Skip to main content

Full text of "Provisional values for the thermodynamic functions of ethane"

See other formats



NBSIR 74-398 



NAT'L INST. OF STAND & TECH 



PROVISIONAL VALUES FOR THE 
THERMODYNAMIC FUNCTIONS OF ETHANE 




Robert D. Goodwin 



320- 3 IT? 



Cryogenics Division 
Institute for Basic Standards 
National Bureau of Standards 
Boulder, Colorado 80302 



3'10 -3 o-o o 



June 1, 1974 



Prepared for 

The American Gas Association 
Wilson Boulevard 
tfon, Virginia 22209 

/OO 
• ULSb 



0<L 






!?7f 






NBSIR 74-398 



PROVISIONAL VALUES FOR THE 

THERMODYNAMIC FUNCTIONS OF ETHANE 



Robert D. Goodwin 



Cryogenics Division 
Institute for Basic Standards 
National Bureau of Standards 
Boulder, Colorado 80302 



June 1, 1974 



Prepared for 

The American Gas Association 
1515 Wilson Boulevard 
Arlington, Virginia 22209 



U S DEPARTMENT OF COMMERCE. Frederick B Dent. Secretary 




NATIONAL BUREAU OF STANDARDS Richard W Roberts Director 



TABLE OF CONTENTS 

Page 

PREFACE vii 

1. INTRODUCTION 1 

2. PHYSICAL PROPERTIES AND THEIR REPRESENTATION . . 2 

2.1 Fixed-Point Constants 2 

2.2 Melting Line and Vapor Pressures 3 

2.3 The Orthobaric Densities. 5 

2.4 The Virial Equation 9 

2. 5 The Equation of State 11 

2.6 The Ideal Gas Functions 13 

2.7 The Heats of Vaporization 14 

2.8 Specific Heats for Saturated Liquid 15 

2.9 Specific Heats Cp (T) along Isobar P^ 15 

3. COMPUTATIONAL METHODS 16 

3. 1 The Homogeneous Domain 16 

3.2 The Vapor -Liquid Transition. 17 

3.3 Compressed Liquid States 17 

4. TESTS AND COMPARISONS 18 

4.1 The P-p-T Compressibility Data 18 

4.2 Calculated P(p) Critical Isotherm 19 

4.3 Heats of Vaporization and Closure Computation. . . .- . 19 

4.4 Heat Capacity for Saturated Liquid. 20 

4.5 Specific Heats, C (p, T) 20 

ir 

4.6 Comparison of Enthalpies 20 

4.7 Speed of Sound for Saturated Liquid 20 



iii 



TABLE OF CONTENTS (Continued) 

Page 

5. TABLES OF PHYSICAL AND THERMODYNAMIC 

PROPERTIES 21 

5. 1 Calculated P-p-T Isochores and Isotherms 21 

5.2 The Joule -Thomson Inver sion Locus 21 

5.3 Thermophysical Properties of the Saturated Liquid . . 21 

5.4 Thermophysical Properties along Selected Isobars. . . 21 

6. COMMENTS AND RECOMMENDATIONS 21 

7 . ACKNOWLEDGMENTS 23 

8. BIBLIOGRAPHY 24 

APPENDIX A. Symbols and Units 31 

APPENDIX B. Fixed-Point Values 32 

APPENDIX C. Exposition of the Equation of State 33 

APPENDIX D. Manuscript, "The Vapor Pressures of Ethane" . 35 

APPENDIX E. Manuscript, "Ethane Virial Coefficients and 

Saturated Vapor Densities" 58 

APPENDIX F. Manuscript, "The Orthobaric Densities of 

Ethane, Methane, Oxygen, and Fluorine ... 79 

APPENDIX G. Manuscript, "Liquid-vapor Saturation 

(orthobaric) Temperatures of Ethane 

and Methane" Ill 

APPENDIX H. Computer Programs for Equation of State .... 123 

APPENDIX I. Computer Programs for Thermofunctions .... 142 

LIST OF FIGURES 

Figure 1. The locus of recent P-p-T data 159 

Figure 2. Generalized locus of isochore inflection points .... 160 

Figure 3. Generalized behavior of the critical isotherm .... 160 

Figure 4. Generalized behavior of the locus 0(p) 1 6 1 

Figure 5. Generalized behavior of the function $(p, T) 1 62 



IV 



TABLE OF CONTENTS (Continued) 

Page 

Figure 6. Generalized behavior of the function iji(p, T) 162 

Figure 7. Behavior of coefficients B(/») , C(^>) for methane .... 163 

Figure 8. Presumed behavior of C(p) for hydrogen 164 

Figure 9. Generalized density-temperature phase diagram. . . 165 

Figure 10. Comparisons for saturated liquid ethane 166 

Figure 11. Speeds of sound for saturated liquid ethane 1 6 7 

LIST OF TABLES 

Table 1. Experimental and calculated vapor pressures ..... 168 

Table 2. Comparison with vapor pressures of Regnier 5 

Table 3. Experimental and calculated saturated liquid 

densities 170 

Table 4. Vapor densities via vapor -pre s sure and virial 

equations 171 

Table 5. Experimental and calculated saturated vapor 

densities 172 

Table 6. Experimental and calculated liquid saturation 

temperatures 173 

Table 7. Experimental and calculated vapor saturation 

temperatures 174 

Table 8. Experimental and calculated second virial 

coefficients 175 

Table 9. Experimental and calculated third virial 

coefficients 177 

Table 10. Summary of P-p-T data 10 

Table 11. Coefficients of the equation of state 178 

Table 12. Experimental and calculated P-p-T data 179 

Table 13. Experimental and calculated ideal gas functions .... 200 

Table 14. Interpolated ideal gas functions 201 

Table 15. Experimental and calculated heats of vaporization. . . 202 



v 



TABLE OF CONTENTS (Continued) 

Page 

Table 16. Experimental and calculated specific heats for 

saturated liquid . .... 203 

Table 17. Experimental and calculated specific heats C (T) 

on isobar Pp 204 

Table 18. Calculated P(p) critical isotherm 205 

Table 19. Loop closure computations for staurated liquid .... 207 

Table 20. Experimental and calculated specific heats Cp(p,T). . 208 

Table 21. Comparison of enthalpies for saturated liquid, 

J/mol 213 

Table 22. Comparison of enthalpies, J/mol 214 

Table 23. Calculated P(T) isochores 215 

Table 24. Calculated P(p) isotherms . 237 

Table 25. The Joule -Thomson inversion locus 262 

Table 26. Thermophysical properties of the saturated liquid . . 263 

Table 27. Thermophysical properties along isobars 266 



PREFACE 



The Cryogenics Division of the National Bureau of Standards, 
with support from the American Gas Association, is engaged in a pro- 
gram to provide input data and computational methods for physical and 
thermodynamic properties of the constituents of liquefied natural gas 
mixtures (LNG). These thermophysical properties are the basis of all 
LNG technology. All operations such as liquefaction, separation, 
storage, pumping, transport, custodial transfer, and regasification 
will benefit from accurate data. As the commercial value of LNG 
depends on its heat of combustion, the densities of LNG mixtures and 
other requisite properties are important data. 

The compositions of LNG mixtures vary widely, depending on 
the source and selective vaporization during handling. To predict 
properties of mixtures, it is essential to know accurately the properties 
of the pure components and of selected binary mixtures, so that the 
excess property (over the mole- fraction average of the components) 
can be examined. 

The equation of state of pure components is an essential tool 
in work on mixtures because from this single formulation there can be 
obtained not only the density but also thermodynamic properties such as 
the enthalpy and specific heats at any desired temperature and pressure 
for which the component exists as a fluid. 

A major contribution from this laboratory for computations on 
LNG and its components is the development of a simple, rational 
equation of state which originates on the liquid-vapor coexistence 
boundary, and gives a qualitatively correct behavior for derived specific 
heats, especially about the critical point. A form of this equation was 
used in our recently completed, comprehensive project on the major 



Vll 



component of LNG, namely methane, "The Thermophysical Properties 
of Methane from 90 to 500 K at Pressures to 700 bar. " NBS Technical 
Note 653, April, 1974. 

In addition to the above publication, this laboratory has provided 
accurate experimental data on the compressibilities, vapor pressures, 
saturated liquid densities, specific heats, sound velocities, dielectric 
constants, refractive indices, and viscosities of compressed and liquid 
methane at temperatures down to 90 K. 

A similar comprehensive project on ethane now is under way. The 
present report makes use of available physical properties data to obtain 
tables of thermodynamic functions, and provides the first of such tables 
available for liquid ethane below its normal boiling point temperature 
(184. 5 K). In this work we use a simplified and more highly constrained 
version of the equation of state formerly used for methane. Auxiliary 
functions also are improved to accommodate the enormous range of ethane 
vapor pressures and saturated vapor densities. The use of these new 
analytical descriptions of PVT data for ethane does not in any way invali- 
date the methods used to compute the thermodynamic properties of 
methane in NBS TN 653. The equation of state used for methane in TN 
653 had nine least- square s coefficients, and thereby gives a better rep- 
resentation of some of the experimental PVT data than does the present, 
more highly constrained equation with only five such coefficients. For 
ethane, the present equation of state is valuable because the available 
PVT data are less precise (over the entire P(p,T) surface ) than tho se 
used for methane in TN 653. Further work on the equation of state has 
been carried out to obtain the simplest possible form, amenable to cor- 
responding states computations on mixtures. This work, "Equation of 
State for Thermodynamic Properties of Fluids, " was submitted to the 
NBS Journal of Research in October, 1974. 



viii 



PROVISIONAL VALUES FOR THE 



THERMODYNAMIC FUNCTIONS OF ETHANE* 

Robert D. Goodwin 

Thermophysical properties are tabulated at integral 
temperatures over the entire range of fluid states from 90 
to 600 K along isobars to 700 bar. A new, rational equation 
of state is employed for the first time. Thermodynamic 

functions in the compressed liquid at T<T are obtained by 

c 

use of specific heats C (T) along a high-pressure isobar. 

P 

Keywords: Densities; enthalpies, entropies; equation of 

state; internal energies; isobars; isochores; isotherms; 

Joule- Thomson inversion; latent heats of vaporization; 
melting line; orthobaric densities; specific heats; speeds 
of sound; vapor pressures. 

1. INTRODUCTION 

The economic importance of methane and ethane, as the major 
components of liquefied natural gas (LNG), is well known. Our objec- 
tive is to produce basic thermodynamic information, needed for the 
prediction of properties of the constituents of liquefied natural gas mix- 
tures. For the wide range of compositions encountered, it will be neces 
sary to utilize accurate thermodynamic properties ofthepure components 
We recently have published the properties of methane [25]. The 
present work on ethane provides background on available physical pro- 
perties data, and may serve engineering needs for thermodynamic 
properties until such time as new physical data permit a revision of 
the table s . 

* This work was carried out at the National Bureau of Standards under 
sponsorship of The American Gas Association. 



1 



All of the analytical formulations of physical properties data 
in this report are new as compared with [25]. The major contribution 
of present work is development of a rational equation of state. As in [25], 
our description of the P(p, T) surface originates on a given liquid-vapor 
coexistence boundary (vapor-pressure and orthobaric densities equations). 
It yields a maximum in the specific heats C (p, T) at the critical point, 
and has only five arbitrary coefficients to be found by least squares 
from experimental P-p-T data. We give constants of this equation of 
state both for methane and for ethane because uniform methods of 
computation will be helpful with mixtures. 

Some recent thermal data have been especially valuable for 
our computation of the thermodynamic network. These are the ideal 
gas functions of Chao et al. [8], and the low temperature specific heats 
C (T) of Furtado along isobars [20]. 

Symbols and units of this report, listed in Appendix A, are the 
same as for methane [25]. For equation of state (5) the gas constant is 
R = (0.0831434) • (d ) bar/K, consistent with use of the dimensionless 
density, p h d/d^_. 

2. PHYSICAL PROPERTIES AND THEIR REPRESENTATION 
2 . 1 Fixed- Point Constants 

These values are listed in Appendix B. For methane, they are 
taken from [25]. 

The triple-point temperature and pressure for ethane are from 
our analysis of ethane vapor pressures [26]. The liquid density is a 
short extrapolation of the saturated liquid densities of Miller [48]. The 
vapor density is given by intersection of our present virial equation of 
state with our vapor-pressure locus [27]. 

The critical-point temperature and density for ethane were ad- 
justed by examination of the critical isotherm from the present equa- 



2 



tion of state. Our value of T = 305.37 K agrees with the recent experi- 

c 

mental observation of Strumpf et al[68-a], namely T c = 305.368 ± 0.005 K. 
Our critical density, = 6. 74 mol/4 may be compared with 6. 83 ± 

0. 07 mol/4 from [68-a], with 6. 79 ± 0. 02 mol/4 from [49], and with 
6.87 mol/4 from [14]. Critical densities reviewed in [ 14, 17, 70] 
range from 6.75 ± 0.07 to as high as 7.32 mol / -t , a s pr e ad of 8/o . 

Our critical pressure of 48. 755 bar at T = 305. 37 K may be com- 
pared with other authors by use of the slope of the vapor pressure 
curve at the critical point, namely dP^/dT = 1. 04 bar/K. Most re- 
cently, for example, Douslin and Harrison [14] give = 48. 718 bar at 

T = 305. 33 K. 
c 

The reader should note that our "critical density" is essential for 

the present equation of state to give a critical isotherm with no negative 

slopes, (SP/d p)rp 2: 0. Our procedure is an altogether new method for 
x c 

finding this characteristic constant, but may depend heavily on the ana- 
lytical form of the equation of state used [29a]. It follows that our "criti- 
cal density, " d c , should be regarded as a fitting parameter, and not neces- 
sarily as the best value for this characteristic constant. 

2. 2 Melting Line and Vapor Pressures 

For the melting line of ethane we have found only the rough data 
of Clusius and Weigand to 42 bar [ 11] . In the Simon equation [25], 

P = P + aT(T/T ) g -? 
t I t 

we assumed e = 2, finding A = (1. 01325)- (2840. 0) bar from their data by 
averaging P/ ! (T/T ) £ -l 

The vapor pressure equation (2) for ethane is an extension [ 26] 
of our early form [23], 

2 3 4 . , 3/2 . . 

4n(P/P ) = a- x + b- x + c- x + d- x + e- x- (1-x) f (2) 

where the argument is x = (1 -T /T)/(l -T /T ), and the coefficients are 

t t c 



3 



Coefficients for Vapor Pressure Equation (2) 



Methane 



Ethane 



10.7954 9166 

8. 3589 9001 

-3. 1149 0770 

-0.6496 9799 

6. 0734 9549 
Table 1 for ethane compares the data. 

After the present report was completed, we received the vapor 

pressures of Regnier [58] from 80 to 135 K. His results for the liquid 

were described in mm Hg by 

log 10 (P) = 7. 75-881 /T. 

The following Table 2 compares results from our present vapor pressure 
equation (2) with his calculated pressures. If we use the ideal gas law to 
obtain the vapor density, and obtain dP/dT from the above equation, the 
Clapeyron equation gives the heat of vaporization independent of tempera- 



a = 4. 7774 8580 

b = 1. 7606 5363 

c = -0.5678 8894 

d = 0.0 

e = 1.3278 623 1 



ture. The Clapeyron equation is - 

' Qvap =T- (dP/dT)- (v g - v t ). 

From the above vapor pressure equation, P = exp[a - b/T], one obtains - 

(dP/dT) = b* P/T 2 

At low pressures, v^ is negligible relative to Vg, hence via the ideal gas 

law - , 

(Vg - v t ) = R-T/P. 

Introducing the last two expressions into the first yields 

Q-wan = b*R = 16.87 kJ/mol. 

V ct p 

The smoothed experimental value of previous workers at 100 K is 



17.3 ± 0.2 kJ/mol (Table 15). Regnier's duplicate pressure gages 
agreed to 1% or better, but he makes no estimate of absolute accuracy. 



4 



Table 2. Comparison with vapor pressures of Regnier 

-3 

(U nits of bar* 1 0 ) 

T , K This Report Regnier [ 58] 



89.899 


0.0101 


0.0119 


90 


0.0104 


0.0122 


95 


0.0363 


0.0399 


100 


0.1110 


0.1161 


105 


0.3025 


0.3051 


110 


0.7463 


0.7342 


115 


1.689 


1.637 


120 


3.546 


3.414 


125 


6.967 


6.713 


130 


12. 92 


12. 53 


135 


22. 77 


22. 33 


The Orthobaric 


Densities 





For the saturated liquid and vapor densities, o(T), we have 

developed analytical expressions which are constrained to any given 

boundaries, namely the triple and critical points [28], In eqs (3 -a) and 

(3-b) the basic behavior is given by Y(p, T) = const. , and polynomials 

on the right side are selected to describe small deviations. 

a) For the saturated liquid, define the variables - 

x(T) = (T -T) / (T -T ), 
c c t 

y(p) = (p-p )/(P -P ), 

c t c 
0 

Y(p,T) = (y-x)/(x -x), 

when the equation is 

2/3 

Y = a + b* x + c • x, (3 - a) 



5 



with the following coefficients 



e = 
a = 
b = 
c = 



Methane 
0. 36 

0. 8595 3758 
0. 0243 6448 
-0. 0268 5285 



Ethane 
0. 33 

0. 72 19 0944 
0.2965 7790 
-0. 3003 6548 



Table 3 compares data with (3-a). 

b) For the saturated vapor, define the variables-- 

x(T) = (T / T -1) / (T / T -1), 
c c t 

y ( p) = 4n(p / p) /j?.n(p c /p t ), 

Y(p,T) = (y-x)/(x G -x), 
when the equation is-- 

Y = A i A .-x l/3 , (3-b) 

i = 2 

with the following coefficients -- 



Methane Ethane 



e = 


0.41 




0.39 




A 1 - 


0.4171 


4211 


0.2158 


7515 


A 2 = 


-0.5194 


9762 


-0.0852 


2342 


a 3 = 


1. 2077 


7553 


-0.6152 


3457 


A 4 = 


-1.4613 


0509 


0.2545 


2490 


A 5 = 


0.5765 


8540 


0. 1517 


7230 



The data of Table 4 are obtained from the virial and vapor pressure 
equations [27], The heading PLANK/KAMB refers to [52]. The data 
of Table 5 for ethane are compared with (3-b). 

c) For the equation of state, we use the liquid-vapor, equilib- 
rium (saturation) temperature T (T (p) as a function of density. Densities 
are obtained from the following expressions for T rT (p) by iteration, 
using eqs (3 -a) and (3-b) only to find the initial density. We shall 
describe T^p) in two parts, according as p>p^. This simplifies the 
design of constraints to the boundaries (vapor and liquid triple points). 
At the critical point the two parts are continuous because the deriva- 
tives of all orders n, d I1 T rT /dp n , from each are zero. For each range 
the dependent variable is 

Y(T_(p)) = (T /T ct -1)/(T IT -1), 
c c t 

and we use the following function, 

U(c ) = - y (1/x-l/x ),. 

where 

x = |ct- 1 I, x fc = l a t " 1 1 > 

cr - d/d , CT . = d t / d 

c t t c , 

and d^_ refers to vapor or liquid at the triple point according as ~ $ 1. 
For the liquid range at n> 1 the equation is -- 

5 

f,n(Y) = U(o) + B.- (a 1 ) . (3-c) 

i = l 

For the vapor range at a < 1 we need a modification for extreme- 
ly low densities approaching the triple point. The form is selected for 



7 



qualitative consistency with the ideal gas law and the basic vapor pres- 
sure equation. Define-- 

W(o) = Tn( 14-e /ct ) /Tn( 14-e /cr ), 

when the equation is -- 



l n(Y) = U(a ) + A -TnrW(a )] + A • (a 
o 1 



1/3 1/3. 

" CT t > 



A , 2/3 2/3 + 

+ A 2 -(a -a t ) 



f 

£ 

i=3 



A 



i- 2 i- 2 



(3-d) 



The coefficents for (3-c) and (3-d) are — 

Coefficients for Saturation Temperatures, Eqs. (3-c, d) 





Methane 


Ethane 


Y 


1/2 


1/2 


e 


1/4 


1/4 


Ao 


0.9034 9557 


0.8681 0517 


A i 


0.0 


0.0151 6978 


A 2 


0.0 


-0.7296 0432 


A 3 


-0.3834 4338 


1.0096 5493 


A 4 


-3.9210 8638 


-8.7340 2710 


a 5 


6. 2600 3837 


21. 1071 2823 


a 6 


-9.3296 0083 


-31.4499 4087 


A? 


