
Naval Postgraduate School
Monterey, California 93943
10. PROGRAM ELEMENT, PROJECT, TASK
AREA 6 WORK UNIT NUMBERS
II. CONTROLLING OFFICE NAME ANO AOORESS
Climate Analysis Center/NMC
National Oceanic and Atmospheric Administration
Washington, D.C. 20233
12. report date
May 1986
11. NUMBER OF PAGES
140
u. MONITORING AGENCY NAME a ADDRESS^/ dUfofnt from Controlling Office)
IS. SECURITY CLASS, (o 1 IM, rtfxm)
UNCLASSIFIED
1 5*. DECL ASSIFICATION/OOWNGRAOINO
schedule
16. DISTRIBUTION STATEMENT (of rtfs Htpott)
Approved for public release; distribution unlimited.
17 DISTRIBUTION STATEMENT (of tho mbatrsct 9nftod in fl/oc* 20, if dHUtoni from Riport)
Ifl. supplementary NOTES
19, KEY WORDS (Continue on tmwf mid* if n#c#*#*i 7 * «id Identify by block nutnbor)
Interannual Variations
Tropical Climatology
Winter Circulations
20. ABSTRACT (Continuo on r#w of old* 1/ n#c##*«/y *nd Id9ntify by block numborj
This atlas of the 700 mb circulation field contains northern winter
monthly and seasonal mean wind analyses, velocity potential and
streamfunction from 40° S to 60° N over a global belt for the period 1974
through 1983. In addition, the deviations of the individual annual
seasonal and monthly means from their respective nine— year means are
presented for the same variables. The basic wind data used are the
operational Global Band Analyses of the United States Navy’s Fleet
Numerical Oceanography Cpnte.r_.
DD t JAN*TJ 1473 EOITION OF 1 MOV «S IS OBSOLETE
S/N 0102*014* »«01 |
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE Umtm Kntorod)
CONTENTS
Abstract /
page
1. INTRODUCTION /
2. DATA SOURCES , ANALYSIS AND COMPUTATIONAL PROCEDURES 2
Global Hand Analysis . . . . 2
Computation of streamfunction and velocity potential 3
j. DISCUSSION 4
REFERENCES 7
Figure l 10
Figure II |q
Figure III \\
Figure IV \\
Figure V 11
Figures A l - A3 : 12
Figures BI to B27 13
Figures Cl to C9 14
Figures Dl to DSI
14
ABSTRACT
This atlas of the 700 nib circulation Held contains northern winter monthly and seasonal mean wind
analyses, velocity potential and streainfunction from 40°S to 60°N over a global belt for the period 1974
through 1983. In addition the deviations of the individual annual seasonal and monthly means from their
respective nine-year means are presented for the same variables. The basic wind data used are the
operational Global Band Analyses of the United States Navy's Ideet Numerical Oceanography Center.
1
/. INTRODUCTION
This atlas depicts the wintertime (December, January, February) seasonal and monthly mean
atmospheric 700 mb motion fields for the period 1974/1975 to 1982/1983. The charts display 700 mb
streamfunction, wind vectors, isotachs, and velocity potential from 40°S to 60°N. In addition to the
nine-year seasonal and monthly means and the individual annual seasonal and monthly averages, the
deviations of the individual seasonal and monthly means from their nine-year averages are also presented.
The seasonal calculations are based on the months of December, January, and February. The data used
as the basis for these motion fields are the Global Band Analysis (GBA) of the United States Navy's Fleet
Numerical Oceanography Center (FNOC). The procedure used in producing these analyses are described
in section 2.
The motion fields for the winters from 1974/75 to 1982/83 are of interest since the data cover a
period not previously examined in other collections of data. Other works such as Oort (1983) and
Krishnamurti el. al. (1983) have presented detailed analysis of the decade prior to 1974. The 1974 - 1983
period contains two FI Nino/Southem Oscillation (FNSO) events, one occurring in 1976/77 and the other
in 1982/83. The latter event is the most intense FNSO event yet observed. Also, the analyses presented
here allow the FGGF winter to be placed in a longer term perspective since the FGGE experiment took
place in the midst of the period.
- I -
2. DATA SOURCES , ANALYSIS AND COMPUTATIONAL PROCEDURES
2,1 G LORAL RAND ANAL YSIS
The wind data set used in this work are the operational analyses of the Global Hand Analyses of
LNOC. These data are produced four times daily by objective procedures on a incrcator grid which
extends from 40°S to 60° N. The use of the mcrcator secant projection results in a change in the actual
distance between grid points from 140 km at 60°N to a maximum value of 280 km at the equator. The
objective seheme is designed to take advantage of all the reports in the operational data base, surface
synoptie, aircraft, pilot ballons, rawindsonde and satellite data.
The analysis is performed every six hours for the surface, 700, 400, 250 and 200 mb levels. The first
guess field used as input for the objective analysis is the six hour persistence field. The approach is to first
interpolate the irregularly spaced data to grid points using a successive corrections technique based on
Cressman's (1959) method. The successive corrections method takes several scans through the data
reducing the sean radius on each successive scan. Analyses arc performed of both wind and temperature
by this method. These fields arc then adjusted to be consistent with a set of numerical variational analysis
(NVA) equations which have incorporated the dynamical constraints of the momentum equations with
friction included in the surface layer, (Lewis and Grayson, 1972). Temperature and wand fields are
adjusted subjeet to mutual constraints on the fields. However, the surface and 200 mb wind data serve
only as a lower and upper boundary condition for the NVA and arc not subject to an adjustment.