5.6060 2816 


17.8637 0397 


B 1 


11.4317 7230 


23.7245 1840 


b 2 


-3.8765 9480 


-14.8860 5161 


B 3 


0.5378 8326 


5.4317 7443 


B 4 


0.0 


-1.0715 0566 


B 5 


0.0 


0.0913 5183 



8 



I 



For ethane the liquid saturation temperatures appear in Table 6, 

and the vapor temperatures in Table 7. Densities of the freezing liquid 

are obtained by use of the equation of state in present work. 

2. 4 The Virial Equation 

For the virial equation of state, 

Pv/RT = 1 + B(T) • ct + C(T)- a 2 +--- ? (4) 

the second and third coefficients B(T), C(T) are dimensionless. We 

reduce temperature and density of the critical point, x = T/T , a = 

c 

d/d^. Following initial research on the representation of these coeffi- 
cients [27], we now have adopted McGlashan's formula for B (T), 

B(T) = B + B /x + B 3 /x 2 + B 4 /x 4 * 5 (4-a) 

B = 0. 552 671, B 3 = -0. 592 947, 

B_ = -1. 106 244, B = -0. 041 944. 

2 4 



These constants were obtained with our values for p , T . Date from 

c c 

McGlashan were increased by 0. 5 percent in absolute value to improve 
consistency with the data of Michels and of Douslin near 300 K. 

Table 8 compares data and calculated values. 

For C(T) our new representation from [27] is, 



C(T) = 



C /x + 
1 



C 2 /x ' 



+ 



C 3 /x- 



]• 



( 1 -T /T), 
o 



(4-b) 



T 0 = 217. 8 K, C 2 = 0. 83253, 

C = 0.24423, C 3 = 0. 53488, 

using critical constants of the present report. Table 9 compares data 
and calculated values. 



9 



Table 10. Summary of P-p-T Data 



Cfl 

O 



> 

<u 

Q 



CO 


CM 




vO 


lO 


o 


CM 


r-H 


CM 


00 


• 


• 


• 


• 


• 


o 


T— H 


o 


O 


I— 1 



o 



mo 

o 



un 

CO 



o 



o 



oo 

o 



cn 

0) 

!— I 

• p-i 

Jh 

CCj 

> 

<D 



0) 

OJO 

£ 

ctf 

Oh 





00 


M3 


r-H 


oo 


LO 


-/ j 


CO 


r- 


O 


O' 


CM 






r-H 


r-H 


CM 


r-H 






O 


O 


o 


o 


pH 


o 


o 


CM 


r-H 


o 


£ 


CM 




CM 






rQ 


1 


i 


1 


1 


i 


Oh" 




o 


LO 


CM 


O' 




IT) 


r-H 


r-H 


r-H 



r— I 

o 



cn 

U 

o 

4-> 

3 

C 



o 


o 


CO 


CO 


o 


o 


r-H 


CM 


CM 


00 


vO 


LO 




sO 


CO 

1 


1 

o 


o 


CO 


00 




CO 


r— H 


l> 




L T) 


CM 


CO 


CM 


CM 


r-H 



00 



1 

1 


LO 

f— H 


1 




i 


O' 


• 




• 


o 


o 


o 












0- 




LO 


"st 




1 1 


1 1 


£ 


o 


• 

r-H 


r-H 


4-> 


£ 


£ 


a5 


4— 1 


H-> 


d 


CD 


CD 


cr 


CD 


Jh 






a) 

#H 


r-H 


r-H 


0) 


£ 


s 




• I - 1 

U 


£ 


o 


• r -1 


CD 


• r- 1 



xO 

t— H 

r- 

o 



> 



<u 

£ 
• r-* 

i— I 

Cfl 

£ 

o 

Q 









LO 



£ 

Oh 

to 

<’ 



CM 



00 



O' 



+ 



10 



2 . 5 The Equation of State 

Data reproduced in the present report are summarized by Table 
10. The locus of recent data is shown by Figure 1. From the data of 
A. K. Pal we selected only twelve isochores at the highest densities, 
runs Nos. 13 through 24 of Table 12, because they were found to be 
self-consistent. An increase of all densities by 0. 5 percent than made 
these PVT data compatible with data of other authors (Table 10) via 
our equation of state. We finally used adjusted data of A. K. Pal 
kindly provided by Professor R. Kobayashi, J. R. Ely, et al of the 
Chemical Engineering Department, Rice University. We omitted the 
data of Reamer et al because those of Douslin and Harrison are be- 
lieved to be more accurate. 

For background on this equation of state, the reader may refer 
to our work on methane [25]. We consider density to be a parameter 
in the description of P(T) isochores, Figure 2. (In Figure 3 we show 
the well-known zero slope and curvature of the critical isotherm. ) 

For any density we obtain the liquid-vapor coexistence temperature 
from our function for T CT (p), eqs (3-c, 3-d). Placing this in the vapor 
pressure equation gives the coexistence pressure. The equation of 
state thus is defined as a function of density on the coexistence boundary. 
By subtraction we shift the origin to this boundary. Define the 
variables - - 



x(T) = T/T , 
c 



X (p) = T (p )/T 
ct a 



c 



Y (P , p,T)= (Z-l).x/p, 
when the equation of state is-- 



Y (P) * (Z - 1 ) • x /p , 

o a a 



(Y-Y ) = B(p)*$ (p , T) + C(p). Y (P , T) 

<3 



(5) 



li 



where B(p), C(p) are polynomial coefficients to be found by least squares, 
and the temperature-dependent functions are 

$(p , T) = x 1 / 2 -^n[T/T a (p)], (5 -a) 

Y(p , T) = [ 1 - 0 ) -Tn(l+l/ci))] /x - [ 1 -uj jTn(l+l/u>^ jj/x^ . (5-b) 

Each of these functions is zero on the coexistence boundary at 
T = T a (p). The second gives nonanalytic behavior for C (p, T) about 
the critical point by use of the variables, 

uu(p,T) h 5 . [T/0(p)-l], a) a (p) = 6 - [T CT (p)/0(p)-l], 

where 6 is an adjustable constant and 0 (p) is our locus of temperatures 
inside the coexistence envelope, Figure 4, 

Q(P) = T^(P )• exp* _cy. | cr _ 1 1 3 /(a - l ) 3 ! e (5-c) 

In the above, = d^/d c for liquid at the triple point. Figures 5 and 6 

show behavior of the functions $(p, T) and Y (p, T). 

The coefficients of (5) are-- 

B(p ) = B + B «p + B «p 2 /(1+b.p 2 ), (5-d) 

o 1 c 

C(p) = (a - 1)» (a -C )• (C + C • p ) , (5-e) 

o 1 4 

and the constants are-- 



12 



Constants for Equation of State (5) 





Me thane 


Ethane 


O' = 


2 


2 


b = 


1 


1 


6 = 


1/2 


1/2 


B o = 


1.5082 12989 


1.8481 67996 


V 


0.6544 90304 


1,5697 04511 


B 2 = 


4. 1320 82291 


5.5601 86452 


Co" 


1. 90 


1.90 


C 1 = 


-0.7654 09076 


-1.0428 42462 


n 

ro 

ii 


-0.0590 88717 


+0.2249 78299 



Behavior of B(p) and C(p) for ethane is given by Table 11. For 
methane the behavior is shown by Figure 7. Figure 8 shows the pre- 
sumed behavior of C(p) for hydrogen, discussed in Appendix C. De- 
viations of experimental data for ethane appear in Table 12. Appendix 
C explains the rationale of this equation of state. 

2. 6 The Ideal Gas Functions 

For use in our computations we have represented the internal 
energies of Chao et al. [8], by the following empirical power series-- 

9 

(E°-E°)/RT = 3.0 + Zv (T/100) (l+3)/3 , < 6) 

l=f 



13 



with coefficients 



A 

o 


= 21.705 


718 


A 5 


= 906.218 4427 


A 1 


= 65.498 641 


a 6 


= -459. 230 2545 


A 2 


= -362.011 


5914 


a 7 


= 143.030 0226 


A 3 


= 853.340 


8616 


A 8 


= -25.074 95605 


A 4 


=-1123.601 


6220 


A 9 


= 1.897 54004 



The specific heats are obtained by differentiation, 

C°(T) = dE° /dT , 
v 

and the entropies by integration of C°, 



AS° = 



C v .dT/T 



The dimensionless integration constant for S /R is the value A tabu- 

o 

lated above. The concise computations are given by computer sub- 
routine IDEAL, below. Table 13 gives the comparisons, and Table 14 
gives values interpolated by means of (6). 

We have compared the results of Chao et al [8] with those ob- 
tained earlier by Ziegler et al [77], At temperature, 200 K, (values 
in Joules, moles, kelvins)- 



o o 
H -H 

o 



C 



Ziegler et al [77] 7281.4 210.72 42.45 

Chao et al [8], 7257.6 210.50 42.26 

o o 

We see a difference of 24 Joules in (H - H ), or 0. 3 percent. We 

o r 

have not further compared these independent calculations. 

2. 7 The Heats of Vaporization 

The data of Table 15 are represented as follows, 

6 i/3 



Q 



vap 



2 >. 



• X 



, kJ/mol, 



(7) 



i=l 



14 



where the argument is x(T) = (T -T)/(T -T ) 

c c t 



T = 


89. 899 K 


T 


= 305. 37 K 


t 




c 


A i 


12. 102 730 


A 4 


= -71. 854 695 


A 2 


11.165 588 


a 5 


= 82. 166 239 


A, = 


16. 539 265 


A. 


=-32. 610 514 


3 


6 





Comparisons are given in Table 15. 

2. 8 Specific Heats for Saturated Liquid 

Data shown in Table 16 have been represented in J/mol/K with a 

minimum of arbitrary constants as follows by use of the argument, 

x = T/T , (T = 305. 37 K) - 
c c 

C (T) = a+ b-x + c«x/(l-x) £ , J/mol/K, (8) 

CT 

with these constants, 

e = 0. 5 b = -16.5876 

a = 67. 3153 c = 16. 3526 

The form of (8) permits integration, 

AS a = J C a 'dx/x, 

giving results in closed form. Comparisons are given in Table 16. 

2. 9 Specific Heats C (T) along Isobar P 

P ® 

In our computations of the thermodynamic functions we have en- 
tered the compressed liquid region at T<340 K by use of specific heats 
C (T) kindly provided by Andre Furtado, as obtained with the flow 
calorimeter at the University of Michigan [20]. 

Data shown in Table 17 for the isobar at P, = 137. 895 bar are 

b 

represented by use of the argument, 

x(T) = (T-T )/ (T -T ), 
t m t 



15 



as follows in J/mol/K, 



C (T) =k.[C -exp(Y)] , J/mol/K, (9) 

p m 

where 

Y " A 1 + A 2 * x2 /n- x ) + A 3 -x 2 + A 4 -x 3 + A 5 -x 4 , 

with constants T^_ = 89.899 K, and-- 



T 

m 


354. 0 K 




II 

<M 

< 


-0. 154 423 


C m = 


62.60 




A 3 = 


-0. 141 489 


k 


r- 

00 

r— 1 


335 


ii 

C 


-0.506 438 


A 

1 


3. 263 


00 

00 

CM 


a 5 = 


0. 276 992 



The data were estimated by the author to be accurate to 0. 7% on 

average, with a few values uncertain by several percent. 

3. COMPUTATIONAL METHODS 

The numerical values for E and H in this report are on the same 

o 

absolute basis as those of Tester [701, obtained by use of E = 

L J o 

(4. 1868)- (4827. 2) J/mol. 

3. 1 The Homogeneous Domain 

With reference to Figure 9, we start our computations with ideal 
gas values at zero density, and then integrate along isotherms by use 
of the equation of state in the following relations, 

AE = ' [P-T. (5P/8T)]-dp /p 2 , (10) 

AC v = -T. 1 (8 2 p/dT 2 ).dp/p 2 , (11) 



AS = R* -Ln [P / (pRT)] 4- [R -(dP/d T) /p] . dp /p . 



12 ) 



Equation 



states at P = 



(12) is for use with initial entropies in hypothetical gas 

1 atm. For the compressed liquid at T<T, and p>p 

b c 



16 



(the cross-hatched region of Figure 9) we start with values of S(T, P^) 

on isobar P, , and then use 
b 

AS = - J (3P/3T).dp/p 2 . (12 -a) 

In each (p, T) state, reached by above integrations, we compute 

H = E + P. v , (13) 



Cp = C v + T. (dP/dT) 2 /(SP/3p)/p 2 , 



(14) 



W 



2 



= C • (dP/Sp ) /C . 
P v 



(15) 



3. 2 The Vapor-Liquid Transition 

As discussed below, we have used this computation only as a 

check against experimental heats of vaporization, and for closed- 

loop checks terminating on the saturated liquid. 

We traverse the vapor-to-liquid "dome" of Figure 9 by use of the 

Clapeyron equation, and Av = (v -v ), 

f e 



AH = T. (dP/dT). Av, 


(16) 


AE = AH - P. Av, 


(17) 


AS = AH/T, 


(18) 



where (dP/dT) is slope of the vapor pressure curve. 

3. 3 Compressed Liquid States 

Computations along isotherms which pass close to the critical 
point, Figure 9, cannot be expected to be accurate, as discussed in 
[25]. For ethane there is an additional problem for use of the 
Clapeyron equation to enter compressed liquid states. At low tem- 
peratures the vapor pressures become so small that they have yet to 
be measured accurately, and the saturated vapor densities obtained 



17 



here are correspondingly uncertain. We therefore have used the follow- 
ing procedure to compute around the critical point into the cross- 
hatched region of Figure 9: 



We use the isobar of specific heats C (T) at P = 137. 895 bar 

P b 

from [20]. We then select = 340 K, obtaining (by integration along 
T. ) 



H(T P J = 25 737 -97 J/mol, S(T , PJ = 176.4384 J/mol/K. 



b : 



By use of our description (9) for C (T, P ) we then integrate down to 

P b 

any T<T 

b 



AH 



T, 



C -dT, 
P 




We finally integrate along isotherm T as described among eqs (10) 
through (18). On the saturated liquid boundary we compute the specif- 
ic heat C rj .(T) of liquid along the coexistence path from the following 
relation [61], 

C CT (T) = C v (P ’ T) ■ T -( ap / 5 T).(dp^/dT)/p^ , (19) 

where (dp^/dT) is the slope of saturated liquid density vs. T. 

4. TESTS AND COMPARISONS 
4. 1 The P-p-T Compressibility Data 

Deviations of experimental densities and pressures from the 
smooth P(p, T) surface of the equation of state (5) are given in Table 
12, using author identifications from Table 10. The data of Michels 
[47] and Douslin [ 14] are highly precise, and the deviations generally 
are systematic, as might be expected from an equation of state with 
as little freedom as (5). Any inaccuracies in the liquid-vapor bound- 
ary will be propagated along calculated isochores because the equation 



18 



of state originates on this boundary. At high densities in the compres- 
sed liquid, the derivative BP/Bp becomes extremely large, hence pres- 
sure deviations should be ignored. 

4. 2 Calculated P(p) Critical Isotherm 

Table 18 gives a high-resolution examination of the P(p) critical 

isotherm from equation of state (5). This was obtained by adjusting 

the assigned critical point (p , T^) to eliminate negative slopes BP/3p 

in the neighborhood of p . The selected critical point is within the 

range of values found by previous workers. 

4. 3 Heats of Vaporization and Closure Computation 

The last column of Page 1 of Table 26 gives experimental heats of 

vaporization from eq (7) for comparison with values in column Q, VAP 

computed by the Clapeyron equation. The differences are plotted in 

Figure 10 as (Q -Q ). 

xptl calc 

Table 19 gives loop-closure computations for the saturated liquid. 
Values for enthalpy in Column H_ and for entropy in Column S are ob- 
tained by computing around the critical point, whereas values in 
Columns HC and SC are via the Clapeyron equation (see Sections 3. 2, 

3. 3). The enthalpy differences are plotted in Figure 10 as 

(H . -H^ ) in which refers to computation around the C. P. by 

calc Furt Furt 

use of C (T) data of Furtado [201. 

P 

Heats of vaporization via the Clapeyron equation at low tempera- 
tures are uncertain by several percent (up to about 500 J/mol) due to 
uncertainty in the vapor-pressure equation and the vapor densities. 

In Table 16, moreover, we see that experimental heats of vaporiza- 
tion may differ by over 2 percent at 100 K, (about 350 J/mol). The 
apparently large deviations seen in Figure 10 therefore do not exceed 
known uncertainties. The heats of vaporization have not been used for 
present computations. 



19 



4. 4 Heat Capacity for Saturated Liquid 

The last column of the second page of Table 26 gives experimental 
heat capacities for the saturated liquid from eq (8) for comparison with 
values in column CS computed as described above in Section 3. 3. As 
seen in eq (19), this is a difficult computation from which to obtain 
high accuracy. We also have computed C a (T) = T* (dS^/dT), but prefer 
to omit this further complication of present work. 

4. 5 Specific Heats, C ^ (p, T) 

Table 20 compares specific heats of [20] at constant pressure 
with values calculated by present methods. Except near the sharp 
maxima in Cp in the critical region, the differences generally do not 
exceed combined uncertainties of a few percent. 

4. 6 Comparison of Enthalpies 

Table 21 compares our saturated liquid enthalpies (obtained by 
computation around the critical point) with results of Tester [70]. From 
low-temperature specific heat data on the solid, and the heat of fusion, 
he obtained the third-law entropy of liquid at the triple point. He then 
used experimental C a (T) data, liquid densities and dP/dT from the 
vapor-pressure equation to obtain AH(T) on the liquid coexistence path. 

Table 22 compares enthalpies of three authors for the homogen- 
eous domain at a few, selected (P, T) points. To make use of the values 
of Eubank et al. , we have added H°(T) obtained from Tester. This com- 
parison shows that our results from the present very simple equation of 
state are consistent with the work of other authors. 

4. 7 Speed of Sound for Saturated Liquid 

Figure 11 compares the speed of sound W for saturated liquid 
from Table 26 of present work with the experimental data of Poole and 
Aziz [53], Positive curvature of our calculated results below the boil- 
ing point (184. 55 K) suggests that derivatives of our P(p, T) surface are 



20 



not sufficiently accurate in the compressed liquid. Below 105 K the 
calculated dependence of the saturated liquid densities on the tempera- 
ture in Table 6 also has a positive curvature, which probably is quali- 
tatively incorrect. 

5. TABLES OF PHYSICAL AND THERMODYNAMIC 

PROPERTIES 

5. 1 Calculated P- p -T Isochores and Isotherms 

A selection of calculated isochores and isotherms is given by 
Tables 23 and 24. They are useful to examine behavior of the surface 
generated by the equation of state, and to supplement the isobars of 
Table 27 in obtaining P-p-T values and their derivatives. 

5. 2 The Joule-Thomson Inversion Locus 

Table 25 gives our calculated P-p-T locus for the J. T. inversion, 
(ST /^P)h = These results are obtained from the equation of state 
under the condition, T* OP/ST) = p*(dP/dp). 

5. 3 Thermophysical Properties of the Saturated Liquid 

Table 26 gives physical and thermodynamic properties for the 
saturated liquid. Column headings are interpreted on the first page 
of this table. 

5. 4 Thermophysical Properties Along Selected Isobars 

Table 27 gives physical and thermodynamic properties on isobars, 
as computed by methods of Section 3. Explanations for the table are 
given on the first page. This table is extrapolated beyond the range of 
P-p-T data used for adjusting the equation of state (P ~ 350 bar). 

6. COMMENTS AND RECOMMENDATIONS 

Uncertainty of the saturated liquid densities (Table 3) is estimated 
to be 0. 1 percent from 90 to 140 K. Greatest uncertainty, approaching 
0. 5 percent, exists in mid-range (160 to 250 K) where no experimental 
data were found. Whereas several sets of precise data exist approach- 



21 



ing the critical temperature, we have not been able to represent them 
with a function of simple form to better than 0. 2 to 0. 3 percent [28]. 

Saturated vapor densities at very low temperatures are uncertain 
by several percent because they have been estimated by use of the 
vapor-pressure equation which is uncertain by at least 2 percent at 
these temperatures [26], and the virial equation of state. The latter 
is extrapolated below the range of data for the virial coefficients where, 
however, we approach ideal gas behavior [27]. 

Our calculated densities (Table 27) over the homogeneous domain 

( n <0 , or T>T ) are uncertain by an estimated 0. 2 percent, except for 
r c c 

the critical region (p r /3<p<2* p c at 0. 9* T C <T<1. 2- T c ) where deviations 
from experimental data may exceed one percent, Table 12. For the 
compressed liquid at low temperatures, densities probably are un- 
certain by about 0. 2 percent (adjusted P-p-T data of A. K. Pal [54]). 

Uncertainty of enthalpy differences is most difficult to estimate. 
Along isotherm T^ of Figure 9, we compute Cp(p, T) at point (T^, P^) 
within one percent of the experimental value from [20]. For the homo- 
geneous domain, having an adequate density of P-p-T data, therefore, 
the uncertainty of enthalpy differences probably is comparable with 
that estimated for methane [25], namely about 2 percent. For com- 
pressed liquid, as seen in Section 4 above, however, the uncertainty 
may be several-fold greater. 

The purpose of this report has been, in part, to find the inade- 
quacies in physical properties data needed for thermal computations. 
Some recommendations can be made, based on the inaccuracies shown 
in Section 4 above. The possible methods for preparing a thermo- 
dynamic network are so numerous and varied, however, that the reader 
may wish to draw his own conclusions. We make only the following 
simple observations and recommendations: 



22 



1) The melting line is poorly defined. Accurate P-p-T data for 
the freezing liquid would provide a boundary for the equation of state. 
The triple-point temperatures which have been published are highly 
discordant. Extrapolation of the P(T) melting line to zero pressure 
might yield a reliable value. This is needed especially for the vapor 
pressure equation. 

2 ) More accurate P-n-T data (better than 0. 1% in density) are 
needed for the low-temperature compressed liquid. From such data 

accurate saturated liquid densities may be obtained by intersection 
with an accurate vapor-pressure line. 

3) Accurate densities for the saturated liquid are needed in mid- 
range where few if any experimental data exist. 

4) Accurate vapor pressure measurements apparently exist 
only from 200 K (2 atm) upwards. These could be extended down to 
150 K (0. 1 atm) by use of the "air dead-weight gage. " Their use might 
give a vapor pressure equation with more reliable derivatives, dP/dT, 
over the entire range. 

5) Sound velocity measurements over a wide range, as well as 
additional specific heat measurements, e. g. C v (p, T), would provide 

further tests of the thermodynamic computations. 

7. ACKNOWLEDGMENTS 

We are indebted to The American Gas Association for generous sup- 
port of this work, to Robert D. McCarty for the essential lea st - square s 
program, and to Dwain E. Diller and Lloyd A. Weber for discussions and 
valuable suggestions. Importance of the nonanalytic behavior of C (p,T) 
about the critical point, in formulating an equation of state, was empha- 
sized for us by Anneke Levelt Sengers, for which we are most grateful. 
The PVT compressibility data of Douslin and Harrison, of A.K. Pal as 
revised at Rice University, and the specific heat data of A. Furtado, 
have all been essential ingredients making possible the present provi- 
sional computations of thermodynamic functions. 



23 



8. BIBLIOGRAPHY 



[1] Amer. Petrol. Inst. Res. Proj. 44, Selected Values of Proper- 
ties of Hydrocarbons and Related Compounds (loose-leaf). Table 
20 k, (Part 1), p. 1, Dec. 31 (1952), (Vapor Pressures). 

[2] C. H. Barkelew, J. L. Valentine and C. O. Hurd, Thermody- 
namic properties of ethane, Trans. Amer. Inst. Chem. Eng. 43 , 
25 (1947). 

[3] L. A. Bulavin, Yu. M. Ostanevich, A. P. Simkina, and A. V. 
Strelkov. Density of ethane near the liquid-vapor critical point, 
Ukrainain Physics Journal 16, 90 and 183 (1971). 

[4] L. J. Burnett and B. H. Muller, Melting points of ethane and 
three of its deuterated modifications, J. Chem. and Eng. Data 
15.(1), 154 (1970). 

[5] L. No Canjar, P-V-T and related properties for methane and 
ethane, Chem. Eng. Data Series 3^(2), 185 (1958). 

[6] L. N. Canjar, C. M. Tejada and F. S. Manning, Thermo Pro- 
perties of ethane, Hydrocarbon Processing and Petroleum 
Refiner, 4]_(10), 149 (1962). 

[7] F. G. Carruth, Determination of the vapor pressure of 
n-paraffins and extension of a corresponding states correlation 
to low reduced temperatures, Thesis, Dept. Chemical Engineer- 
ing, Rice University, Houston, Texas, (Nov. 1970). 

[8] J. Chao, R. C. Wilhoit, and B. J. Zwolinski, Ideal gas thermo- 
dynamic properties of ethane and propane, J. Phys. Chem. Ref. 
Data 2(2), 427 (1973). 

[9] P. L. Chueh and J. M. Prausnitz, Third virial coefficients of 
nonpolar gases and their mixtures, A. I. Ch. E. Journal 13(5) 
898 (1967). 

[10] C. H. Chui and F. B. Canfield, Liquid density and excess pro- 
perties of argon + krypton and krypton + xenon binary liquid mix- 
tures, and liquid density of ethane, Trans. Faraday. 67 , 2933). 
(1971). 



24 



[11] K. Clusius and K. Weigand, The melting carves of the gases A. 

Kr, X, CH 4 , CH 3 D, CD 4 , C 2 H 4 , C 2 H 6 , COS, and PH 3 to 200 atm 
pressure, Z, physikal, Chem. B46 (1 ), 1 (1940). 

[12] R. K. Crawford and W. B. Daniels, Equation of state measure- 
ments in compressed argon, J. Chem. Phys. 50(8), 3171 (1969). 

[13] D. E. Diller, The specific heats (C ) of dense, simple fluids, 
Cryogenics 1 1 , 186 (June, 1971). V 

[14] D. R. Douslin and R. H. Harrison, Pres sure -volume-temperature 
relations of ethane, J. Chem. Thermodynamics, _5(4),491 (1973). 

[15] N. M. Dykhno, M. V. Tsyrulnikova and M. V. Mochalova, 
Hydrocarbon vapor pressures at low temperatures, Zh. Fiz. 

Khim. 42(9), 2310-1 (1968). 

[16] J. H. Dymond and E. B. Smith, The virial coefficients of gases, 
Oxford Science Research Papers 2, Clarendon Press, Oxford, 
England, (1969). 

[17] P. T. Eubank, Thermodynamic properties of ethane: vapor- 
liquid coexistence, Advances in Cryogenic Engineering, 17 , 270 
(Plenum Pub. Corp. , New York, N. Y. 10011,(1971)). 

[18] P. T. Eubank, B. F. Fort, and C. C. Reed, Jr., Thermody- 
namic properties of ethane: PYT surface and corresponding 

thermodynamic properties, Advances in Cryogenic Engineering , 

T7, 282 (1971). 

[19] A. Eucken and A. Parts, Z. Phys. Chem. B2Q , 184 (1933), 

(virial coeffs. quoted by Ziegler et al. [77]. 

[20] Andre Furtado, The measurement and prediction of thermal 
properties of selected mixtures of methane, ethane, and propane, 
(Ph. D. Thesis, Dept, of Chemical Engineering , Univ. of 
Michigan, Ann Arbor, Mich., Dec. , (1 973) ). 

[21] R. D. Goodwin, An equation of state for fluid parahydrogen from 
the triple-point to 100°K at pressures to 350 atmospheres, J. Res. 
Nat. Bur. Stand. 71A (3), 203 (1967). 

[22] R. D. Goodwin, Formulation of a nonanalytic equation of state for 
parahydrogen, J. Res. Nat. Bur. Stand. 73A ( 6 ), 585 (1969). 



25 



[23] R. D. Goodwin, Nonanalytic vapor pressure equation with data 
for nitrogen and oxygen, J 0 Res. Nat. Bur. Stand. 73A (5), 487 
(1969). 

[24] R. D. Goodwin and R. Prydz, Densities of compres sed liquid 
methane, and the equation of state, J. Res. Nat. Bur. Stand. 
76A(2), 81 (1972). 



[25] R. D. Goodwin, The thermophysical properties of methane from 
90 to 500 K at pressures to 700 bar, NBS Tech. Note 653, April 
(1974). 

[26] R. D. Goodwin, The vapor pressures of ethane, Unpublished 
Report, Nat. Bur. Stand., Boulder, Colorado, 9 July, 1973. 
Appendix D, this report. 

[27] R. D. Goodwin, Ethane virial coefficients and saturated vapor 
densities, Unpublished Report, Nat. Bur. Stand. , Boulder, 
Colorado, 15 Aug., 1973. Appendix E, this report. 

[28] R. D. Goodwin. The orthobaric densities of ethane, methane, 
oxygen, and flourine, Unpublished Report., Nat. Bur. Stand. , 
Boulder, Colorado 18 Sept. , 1973. Appendix F. this report. 

[29] R. D. Goodwin, Liquid-vapor saturation (orthobaric) tempera- 
tures of ethane and methane, Unpublished Report, Nat. Bur. 
Stand., Boulder, Colorado, 28 Nov., 1973. Appendix G, this 
report. 

[29a] R. D. Goodwin, Equation of state for thermodynamic properties 
of fluids, Submitted to J. Res. Nat. Bur. Stand. , Boulder, 
Colorado, October, (1974). 

[30] R. D. Gunn, M. S. Thesis, Univ. Calif. (Berkeley), 1958, quoted 
by J. A. Huff and T. M. Reed, J. Chem. Eng. Data 8 _, 306 (1963). 
(Virial coefficients. ) 

[31] K. R. Hall and P. T. Eubank, Experimental technique for direct 
measurement of interaction second virial coefficients. J. Chem. 
Phys. 59(2), 709 (1973). 

[32] A. Harmens, Orthobaric densities of liquefied light hydrocarbons, 
Chem. Eng. Science 20, 813 (1965), 2J_, 725 (1966). 



26 



[33] A. S. Holmes, W. G. Braun and M. R. Fenske, Bibliography of 
vapor -pres sure data for hydrocarbons, Amer, Petrol. Inst. , 

New York, Bibliog. No. 2, 1964. 

[34] A. E. Hoover, I. Nagata, T. W. Leland and R. Kobayashi, Virial 
coefficients of methane, ethane, and their mixtures at low tem- 
peratures, J. Chem. Phys. 4_8 (6), 2633 (1968). 

[35] J. A. Huff and T. M. Reed, Second virial coefficients of mixtures 
of nonpolar molecules from correlations on pure components, J. 
Chem. and Eng. Data 8^(3), 306 (1963). 

[36] E. E. Hughes and S. G. Lias, Vapor pressures of organic com- 
pounds in the range below one millimeter of mercury, NBS Tech. 
Note No. 70., Washington, D. C. (Oct., I960). 

[37] J. G. Hust, A compilation and historical review of temperature 
scale differences, Cryogenics _9(6), 443 (Dec., 1969). 

[38] J. D. Kemp and K. S. Pitzer, The entropy of ethane and the 
third law of thermodynamics. Hindered rotation of methyl groups, 
J. Am. Chem. Soc. 5 9 , 276 (1937). 

[39] G. Klipping and F. Schmidt, Dampfdrucktabellen tief siedender 
gase (V), Kaltetechnik _18_( 1 1 ), (Nov. 1966). 

[40] J. Klosek and C. McKinley, Densities of liquified natural gas and 
of low molecular weight hydrocarbons, paper 22, Session 5, Proc. 
First Internat. Conf. on LNG, Chicago, April (1968). 

[41] J. D. Lambert, G. A. H. Roberts, J. S. Rowlinson and V. J. 
Wilkinson, Proc. Roy. Soc., (London) A 1 96 , 113 (1949). (Virial 
coefficients, quoted by Tester [70]. ) 

[42] A. G. Loomis and J. E. Walters, The vapor pressure of ethane 
near the normal boiling point, J. Amer. Chem. Soc. 48 , 2051 
(1926). 

[43] O. Maass and C. H. Wright, J. Am. Chem. Soc. 43 , 1098 (1921). 
Vapor pressures, quoted by Tester [70]. ) 

[44] E. A. Mason and T. H. Spurling, The virial equation of state, 
Pergamon Press, Oxford (England), (1969k 



27 



[45] R. D. McCarty, Least-squares computer subroutine, Unpublished 
report, Nat. Bur. Stand. , Boulder, Colorado, (3 Jan., 1972). 

[46] M. L. McGlashan and D. J. B. Potter, An apparatus for the 
measurement of the second virial coefficients of vapors; the 
second virial coefficients of some n-alkanes and of some mix- 
tures of n-alkanes, Proc. Roy. Soc. (London) A267 , 478 (1962). 

[47] A. Michels, W. van Straaten and J. Dawson, Isotherms and 
thermodynamic functions of ethane at temperatures between O 0 C 
and 150°C and pressures up to 200 atm, Physica XX, 17 (1954). 

[48] J. B. Rodosevich and R. C. Miller, Experimental liquid mixture 
densities for testing and improving correlations for liquefied 
natural gas, A I Ch E Journal 12(4), 729 (1973). 

[49] V. M. Minovich and G. A. Sorina, P-V-T relations in dilute solu- 
tions of propane in ethane in the vicinity of the cirtical point of 
ethane. 1. P-V-T relations for ethane in the vicinity of its 
critical point, Russian J. Phys. Chem. 45 , (3) 306 (1971). 

[50] T. Miyazaki, (Cpmeasurements near the critial point), Ph. D. 
Thesis, Dept. Chem. Eng., Univ. Michigan, (1974). 

[51] J. Mollerup and J. S. Rowlinson, The prediction of the densities 

of liquified natural gas and of lower molecular weight hydrocarbons. 
Chem. Eng. Sci. 2_9, 1373 (1974). 

[52] Plank and Kambeitz, Z. Ges. KSlte Ind. 1 0 , 209 (1936), (Satur- 
ated vapor densities formula, quoted by Tester [70]. 

[53] G. R. Poole and R. A. Aziz, The law of corresponding states as 
applied to sound velocity in liquids consisting of elliptical mole- 
cules, Canadian J. Phys. 5 0 , 721 (1972). 

[54] G. A. Pope, Calculation of argon, methane, and ethane virial co- 
efficients at low reduced temperature based on data obtained by 
isochorically coupled Burnett experiments, Thesis, Dept. Chemi- 
cal Engineering, Rice University, Houston, Texas (July, 1971). 
(Includes vapor pressure data, also vapor pressures and PVT 
data of A. K. Pal. ) 



28 



[55] G. A. Pope, P. S„ Chappelear, and R. Kobayashi, Virial coeffi- 
cients of argon, methane, and ethane at low reduced temperatures. 

J. Chem. Phys. 5_9 (1), 423 (1973). 

[56] Frank Porter, The vapor pressures and specific volumes of the 
saturated vapor of ethane, J. Am. Chem. Soc. 48, 2055 (1926). 

[57] H. H. Reamer, R. H. Olds, B. H. Sage, and W. N. Lacey, 

Phase equilbria in hydrocarbon systems: Volumetric behavior 

of ethane, Ind. Eng. Chem. 36 , 956 (1944). 

[58] J. Regnier, Vapor pressure of ethane between 80 and 135°K, J. 
Chim. Phys. 69 (6), 942-4 (June, 1972). 

[59] F. D. Rossini, Report on international practical temperature 
scale of 1968, J. Chem. Thermodynamics 2_, 447 (1970). 

[60] J. S. Rowlinson, Molecular theories of liquids and mixtures, 

Ind. Eng. Chem. 5_9(12), 28 (1967). 

[61] J. S. Rowlinson, Liquids and liquid mixtures, Plenum Press, 

New York, N. Y. , (1969). 

[62] H. Sackmann and F. Sauerwald, The volume change upon melting 
of organic substances, especially in homologous series, Z, Physik. 
Chem. (Leipzig) A1 95 , 295 (1950). 

[63] B. H. Sage and W. N. Lacey, Thermodynamic Properties of the 
Lighter Paraffin Hydrocarbons and Nitrogen , American Petroleum 
Institute, New York (1950). 

[64] C. T. Science, C. P. Colver and C. M. Sliepcevich, Bring your 
C^-C^ up to date, Hydrocarbon Process, 46(9), 173 (1967). 

[65] M. Y. Shana'a and F. B. Canfield, Liquid density and excess 
volume of light hydrocarbon mixtures at -165° C, Trans. Faraday 
Soc. 64, 2281 (1968). 

[66] P. Sliwinski, The Lorenz -Lorenz function of gaseous and liquid 
ethane, propane and butane, Zeit, Phys. Chem. Neue F olge 63, 

263 (1969). 

[67] N. E. Sondak and G. Thodos, Vapor pressures, the aliphatic hydro- 
carbons, A. I. Ch. E. Journal_2, 347 (1956). 



29 



[68] K. E. Starling, Fluid thermodynamic properties for light petro - 
leum systems, Gulf Publishing Co. , Houston, Texas (1973). 

[68a] H. J. Strumpf, A. F. Collings and C. J. Pings, Viscosity of 

Xenon and Ethane in the Critical Region, J. Chem Phys. 60(8), 

3109 (1974). 

[69] A. S. Teja and J. S. Rowlinson, The prediction of the thermo- 
dynamic properties of fluids and fluid mixtures - -IV. Critical and 
azeotropic states, Chem. Eng. Sci. 2_8, 529 (1973). 

[70] H. E. Tester, Ethane, in Thermodynamic Functions of Gases, 

V ol 3, F. Din, Editor, (Butterworths Scientific Publications, 
London, 1961). 

[71] A. W. Tickner and F. P. Lossing, The measurement of low vapor 
pressures by means of a mass spectrometer, J. Phys. Colloid 
Chem. 5_5 , 733 (1951). 

[72] J. R. Tomlinson (Gulf Research and Development Co. , Pittsburgh, 
Pa. ), Liquid densities of ethane, propane and ethane-propane 
mixtures, Tech. Pub. TP-1, Natural Gas Processors Assoc., 

(808 Home Federal Bldg. , Tulsa, Okla. 74103, Feb. 1971). 

[73] R. Wiebe, K. H. Hubbard and M. J. Brevoort, The heat capacity 
of saturated liquid ethane from the boiling point to the critical 
temperature and heat of fusion of the solid, J. Am. Chem. Soc. 

52_, 61 1 (1930). 

[74] G. M. Wilson, R. G. Clark and F. L. Hyman, Thermodynamic 
properties of cryogenic fluids, Ind. Eng. Chem. 6_0(6), 58 (1968). 

[75] R. K. Witt and J. D. Kemp, The heat capacity of ethane from 15° K 
to the boiling point. The heat of fusion and the heat of vaporization, 
J. Am. Chem. Soc. _5_9 , 273 (1937). 

[76] W. T. Ziegler, The vapor pressures of some hydrocarbons in the 
liquid and solid state at low temperatures, NBS Tech. Note 4, 

(May, 1959). 

[77] W. T. Ziegler, B. S. Kirk, J. C. Mullins and A. R. Berquist, 
Calculation of the vapor pressure and heats of vaporization and 
sublimation of liquids and solids below one atmosphere pressure. 
VII Ethane, Tech. Report No. 2, Proj. A-764, Eng. Expt. Sta., 
Georgia Inst. Tech., Atlanta, Georgia, (Dec. , 1964). 



30 



APPENDIX A. Symbols and Units 



Subscripts c and t refer to critical and liquid triple points. 
Subscripts g and & refer to saturated vapor and liquid. 