- 2 -
2.2 COMPUTATION OF SI REAM FUNCTION AND VELOCITY POTENTIAL
The streamfunction ( Vjf ) and velocity potential ( X ) were computed from the following equations:
V 2 x = 6
V 2 y = ^
where:
£ is the relative vorticity = d\i/dy - du/dx and
5 is the divergence — du/dx + dv/dy. Both and 5 were computed using centered differences on
the GBA mercator grid taking the appropriate map scale factor into account.
liquation (2) was solved using the boundary condition that / = 0 on the north and south
boundaries which are at 60° N and 40°S respectively. The method used to compute V| / was essentially
the method II of Shukla and Saha (1974). This technique uses the previously computed values of X t°
formulate boundary conditions for l| / .
- 3 -
The depiction of the divergence field appears reasonable away from the boundary. Comparison with
the global fields produced by the National Meteorological Center (NMC) for the years since the NMC X
fields have become available indicate that the effect of the boundary conditions on X * s not significant
between 40°N and 30°S. Thus the \\l and X fields in the equatorial regions are sufficently removed from
the boundaries that we can assume that these values are not unduly affected by the choice of boundary
conditions.
In addition the windfield was directly decomposed into its rotational and divergent components using
the method of Endlich (1967). This method does not require any assumption about the boundary
conditions. The divergent wind vectors shown in the figures are not computed from X but are those
computed by the Endlich technique. The excellent agreement between the X field and die divergent
winds over the entire grid, gives confidence in the accuracy of the computations.
3. DISCUSSION
The winter (DJF) mean nine year data (Figs. A1 - A3) arc in reasonable agreement with the data of
Newell et. al. (1974) and Oort (1983). The 700 mb wind field field is not a common field in most data
collections. The familiar features of all these data compilations are prominent in the present work. The
X field ( Fig. A3 ) shows a broad band of equatorial convergence, with maxima over South America,
Africa and a zonally elongated maxima centered on New Guinea. This pattern is similar to the surface X
- 4 -
field shown in Boyle and Chang (1986), but the gradients and divergent wind is much weaker at 700 mb.
There is a rapid decrease in the gradient of X and thus the divergent wind magnitude in going from the
surface to 700 mb. The largest values of / and divergent wind at 700 mb are found in the Equatorial
West Pacific. This is in agreement with the findings of Thompson et. al. (1979), who found that the
divergence diminished rapidly with height in the east Atlantic but was nearly as strong at 700 mb as at the
surface in the west Pacific. It would appear that two major convective centers, equatorial Africa and
South America have their lower level convergence largely restricted to below 700 mb. These features are
consistent with the tropical outgoing longwave radiation (OLR) data, Boyle and Lau (1984). However,
the South Pacific convergence zone (SPCZ) wliich is in evidence in the OLR data and the 200 mb X field
does not appear to be a distinct feature in the 700 mb X field.
Figure I is a plot of the magnitude of the low level ( surface to 700 mb ) wind shear. In regions
where the geostrophic approximation is valid, this is related to the mean low level thermal gradient. Not
unexpectedly, the largest values are found along and to the east of the Asian and North American
continents. There are also large values across the Northern Africa region. The positioning of the strong
baroelinicity in the western ocean basins is consistent with these regions as being considered as source
regions for baroclinic waves. In the Southern Hemisphere ( summer ) the strongest gradients tend to be
on the west coasts of the continents, evidently related to the very cool waters olf these coasts.
- 5 -
Figure II is a time, longitude plot of X winter, seasonal anomalies along the Equator. Hie sense of
anomalies is that positive anomaly maxima imply convergence relative to the mean. In contrast to the
surface and 200. mb , Boyle and Chang (1986), Boyle and Chang (1984), the 700 mb anomalies do not
show large deviations during the 1982/83 FNSO event. Evidently, the major circulation changes are
above and below 700 mb leaving this level largely unchanged. Examination of the anomalies do not
indicate as good a relationship between the X 7 QQ an ^ the OLR anomalies as exhibited between the X 20 O
and the OLR anomalies.
Further overviews of the interannual, seasonal variations are provided by Figs. Ill, IV and V. These
are time, longitude plots of the 700 mb wind winter season anomalies along the Equator, 20°N, and
40°N, respectively. I 11 Fig. Ill the 82/83 ENSO event is barely in evidence. As in the X held, the 700 mb
zonal wind ( Fig. Ilia ) shows almost no sign of the rather dramatic anomalies observed at the surface.
The subtropical flow of Fig. IV indicates that the most active region at this level is over the Pacific basin.
The midlatitude flow in Fig. V has the largest variations on the eastern sides of the major ocean basins in
the zonal wind field. The meridional wind anomalies have a wavelike nature to them east of about 180°
to about 30°E.