Subscript a refers to liquid-vapor coexistence (usually the liquid). 
Superscript o refers to ideal gas states. 



a, b, y, e, 


non-linear constants in the equation of state 


B(p),C(p), 


density-dependent coefficients in the equation of state 


C v (p,T), 

C (p, T), 
P 

c a ( T ), 

d. 


molal heat capacity at constant volume, J/ (mol* K) 
molal heat capacitu at constant pressure, J/ (mol* K) 
molal heat capacity for saturated liquid, J/(mol*K) 
density, mol/ £ 


E(p,T), 


the internal energy, J / mol 


H(p, T), 


the enthalpy, J / mol 


J. 


the joule, 1 N-m, 


1, 


-3 -3 

the liter, 10 m , 


mol, 


30. 07 grams of ethane (C^ = 12 scale) 


P, 


5 2 

pressure in bars, 1 bar = 10 N/m 
(1 atm = 1. 01325 bar) 


P CT (p), 


the vapor pressure, bar 


§(p, T), 


function in the equation of state 


ilr(p, T), 


function in the equation of state 


Q , 
vap 

R, 


AH , the heat of vaporization 

vap 

the gas constant, 8. 31434 (J/mol)/K, 0. 0831434 
(bar - jj/mol) /K 


P. 


d/d^_, density reduced at the liquid triple point 


CT» 


d/d , density reduced at the critical point 
c 


S(P, T), 


the entropy, (J/mol)/K 


T, 


temperature, K, (IPTS-68.) [59] 


T>), 

0(p). 


liquid-vapor coexistence temperature, K 
defined locus of temperatures, Fig. 4 



31 



APPENDIX A. (Continued) 



U (ct), 


defined function for eq (3-c) 


v, 


1/d, molal volume, £/mol 


oi(p, T), 


6* [T / 9-1], for the equation of state 


W(ct), 


defined function for eq (3-d) 


W(p, T), 


the speed of sound, meter s / s econd 


x(T), 


T/T , for the equation of state 
c 


Y, 


variously defined functions 


z, 


Pv/RT, the "compressibility factor 



APPENDIX B. Fixed-Point Values 



Triple Point 

Density Mol/'t 
V apor 
Liquid 

Temperature, K 
Pressure, bar 

Critical Point 

Density, mol/'t 
Temperature, K 
Pressure, bar 



Methane 



-2 

1 . 567 865 • 10 
28. 1470 
90.680 
0 . 1174 35675 



10.0 
190. 555 
45.988 



Ethane 



1.35114* 10 
21.680 
89.899 
1 . 009 906- 10 



6.74 

305.37 

48.755 



32 



APPENDIX C. Exposition of the Equation of State 
Equation (5) may be written explicitly- - 

P = P (P) + pR*[T -T (p)J 

CT O' 

+ P 2 RT . [B(p). §(p, T) + C(p).¥(p,T)]. (5-1) 

c ' 

This has only two temperature -dependent terms (in addition to pRT), 

which is the minimum number needed to describe the sigmoid shape of 

isochores [ 6 1 ] in the range p^<o<2* p^, Figure 2. Each of these terms 

is zero on the coexistence boundary at T = T (p). 

a 

The first term, §(p, T), is shown by Figure 5. It is linear 

2 . 2 

(3 $/3 T = 0) on the coexistence boundary. It gives a critical isochore 

which is linear at the critical point because C(p) = 0 along this isochore. 

The second term, Y(p, T), is shown by Figure 6. It starts with 

2 . 2 

infinite curvature (3 Y/3T ) on the locus of temperatures, 0(p), inside 

the coexistence envelope of Figure 4. Sufficiently far away from the 

2 

critical point it behaves like 1/T , found in the well-known Beattie- 
Bridgeman equation. 

2 2 

The sign of the curvature (3 P/BT ) of isochores at the coexist- 
ence boundary is determined uniquely by the sign of C(p). Figure 7 
shows the behavior of B(p) and of C(p) for methane. The root in C(p) 
at p/p =1.9 was found by least squares both for methane and for 

ethane. It then was introduced as the non-linear constant, C , in the 

o 

equation of state. This constraint is valuable. In its absence we quite 
often have failed to obtain any such root from P-p-T data by least 
squares. Figure 8 shows the presumed behavior of C(p) for hydrogen 
(a double root near p/p = 1. 9), needed to give the observed positive 
curvature of isochores in the compressed liquid at the lowest tempera- 
tures [13, 21], 



33 



APPENDIX C. (Continued) 



The critical isotherm from eq. (5) necessarily has zero slope, 

dP/dp = 0, at the critical point, Figure 3. This follows from our 

definitions of T rr (p), 0(p), $(p, T) and Y(p, T). The second derivative, 

2 , 2 

3 P/dp , also is zero because the vapor pressure here is expressed 

as a function of T rj (p). Our detailed examinations of this isotherm 

show however, that small changes in the assigned critical point (q , T ) 

c c 

give rise to irregularities nearby at p § p . Adjusting the critical 

density to p =6. 74 mol / H yields a well-behaved critical isotherm 
c 

having no negative slopes, i. e. dP/dp^O. 

Specific heats along the critical isotherm of Figure 4 are comput- 

2 2 

ed by integrating the curvatures of isochores, (d P/dT ), in eq. (11), 
starting at p = 0. Curvatures from the term C(p)‘ Y(p, T) in the equa- 
tion of state at first increase sharply (with negative sign) as p-*p , be- 

c 

come zero at p = p , then strongly positive at first for p>p , finally 

c c 

diminishing at still higher densities. This behavior is seen along the 

critical isotherm in Table 24. It gives a maximum in C (p, T) at the 

v 

critical point via eq 0 (11). 



34 



APPENDIX D. 



Cryogenics Drmion - NSS Institute tor Ink Standards 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-3 


PAGE 

1 


SUBJECT 

The Vapor Pressures of Ethane 


NAME /- J 

R . D . Goodwin 


DATE 

Julv 7 , 1773 



This is the first of several reports planned on the physical properties of ethane. 



Our ultimate purpose is to compute tables of thermodynamic functions over the entire 
range of fluid states. We first will discover regions where data are inadequate or 
lacking by attempting to compute provisional tables based on existing data. 

Accurate vapor pre s sure s, and a proper analytical representation of these data, 
are essential for computing heats of vaporization via the Clapeyron equation. 

In this note we give a limited bibliography. Not all of these references were 
available at this writing. We compare several sets of data by use of our newton- 
analytic vapor pressure equation. We make a choice of the best for least squares, and 
we give deviations from this selected equation. 

At the triple point near 90 K the vapor pressure of ethane is about 0.00001 atm 
(10 LL-atm). Experimental methods therefore differ for the range below one atm 
( 184 . 5K) and for the range of higher pressures to 48 atm at T = 305 K. 

Data to about I960 are reviewed by Tester [19], who selected the representa- 
tion of Barkelew et al. [3] for the entire range from triple- to critical point. 

Below one atm the data to 1964 are reviewed by Ziegler et al. , who give their 
own, high quality set of data computed for thermodynamic consistency with all related 
or derived data, in a work for the National Standard Reference Data Program [23], 
More recently we have the measurements of Carruth, obtained by the gas saturation 
flow technique, employing a flame ionization detector for analysis of the gas mix- 
ture [4]. See also J. J. Chen et al. (Rice University), paper G-l, 1972 Cryogenic 
Engineering Conference, on the same technique. 

For high pressures the only new data of which we presently are aware are those 
of Pope (Table 25) [ 13 ], and those attributed to Dr. A. K. Pal by Pope [13] in Table 31. 
For these latter data there is no description of experimental method. 

After this note was written we received the new precise measurements of 
Douslin and Harrison [24], and therefore have recomputed our results including these 
data. Douslin and Harrison note especially the new, precise measurements of 
Miniovich and Sorina [25], which were not available to us at this writing. 



sp ii34? a 



35 



APPENDIX D. (Continued) 



Cryogenics Division - N®S Institute for Bosk Stamfords 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-3 


PAGE 

2 


SUBJECT 

The Vapor Pressures of Ethane 


NAME R. D. Goodwin 


DATE July 9, 1973 



Our vapor pressure equation [6] uses the reduced argument, 



x(T) = ( 1 -T /T)/ ( 1 -T /T ) , 
t t c 

where subscripts t and c refer to triple- and critical points, 

2 3 4 £ 

In (P /P ) = a« x + b* x + c • x + d • x + e • x. ( 1 -x) ( 1 ) 

and the exponent is e = 1 . 3 for methane [ 1 5] and for oxygen [ 16] . Originally the term 

4 i 

d-x was absent. It has been added here to improve representation of the ethane data. 

The following discoveries are found with the original equation of four terms. 
Optimum exponents in the range 1 . 1 < e ^ 1.9 are obtained merely by changing the 
sets of data used for least squares. Hence we must rely on the more precise methane 
and oxygen data to select e =1.5. Varying the critical-point temperature within 
reasonable limits has no significant effect on the overall, rms relative pressure devia- 
tion s . 

By examining numerous results we have selected for least squares only the data 
of Ziegler at P < 1 atm [ 23], and the data of Pope, Pal [13] and Douslin [24] at P > 1.9 atm. 
Whereas the temperature scale of Ziegler may be thermodynamic (the report is not 
clear), we nevertheless find that deviations (rms in relative P) are minimized by 
converting both sets of data to T-1968 as if they had been on T-1948 [ 1 ] . All T used 
in the following are T-68. 

The triple-point temperature was reviewed by Ziegler et al. Their selection 
of 69.89 K becomes 89.899 on the 1968 scale. The critical-point temperature 305.42 K 
of Pope has been changed to 305.33 K for consistency with the data of Douslin ( 24] . A 

value T = 305.33 r 0.005 K is given by P. Sliwinski, Zeit. Phys. Chem. b_8, 91 

c 

( 19'; t) based on analysis of dielectric constants. This was kindly pointed out by 
D. E. Diller. We obtain pressures at these end points from the vapor pressure 
equation: 

T , K (1968) P, atm 

Triple point 89.899 9,61b. 10 

Criticalpoint 305.33 48.07695 



$P 1 134? A 



36 



APPENDIX D. (Continued) 



PACE 

3 



Cryogenics Division - NftS Institute for Bosk Standards 

LABORATORY NOTE 



PROJECT NO. 

2750364 



FILE NO. 

73-3 



SUBJECT 



NAME 



The Vapor Pressures of Ethane 



R. D. Goodwin 



DATE 



July 9, 1973 



The constants for eq (1) were obtained via the data of Ziegler, Pope, Pal and 
Douslin. They include e = 1.6 as shown at the head of table 1. 



a = 8.4549 8734 d = 

b = 12.4880 3978 e = 

c = -4. 1042 8155 



-1.4138 6053 
8.5265 2253 



In the following tables we give the author^ ID, his temperature and as con- 
verted to T-68 , and the published and calculated pressures. Next is the deviation of 
his temperature from our calculated value, 

DT = T -T = _ (p -P 1/ldP/dTl 
xpt calc ' xpt calc m ' 

and finally his relative pressure deviation, 

P, PC T = 100- (P -P )/P 

xpt calc calc 

At the bottom of each table we give the number of datum pairs, NP, and the rms of 
relative pressure deviations in percent. 

The source of data in each table is identified by the numerical code, ID, in the 
first column-- 



Table No 


I.D. 


Author s 


Referen< 


1 


4 


A. K. Pal 


[13] 




7 


Ziegler et al. 


[23] 




9 


G. A. Pope 


[13] 




10 


Douslin, Harrison 


[24] 


2 


1 


Tickner, Lossing 


[20] 




2 


API Proj . 44 


[2] 




3 


Carruth 


[4] 


3 


5 


Loomis, Walters 


[11] 


4 


6 


F. Porter 


[14] 




8 


Barkelew et al 


[3] 


5 


Calculated vapor pressures 


(this report) 


6 


Reduced v.p. functions (this 


report) 



JP 11347 * 



37 



APPENDIX D . (Continued) 



Cryogenics Division - NBS Institute tor Bask Standards 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-3 


PAGE 

4 


SUBJECT 

The Vapor Pressures of Ethane 


name D. Goodwin 


July 9, 1973 



As additional data may be found, we reserve comment on the deviations of 
individual authors, and omit the labor of preparing deviation plots. 

Calculated pressures, slopes and curvatures are given at uniform temperatures 
by Table 5. 

For comparison with functions in our original vapor pressure publication [6], 
we give these functions in Table 6, as computed via eq (1) namely 

x(T ) 5 (T-T /T ) /( 1 - T / T ), 
t t c 

Y (P ) s tn(P/P )/tn(P /P ). (2) 

These variables range from zero to unity. The equation 

Y = x (3) 

represents the basic vapor pressure equation 

£n(P) = a - b/T (4) 

when this is constrained to the end-points (triple and critical). Hence (Y-x) is the 
deviation of data from (4). 

Finally, we give the computer programs used in this work as a means to check 
for errors, and to facilitate resumption of this research. 

Addendum. Following work shows that the second virial coefficient used by Ziegler 
et al. to obtain vapor pressures is not consistent with our selection. At 200°K his 
B(T) = - 455 cc /mol, whereas our B(T) = - 417.5. We therefore have recomputed our 
apor pressure constants using Ziegler's vapor pressure data from his Table IX for 
"Curve B” of his Figure 1, for which B(T) = - 410 cc/mol at 200 K. The difference in 
his vapor pressures at 90 K is (7.80-7.33)/7.33 = 6.4 percent, the new values being 
the greater. Our new results for eq (1) are given in Table 7, (pages 20, 21) and tables 
8 , q on pages 22, 23 of this report. We prefer these constants for future use. 



SP 11147* 



38 



APPENDIX D. (Continued) 



Cryogenics Division - NIS Institute for Bosk Standards 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-3 


PAGE 

5 


SUBJECT 


NAME 






The Vapor Pressures of Ethane 


R. D. Goodwin 




DATE July 9, 1973 



Bibliography 

[1] The International Practical Temperature Scale of 1968, Metrologia 5(2), 35 (1969). 

[2] Amer. Petrol. Inst. Res. Proj. 44, Selected Values of Properties of Hydro- 
carbons and Related Compounds (loose-leaf), Table 20 k, (Part 1), p. 1, 

Dec. 31 (1952). 

[3] C. H. Barkelew, J. L. Valentine and C. O. Hurd, Thermodynamic properties 
of ethane, Trans. Amer. Inst. Chem. Eng. 43, 25 (1947). 

[4] F. G. Carruth, Determination of the vapor pressure of n-paraffins and extension 
of a corresponding states correlation to low reduced temperatures, Thesis, 

Dept. Chemical Engineering, Rice University, Houston, Texas, (Nov. 1970). 

[5] N. M. Dykhno, M. V. Tsyrulnikova and M. V. Mochalova, Hyd rocarbon vapor 
pressures at low temperatures, Zh. Fiz. Khim. 42 (9), 2310-1 (1968). 

[6] R. D. Goodwin, Nonanalytic vapor pressure equation with data for nitrogen and 
oxygen, J. Res. NBS 73A (5), 487 (1969). 

[7] A. S. Holmes, W. G. Braun and M. R. Fenske, Bibliography of Vapor Pressure 
Data for Hydrocarbons , Amer. Petrol. Inst., New York, Bibliog. No. 2, (1964). 

[8] E. E. Hughes and S. G. Lias, Vapor Pressures of Organic Compounds in the 
Range Below one Millimeter of Mercury, NBS Tech. Note 70, Washington, D. C. 
(Oct., 1960). 

[9] J. G. Hust, A compilation and historical review of temperature scale differences, 
Cryogenics 9(6), 443 (Dec., 1969). 

[10] G. Klipping and F. Schmidt, Dampfd r ucktabellen Tiefsiedender Case (V), 
Kaltetechnik 18(11), (Nov. 1966). 

[11] A. G. Loomis and J. E. Walters, The vapor pressure of ethane near the normal 
boiling point, J. Amer. Chem. Soc. 48, 2051 (1926). 

[12] R. E. Perry and G. Thodos, Vapor pressures of the light normal saturated 
hydrocarbons, Ind. Eng. Chem. 44(7), 1649 (1952). 

[13] G. A. Pope (quotes v.p. of Dr. A. K. Pal), Calculation of Argon, Methane, and 
Ethane Virial Coefficients at Low Reduced Temperature Based on Data Obtained 
by Isochor ically Coupled Burnett Experiments, Thesis, Dept. Chemical Engineer- 
ing, Rice University, Houston, Texas (July, 1971). 

[14] F. Porter, The vapor pressures and specific volumes of the saturated vapor of 
ethane, J. Amer. Chem. Soc. 48, 2055 (1926). 

[15] R. Prydz and R. D. Goodwin, Experimental melting and vapor pressures of 
methane, J. Chem. Thermodynamics 4. 127 (1972). 

[16] Rolf Prydz, An improved oxygen vapor pre s sure representation, Metrologia 8 ( 1 ), 

1 (1972). 



if 11342 A 



39 



APPENDIX D . (Continued) 



Cryogenics Division - MBS Institute for Bosk Standards 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-3 


PAGE 

6 


SUBJECT 

The Vapor Pressures of Ethane 


NAME 

R. D. Goodwin 


DATE July 9, 1973 



[17] C. T. Sciance, C. P. Colver and C. M. Sliepcevich, Bring your Cj-C, up to 
date, Hydrocarbon Process. 46(9), 173 (1967). 



[18] N. E. Sondak, and G. Thodos, Vapor pressures, the saturated aliphatic hydro- 
carbons, A.I.Ch.E. Journal 2, 347 (1956). 

[19] H. E. Tester, ETHANE, in Thermodynamic Functions of Gases, F. Din, Editor, 
Butte rworths , London (1961). 

[20] A. W. Tickner and F. P. Lossing, The measurement of low vapor pressures by 
means of a mass spectrometer, J. Phys . Colloid Chem. 55, 733 (1951). 

[21] G. M. Wilson, R. G. Clark and F. L. Hyman, Thermodynamic properties of 
cryogenic fluids, Ind. Eng. Chem. 60(6), 58 (1968). 

[22] W. T. Ziegler, The Vapor Pressures of Some Hydrocarbons in the liquid and 
solid state at low temperatures, NBS Tech. Note 4, (May, 1959). 

[23] W. T. Ziegler, B. S. Kirk, J. C. Mullins and A. R. Berquist, Calculation of 
the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and 
Solids below One Atmosphere Pressure. VII Ethane, Tech. Rpt. No. 2 Proj. 
A-764, Eng. Expt. Sta., Georgia Inst. Tech.; Atlanta, Georgia, Dec., 1964. 

[24] D.R. Douslin and R. H. Harrison, Pressure-Volume-Temperature Relations 
of Ethane (manuscript for the Journal of Chemical Thermodynamics), 1973. 

[25] V. M. Miniovich and G. A. Sorina, Russian J. Phys. Chem. 4^5, 306 (1971). 



st ii34? a 



40 



APPENDIX D . (Continued) 



Cryogenics Division - NSS bwtitute lor hac Standords 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-3 


PAGE 

7 


suuect The Vapor Pressures of Ethane 

Table 1 . Data of Pal (4), Ziegler (7), Pope (9), and Douslin ( 10) . 


NAME 

R. I 


0. Goodw 


in 


DATE July 9, 1973 



ETHANE VAPOR PRESSURES, E = 1.60 

TTRP = 89.899, TCRT = 305.330 

PTRP, MUATM = 9.61600, PORT, ATM = 48.07695 

8 . 454 987341+ 12.488039775 -4.104281551 

-1 . 41 3 86 j 5 3 3 8.526522526 O.OOOUGCCOG 



ID 


T . XPT L 


T-68 


P, ATM 


CALCC 


DEL T 


P» PCT 


7 


94. 000 


94. 013 


0. 00 00274 


0. C0G0 274 


-0. 00 1 


0 .02 


7 


98. CCC 


98. 012 


0.0000693 


0. 00C0694 


0. 00 2 


-0.05 


7 


1J2.0CG 


102. 00 8 


0. 00 C1616 


0. C0C1619 


0 • GO 2 


-0.05 


7 


106. uOC 


1C o. 00 2 


0.0003526 


0. 0003522 


-0 . 00 6 


0 . 11 


7 


110. J00 


109. 998 


0. 0007207 


0. 0GG7 205 


-0. 00 2 


0 .03 


7 


114. COO 


113. 995 


0.0013947 


0. 0C13947 


-C. 000 


O.OC 


7 


11 3. C G 0 


117. 991 


0.0025697 


G . G 025 698 


0 . 00 0 . 


-0 . 00 


7 


122. 300 


121. 988 


0.0345303 


C. CC45293 


-a . GO 2 


0.02 


7 


1 2 6 « j u u 


125. 987 


0. 0076737 


0. 0076734 


-0. 000 


0.00 


7 


1 3 0 • C Q 0 


129. 987 


0.012538 


0 .G1254G 


G.001 


-0.01 


7 


1 3 4. j u 0 


133. 988 


G .G1983C 


0 .019834 


0 . 00 2 


-0.02 


7 


138. dGO 


137. 990 


G .0 30447 


0.0 30 460 


0 . 004 


-0.04 


7 


142. COO 


141. 993 


0 .0 45504 


0 .045527 


0. 005 


-0.05 


7 


146. JOG 


145. 996 


0 .066355 


0 .066389 


0. 006 


-0.05 


7 


150. OCC 


150. 00D 


0 .094606 


0 .094657 


0. 006 


-G .05 


7 


15 4. C 0 0 


154. 0C 4 


0. 13213 


G.1322G 


0 . 00 7 


-0.35 


7 


1 5 8 . J 0 0 


158. uG 8 


J. 181 39 


0.18117 


0.005 


-0.04 


7 


162. COO 


162. 012 


0. 24392 


0.24 39 7 


0. 00 3 


-0.02 


7 


16 6. j C 0 


166. 015 


0. 32333 


C .32 33 0 


-0 . 00 1 


0.01 


7 


1 7 C • COG 


170. 01 9 


0. 422 3 C 


D. 42214 


-0 . 00 6 


0 .04 


7 


1 7 4. C 0 0 


174. 023 


0.54409 


G. 54371 


-0.011 


0 .C7 


7 


17 3. CO G 


178. 026 


0.69224 


C. 69145 


-0. 020 


0 . 11 


7 


18 2. w 0 v 


18 2. 026 


0. 870 47 


0 .66905 


-0. 329 


0.16 


7 


184. 520 


164. 550 


1. 0 0 3 OC 


0.9980 3 


-0 . 036 


0.20 


9 


196.181 


193. 216 


1.9737 


1.9758 


0 .023 


-0 . 11 


4 


214. 3D 2 


214. 334 


3.9209 


3.9176 


-0. 021 


0 . 08 


4 


224. ID 2 


224. 130 


5.6367 


5.6429 


G. C31 


-0.11 


4 


229. 755 


229. 762 


6.8569 


. 6.8629 


0 . 026 


-0 . 09 


4 


234. 556 


234. 581 


8.0335 


8.0 42 3 


0 . 034 


-0 . 11 


9 


234.092 


234.715 


8.0741 


8.0772 


0 . 312 


-0 . 04 


10 


233. 150 


238. 15 G 


9.00 97 


9.0 10 8 


0 . 004 


-G . G 1 


9 


23 3. 77 1 


238. 792 


9.1843 


9.1935 


0 . 032 


-0 . 10 


4 


239. 644 


239. 364 


9.4959 


9.5049 


0.030 


-0 .09 


4 


24C. 514 


240. 534 


9.696C 


9.7032 


0 . 024 


-0 . 07 


1C 


243. 15 C 


243. 150 


10 .5063 


1C.5C71 


0.00 3 


-0 . 01 


4 


243. 359 


243. 377 


10 .5761 


10.579C 


0. 009 


-0.03 


4 


246. 314 


246. 830 


11 .7137 


11.7183 


0.014 


-0 .04 


4 


247. 816 


247. 831 


12 .0502 


12.0648 


0.042 


-0 .12 


1C 


2 48. 15 G 


248. I5u 


12.1756 


12.1766 


0. 30 3 


-0 .Cl 


4 


249. 741 


249. 755 


12.7520 


12.7512 


-0.030 


a . os 


4 


250.146 


250. 160 


12.8985 


12.8991 


3. 00 2 


-0 .01 


4 


251. 567 


251.600 


13.4425 


13.4356 


-0.018 


0.05 


4 


252. 544 


252. 556 


13.8065 


13.800 6 


-0. 015 


0.04 


li. 


253. 15 Z 


253. 150 


14.031C 


14. J 31 C 


-0.000 


0 . 00 


4 


25 4. 29 u 


254. 3C 1 


14.4396 


14.4854 


-0.011 


0 . C 3 


4 


257. 543 


257. 552 


15 .8252 


15.8264 


0. 0C 3 


-0 . 01 


1C 


25 3. 150 


258. 15 J 


16 .03 36 


16.0 823 


-0. CO 3 


0 .01 



IP 1134? « 



41 



APPENDIX D. (Continued) 



Cryoganks Drmton - MBS InaMuta for Bosk Standards 

LABORATORY NOTE 



PROJECT NO. 

2750364 



FILE NO. 

73-3 



PAGE 

a 



SU,JECT The Vapor Pressures 

Table 1 - -continued . 


of Ethane 




NAME R. D. Goodwin 


DATE July 9 , 


1973 


ID 


T ,XPTL 


T-68 


P ♦ A T M 


CALCO 


DEL T 


P.PCT ~ 


10 


2 6 3. 15 C 


263. 153 


18 .3464 


18.3433 


-0. 007 


0.32 


4 


253.380 


263.386 


18 .4543 


18.4553 


0. 002 


-0.01 


4 


267. 536 


267. 539 


20 .5197 


20.5113 


-0. 016 


0 . 04 


If; 


268.150 


268. 15 u 


20 .63 16 


20.8274 


-0.309 


0.02 


4 


271. 749 


271. 753 


22 .7661 


22.7618 


-0.008 


0.02 


9 


272. 949 


272. 949 


23.4515 


23.4347 


-0.030 


0.07 


10 


27 3. 15 C 


273. 150 


23.5549 


23.5488 


-0. Oil 


0.03 


4 


275. 922 


275. 921 


25.1584 


25,1648 


3. 01 1 


-0 . 03 


4 


276. 363 


276. 362 


25 .4558 


25.4293 


-0 . 044 


0.10 


4 


276. 385 


276. 384 


25 .4491 


25.4425 


-0 . 011 


0.03 


4 


276.514 


276. 513 


25.5472 


25.520 3 


-0 . 044 


0 . 11 


4 


277. 813 


277. 811 


26.3185 


26.3133 


-0 . 00 8 


0 • 02 


lo 


278. 150 


278. 150 


26.5309 


26.5233 


-0 . 012 


0.03 


4 


2 8 u • - 4 1 


280. 038 


27 .7J 39 


27.7158 


0 . 019 


-0 . 04 


4 


282. 247 


282. 243 


29.1537 


29.1588 


0. 00 6 


-0.02 


1C 


283.150 


283. 153 


29.7763 


29.7681 


-0. 012 


0.03 


4 


284,635 


284. 633 


30 .7664 


30.7836 


0. 02 5 


-0.06 


9 


284. 345 


284. 840 


30 .9555 


30.9296 


-0 . 037 


0.08 


4 


287. 653 


287. 648 


32 . 92 89 


32.9340 . 


0. 007 


-0.02 


10 


28 8. 15 C 


286. 15 C 


33.3110 


33.3030 


-0. Oil 


0.32 


4 


283.263 


268. 257 


33 .3899 


33.3822 


-0.010 


0 . 02 


4 


290. 0 40 


290. 034 


34.6873 


34.7148 


0 . 036 


-0.08 


9 


290.214 


290. 208 


34.8746 


34.8474 


-0 . 036 


0.08 


4 


292.236 


292. 229 


36 .4440 


36.4182 


-0. 033 


0.C7 


H 


293. 066 


293. 091 


37 .08 16 


37.1044 


0 . 028 


-0.36 


10 


293. 15 C 


293. 150 


37.1583 


37.1 51 e 


-3. 008 


0.02 


9 


293. 266 


293, 259 


37 .2672 


37.2 39 4 


-0.035 


3.07 


4 


296. J47 


296. 339 


39 .7596 


39.7842 


0. 029 


-0.06 


1C 


296. 153 


296. 153 


41 . 3494 


41.345C 


-0. 005 


0 . 31 


4 


299. o65 


299. 657 


42 .6543 


42.6822 


3. 031 


-0.37 


G 


299.363 


299. 855 


42 .8863 


42.860 6 


-3 . C2 8 


0.06 


4 


3 C 0. 20 5 


303. 196 


43 .16 51 


43.170 3 


j . C 0 6 


-0 . 31 


4 


30 1. 251 


3G1. 242 


44 .10 8 5 


44.1297 


0 . 02 3 


-0 . 05 


1 l 


3u 2. 15 0 


302. 153 


44 .98 05 


44.9776 


-0. 00 3 


0.01 


1 0 


33 3. 15 0 


30 3. 150 


45 .9327 


45.9295 


-0 . 00 3 


0.01 


4 


30 3.471 


30 3. 46 2 


46 . 20 32 


46.230 Q 


0 . 028 


-C . 06 


4 


j j 3 ♦ 4/7 


303. 468 


46 .2796 


46,2358 


-0 . G46 


0 • 1C 


G 


304.012 


304. 002 


46.7736 


46.7558 


-3 . 018 


0 . 04 


4 


3 3 4 . 1 . 4 9 


304. 039 


*6.7696 


46.7920 


0.023 


-0.05 


1 0 


3 C 4. 150 


304. 150 


46.904C 


46.901G 


-0. 00 3 


0.01 


u 


3u 4 , 36 j 


30 4. 35 3 


47 .0931 


47.0 974 


0 . 00 4 


-0 . 01 


4 


3u 4, *4 6 


304. 435 


47 . 21 96 


47.1 822 


-0.038 


0.08 


4 


3 0 4 . 5 1 9 


304. 50 8 


47.2025 


47.2544 


0. 35 2 


-0 . 11 


4 


3 u 4. 734 


3 0 4 , 723 


47 .431 0 


47.4677 


0. 037 


-0 . 08 


4 


3u 4, 796 


304. 785 


47.51 85 


47.5294 


3.011 


-0.02 


4 


334. 524 


304. 91 3 


47 .6846 


47.6572 


-0 . 027 


0 . 36 


4 


33 4. 963 


3C4. 969 


47 .71 31 


47.7132 


0 • 00 0 


— 0 . 0 u 


4 


305. 121 


305. 110 


*7,8496 


47.8547 


0 . 00 5 


-c . 01 


4 


335. 135 


3C5. 124 


47 .8251 


47.3688 


0. 34 3 


-3 . G9 


i : 


306* 150 


30 5. 15 0 


47 .8992 


47.8950 


-0 . 03 4 


0.01 


4 


305. 153 


30 5. 142 


47.8807 


47.8869 


a . 006 


-0.01 


1C 


305. 253 


305. 250 


47 .9994 


47.9959 


- 0. 00 3 


0.01 


NP - 


9 9 ♦ RMS 


PC T = 0.061 











. 42 



JP 1134? A 



APPENDIX D. (Continued) 



Cryogenics Division - NBS institute for Basic Standards 

LABORATORY NOTE 


PftOJECT NO. 

2750364 


FILE NO. 

73-3 


PAGE 

7 


SUBJECT 


The Vapor Pressures of Ethane 


NAME -p. 

K . 


D. Goodwin 


T able 


2. Data of 


Tickner ( 1 ) , 


API (2), and 


Carruth ( 3) . 


DATE July 9, 1973 


ID 


T ,XPTL 


T - 6 8 


P, ATM 


CALCD 


DEL T 


P, PCT 


1 


91. 35 U 


91. 361 


G.Q0G0132 


0. G0C0 141 


Q. 26 5 


-6. 


86 


1 


94. <+5 0 


94. 463 


0. 0000263 


U. GOTO 306 


0. 58 2 


-13. 


98 


1 


98. 55G 


98. 562 


0.0000658 


0. 0CC0 783 


0 . 73 0 


-15. 


98 


1 


101. 35 C 


1C1. 858 


0. 00 0 13 16 


0. 0 uol 57 1 


0 . 79 7 


-16. 


23 


1 


105.350 


105. 353 


G. 00 C 26 32 


0. 0 0 03 11 8 


0. 825 


-15. 


60 


1 


110.550 


110. 548 


0. 0006579 


C. GCG7914 


0. 99 2 


-16. 


87 


1 


1 1 4. 65 G 


114. 644 


0.00 131 56 


0 . 00 15 453 


0 . 94 7 


-14. 


85 


1 


119.050 


119. 040 


0.0026316 


C. 0029942 


0 . 83 9 


-12. 


11 


1 


125. 650 


125. 537 


3.00 657 89 


0 . C072450 


0.717 


-9. 


19 


1 


130.650 


130. 637 


0.0 13158 


0 .013539 


0. 24 0 


-2. 


81 


NP = 


10, RMS PC T = 13.226 










ID 


T » X PTL 


T-68 


P , A T M 


CALCD 


DEL T 


P, PCT 


2 


130.270 


130. 257 


0 .0 131 56 


0 .012947 


-0 . 13 8 


1 . 


63 


2 


136.460 


136. 449 


0.026316 


0 .02590 9 


-0. 148 


1 • 


57 


2 


140.410 


14 0. 4C 2 


C .0 39474 


0 .038925 


-0. 141 


1 . 


41 


2 


143. 370 


143. 364 


0.052632 


0 .051 945 


-0. 139 


1. 


32 


2 


14 5. 76G 


145. 756 


0 .0 657 89 


0.064946 


-0. 14 2 


1 . 


30 


2 


147. 790 


147. 78 8 


0 .078947 


0.073018 


-0. 134 


1. 


19 


2 


151. 12 G 


151. 121 


0. 10526 


0.10 415 


-0. 127 


1 • 


07 


2 


153. o20 


153. 824 


0. 13158 


0.13028 


-0. 12 2 


0 . 


99 


2 


15 9. j 3 0 


159. G39 


0. 19737 


C. 19591 


-0. 099 


0 . 


74 


2 


162. 96 u 


162. 973 


0. 26316 


0.26140 


-0. 094 


0 . 


67 


2 


166. 17G 


166. 185 


0. 32895 


C .3270 8 


»0. 084 


0 . 


57 


2 


168. 500 


168. 918 


0. 39474 


0.39284 


-0. 074 


0 . 


48 


2 


173.410 


173. 432 


0.52632 


0.52422 


-0.064 


0 . 


40 


2 


177. 100 


177. 125 


0. 657 89 


0 • 65 57 4 


-0 . 356 


0. 


33 


2 


18 0. 250 


180. 277 


0.78947 


0.78743 


— 0 . j 4 6 


u • 


26 


2 


183. Cl C 


183.039 


0. 921 0 5 


0 .91908 


-0 . 039 


0 . 


21 


2 


184. 520 


18 4. 55 j 


1. 00 j 31 


0.998Q 3 


-0 . 036 


0 . 


20 


2 


185. 480 


185.510 


1.0526 


1.0509 


-0 . 031 


c . 


16 


r> 

c 


187.710 


187. 74 1 


1.1842 


1.1821 


-0. 034 


0 . 


18 


2 


189. 770 


189. 8C 2 


1.3156 


1.3143 


-0.023 


0 . 


11 


2 


193. 44 1 


193. 473 


1.5739 


1.5777 


-0.017 


0 . 


38 


2 


198. 15 C 


198.185 


1 .97 37 


1.9729 


-0.008 


0 . 


04 


NP = 


22, RMS PC T = 0.857 










ID 


T , X PT L 


T - 6 6 


P, A T M 


CALCD 


DEL T 


P, PCT 


3 


9 1. 340 


91. 351 


0. 00 C 0 1 5 2 


0. COCO 141 


-0 . 315 


8. 


14 


3 


93. 700 


93. 712 


G • 00 00 27 1 


0. G0C0 25 5 


-0. 237 


5. 


80 


3 


96. 240 


96. 253 


0. 00 00491 


C . 0CC0466 


-0 . 235 


5. 


42 


3 


1 0 & . 7 0 0 


ICO. 710 


0. 00 012 97 


0. C0G1239 


-0.2 22 


4. 


64 


z 


105. 600 


105. 6G 3 


C. 00 C3263 


3. 0CC3268 


0. 009 


-G . 


16 


3 


1 1 4. 240 


114. 235 


0.00 14461 


0. 0014487 


a . 012 


-0 . 


19 


3 


12 0. 380 


120. 369 


0. 00 363 66 


0. 0036185 


0.023 


-0 . 


33 


3 


129. 610 


129. 797 


C .0 12312 


0 .012260 


- 0 • 036 


0 . 


42 


3 


135. 77G 


135. 759 


0 .0 241 97 


0 .024065 


-0. 051 


0 . 


55 


3 


140. 551 


140. 542 


0 . 0 40211 


0 .039472 


-0 . 188 


1 . 


87 


3 


144. 140 


144, 135 


0 .0 562 89 


0 .055 871 


-0. 080 


0 . 


75 


NP = 


11, RMS! 


3 CT = 3.759 











SP 11142* 



43 



APPENDIX D. (Continued) 



Cryogenics Drmron - N®$ Intfitate ter Bosk Standards 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-3 


PAGE 

ID 


subject ^ „ 

The Vapor Pressures of Ethane 

Table 3. Data (5) of Loomis, Walters [llj. 


NAME 




). Goodw 


in 


DATE July 9, 197 3 



ID 


T ,XPTL 


T-68 


P » A TM 


CALCD 


DEL T 


P, PCT 


5 


135. 736 


135. 725 


0.0245CC 


0 .023977 


-0 . 20 3 


2.18 


5 


143. 267 


143. 261 


0.052200 


0 .051437 


-0 . 156 


1.48 


5 


147. 324 


147. 321 


0 .0 7590 0 


0 .074840 


-0 . 158 


1.42 


5 


154. 546 


154. 550 


0. 1 4 J 0 t 


0.13816 


-0. 16 6 


1 . 33 


5 


158.335 


158. 393 


Q. 18961 


0.18657 


-0 . 14 3 


1.09 


5 


162. 629 


162. 641 


G. 257 3 0 


0 .2552 e 


-0.110 


0.79 


r 


165.529 


165. 544 


0. 31600 


0.31300 


-0 . 139 


0.96 


’ 5 


167. 336 


167. 853 


0. 36930 


0.36606 


-0. 13 3 


0.89 


5 


169. 175 


169. 193 


3 • 40 3 3 u 


0.40000 


-0 . 126 


0 .82 


c 


171. 7G0 


171. 721 


3. 47430 


0.47084 


-0. 116 


0 . 74 


6 


1 7 J . 6C 2 


170. 622 


0. 443 JC 


o .43890 


-0 . 145 


0.93 


5 


174. 062 


174. 085 


0. 549 8 C 


0.54579 


-0. 119 


0.73 


c. 


175. 7 u 8 


175. 732 


J.6073C 


0.60 338 


- j. 10 8 


0.65 


5 


177. 623 


177. 649 


0. 680 40 


0.67631 


-0. 10 3 


0.61 


r 


178. 621 


178. 647 


0. 7210C 


0.71696 


-0 . 097 


0.56 


c 


179. 750 


179. 777 


0. 76960 


0.76525 


-0. 099 


3.57 


5 


181.506 


181. 534 


3.84990 


C .64537 


-0 . 096 


0.54 


5 


182. +63 


182. 492 


3. 896 3C 


0.89172 


-0 . 093 


0.51 


5 


183.773 


183. 8b 7 


0. 9634L 


o.95 860 


-0.092 


0.50 


5 


184.539 


184. 569 


1. 0 040b 


0.99906 


-0. 091 


0.49 


t; 


135. 137 


185. 167 


1.0366 


1.0 318 


-0. J87 


0.47 


9 


185.514 


165. 94+ 


1 . 08 3 0 


1.0755 


-0.078 


0.42 


5 


186.609 


166. 640 


1.12Gb 


1.1158 


-0 . G84 


G . 44 


5 


187. 30 2 


187. 3 33 


1.1619 


1.1572 


-0. 37 7 


0.40 


5 


137.726 


167. 757 


1.1881 


1.1831 


-0. 08 1 


0.42 


5 


18 3. 879 


163. 4L 


1 .22 89 


1.2239 


- 0 • j 8 0 


G . 41 


r 


139. 114 


169.146 


1.2757 


1.271 j 


-C . 072 


0. 37 


5 


189. 658 


189. 690 


1 . 32 48 


1.32C 2 


-0 . 069 


0 . 35 


5 


190. 731 


190. 823 


1.3865 


1.3839 


-G . 057 


0 . 33 


9 


1 9 1 • + 3 C 


191. 463 


1.4334 


1.4268 


-0 . G64 


0 . 32 


9 


192.266 


192. 319 


1.4953 


1.490 8 


-0.061 


0 . 3b 


c 


192. 7 77 


192. 810 


1.5318 


1.5273 


-0 . C60 


0 . 29 


9 


196. 244 


196. 27 3 


1.8086 


1.8049 


- 0 . 04 6 


0.22 


6 


199. 90 9 


199. 944 


2.1417 


2.1 384 


— u . u 3 4 


0.15 



NP = 34, RMSPCT = 0.789 



» 1 1M? A 



44 



APPENDIX D. (Continued) 



Cryoganici Dtvnion - NSS Imtituta for link Standards 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-3 


PAGE 

ii 


The Vapor Pressures of Ethane 
Table 4. Data of Porter (6), and Barkelew (8). 