- 6 -
REFERENCES
Doyle, J. S. and C.-P. Chang, 1984: Monthly ami seasonal climatology over the global tropics and
subtropics for the decade 1973 to 1983. Vol. I: 200 mb winds, lech. Rep. NPS-63-84-006, Dept, of
Meteorology, Naval Postgraduate School, Monterey, CA 93943, 172 pp.
Boyle, J. S. and C.-P. Chang, 1986: Monthly and seasonal climatology over the global tropics and
subtropics for the decade 1973 to 1983. Vol. III. Surface winds. Tech. Rep. NPS-63-84-006, Dept, of
Meteorology, Naval Postgraduate School, Monterey, CA 93943, 172 pp.
Doyle, J. S. and K.-M. Iau, 1984: Monthly and seasonal climatology over the global tropics and
subtropics for the decade 1973 to 1983. Vol. II: Outgoing longwave radiation. Tech. Rep.
NPS-63-84-006, Dept, of Meteorology, Naval Postgraduate School, Monterey, CA 93943, 112 pp.
Cressman, G. P.,1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367-374.
Endlich, R. M., 1967: An iterative method for altering the kinematic properties of wind fields. J. Appl.
Meteor., 6, 837-844.
Fu, C., J. Fletcher and R. Slutz, 1983. The structure of the Asian monsoon surface wind held over the
ocean. J. Clim. Appl. Met., 22, 1242-1252.
Krishnamurti, T. N., II.-L. Fan, R. Pasch and D. Suhrahmanyam, 1983: Intcrannunl variability of the
tropical motion field. FSU Report No. 83-3, Department of Meteorology, Florida State University,
Tallahassee, Florida 32306.
Lewis, J. M. and T. II. Grayson, 1972: The adjustment of surface wind and pressure by Sasaki's
variational matching technique. J. Appl. Meteor. ,11, 586-597.
Newell, R.E., J. W. Kidson, D. G. Vineent and G. J. Boer, 1974; Hie General Circulation of the Tropical
Atmosphere Vol. 2. Massachusetts Institute of Technology, Boston, MA 02139, 371pp.
Oort, A. H. f 1983: Global atmospheric circulation statistics, 1958 - 1973. NOAA Professional Paper 14.
U. S. Department of Commerce (available from the Superintendent of Documents, U. S. Government
Printing Ofhee, Washington, D. C. 20402
Shukla, J. and K. R. Saha, 1974: Computation of non-divergent streamfunction and irrotational velocity
potential from the observed winds. Mon. VVea. Rev., 102, 419-425.
Thompson, R. M., S. W. Payne, E. E. Recker and R. J. Reed, 1979: Structure and properties of
synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos.
Sci., 36, 53-72.
Wright, P. B., T. P. Mitchell and J. M. Wallace, 1985: Relationships between surface observations over
the global oceans and the southern oscillation. NOAA Data Report ERL PMEL-12, Pacific Marine
Environmental Laboratory, Seattle, Washington, 61pp.
- 8 -
FIGURES
FIGURE I
Nine winter season (1974/75 - 1982/83 ) mean wind shear speed for the layer from the surface
to 700 mb. Contour interval for the wind shear magnitude is 2 ins'*. The black dots on the
plot indicate terrain heights greater or equal to 1500 m, smoothed to the G13A grid.
FIGURE II
Time versus longitude plot of winter season anomalies of 700 mb velocity potential averaged
from 5°N to 5°S about the Equator. The ordinate labels refer to the year of the January of
the winter involved. The contour interval is 0.25 x 10° ms‘ z . Dashed lines are negative, solid
lines are positive values. The zero contour is supressed.
- 9 -
FIGURE III
(a) As in Fig. I except for the zonal wind component. The contour interval is 0.25 ms’* (b)
As in (a) except for the meridional wind component.
FIGURE IV
As in Fig. II exeept the reference latitude is 20° N.
FIGURE V
As in Fig. II exeept the reference latitude is 40°N.
10 -
FIGURES A/ - A3
Nine winter season (1974/75 - 1982/83 ) mean circulation fields at the 700 mb. Variables
displayed are wind vectors and isotachs, strean function, and velocity potential. Contour
interval for the streamfunction is 2.0 x 10° in z s , for the velocity potential it is 1.0 x
10° mV , and for the isotachs it is 2.5 ms* . The vector scale is given in the upper right
portion of the wind vector isotach plots. The grid intervals of the FNOC Global Band
Analysis mereator grid are shown on the left hand side and bottom of each figure. The
longitude grid is marked every 30° from the Greenwich meridian on the extreme left and the
latitude is marked every 10° from 40°S at the bottom of the figure. The black dots on the
wind vector plots indicate terrain heights greater or equal to 1000 m, smoothed to the GBA
grid. The contour plots use the convention that negative values are dashed, positive values are
solid. Although the sign of the streamfunction and velocity potential has no meaning in itself,
this plotting convention allows the principle maxima and minima in these fields to be more
readily discerned.