NAME R. D. Goodwin 


DATE July 9, 1973 



ID 


T ,XPTL 


T-68 


P, ATM 


CALCD 


DEL T 


P, PCT 


6 


184. 4 7 0 


184. 500 


0. 9994G 


C .99534 


-0. 075 


0 • 41 


6 


23 3.493 


20 3. 524 


2 .4960 


2,5076 


3.10 6 


-0.46 


6 


205. 62C 


205. 653 


2.733C 


2.7489 


0.135 


-0 .58 


6 


210.960 


210. 992 


3.4140 


3.430 8 


0.121 


-0.49 


6 


216. 310 


216. 341 


4.2250 


4.2338 


0. 05 4 


-0.21 


6 


221. 86 u 


221. 910 


5.2070 


5.2104 


0. 018 


-0.06 


6 


225.100 


225. 128 


5 .8380 


5.8456 


0 . 037 


-0 . 13 


6 


226. 180 


226. 20 7 


6,0730 


6.0709 


-0.010 


0 .03 


6 


234.580 


234.603 


8.0440 


8.0481 


0. 016 


-0.05 


6 


238. 900 


238. 921 


9.2290 


9.2305 


C. 005 


-0.02 


6 


243.220 


243. 238 


10 .5360 


10.535G 


-0. 00 3 


0 . 01 


6 


248. 65G 


243. 665 


12.3540 


12.3588 


0 . 01 3 


-0.04 


6 


253. 0 3 G 


253.042 


14.0430 


13.9889 


-0. 139 


0 . 39 


6 


258.600 


258. 8C9 


16.4210 


16.3679 


-0. 122 


0.32 


6 


263.260 


263. 286 


18.4481 


18.4078 


-0 . 085 


0.22 


6 


263. 73 G 


268. 732 


21.1850 


21.1317 


-0. 10 1 


0.25 


6 


273.090 


273. 090 


23.5440 


23.5147 


-0.051 


0.12 


6 


278. b 40 


278. 638 


26 .8370 


26.8276 


-0. 015 


0.04 


6 


283.580 


283. 576 


30 .13 60 


30.0575 


-0. 071 


0 . 16 


6 


288. 260 


268. 254 


33.4680 


33.380 0 


-3 . 119 


0.26 


NP - 


20. RMSPCT = 0.274 











ID 


t.xftl 


T-68 


P , A TM 


CALCD 


DEL T 


P, PCT 


8 


1 1 3 . j 0 w 


lu 9. 99 3 C 


. 00 076 0t 


0. CGC72G5 


-0. 319 


5.49 


6 


1 2 a . 6 c c 


119. 989 0 


. 00 346 0 C 


0. 00 34 29 5 


-0.063 


3 . 89 


6 


1 3 0 . J 0 0 


129. 987 


0.0127 2 G 


0 .012540 


-0. 121 


1.44 


8 


14 0. j o 0 


139. 992 


0 .0 3785C 


0 .037359 


-0. 131 


1.31 


8 


1 5 G . 00 G 


150. JO j 


0 .395600 


0 • G 94 65 7 


-0. 116 


1.00 


8 


1 6 G • G C 0 


160. 010 


0. 2120C 


0.21068 


-0.084 


0.63 


8 


170.000 


170. C19 


0. 4236G 


0.42214 


-0.053 


0 . 35 


8 


ISO. 0 G 0 


180. 027 


3. 77780 


C. 77 62 8 


-0.034 


C .20 


8 


190. JOC 


190. 032 


1 .33 0 0 


1.3297 


-0. 004 


0 . 02 


8 


2 0 0 . «j 3 u 


200. 035 


2.1462 


2.1472 


0. 011 


-0 . 35 


8 


2 1 u . u 0 C 


210. 033 


3 . 29 7 1 


3.2998 


0.020 


-0.08 


8 


2 2 o . l 0 0 


22 0. 03 C 


4.8580 


4.8639 


0. 033 


-0.12 


6 


23 3. JOC 


230.025 


6. 9120 


6.9196 


0. 032 


-0.11 


8 


2 4 0 . * 0 0 


240. 020 


9.551C 


9.5508 


-0. GO 1 


0 . 00 


8 


250. u00 


250. 014 


12 . 85 0c 


12.8456 


- U.C12 


0 .03 


8 


2feu. JOG 


26u. 00 8 


16.910C 


16.8973 


-0.028 


0.08 


8 


270. JOG 


270. 001 


21 .83 01 


21.8066 


0. C12 


-0.03 


8 


280. «G0 


279. 997 


27 . 65 0 0 


27.6895 


3. 06 2 


-0 . 14 


8 


290. CC0 


289. 994 


34.6500 


34.6843 


3. 04 5 


-0 . 1G 


NP 


= 19, RMSPCT = 1.383 











V 11142 A 



45 



APPENDIX D. (Continued) 



Cryoganics Division - NBS birtitate for Rowe Standards 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-3 


PAGE 

12 


The Vapor Pressures of Ethane 
Table 5. Calculated Ethane Vapo.r Pressures. 


***** R. D. Goodwin 


DATE 

July 9. 1973 



ETHANE VAPOR PRESSURES 



T i K 


P , A T M 


OP/DT 


02P/DT2 


89.399 


C.GGG0096 


G. 00 00 C26 


0.Q0000C63 


9 c . a o c 


C.GQJ0099 


0.0000026 


C.0CG0 0 C 6 4 


95.300 


C. 0 03 334e 


u. 00 00 083 


C. 0 000 0 177 


1 0 G . 0 0 0 


C. U3Q1067 


0 . 30 0G226 


0.00000430 


135. a 0 c 


C. 0002915 


3 . 00 0 C 555 


G .0 G0C G942 


lie .3 OC 


G.0DJ7207 


G. 0001239 


G .QC03 1881 


115. DOG 


C.0016337 


0.0002545 


0 .0000 3475 


12 0 .DOG 


0.0334347 


G. 0004868 


G. 0 000 5997 


125.0 OG 


0.0 06760e 


0. 00 08749 


0.0 000 9759 


1 3 C . 0 G C 


G. 312559 


0.0 31 489 


0 . C 0 0 1 5C 8 


135.300 


0. 022167 


0 .302414 


0. CG0 2228 


1 4 G . 0 0 G 


C. J3739C 


G .0 03753 


0. COO 3164 


145. DOG 


0. CbQ57«+ 


0.005618 


3. G03 4339 


15l.DOC 


3 • 39465 3 


0 .0 08135 


3 . 0 C 3 5 77 1 


155.3 OC 


C .14323 


0. 01143 


0 .GO 0 747 


1 6 C .300 


0 .21052 


3. G 1565 


0 .GO C944 


165.300 


G .30146 


0. G2G91 


0 .00 1167 


17 u . G 0 C 


G .42162 


3. 02736 


0 .031415 


175.30C 


u .57722 


0. 03511 


0 .03 1688 


1 8 u . 0 0 0 


0.77507 


0. 0 4428 


0 .03 1984 


185. GCC 


1. C 226 


0 .0550 


G. J 3 23 0 


1 9 G • j 0 u 


1. 3276 


3 .0673 


0 . 0 0 26 3 


195. 30 : 


1.6984 


0.0813 


C.3 U29 8 


2 0 u . 3 0 l 


2. 1439 


J .0 972 


G. 3 0 335 


205.303 


2. c73 1 


J .1148 


0.0 0 37 2 


21C .0 0 D 


3. 2954 


3 .1344 


G .(J 0 411 


215.300 


4.0205 


0.1560 


C .0 G451 


22 3. 3 CC 


4. 3585 


3.1795 


G .3 0492 


225. 000 


5.8194 


0 .2352 


C . 3 0 53 3 


231 . 3 G C 


6.9136 


J .2 329 


3 . 0 3 57 6 


2 35 . JOG 


5. 1519 


0 .2628 


C . 3 0 61 5 


2 4 C . 0 0 0 


9.5450 


0 .2 948 


G .0 0664 


245.300 


11. 1G4C 


0.3292 


G.O 071G 


25G.30G 


12. 8406 


3 .3653 


G. 3 3757 


2 5 5 . 3 0 C 


14. 7664 


0.4349 


G.O 3 606 


2 6 0 . 3 0 G 


16. 8936 


0 . 4465 


0 .0 065 8 


265.300 


19.2357 


3 .4907 


0 . 0 0 91 3 


2 7 C • J u 0 


21. 8G56 


3 .5378 


C . o J 97 2 


275. a C C 


24. 6190 


0 .5880 


C . J 1C36 


2 8 0 . 3 C 3 


2 7. fc914 


0.6416 


G .3 noe 


2 8 5 . 3 C C 


31. J 4 1 C 


3 .6990 


0.31192 


2 9 J . J 0 0 


34.0895 


0.7610 


0.01294 


2 9 5 . 3 G D 


33.6612 


0.8289 


0.31429 


3 0 u . J 0 0 


42.9922 


0 .9,153 


C . 3 1649 


3 J5.0G0 


47. 7442 


1 .G 029 


0 .0 2694 


305.330 


48. 0770 


1.0160 


0 . J 0 c 0 -j 



JP 11342 A 



46 



APPENDIX D. (Continued) 



Cryoganics Drnaron - NBS Institute for italic Standard* 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-3 


PACE 

13 


SUBJECT The Vapor Pressures of Ethane 

Table 6. Reduced Vapor Pressure Functions. 


NAMi R. D. Goodwin 


DATE 

July 9. 1973 



ETHANE REDUCE? VAPOR PRESSURE FUNCTIONS 



T,K 


X 


Y 


(Y-X ) 


39.399 


0 . 0 vj 


0 . G 0 00 G 


0. 30 00 C 


91.186 


0.02 


0.G2199 


0 .00 199 


92.510 


0.44 


0. 04392 


0.00 392 


93.373 


0.06 


G .06578 


0.00 57 8 


96.277 


0 .08 


0. 08759 


0.00759 


96.723 


0 .14 


3. 1C 93 4 


0.00934 


98.215 


0.12 


G. 13102 


0.0110 2 


99.753 


0 .14 


0.15264 


0.01264 


101.339 


0.1b 


0.17419 


0.C1419 


10 2.977 


0.18 


C . 19568 


0.31568 


10 4.569 


C .20 


u.2171 0 


0.3171C 


106.418 


G .22 


0.23845 


0.01345 


108.226 


0.24 


0.25972 


0.01972 


11C .3 96 


0.26 


0. 28093 


0.02093 


112. J 32 


0 .28 


0. 3G20 5 


0 .02 20 5 


114.037 


0.3 0 


0. 32310 


0. 0231 G 


116.116 


0.32 


G. 3440 6 


0.02406 


118.272 


0.34 


G. 36495 


0.02495 


12C .509 


0.36 


0.38574 


0.02574 


122.332 


0.38 


0. 40 645 


0 .02645 


125.247 


0 .40 


4 .42706 


0.02706 


127.759 


0 .42 


0.44758 


0.0275 8 


13C .373 


3 .44 


4 • 46 90 o 


C .02 80 G 


133.397 


0.46 


C. 48832 


0 .32332 


135.337 


0 .43 


0.50854 


0 .02854 


138.301 


Q .50 


G . 52 856 


0.02866 


141.997 


0.52 


0.54866 


0.32856 


145.234 


C . 5 4 


0.56855 


0. 32 35 5 


148.522 


0.56 


G. 56833 


0 .02 83 3 


152.172 


0.56 


G. 60 83 0 


0 . G280 0 


155.396 


0 . 6 u 


0.62755 


0.G2755 


155.307 


C .62 


G. 6469 8 


0.02698 


163.919 


0.64 


C. 66629 


0 .02 62 9 


168.248 


0.66 


0,68548 


0.3254 8 


172.312 


0.53 


3.70 45 5 


0.02455 


1 7 7 . 6 3 C 


0.70 


3.7235 4 


0 .32 35 G 


182.725 


0.72 


0. 74233 


G.32233 


188.121 


0 .74 


4.76135 


0.02105 


193.345 


0 .76 


C . 77965 


0 . 0 1 96 5 


196.928 


0 .7o 


0.79815 


0.41315 


206.405 


C .3 J 


3.31655 


0.41655 


213.317 


0.82 


G. 8343 6 


0.01486 


2 2 C . 7 3 7 


G .84 


3.8530 9 


0 .31309 


228.527 


C . 8 6 


0.67126 


0.01126 


237.138 


0.39 


3.88938 


0 . 00 93 8 


246.306 


G .90 


3.90749 


0 . J 0 74 9 


256.212 


u .92 


G .92552 


0.30562 


266.948 


0.94 


3 .94381 


0.00 381 


278.523 


0.9b 


C. 96216 


0 . 3C 216 


291.366 


0 .98 


G. 98076 


3. 3 C 37 8 


30 5.33G 


1.30 


1 . 0 G 0 0 0 


0 . 3 0 0 0 C 



SP 1134? A 



47 



APPENDIX D. (Continued) 



Cryogmks Drvnton - NSS MiMe for towc Stondords 

LABORATORY NOTE 


PROJECT NO. 

275Q364 


FILE NO. 

73-3 


PAGE 

/4- 


SUBJECT The Vapor Pressures of Ethane 


NAMe R. D. Goodwin 


DATE July 9, 1973 



PROS RAM PSATFIT 

ETHANE VAPOR PRESSURES* X = ( 1-TT/ T )/ (1-T T/TC > , 

LN(PXPTRP) = A 1* X + A2*X2 + A3*X3 + A4*X4 + A 5*X * ( 1-X ) ** E . 
AUTHORS ID = (I)TICKNER* ( 2 ) ROSS IN I * ( 3) CA RR UTH, (4)PAL/P0PE* 

( 5 ) L 00 MI S * ( 6 ) PORTER » (7)ZIEGL£R* ( 8 ) 8 ARKE LE W/ TE ST ER 
( 9 ) POPE, (10 ) DOUSL IN, PREPRINT (1973 ) , 

COMMON TTRP ,TCRT ,PTRP, E,A(9), FZ,F1,F2, DL PDT, D2 LPDT2 
C0MM0N/999/NFUN ,Y , F (30) 

DIMENSION TEMP(13Q) ,DELT(13G) 

D IMENSION 10(999) ,T (999 ) , TX ( 999 ) , P (9 99) 

DIMENSION G (30) 

1 F ORM A T ( I 5 , 2F10.C) 

2 F 0PM A T ( 1 HI 17 X *E THANE VAPOR PRESSURES, 

1 18X 6 HTTRP =F7 . 3 , 8 H, TCRT =F8.3// 



E = * F5 • 2 // 



2 


1 8 < 12 M PT RP, MUA TM =F9. 


5, 12H, 


PCRT, 


ATM =F9 .5// 2 (15X 3F16. 


3 


FCPMAT ( 


iax 


2H I D 4X6HT ,XPTL 


6X4HT 


-68 7X5HP,ATM 7X5HCALC0 


1 


5X5 H DEL T 


5X5HP ,PCT) 








4 


F GRM A T( 1 HI 


17X 


2HID 4X6 H T , XP TL 


6X4HT 


-68 7X5HP,ATM 7X5HCAL CD 


1 


5X5 H DEL T 


5 X5 HP , PCT ) 








5 


FCRMAT(15X 


15, 


2F10.3, 


2F12.7, 


F10.3 


, F10.2) 


6 


F ORMA T ( 1 5X 


15, 


2F1C .3, 


2F12.6, 


FI C • 3 


, F10.2) 


7 


F OR M A T ( 1 5X 


15, 


2F10 .3 , 


2F12.5, 


FIG, 3 


, F10.2) 


8 


F ORMA T ( 1 EX 


15, 


2F10 .3, 


2F12.4, 


F10.3 


, F10.2) 


9 


P ORMA T ( 1 HO 


17 X 


4HNP =14 


, 10H, 


RMS PCT 


=F 7. 3) 



10 FORMAT(F8#3, F9.t, 63X) 

11 F OR.MA T ( 1 HI 16 X *E THANE VAPOR PRESSURES* // 17X3HT,K 6X5HP,ATM 
1 6X5HDP/DT 5X^HD2P/DT2 ) 

12 F OPM A T ( 1 CX FI j , 3 , 2F11.7, F12.8) 

13 FCRMATdlX FIG. 3, 2F11.6* F12.7) 

14 FORMATdCX Flu. 3, 2F11.5, F12.6) 

19 FORMATdCX FIS. 3, 2F11.4, F12.5) 

16 FOPMATdHl 16 X * E TH ANE REDUCED VAPOR PRESSURE FUNCTIONS* // 

1 17X 3HT,K 7X1HX 9X1HY 5X5H(Y-X) ) 

17 FORMATdCX F 1 0 . 3 , F8.2, 2F10.5) 

13 F0RMAT(16X 2HEP b X2HSS) 

19 FORMATdCX 2F10.4) 

RE AD- IN THE T4 3 - Tb 8 TEMP. CONVERSION TABLE. 

20 ? F AO IQ, (( TEMP (J ) ,OELT (J) ) ,J = 1 ,130) 

21 TT po =89. 899 5 TCKT=305.33 $ PTRP= 9. 6 3 8E-6 $ E=1 .5 



N =0 



IF ( I DO ) 23,25 
$ T X ( N) = T T 



READ (7) ZIEGLER, <ELVIN, MM HG. 

22 DC 24 J=l,99 B READ 1, IOD,TT,PP $ 

23 N = N+l $ IO(N)=IDD $ P(N)=PP/75G 

24 T(N) = T 68 (TT, BELT, TEMP) 

25 NF1 = N 

read MIXEC (MPAL, ( 9 ) PO PE , (ldDOUSLlN DATA. 

( 4 ) KELVIN, PSIA, ( 9 ) KELV I N , ATMOS , ( 1 0 ) CEN T I G . , A TM OS . 

26 OC 35 J= 1, 2 G d S READ 1, IDO,TT,FP $ I F ( I DC) 27,36 

27 N = N + l 5 1 0 ( N ) = IDD $ IF(ID0-4) 28,30 

28 IFQDD-9) 34,32 

30 P(N> = PP/14. 69595 $ T ( N) = T 68 ( TT , CELT , T EMP ) 

31 T X ( N ) = TT 5 GO TO 35 

3? P ( N) = PF f T ( N ) = T 68 (TT, DELT, TEMP) 

33 TX(N> - TT S GO TO 35 



JP 11942 fl 



48 



Cryogenics Division - NBS Institute for Bosk Standards 

LABORATORY NOTE 


PROJECT NO. 

2751364 


FILE NO. 

73-3 


PAGE 

15 


SUBJECT 

The Vapor Pressures of Ethane 


NAME 




D. Goodv. 


dn 


DATE 

Tnlv 9. 1973 



APPENDIX D. (Continued) 



PSATFIT 



G7/23/7 3 



T (N) = TX (N) = TT + 273.15 



IF(IOD) 39,41 

$ I X ( N ) - 273.15 + TT 



34 P ( N) = PP 

35 CONTINUE 

36 NP = N ? NF = 5 
READ (1) DATA, CENTIGRADE, MM HG . 

3d 00 +3 J= 1 , 9 9 S READ 1, IDO,TT,PP $ 

39 N = N+l $ IO(N) = I DD S P(N) = PP/76Q 

43 T ( N) = T66 ( TX <N) , OELT ,TEMP) 

41 NP2 = N 

READ (2) DATA, CENTIGRADE, MM HG . 