11
FIGURES Bl TO B27
— — „ _ - ~
from 1974/75 to 1982/83. lhc dev ^“^ ^ ^ ^ corresponding to the year of the
Figs. M to A3). I he figures arc a ^ vectors and isotaehs, streamfunction,
January of the winter to clntour interval for the streamfunction is 2.0 *
and velocity potential. For n antl for the isotaehs it is 2.5 ms' 1 . For
10 6 mV 1 , for velocity potential it is x ’ l 0 x I0 6 mV 1 , for velocity
lhe deviation fields the contour interval for the {hc dcvialion plots the
potential it is 1.0 x 10 6 m s' , and for the *otac^ ^ corrcsponding to positive values
contours corresponding to -gat- -ues are^ ^ ^ ^ ^ uppcr ^ part of
are solid. The zero contour is not dra\ n.
the wind vector plots.
12
FIGURES Cl TO C9
Nine year (1974 to 1983) monthly mean circulation fields at the 700 mb. 1 he months
displayed are December, January, and Pebruary. Variables displayed are the wind vectors and
isolachs, streamfunction, and velocity potential. The contour interval for the streamfunction is
2.0 x 10^ m^s’*, for velocity potential it is 1.0 x 10^ m^s \ and for the isolachs it is 2.5 ms
The vector scale is given in the upper right part of the wind vector plots.
FIGURES D1 TO D8I
Individual monthly mean and deviation circulation fields at the 700 mb for the months from
December 1974 to Pebruary 1983. The deviations are differences from the nine year monthly
mean ( Pigs. Cl to C9). The months displayed are December, January, and Pebruary.
Variables displayed are the wind vectors and isolachs, streamfunction, and velocity potential.
Por the mean fields the contour interval for the streamfunction is 2.0 x 10° m^s* 1 , for velocity
potential it is 1.0 x 10° m^s , and for the isolachs it is 2.5 ms* 1 Por the deviation fields the
f\ 9-1
contour interval for the streamfunction is 1.0 x 10° m^s , for velocity potential it is 1.0 x
s 9 i I
10° m^s' 1 , and for the isolachs it is 1.5 ms. On the deviation plots the contours
corresponding to negative values are dashed, those corresponding to positive values are solid.
File zero contour is not drawn on the deviations. The vector scale is given in the upper right
part of the wind vector plots.
13 -
Figure I
15
83
LLf
00 30E 60E
90E 120E 150E 180 150W 1.20W BOW COW 30W
LONGITUDE F(g ure „
00
16
l.OlKiiUJDE Figure Ilia
17
10 f !G ITU ID it
Figure 1 1 1 b
18
83
82
81
80
79
78
77
76
75
(
1.GO*in°TOT DF I AT^ 20.0 AVfi- 2
30E
30£ 120E 160E 130 150W 120W 30\A I 60W 30W 00
LON 0171 IDE
Figure IVa
19
LOf IGUTUDE Figure IVb
20
LLI
I-
n/nniiHFinr h.if
00 30E 60E
UOE
100b 100 10 OW M
1.0 f 1011 IJDE
iiOl'7 60 W 30
Figure Va
l I I LH I'l I I
' ? >
10 00
21
83
82
81
80
79
78
77
76
75
/700 UWFILT DJF
11)83 V700 Cf 1 J 'I.n0”|0 TOT f »F ! AT : -10!) o,« T 2
22
60° M
40° N
30°N
20°N
10°N
EQ
10°S
20° S
30°S
40°S
23
60° N
40°N
30°N
20° N
10°N
E0
10°S
20°S
30°S
40° S
24
B1
U.V7475 UNF 70QMB DJF 1975 DRV
CON =
2.50*10
SCALE = 5.000*10
60 N
160 W
120 W
80 W
eo w
25
B2
60° N
40° N
30°N
20*N
10°N
EQ
10*S
20* S
30*S
40* S
0* 30° E 60° E 90° E 120° E 160* E 160° E 160° W 120° W 90° W 60° W 30° W 0°
26
B3
27
B4
U.V7Q0MBUNF 7Q0MB DJF 1976 CON ~ 5.00*10°
SCALE = 1.000*10
30 f
80 E
90 E
120 E
160 E
180 E
160 W
120 W
90 W
80 W
30 W
U.V 7576 UNF 700MB DJF 1976 DEV CON = 2.50 *10'
SCALE = 5.000*10
28
B5
29
B6
CHI UD.VD 700 MB UNF 700MB DJF 1976 CON = 1.00*10”
y— *r— — — — '■■ ■ ■■ 1 — • I e — ■ j
SCALE = 2.000*10
7 *"
30 E
60 E
00 E
120 E
160 E
1B0 E
160 W
120 W
00 W
80 W
30 W
60° N
40° N
30°N
20°N
10°N
EQ
10°S
20° S
30°S
40° S
30
B7
31
B8
50°N
40° N
30° N
20 b N
10°N
E0
10°S
20°S
30°S
40°S
60°N
40° N
30°N
20° N
10°N
EO
lO^S
20°S
30 # S
40° S
32
B9
60°N
40° N
30°N
20*N
10°N
EQ
10°S
20° S
30°S
40*S
33
BIO
34
B 1 1
35
B 12
50°N
40°N
30°N
20°N
10°N
EO
10°S
20°S
30°S
4-0°S
36
B13
U.V 700MB UNF /00MB DJF 1979 COM — 5.00*10°
SCALE = 1.000*10 -
a -MN \n \ \\ t i ' - - v\ i • vv v .
■ ^! N N — -V * v - Aa
60 N
U.V 7879 UNF 700MB DJF 1979 DEV CON = 2.50*10'
SCALE = 5. 000*10 -
60° N
30 E
60 E
90 E
120 E
160 E
100 E
160 W
120 W
80 W
80 W
30 W
37
B14
50°N
*0 C N
30°N
20° N
10°N
E0
10°S
20°S
30°S
40°S
38
B15
39
B16
40
B17
60°N
40°N
30°N
20*N
10°N
EO
10°S
20° S
30°S
40°S
1
41
B18
CHI UD.VD 70QMB UNF 7Q0MB Djf 1980 CON ~ 1.00*10°
SCALE = 2.000*1 0 -
CHI UD.VD 7980 UNF 700MB DJF 1980 DEV CON = 5.00*10'' SCALE = 1.000*10° -
42
B19
U V 700MB UNF /00MB 1981 COIN = 5.00*10
SCALE = 1.000*10'
30 E
60 E
80° E
120 E
160* E
160° E
160 W
120 W
80° W
80 W
30° W
U.V 8081 UNF 700MB DJF 1981 DEV CON = 2.50 *10'
SCALE = 5.000*10 -
160 W
120 W
80 W
80 W
30 W
43
B20
BO°N
40°N
30°N
20°N
10°N
EO
10°S
20°S
30°S
40°S
50° N
40°N
30°N
20*N
10° N
EO
10°S
20°S
30°S
40° S
44
B21
60°N
40°N
30°N
20*N
10° N
EQ
10°S
20° S
30°S
40* S
45
B22
46
B23
47
B24
50°N
40°N
30°N
20°N
10° N
EQ
lO a S
20°S
30*S
40°S
0° 30° E eo" E 90° E 120° E 160° E 100° E 160° W 120° W 90° W 00° W 30° W 0°
48
B25
f
49
B26
60° N
40° N
30° N
20°N
10° N
E0
10’S
20° S
30°S
40° S
50
B27
CHI UD.VD 8283 UNF 70QMB D.JF 1983 DEV CON = 5.00»1Q~
SCALE = 1.000*10“ -
180 E
160 W
120 W
80 W
80 W
30 W
51
52
I
60°N
40° N
30°N
20°N
10°H
EQ
10°S
20*S
30°S
40®S
53
54
CHI UD.VD 700MB GAV UNF 700MB JAN
SCALE = 1.000*10 -
30 E
60 E
90 E
120 E
160 E
1B0 E
160 W
120 W
flO W
60 W
30 W
55
C7
56
57
D1
58
PSI 700MB UNF- 700MB DfcC 1974 COM = 4.00*10
D2
30 E
CO E
00 E
PSI 7475 UNF 700MB DEC 1974 DEV C0N = 2.00*10
30 E
60 E
00 E
120 E
160 E
180 E
160 W
120 W
00° W
60 W
30° W
60 N
59
CHI UD.VD 7475 UNF 700MB DEC 1974 DEV CON = frOCW 1 SCALE = 1000*10° -
• I ~ • ' \ l ll/ J | i ' *
vl|/ / | | *• - N • . 1 \ V / / . ✓ - 1 . N \ ,
— # • J • \ / s —
* - •" ~ r - # - 1 ~ i"* i~ -Sr -V "V "V- -f- *-/• -<r-~ f - f -
1^0’ Vk-TW.i -j - ' —
- r - 7 -/-* V ~V J- r
n* ^ ^ ^
.. _ x 4 _ -V L-
" <' >-k£i' >*" L># • *
/ Y~' ~ ' * • • - -
i *.<'// v v i * \*\ <
■a i \ r. . . i . «
T^T
' ' \ Jaw- i -
i * * - vZ-i a--/- -*A - ' 1 .
-.{Mv-aov-k:.
j * «- # J i ✓ ^ 4 S 1 v'l I
-N! •
i I
50 M
' 7 '?"V,T
:. a :;'
- -V • Is/.'. -V Vi v\X *s '! A' \ 1 \ I i- AY- ‘ f ‘ i r ' "a^ v ’ "
. a A A a i.-o-_ N . : . '; aV\ -_V •- L i A^.tj 7 T?P- -V- -L97 :T^> - -' J -'- -•- --- -'- -'- -•- i< A. V - - ^- -
- /^VvU* — t V.H 1 '- N i ' n \ S-i./i/ < '•i' * - - y^’-' y - - ■
TT At4±a*ir.<r. : . : .ri/.^trA .'. a!a A a: j . :j 3: t i '/ J. . A .-. :: Xjh -. - \: ' -'
- 1 * ' ! 1 A *" 1 1 ' /'A -/ '!- vT:-' • \X/V
m \ \ r\/r^-
r-rvr^ft j\
r,.- ■ ^vv-rvr;-rr^r^v^?'r! / . .
NlW a A A At \-U-.l. tM-h L J. 1 .'. >/A 1 /! . A.