42 DO + 4 J= 1, 9 9 $ RE AO 1, ID0,TT,PP $ IF(IDO) 43,45 

43 N - N +1 5 1 0 { N ) = I DD $ P ( N ) = P P/760 $ TXCN) = 273 .15 + TT 

44 T ( N) = T68 (TX (N) , CELT, TEMP) 

45 N P 3 = N 

READ (3) DATA, KELVIN, MM HG. 

46 DO -,6 J = 1, 99 t READ 1, IDD,TT,PP $ IF(IDD) 47,49 

$ P(N) = P P/763 $ T X ( N) = TT 



47 N = N+l $ I D ( N) = I DD 

48 T ( N) = T68(TT,DELT,TEMP) 

49 N P4 = N 

READ (5) DATA, KELVIN, ATMOS. 

53 DC 52 J= 1 , 9 9 5 READ 1, IOD,TT,PP 



S 



s 

PP 



51 N = N + l $ ID ( N) = I DD % P(N) = PP 

52 T(N> = T68( TT,DELT,TEMP) 

53 NP5 = N 

READ (6) DATA, KELVIN, ATMOS. 

54 DC 56 J=l,99 t READ 1, IOD,TT,PP 

55 N = N+l 5 I D ( N ) = IOD ? P(N) = 

56 T(N) = T68(TT,DELT,TEMP) 

57 NP6 = N 

READ (6) DATA, KELVIN, ATMOS, 

63 DO 52 J= 1 , 9 9 $ READ 1, IOD,TT,PP 

61 N = N+l f ID ( N) =100 S P(N)=PP S 

62 T ( N) = T68 ( TT ,DEl_T ,TEMP) 

63 N PP = NP7 = N 



IF(IDD) 51,53 
$ T X ( N) = TT 



IF(IDD) 55,57 
$ T X ( N ) = TT 



$ IF(IDD) 
TX (N)=TT 



61,63 



9.600 



EXPLORE VALUES FOP PTPP. 

79 E = 1.5 $ PRINT 18 S 

80 XK = 1 - TTRP/TC°T 

81 DO 32 I P=1 , 26 S PTP = 

82 N F UN = NF S DO 85 J = 1,NF $ 

83 F ( 1 ) = X $ F(2)=X**2 $ F(3)=X**3 
Y = L OGF (P ( J) /PT C P) 

CALL FIT $ CALL COEFF $ SS 
A (K) = F (K) 

DO 88 J = 1 , N P S PC = PSA TF (T ( J) ) 
CONTINUE S SS=1j3*SQRTF (SS/NP) 



SSK = l.CE+010 



0 • 3 u 1* IP $ PTRP = PTR*l.QE-6 
- ( 1-TTRP/ T ( J) ) /XK 
F ( 4 ) =X ** 4 $ F( 5) =X+ (1-X ) **E 



84 

8 5 
86 
o7 
88 

89 

90 

91 

92 

9 3 

94 

95 



= n 



% 



$ 



« T CK = TCRT $ TTK-TTRP 



B DD 8 6 K=l,9 

SS = SS + ( P < J) /FC-1 ) **2 
IF (SS. LT.SSK ) 89,92 
$ PTK =P TRP 



SSK=SS 3 EK=E 
DO 91 K=l,9 
G (K) = F ( K ) 

PPINT 19, PTR, SS 

E = E< l T CRT =TCK t TTRP=TTK $ PTRP = PTK $ DO 94 K = 1 ,9 
A ( K) = G(K) 5 PORT = P T FP + EXPF ( A ( 1 ) +A (2 ) + A ( 3) +A (4 )» 
PTR = l.CE6*PTRP 



IF 11342 k 



49 



APPENDIX D. (Continued) 



CryogwHcs Drmtofi - NCS MIM, ter Beak Stondordi 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-3 


CnS 


SUBJECT 


The Vapor Pressures of Ethane 


NAME R. D. Goodwin 




DATE July 9, 1973 


c 


PRINT DEVIATIONS, INCLUDING DT = -DP/CCP/DT). 









C 

C 



C 

C 



105 L = 9 5 SS = 0 

1G6 PRINT 2, E,TTRP,TCRT»PTR»PCRT, (A(K),K=1,6) J PRINT 3 

107 DO 125 J = 1 » NP S L = L*1 $ IF(L-57) 112,106 

108 L = u S PRINT 4 

112 PC = PS A TF ( T ( J) ) $ DP OT = PC'DLPOT 

113 OP = P(J)-PC t DT = -OP/OPOT 

114 PCT = 1 3 C’DP/PC B SS = SS * PCT**2 

117 IF ( 3 C -0.01) 120,118,118 

118 IF(PC-O.l) 121,119,119 

119 IF(PC-l.O) 122,123,123 

120 PRINT 5, ID(J),TX(J),T( J) , P ( J) , PC , DT , PC T S GOTO 125 

121 PRINT 6, ID (J) ,TX ( J) , T( J) ,P( J) , PC ,OT , PCT $ GOTO 125 

122 PRINT 7, ID(J),TX (J) ,T( J) ,P< J) ,PC,DT,PCT $ GOTO 125 

123 PFINT 3, ID (J) ,TX (J) , T< J) ,P( J) ,PC,DT ,PCT 

125 CONTINUE 

126 SS = SQRTF ( SS/NP) $ PRINT 9, NP,SS 



PRINT OTHER DATA DEVIATIONS. 

140 K = NP+1 ? SS = N = 0 $ PRINT 4 

141 DC 157 J = K» NPP S IF(J-NPP) 143,142 

142 SS = SQRTF ( SS/N) B PRINT 9, N,SS $ GO TO 158 

143 N = N+l B PC=PSATF(T< J) ) B DPDT = PC*DLPDT 

144 DP = P ( J ) -P C 5 DT = - DP /DPDT 

145 PCT = 1CC*DP/PC * SS = SS + PCT**2 

146 I F ( 3 C-J • Cl ) 150,147,147 

147 IF(PC-O.l) 151,148,148 
143 IF(PC-l.O) 152,153,153 

150 PRINT 5, ID (J > , TX ( J) , T< J) ,P( J) , PC , OT , PCT $ GO TO 155 

151 PRINT 6, ID(J» ,TX(J) ,T( J) ,P(J) ,PC,OT,PCT $ GO TO 155 

152 P c I N T 7, ID (J) , TX ( J) , T( J) ,P ( J) , PC ,DT , PCT $ GO TO 155 

153 PCINT 3, ID (J) , TX ( J) , T( J) ,P( J) , PC ,OT ,PCT 

155 IF(ID(J*l)“IO(J) ) 156,157 

156 SS = SQRTF ( SS/N) B PRINT 9, N,SS B SS=N=G B PRINT 4 

157 CONTINUE 

158 CONTINUE 



3 R INTOUT UNIFORM TABLE p Oft PUBLICATION. 

230 P p INT 11 B DO 220 J = l,46 B IF(J-l) 202, 201 
2L1TT=TT-P B GO TO 235 

202 IF(J-46) 204,203 

203 TT = TCRT B GO TO 205 

204 T T = 8 j ♦ 5*J 

2 05 PS = PSATF(TT) B DPDT = PS* DL POT B 02 PD T 2 =P S* ( O LPDT ** 2 * 02LPDT2) 
2 0 7 IF(°S-0.C1) 210,208,208 



2 08 


IF (PS 


-d • 


1) 


211, 209, 209 








2C9 


I F ( 3 S 


-1 . 


C) 


212,215,213 








210 


P^INT 


12 


t 


TT,PS,DPDT,D2PDT2 


B 


GOTO 


22 G 


211 


PRINT 


13 




TT,PS,0PDT,D2P0T2 


S 


GOTO 


22 0 


212 


PFINT 


14 


* 


TT,PS,DPOT,D2PDT2 


B 


GOTO 


22 0 


213 


IF ( J- 


46) 


215, 214 








214 


D 2 POT 2 = 


0 










215 


PRINT 


1 5 


* 


T T, PS, DPDT, D2PDT2 









220 CONTINUE 



JP I1J4JI 



50 



APPENDIX D . (Continued) 



Cryogw>icj Drmron - NBS InsMuto for Bosk Standards 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-3 


Ul 

5?^ 
. 


SUBJECT 

The Vapor Pressures of Ethane 


NAME „ 

R . 


D. Good) 


*un 


DATi July 9, 1973 



PS A TF I T 07/23/73 

C PRINT UNIFORM REDUCEO TABLE. 

C Y = LN (P/FTRP) /YN, YN = LN ( PORT/ PTR P ) . 

C YC = ( A ( 1 ) *X ♦ . . . ♦ A (5 ) *X*(1-X ) **E)/YN. 

253 XN = 1-T TRP/T CRT $ YN = A«l) + A<2> + A(3) + A(4) 

251 PRINT 16 S 00 270 J=l,51 t X = Q.L2*(J-1) 

252 IF(J-l) 254,253 

253 TT = TTRP S GOTO 257 

254 IF ( J-51 ) 256,255 

255 TT = TORT ? GOTO 257 

256 TT = TTRP/ ( 1-X*XN) 

257 IF ( J - 51 ) 259, 256 

258 Z = 0 S GO TO 260 

259 Z = X* ( 1-X ) 

260 YC = A ( 5 ) * Z S DO 261 K=l,4 

261 YC = YC + A(K»*X»*K 

262 YC = YC/YN $ YX = YC - X 
270 PRINT 17, TT, X, YC, YX 

999 CONTINUE $ STOP t ENO 

SINGLE-BANK COMPILATION. 



FUNCTION PSATF(T) 

C LN(P/PTRP) = A 1* X + A2*X2 ♦ A3*X3 + A4*X4 + A5 *X * ( 1 -X ) * * E . 

C ARGUMENT, X = ( 1- TT/T ) / ( 1 -TT/TC ) . 

C YIELDS ALSO OLPDT = (DP/OT)/P, AND D2LPT = (D2P/0T2)/P. 

COMMON TTRP ,TCRT ,PTRP , E, A ( 9 ) , FZ,F1,F2, DL POT, 02 LP0T2 

1 FORMATdHO 9X *PSATF = 0, T EXCEEDS TCRT. * / ) 

2 X N = 1 - TT R P/ T CR T $ X= (1-TTRP/T) /XN $ X2=X**2 S X3=X**3 $ X4=X**4 

3 OXDT = TTRP/XN/T**2 $ D2XOT2 - -2*DX0T/T 

4 0 = 1 -X $ I F « Q) 5,5,7 

5 PS AT F = DLPDT = C2LPDT2 = 0 $ PRINT 1 S RETURN 

SZ=71=Z2=Q % GOTO 9 

7 W = Q**£ $ W1 = -E*W/Q $ W2 = <i-E)*Wl/Q 

8 Z = X*H S Zi = X*Wi ♦ W $ Z 2 = X * K2 ♦ 2* W1 

9 FZ = A ( 1 ) *X ♦ A(2)*X2 + A(3)*X3 + A(4)*X4 ♦ A(5)*Z 

10 PSATF = PTRP*cXPF (FZ) 

11 FI = A ( 1 ) + 2* A { 2 ) * X f 3*A(3)*X2 ♦ 4*A<4>»X3 + A(5)*Z1 

12 OlPOT = FI * OX DT 

13 F2 = 2* A (2 ) + 6 * A ( 3 ) # X + 12*A(4)*X2 + A(5)*Z2 

15 D2LPDT2 = Fl*O2X0T2 ♦ F2*DXDT»*2 S RETURN $ ENO 



SP 11342 A 



51 



APPENDIX D. (Continued) 



Cryogenics Divnfon - MBS Inditute for Bone Standards 

LABORATORY NOTE 


PROJECT NO. 


FILE NO. 

73 -3 


PAOE 

\8 


SUBJECT 

The Vapor Pressures of Ethane 


wms r. I 


3. Goo'dw 


in 


DATE _ , . ^ . 

July 9, 1973 



FUNCTION T68(X,YMAT,XMAT) 

THIS PROGRAM HAS SEEN CHANGED SO THAT THE OSCILLATING NATURE OF 
THE MATRIX TO 8E INTERPOLATED EXISTS ONLY AT THE UPPER ENO OF THE 
TABLE 

THIS ROUTINE WILL TAKE INPUT MATRICES OF UP TO 999 ELEMENTS EACH, 
ARRANGEO SO THAT THE X MATRIX(XMAT) IS IN EITHER ASCENDING OR 
DESCENDING ORDER, SELECT NMAX OF THESE POINTS, CHOSEN SO THAT 
SUCESSIVE X VALUES OSCILATE ABOUT THE VALUE OF THE ARGUMENT X 
UNLESS THE ENDS OF THE XMATRIX INTERFERE (IN THIS CASE THE 
OSCILATORY NATURE IS LOST BUT THE PROGRAM WILL STILL PERFORM AN 
INTERPOLATION), INTERPOLATE ON THESE NMAX PAIRS OF DATA PY 
AN OSCILATI NG VARIABLE POINT AITKEN INTERPOLATION ALGORITHM 
EITHER UNTIL THE PERCENTAGE CHANGE IN THE INTERPOLANT IS LESS 
THAN THE ACRCY ARGUMENT ( THE ARGUMENT NESSY INDICATES THE 
NUMBER OF THE POINT JUST BEFORE THE LAST ONE CHECKED) OR UNTIL 
THE NMAX POINTS ARE ALL USED. IT IS SUGGESTED THAT NMAX 
BE LESS THAN 10, AND OF COURSE LESS THAN NELMTS. NELMTS 
INDICATES THE NUMBER OF ELEMENTS IN XMAT OR YMAT. 

IF NESSY IS ZERO IT INDICATES THAT THE INTERPOLATION REQUIREMENT 
HAS NOT BEEN SATISFIED. IF NESSY IS 1 IT MEANS THAT THE VALUE OF 
X LIES OUT SIDE THE RANGE OF XMAT. 

DIMENSION Y M AT ( 999) , X MAT ( 999) , A ( 21 , 2 0 ) 

1L0 FORMATC42HINTERPOLATION REQUIREMENT NOT SATISFIED (X= ,E16. 8, 1H)/33H 
1 L AST 2 APPROXIMATIONS OF Y A RE ( Y= , E 1 6 . 8 , 1 H, , E 16 . 6 , 1H ) ) 

2C0 FORMAT ( 55HTHI S REPRESENTS AN EXTRAPOLATION OF THF XMAT MATRIX(X=, 
lElo. 3,lH)/3 3HNO CALCULATION HAS BEEN PERFORMED) 

3CU FORMAT( 24HNELMTS IS LESS THAN NMAX) 

ACC FORMATC 22HNMAX IS LARGER THAN 23) 

NELMTS=13G S NMAX=9 I ACRCY=0,01 
IF (NMAX -21) 71,71,69 
69 WRITE OUTPUT TAPE 6,4)0 
To 3 - X $ RfcTURN 
71 IF (NMAX-NELMTS) 75,75 ,7 3 
73 WRITE OUTPUT TAPE 6,3J& 

T 6 3 = X $ RETURN 



75 



CONTINUE 
FIRST TWO 



SUCCESSIVE VALUES OF THE XMATRIX THAT STRAODLE THE 





VALUE X 


WIL 


L BE 


SOUGHT 




J J 1 = NEL 


MTS- 


1 






DO 2 J I 


= 1, J 


J1 






D I F 1 = X- 


XMAT 


(I ) 






DIF2=XM 


A T ( I 


♦ 1 >- 


X 




IF (OIFi 


) 16, 


15,1 


6 


15 


To 8 = X 


+ Y 


MA T ( 


I) 




NESSY = 


NMAX 








RETURN 








16 


IF ( DIF2 


) 18, 


17,1 


8 


17 


Tb 8 = X 


♦ Y 


M A T ( 


1*1) 




NESSY = 


NMAX 








KoTURN 








18 


R A T 1 0 =0 


I FI / 


DIF 


2 




IF ( RATI 


0)20 


, 2 C , 


19 


19 


I MI 0= I 










GO TO 3 


2 






2 <3 


CONTINU 


E 







v n 






52 



APPENDIX D. (Continued) 



SUBJECT 



32 



98 



201 

1 C 2 



33 

34 

35 

36 



3 7 



4u 

41 

2 C 3 



l' 

1 



2 

3 

5 

6 



7 



Cryogenics Division - NBS Institute tor Bosic Standards 



LABORATORY NOTE 



The Vapor Pressures of Ethane 



PROJECT NO. 



FILE NO. 



PAGE 



NAME 



DATE 



73-3 



19 



R. D. Goodwin 



_ I 

AT THIS POINT ONE COULD PRINT THE FOLLOWING STATEMENT 

WRITE OUTPUT TAPE 6 , 2 ) 0 , X 

N£SSY=1 

T68 = X $ RETURN 
CONTINUE 

NOTE THAT RATIO IS POSITIVE IF THE TWO POINTS STRADDLE X 
REGARDLESS WHICH IS LARGER 
J J J= I MI D 
JUP = I MI D 
JDN = I MI D 

IF( JJJfNMAX-N EL MTS+1) 98,93,102 
DO 2 J 1 J = 1 , NM AX 
JUJ=IMI0+J-1 
A (1 , J)=XMAT (J JJ) 

A (2 , J )= YMAT (JJJ) 

GO TO 2 J 3 
DO *1 J=i,NMAX 



JJ=J/2 

J0E=J-2*JJ 

JOE IS ) IF J IS EVEN AND 1 IF J IS ODD 



IF ( J-l) 33,4 3 , 33 

IF(J0N-l)34,3o,34 

I F ( JUP-NELMTS> 35 ,37 ,35 

IF (JOE) 37,36, 37 

JUP= JUP+i 

JJJ= JUP 

GO TO 43 

J0N= JDN-1 

JJ J= JDN 

GO TO 43 

A (1, J)=XMAT (JJJ) 

A (2 , J )= YMAT (JJJ) 

CONTI NJ E 



Thi 



L 



Rdf T M^c/i 



NNN=NMA X+l 
DO o J= 3 ,NN N 
L = J-1 

DO 5 K=L ,NM AX 
J IS THE COLUMN NUM3ER 
K IS THE ROW NUMBER 

A(J,K)=(A(J-1,K)-A(J-1,J“2)) MX-A(l,J-2) )/(A(l,K)-A(l,J-2)) 
+A (J-l , J-2) 

IF (<-L) 3,2,3 

IF ( A 3 SF ( (A(J,L)-A(J-1,L-1) ) / A ( J , L ) ) - A CRC Y /l C 0 . 0 ) 7 ,7, 3 

CONTINUE 
CONTINUE 
CONTINUE 
NESS Y =3 

AT THIS POINT ONE COULD PRINT OUT THE FOLLOWING STATEMENT, 
WRITE OUTPUT TAPE 6 , 1 J 0 , X , A ( NNN , NMA X ) , A ( NNN - 1 ,N M AX-1 ) 

T 6 3 = X + A (NNN , NMA X ) 

RETURN 
NE33Y =J- 1 

Tod = X + A(J,L) S RETURN 2 END 



V 1134? A 



53 



APPENDIX D. (Continued) 



Cryogmtcs Drvnion - NBS Institute tor Bosk Standards 


PROJECT NO. 


FILE NO. 