V ^ 1 - — ' n; ' » / w /j^ \ 1
.:_r]A?:vrM.<K
* ^ ^
30 E
eo p
90 F
120 P
160
180 P
160 W
120 W
00 W
60 W
30 W
60
D4
SCALE = 1.000*10' -
30 E
60 E
90 E
U.V 7475 UNF 700MB JAN 1975 DEV CON = 2.50*10'
SCALE = 5.000*10 -
60 N
160 W
120 W
00 W
00 W
30 W
61
D5
60° N
40° N
30°N
20°H
10°N
EQ
10°S
20°S
30°S
40 ®$
62
D6
/D7475 UNF 700MB JAN 1975 DEV CON = kOO^O' 1 SCALE = 1000*10° -
30 E
80 E
80° E
120 E
63
50° N
40°N
30°N
20° N
10° N
EQ
to°s
20° S
30®$
40° S
0° 30° E 60° E 90° E 120° E 150° E 180° E 150° W 120° W 90° W 00° W 30° W 0°
50° H
40° N
30°N
20° N
10°N
EQ
10° S
20® S
30°S
40° S
0° 30° E 00* E 90° E 120° E 160" E 180° E 160° W 120° W 80° W 00° W 30° W 0°
1975 DEV CON = 2.50*10
SCALE = 5.000*10 -
D7
64
II
65
Tnn
D9
50° N
40° N
30°N
20°N
10°N
EQ
10°S
20°S
30 # S
40°S
66
DIO
)"N
)°N
3°N
)*N
l°N
)
»®S
)®S
>®S
) 8 S
0* 30® E 60® E 60° E 120° E 160® E 1B0° E 160° W 120° W 80° W 60® W 30° W 0°
67
Dll
68
D12
CHI UD.VD 7578 UNF 700MB DEC 1975 DEV COM = 5.00*10’
SCALE = 1.000*10 -
160 W
120 W
00 W
60 W
30 W
69
D13
U.V 700MB UNF 700MB JAN 1976 CON- 5.00*10
SCALE
1 . 000*10
30 E
00 F
90 E
170 F
160 F
180 F
160 W
120 W
90 W
60" W
30 W
700MB JAN 1976 DEV CON = 2.50*10
SCALE = 5.000*10 -
30 F
00 E
00 E
120 F
160 F
180 F
160 W
90 W
60 W
30 W
70
D14
71
D15
CHI UD.VD 7576 UNF 700MB JAN 1976 DEV CON = 5.00 *10° SCALE ~ 1.000 # 10 -
60 N
30 E
00 E
90 E
120 “
160 E
180
160 W
120 W
90 W
80 W
30 W
72
D16
U,V 7576 UNF 700MB FEB 1976 DEV CON - 2.50*10
7T?
SCAL E = 5,000*10
60 N
30 E
60 E
GO E
120 E
160 E
V > 1 n/K /
1 / 1
- z .1 ir “t i i ■
V i / J / * * • -
i V i \ i
i \s/T iVrr-rtn
rW 1 > i t i 1 1 i 1 r i i t
1B0° E
160 ° w i:
120 W
GO W
60 W
30 W
73
D17
50 D N
40° N
30° N
20° N
10°N
E0
10°S
20° S
30°S
40° S
74
TTXF
D18
CHI UD.VD 7576 UNF 700MB FEB 1976 DEV CON = 5.00*10'’ SCALE = 1.000*10
^ ”
■
'I- 1 ' ' \ V \JA.JL j >< /
.• yf. xv- -<y.
i \ i J >. ‘O'- n ! v i
" ‘ 4 \ I ‘ f* ^ n » • Z- *'
UT f
-"{K/ / ^ * ! • '
^vvyyjy ;y-y^c.y^
V*-^ \
jJ-L-Ll-Llij ml f i i 1 1 1 1 i )
T )\ V; ' < ' ' '
■ »•*. ' ' v \ • •!•' \NHf- -t
~ /V
' ' jv x j
-r-*-?-'|-?i2r r '
/ XjJ
1 1 1 il l 1 j 1 1 ^ i i 1 h h 1 ill I.ill Ij j M i
180 E
160 W
120 W
80 W
00 W
30 W
75
D19
U.V 7677 UMF 7Q0MB DEC 1976 DEV CON = 2.50*10
SCALE = 5.000*10
76
D20
60°H
♦0°N
30°N
20*N
10 # N
EQ *
10°S
20° S
30°S
40°S
I
77
D21
78
D22
SCALE = 1.000*10
UMF 700MB JAN 1977 DEV COM - 2.50*10
SCALE = 5.000*10 -
30 E
CO E
90 E
120 E
160 E
180 E
160 W
120 W
90 W
CO W
30 W
79
D23
60° N
40°N
30°N
20°N
10°N
EO
10°S
20* S
30 °S
40 fl S
60° N
40° N
30°N
20°N
10°N
EO
10 P S
20* S
30°S
40°S
80
D24
D25
U.V 700MB UNF 700MB FEB 197/ CON ~ 5.00*10
SCALE = 1.000*10
1B0 E
160 W
170 W
90 W
80 W
82
D26
60°N
40°N
30°N
20* N
I0°N
EQ
10°S
20® S
30°S
40® S
83
D27
60 N
40° N
30°N
20° N
10°N
E0
10°S
20° S
30 # S
40° S
84
D28
U.V 7778 UNF. 700MB DEC 1977 DEV
250*10
SCALE = 5.000*10 -
iO"S
85
D29
50° N
40°N
30°N
20°N
10°N
EQ
10°S
20°S
30*S
40°S
0° 30° E eo° E 00° E 120° E 160° E 180° E 160° W 120° W 00° W 60° W 30° W 0°
86
D30
i
87
D31
U.V 700MB UNF 700MB JAN 1970 COM — 5.00*10
SCALE = 1.000*10
60° N
U.V 7778 UNF 700MB JAN 1978 DEV CON = 2.50*10
SCALE = 5.000*10 -
60°N
40° N
88
D32
I
89
D33
i
i
60°N
40°N
30°N
20° N
10°N
EQ
10°S
20° S
30°S
40®S
90
D34
60°N
40°N
30°N
20 # N
10*N
EQ
10 # S
20° S
30°S
40 # S
91
D35
92
D36
60°N
40° N
30°N
20° N
10®N
EQ
I0°S
20° S
30°S
40°S
93
D37
U.V 700MB UNF 700MB DEC 1978 CON - 5.00*10
SCALE - 1.000*10 -
30 E
00 E
90 E
50°N
r 40°N
30°N
20® N
10°N
EO
10® S
20®S
30®S
40® S
30° E 00* E
90 E
120° E 160* E 180° E
160° W 120° W 90° W
80° W 30° W
0 °
94
D38
k
95
D39
CHI UD.VD 7879 UNF 700MB DEC
1978 DEV CON - S.OO^IO' 1
SCALE = 1.000*10 -
»/ / /
✓ / / \ \ i
-r-r-r‘7
- ' '
- - 1 - L l - 1 - 1 -
\\ i r
60°N
40 C N
t
r“ x ' ■
: V'\ \ ' * t
liliVil i \ i ) 1 \ 1 1 1 \ 1 1 1
i - 1 1 - - v v ~r r f
i »!' 1 - - '
JLjJjJjJjJjJj-IjXLL
\ /
✓
^ - s j ' - •
'KJ V----
/ 7\]
-V- ^ ^ ; - / I VT 1 1 '
t V 'U ’ '
i •
"T
/ >v r- ■ ' y* ^ \ > -
? • Tiff X N. — f ^
^ ' /• • | \ ^ x >f i V
^ -j7 / . . \ ^ y \ l J
s ' / / \
‘-•A* * ■ • \ NO. X 1 ✓
/ 1 / /
IlLl LlLl 2 JxlLlLU Uxu IlLU li i iflli ilil ilil il
1 1 Li 1 i 1 1 \ i f 1 1 1 1 1 T 1 f 1 1 1 1 ill i T i m 1 1 1 1 1 1
• ■ ry wi
LlJUJjJj lilljLili-l
40 S
30 E
eo e
00 E
170 E
160 E
1B0 E
160 W
170 W
00 W
80 W
30 W
96
D40
60° M
40° N
30°H
20*N
10® N
EQ
10°S
20 * 6
30®S
40°S
0° 30* E e0° E 90° E 120° E 150* E 180° E 160° W 120° W 80° W 80° W 30° W 0°
60° M
40®N
30°N
20*N
10®N
EQ
10®S
20® S
30®S
40®S
0° 30° E 60° E 90° E 120° E 160° E 180° E 150° W 120° W 80° W 60° W 30° W 0°
»
97
D41
60°M
40° N
30°N
20 # N
10°N
EQ
10° S
20° S
30°S
40* S
98
D42
i
J
99
D43
U.V 700MB UNF 700MB FEB 1979 CON — 5.00*10*
SCALE == 1.000*10
30 E
©0° E
00° E
120 E
160 E
180 E
160 W
120 W
90 W
60 W
30 W
100
D44
101
D45
102
D46
D47
104
D48
(
105
D49
U.V 700MB UNF 700MB JAN 1980 CON- 5.00*10
SCALE ” 1.000*10
30 E
00 E
00 E
120 E
160 E
180 E
160 W
120 W
90 W
60 W
30 W
30 E
00 E
90 E
120 E
160 E
180 E
160 W
120 W
90 W
80 W
30 W
106
D50
60° N
40°N
30°N
20*N
10° N
EQ
10°S
20°S
30°S
40° S
107
D51
108
D52
60°N
40°N
30°N
20*N
10*N
EQ
IO # S
20*S
30°S
40°S
0° 30° E ©0* E 80° E 120° E 160 - E 180° E 160° W 120° W 80° W 80° W 30° W 0°
60°N
40°N
30°N
20* N
10°N
EO
10°S
20* S
30°S
40°S
0° 30° E 60° E 90° E 120° E 160° E 180° E 160° W 120° W 80° W 60° W 30° W 0°
D53
1
no
D54
111
D55
BO°N
40° N
30°N
20°N
10°N
EQ
10°S
20*S
30°S
40® S
0° 30° E 00* E 00° E 120° E 160* E 180° E 160° W 120° W 80° W 60° W 30° W 0°
112
D56
113
D57
I
114
D58
U.V 700MB UNF 700MB JAM 1981 CON ~ 5.00*10
SCALE
1 . 000*10
30 E
60 E
120 E
160 E
180 E
160 W
120 W
00 W
60 W
30 W
U t V 8081 UNF 700MB JAM 1961 DEV COM = 2.50 *10*
SCALE = 5.000*10 -
30 E
60 E
90 E
120 E
160 E
100 E
160 W
120 W
90 W
30 W
115
D59
116
D60
CHjUP.VD 8081 UNF 700MB JAN 1981 DFV COM = 5.00*10" SCALE = 1 000*10° -
60 N
30 E
60 E
ien c
117
D61
60°N
♦0°N
30°N
20°N
10°N
EQ
10°S
20° S
30 9 S
40*S
0° 30° E 60* E 60° E 120° E 160* E 190° E t60° W 120° W 00° W 00° W 30° W 0°
118
D62
\
i
119
D63
120
D64
J
121
D65
50" N
40° N
30°N
20*N
10°N
EQ
10°S
20°S
30°S
40°S
0° 30° E «0° E 00° E 120° E 150° E 100° E 160° W 170° W 80° W 00° W 30° W 0°
50°N
40" N
30°N
20*N
10°N
EO
10°S
20° S
30°S
40°S
0° 30° E «0*E 80° E 120° E 160" E 100° E 160° W 120° W 80° W 60° W 30° W 0°
I
122
i
D66
CHI UD.VD 8182 UNF 70QMB DEC 1981 DjFV CON = 5.00*10'' SCALE = 1 000*10° -
50°N
160 W
120 W
90 W
60 W
30 W
L
123
D67
124
D68
L
125
D69
CHI UD.VD 8182 UNF 700MB JAN 1982 DEV CON
5.00*10'
SCALE = 1.000*10 -
.A ,
■*. \ l
j ■ > ■ > ■ i . rrf n* > , i ■ i ■ iVrrrrfrt^rri ■ > i i , i
30 E
eo* e
170 E
160 E
126
l
D70
.
127
D71
60°N
40°N
30°N
20® N
10°N
EQ
10®S
20® S
30®S
40®S
I
128
,
D72
CHI UP.VD 8182 UNF 700MB FFB 1982 DEV CON = S.OO^O' 1 SCALE = 1.000*10° -
30 E
60 E
120 E
160 E
180 E
160 W
120 W
BO W
60 W
30 W
.
129
D73
U.V 8283 UNF 7Q0MB DEC 1982 DEV CON - _ 2.50*10
SCALE ~ 5.000*10 -
TTT
30 E
90 E
170 E
160 E
180 E
160 W
170 W
00 W
60 W
30 W
130
I
D74
60°N
40° N
30°N
2G*N
10°N
EQ
10 # S
20*S
30°S
40° S
131
D75
50°N
♦0°N
30°N
20°N
tO°H
EQ
10*S
20 e S
30 e S
40*S
0° 30* E 60° E 90° E 120° E 160" E 1B0* E 160* W 120° W 90° W 60° W 30° W 0°
50°N
40°N
30®N
20*N
10® N
EQ
10°S
20 8 S
30 e S
40* S
0* 30* E «0*E 90* E 120* E 160* E 1B0* E 160* W 120* W 90* W 60* W 30* W 0*
132
D76
U,V 700MB UNF 700MB JAN 1983 CON = 5.00*10
SCALE = 1.000*10
30 E
U.V 8283 UNF 700MB JAN 1983 DRV CON /= 2.50*1
SCALE = 5.000*10 -
30 E
60 E
00 E
120 E
160 E
180 E
160 W
120 W
00 W
60 W
30 W
133
D77
PSI 8283 UNF 700MB JAN 1983 DEV CON - 2.00*10
90° W
60 W
134
D78
,
CHI UD.VD 8283 UNF 700MB JAN 1983 DEV CON = 5.00*10” SCALE = 1.000*10 -
. 11 » 1 * ■ I I . 11 1 1 111 .-III. .1 , « i „ ■ » T — r>r - 1 , » » ■ ■ — . r i — ■ » '
30* E 60° E 80* E 120° E 160° E 180° E 160° W 120° W 90° W #0° W 30° W
135
079
U.V70QMBUNF 700MB REB 1983 CON ~ 5.00*10
Tu
SCALE
1 . 000*10 -
60”N
30 E
U.V 8283 UNF 700MB FEB 1983 DEV CON - 2.50*10
SCALE = 5.000*10 . -
30 E
•0 E
90 E
1?0 E
160 E
1B0 E
160 W
90 W
60 W
30 W
136
137
D81
138
DISTRIBUTION LIST
No. of copies
1. Defense Technical Information Center 2
Cameron Station
Alexandria, Vir ginia 22 SO i hi 15
2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 92943-5100
3. Department of Meteorology Library, Code 63 1
Naval Postgraduate School
Monterey, California 93943-5100
4. Climate Analysis Center 3
NMC/NOAA
Washington, D.C. 20233
5. Professor R. J. Henard, Code 63Rd 1
Naval Postgraduate School
Monterey, California 93943 5100
6. Professor C.-P. Chang, Code 63Cp 50
Naval Postgraduate School
Monterey, California 93943-5100
7. Professor J. S. Boyle, Code 63By 2
Naval Postgraduate School
Monterey, California 93943 5100
b. Dr. K. M. Lau 2
Goddard Space Plight Center
Climate and Radiation branch
NASA, Code 613
Greenbelt, Maryland 20771
1
9. Research Administration Office
Code 012
Naval Postgraduate School
Monterey, CA 93943-5000
140