PAGE 


LABORATORY NOTE 


2750364 


73-3 


20 


SUBJECT 


NAME 






The Vapor Pressures of Ethane 


R. D. Goodwin 




DATE July 9, 1973 



ETHANE VAPOR PRESSURES, E = 1.50 
TTRP = 89.899, TCRT = 305.330 



PTRP.MUATM = 9.96700, PCRT, ATM = 48.07723 . , 

J/y/73 

10,806922651 8.344715938 - 3.119603823 

- 0.642995191 6.059966098 0.000000000 



ID 


T » XPTL 


T -6 8 


P » ATM 


CALCD 


DEL T 


P * PCT 


7 


90.000 


90.010 


0 . 00 00103 


0 . 0 0 00 103 


0.000 


- 0.01 


7 


100.000 


100.010 


0. 0001096 


0. 0001098 


- 0.001 


0.01 


7 


110.000 


109.998 


0. 0007364 


0. 0007363 


- 0.001 


0.02 


7 


120.000 


119.989 


0 . 00 34934 


0. 0034939 


0.001 


- 0.01 


7 


130.000 


129.987 


0.012728 


0 .012732 


0.00 3 


- 0.04 


7 


140.000 


139.992 


0.037792 


0 .03780 3 


0.003 


- 0.03 


7 


150.000 


150.000 


0.095474 


0 .095476 


0.000 


- 0.00 


7 


160. 000 


160.010 


0.21196 


0. 21192 


- 0.003 


0.02 


7 


170.000 


170.019 


0. 42387 


0.42 369 


- 0.007 


0.04 


7 


180.000 


180.027 


0. 77824 


0.77783 


- 0.009 


0.05 


7 


184.520 


184.550 


1.00000 


0.99944 


- 0.010 


0.06 


9 


198.181 


198.216 


1.9737 


1.9761 


0.027 


- 0.12 


4 


214. 302 


214.334 


3.9209 


3.9159 


- 0.032 


0.13 


4 


224.102 


224.130 


5.6367 


5.6402 


0.017 


- 0.06 


4 


229.756 


229.782 


6.8569 


6.8598 


0.012 


- 0.04 


4 


234. 558 


234.581 


8.0335 


8.0 392 


0.022 


- 0.07 


9 


234.692 


234.715 


8.0741 


8.0741 


- 0.000 


0.00 


10 


238.150 


238.150 


9.0097 


9.0077 


- 0.007 


0.02 


9 


238. 771 


238.792 


9.1843 


9.1905 


0.021 


- 0.07 


4 


239. 844 


239.864 


9.4959 


9.5019 


0.020 


- 0.06 


4 


240.514 


240.534 


9.6960 


9.7003 


0.014 


-0 • 04 


10 


243.150 


243.150 


10.5063 


10 .5045 


- 0.006 


0.02 


4 


243. 359 


243.377 


10.5760 


10.5764 


0.001 


- 0.00 


4 


246.814 


246.830 


11.7137 


11.7162 


0.007 


- 0.02 


4 


247. 816 


247.831 


12.0502 


12.0628 


0.036 


- 0 . 10 


10 


248.150 


248.150 


12.1756 


12.1747 


- 0.003 


0.01 


4 


249.741 


249.755 


12.7620 


12.7496 


- 0.034 


0. 10 


4 


250.146 


250.160 


12.8985 


12.8976 


- 0.002 


0.01 


4 


251.587 


251.600 


13.4425 


13.4344 


- 0.022 


0.06 


4 


252. 544 


252.556 


13.8065 


13.7997 


- 0.018 


0.05 


10 


253 . 150 


253.150 


14.0310 


14.0 30 1 


- 0.002 


0.01 


4 


254.290 


254.301 


14.4898 


14.4848 


- 0.012 


0.03 


4 


257. 543 


257.552 


15.8252 


15.8266 


0.003 


- 0.01 


10 


258 . 150 


258.150 


16.0835 


16.0827 


- 0.002 


0.00 


10 


263. 150 


263.150 


18.3464 


18.3452 


- 0.003 


0.01 


4 


263.380 


263.386 


18.4543 


18.4573 


0 .006 


- 0.02 


4 


267 . 536 


267.539 


20 .5197 


20.5145 


- 0.010 


0.03 


10 


268. 150 


268.150 


20.8318 


20.8308 


- 0.002 


0.00 


4 


271. 749 


271.750 


22.7661 


22.7662 


0.000 


- 0. 00 


9 


272. 949 


272.949 


23.4515 


23.4394 


- 0.021 


0.05 


10 


273. 150 


273.150 


23.5549 


23.5536 


- 0.002 


0.01 


4 


275.922 


275.921 


25.1584 


25.1702 


0.020 


- 0.05 


4 


276. 363 


276. 362 


25.4558 


25.4347 


- 0.035 


0.08 


4 


276.385 


276.384 


25.4491 


25.4479 


- 0.002 


0.00 


4 


276.514 


276.513 


25.5472 


25.5257 


- 0.036 


0.08 


4 


277.813 


277.811 


26.3185 


26.3189 


0.001 


- 0.00 


10 


278. 150 


278.150 


26.5309 


26.5290 


- 0.003 


0. 01 



sr HM? < 



54 



Oyogantci Division - MBS bsMvte for Bose Stamfords 

LABORATORY NOTE 


PROJECT NO. 

27'50364 


FILE NO. 

73-3 


PAGE 

2/ 


SUBJECT 

The Vapor Pressure of Ethane 


NAME 

B 


D n onrlv 


An 


DATE July 9, 1973 



APPENDIX D . (Continued) 



10 


T.XPTL 


T -68 


P , ATM 


CA LCD 


DEL T 


P , PCT 


4 


280.041 


280.038 


27.7039 


27.7217 


0.028 


- 0. 06 


4 


202.247 


282.243 


29.1537 


29.1647 


0.016 


- 0.04 


10 


283 . 150 


283.150 


29.7763 


29.7739 


- 0.003 


0.01 


4 


284.635 


284.630 


30 .7664 


30.7893 


0.033 


- 0.07 


9 


284.845 


284.840 


30.9555 


30.9353 


- 0.029 


0.07 


4 


287. 653 


287.648 


32.9289 


32.9392 


0.014 


- 0.03 


10 


288.150 


288.150 


33.3110 


33.3080 


- 0.004 


0.01 


4 


288.263 


288.257 


33.3899 


33.3872 


- 0 . 00 % 


0.01 


4 


290.040 


290.034 


34.6873 


34.7192 


0.042 


- 0,09 


9 


290.214 


290.208 


34.8748 


34.8518 


- 0.030 


0.07 


4 


292.236 


292.229 


36.4440 


36.4216 


- 0.028 


0.06 


4 


293.098 


293.091 


37.0816 


37.1074 


0.032 


- 0.07 


10 


293. 150 


293.150 


37.1583 


37.1547 


- 0.005 


0.01 


9 


293 . 266 


293.259 


37.2672 


37.2422 


- 0.031 


0.07 


4 


296.347 


296.339 


39.7598 


39.7852 


0.030 


- 0.06 


10 


298.150 


298.150 


41.3494 


41.3446 


- 0.005 


0.01 


4 


299.665 


299.657 


42.6543 


42.6808 


0.030 


- 0.06 


9 


299.863 


299.855 


42.8863 


42.8591 


- 0.030 


0.06 


4 


300.205 


300.196 


43.1650 


43.1686 


0.004 


- 0.01 


4 


301.251 


301.242 


44.1085 


44.1274 


0.020 


- 0.04 


10 


302.150 


302.150 


44.9809 


44.9751 


- 0.006 


0.01 


10 


303. 150 


303. 150 


45.9327 


45.9268 


- 0.006 


0.01 


4 


303.471 


303.462 


46.2032 


46.2273 


0.025 


- 0.05 


4 


303.477 


303.468 


46.2798 


46.2331 


- 0.048 


0.10 


9 


304.012 


304.002 


46.7736 


46.7533 


- 0.021 


0.04 


4 


304.049 


304.039 


46.7698 


46.7896 


0.020 


- 0.04 


10 


304. 150 


304. 150 


46.9040 


46.8907 


- 0.005 


0.01 


4 


304. 360 


304.350 


47.0931 


47.0953 


0.002 


- 0.00 


4 


304.446 


304.435 


47.2198 


47.1802 


- 0.040 


0.08 


4 


304.519 


304.508 


47.2025 


47.2525 


0.050 


- 0.11 


4 


304. 734 


304.723 


47.4310 


47.4661 


0.035 


- 0.07 


4 


304. 796 


304.785 


47.5185 


47.5280 


0.009 


- 0.02 


4 


304.924 


304.913 


47.6846 


47.6560 


- 0.028 


0.06 


4 


304. 980 


304.969 


47.7131 


47.7122 


- 0.001 


0.00 


4 


305.121 


305.110 


47.8496 


47.8541 


0.004 


- 0.01 


10 


305.150 


305.150 


47.8992 


47.8945 


- 0.005 


0.01 


4 


305. 153 


305.142 


47.8807 


47.8864 


0.006 


- 0.01 


10 


305.250 


305.250 


47.9994 


47.9958 


- 0.004 


0.01 


NP = 


85 , RMSPCT = 0.050 











e = 1.5 7/31/73 



» 1134? A 



55 



APPENDIX D. (Continued) 



Cryogenics Division - NSS Institute for Bosk Standards 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-3 


FAGE 


SUBJECT 


The Vapor Pressures of Ethane 


NAME 

R . 


D. Goodwin 




DATE July 9, 1973 




ETHANE VAPOR PRESSURES 









T,K 


P* ATM 


DP/DT 


D2P/0T2 


89,899 


0.0000100 


0.0000027 


0.00000064 


90*000 


0.0000102 


0.0000027 


0.00000066 


95*000 


0,0000358 


0.0000065 


0.00000161 


100.000 


0.0001095 


0.0000232 


0.00000439 


105,000 


0.0002985 


0.0000567 


0.00000960 


110.000 


0.000736$ 


0.0001264 


0.0000 1915 


115.000 


0.0016670 


0.0002592 


0.00003529 


120.000 


0.0034991 


0.0004948 


0.00006077 


125.000 


0.0068762 


0.0008875 


0.00009864 


130.000 


0.012752 


0.001507 


0. 0001521 


135.000 


0.022468 


0.002439 


0. 0002242 


140.000 


0.037834 


0.003785 


0. 0003177 


145.000 


0.061192 


0.005656 


0. 0004350 


150.000 


0.095478 


0.008177 


0.0005776 


155.000 


0.14426 


0.01148 


0.000747 


160.000 


0.21176 


0.01569 


0.000942 


165.000 


0.30288 


0.02095 


0.001165 


170.000 


0.42317 


0,02738 


0.001412 


175.000 


0.57882 


0.03511 


0.001684 


180.000 


0.77662 


0.04426 


0.001979 


185.000 


1.0239 


0.0549 


0.00229 


190.000 


1.3287 


0,0672 


0.00263 


195.000 


1.6991 


0,0812 


0.00298 


200.000 


2.1440 


0.0970 


0.00334 


205.000 


2.6726 


0.1147 


0.00372 


210.000 


3.2943 


0.1343 


0.00411 


215.000 


4.0188 


0.1558 


0.00451 


220.000 


4. 8561 


0.1794 


0.00492 


225.000 


5. 8165 


0.2051 


0.00534 


230.000 


6.9105 


0.2329 


0. 00577 


235.000 


8.1487 


0.2628 


0.00620 


240.000 


9. 5420 


0.2949 


0.00665 


245.000 


11.1016 


0.3293 


0.00711 


250.000 


12. 8390 


0.3660 


0.00758 


255.000 


14.7659 


0.4052 


0.00807 


260.000 


16.8947 


0.4468 


0.00858 


265.000 


19.2381 


0.4910 


0.00913 


270.000 


21.8098 


0.5381 


0.00971 


275.000 


24.6242 


0.5882 


0.01034 


280.000 


27.6972 


0.6416 


0.01105 


285.000 


31.0467 


0.6989 


0.01187 


290.000 


34.6934 


0.7607 


0.01288 


295.000 


38.6630 


0.8283 


0.01425 


300.000 


42.9905 


0.9046 


0.01657 


305.000 


47. 7433 


1.0055 


0.03283 


305.330 


48.0772 


1.0228 


0.00000 



7/31/73, Via Ziegler "Type B " data 



if 1134? A 



56 



APPENDIX D. (Continued) 



Cryoganks Division - N8S Institute for Souk Standards 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-3 


PAGE 

23 


suwecT The Vapor Pressures of Ethane 


name _ ^ „ , . 

R. D. Goodwin 


DATE July 9, 1973 



ETHANE 


REDUCED 


VAPOR PRESSURE FUNCTIONS 


T,K 


X 


Y 


CY-X ) 


69.899 


0.00 


0.00000 


0.00000 


91.186 


0.02 


0.02190 


0.00190 


92.510 


0.04 


0.04376 


0.00376 


93.873 


0.06 


0.06558 


0.00550 


95.277 


0.08 


0.08734 


0.00 734 


96.723 


0.10 


0,10906 


0.00906 


98.215 


0.12 


0. 13073 


0.01073 


99.753 


0.14 


0.15234 


0.01234 


101.339 


0.16 


0.17389 


0.01389 


102.977 


0.18 


0.19538 


0.01538 


10 4.669 


0.20 


0.21680 


0.01680 


106.418 


0.22 


0.23816 


0.01816 


108.226 


0.24 


0.25945 


0.01945 


110.096 


0.26 


0.28066 


0.02066 


112.032 


0.28 


0.30180 


0.02180 


114.037 


0.30 


0, 32285 


0.02285 


116.116 


0.32 


0. 34382 


0,02382 


118.272 


0.34 


0.36471 


0.02471 


120.509 


0.36 


0.38551 


0.02551 


122.832 


0.33 


0.40621 


0.02621 


125.247 


0.40 


0.42682 


0.02682 


127.759 


0.42 


0.44733 


0.02733 


130.373 


0.44 


0. 46774 


0.02774 


133.097 


0.46 


0. 48805 


0.02805 


135.937 


0.48 


0.50825 


0.02825 


L38.901 


0.50 


0.52835 


0.02835 


141.997 


0.52 


0.54833 


0.02833 


145.234 


0.54 


0.56820 


0.02820 


148.622 


0.56 


0.58796 


0.02796 


152.172 


0.58 


0.60760 


0.02760 


155.896 


0.60 


0.62713 


0.02713 


159.807 


0.62 


0.64654 


0.02654 


163.919 


0.64 


0.66583 


0.02583 


168.248 


0.66 


0.68501 


0.02501 


172.812 


0.68 


0. 70406 


0.02406 


177.630 


0.70 


0.72301 


0.02301 


182.725 


0.72 


0.74184 


0.02184 


188.121 


0.74 


0.76056 


0.02056 


193.845 


0.76 


0.77917 


0,01917 


199.928 


0.78 


0.79769 


0.01769 


206.405 


0.80 


0,81611 


0.01611 


213.317 


0.82 


0.83445 


0.01445 


220.707 


0.84 


0.85272 


0.01272 


228.627 


0.86 


0.87093 


0.01093 


237.138 


0.68 


0.88910 


0.00910 


246.306 


0 • 90 


0.90726 


0.00726 


256.212 


0.92 


0.92544 


0.00544 


266.948 


0.94 


0.94369 


0.00369 


278.623 


0,96 


0.96208 


0,00 208 7/31/73, Via 


291.366 


0.98 


0.98074 


0.00074 Ziegler "Type B" 
0. 00 00 0 data 


305.330 


1.00 


1.00000 



SF 1134? A 



57 



APPENDIX E. 



Oyo9«nic> Division - NBS fratihite for loir Standordi 

LABORATORY NOTE 


HtOJBCT NO. 

2750364 


nu no. 

73-4 


PAoa 

1 


SUHJECT 

Ethane Virial Coefficients and Saturated Vapor Densities 


NAMB R. D. Goodwin 


DATE 

Aueust 14. 1973 



1 . Introduction 



The virial equation of state for low densities is needed for thermal computations 
to generate P-C-T data, and to obtain saturated vapor densities via the vapor pressure 
equation . 

In this report we develop analytical representations for the virial coefficients 
of ethane and obtain the corresponding saturated vapor densities. 

In the truncated virial equation, 

2 3 

Z ( T , d ) = P /( R • T • d) = 1 + B(x) • o + C(x).o + D(x)-a , (1) 

P is pressure, R the gas constant, T the absolute temperature, d the density, and 

a^d/d c is reduced density. The second, third, and fourth coefficients B(x), C(x), 

D(x) are dimensionless functions of reduced temperature x =® T/T . We use T 

c c 

s 305.33 K, andV = 1/d = 145.56 cc /mol from Douslin f 2] . In the table s we use 

c c 

symbols B :: , C' and D' r for the coefficients of (1). 

2. The Second Virial Coefficient 

Data for B(x) through about I960 are reviewed by Tester [ 16]. Since then we 
have data from Gunn [8], Hoover [9], Pope [15], McGlashan [12], and Douslin [2], 

Data of Gunn and of Douslin extend from 273 K upwards to 623 K. McGlashan gives 
outstanding experimental work on the hydrocarbon series (but not on ethane) down to 

T/T = 0.5. From his formulations he concludes that the low-temperature data of 

c 

Eucken and Parts [ 4] are wrong. This suspicion also was expressed by Ziegler et 
al. [17], 

For least squares we have selected for low temperatures only the data from 
McGlashan's formula because all other data diverge widely therefrom (Table 2). For 
high temperatures we have selected Douslin' s recent data because the experimental 
work [ 2J was executed with great care. Table 2 shows that Michels (1D = 3) and Gunn 
(1D=8) are in substantial agreement with Douslin. For consistency with Douslin, 
we have increased the absolute values of McGlashan's data by one percent, well within 
the uncertainty of his V 148 cc/mol. 



V I1KM 



58 



APPENDIX E, (Continued) 



Cryogenics Division - NBS InfMwt* for Basic Standards 

LABORATORY NOTE 


MtOJECT HO. 

2750364 


cite ho. 

73-4 


PAOt 

,.2 


SUBJECT 

Ethane Virial Coefficients and Saturated Vapor Densities 


NAMe R. D. Goodwin 


DATE August 14, 1973 



Our formula for B(x), selected from many variations, finally is similar to that 
developed for methane [6], 



B(x) =!"b + B /x 1/4 + B /x + B /x Z + B /x 3 1 • [l-(T /T) 

Liz i 4 5Ji_o 



1/41 



( 2 ) 



T = 740. 0 K, 

o 

B = 7.99 3156, 

B 2 = -10.67 2497, 



B 3 = 9. 21 7322, 

B = -2.48 1668, 

4 

B = 0.84 2328. 

5 



Table 1 gives results for (2) with the data used for least squares: (6) McGlashan; 
(10) Douslin. Data not used for l. s . are compared with (2) in Table 2: (1) Eucken; 

(2) Lambert; (3) Michels: (4) Hoover; (5) Pope; (8) Gunn. 

The Third Virial Coefficient 



For C(x) relatively few data are known to us. The data of Michels [13] and 
Hoover [9] were generalized in 1967 by Chueh [1], using a formula similar to that de- 
veloped by Goodwin [5]. In 1971 Pope [15] gave five low-temperature values from 210 
to 306 K. For temperatures above 273 K we are fortunate to have the recent, carefully- 
derived data of Douslin [2]. 

A comparison of Chueh' s generalized function with Douslin' s data at T/T =2 

c 

shows C =0.20 (Chueh), and C =0.15 (Douslin). Whereas the Chueh formula gives 
nearly constant values at high temperatures, the Douslin data are trending asymptoti- 
cally toward zero. 

For least squares we have selected the data of Douslin at high temperature s , and 
data generated by Chueh's formula at low temperatures. For consistency we have 
diminished these latter values by two percent. (Chueh fails to give his critical densities. 
At low temperatures the third virial coefficient is not important in the computation of 

sq (1) because the maximum possible density (saturated vapor) is diminishing exponen- 

-ry / T 

fcially with temperature, e , (see Table 4). 



SP 11142 A 



59 



APPENDIX E. (Continued) 



C/yogarncs Divnion - NAS IntMute for Banc Standards 

LABORATORY NOTE 


PROJECT NO. 

2750364 


Pill NO. 

73-4 


PAOE 

3 


SUBJECT 

Ethane Virial Coefficients and Saturated Vapor Densities 


NAMI R . D. Goodwin 


DAT£ August 14, 1973 



Our formula for Cfxl is much simpler than that of Chueh, and is similar to that 
developed for methane [6], 



C (x ) 



O 

!~C /x + C „ /x + C /x 



51 



1-T IT), 

o 



(3) 



T = 217. 80 K, 

o 



C 



0. 253 773, 



C 2 = 0.865 299 : 

C = 0.556 075 , 

3 



Least squares results are in the upper part of Table 3: (7) Chueh; (10) Douslin. 

Other data in the lower part are: (4) Hoover; (5) Pope. 

4. The Fourth Virial Coefficient 



Recent data of Douslin [2] are plotted in Figure 1. The general behavior ex- 
pected for D is shown in the book by Mason and Spurling [11]. As present data exist 

only at T > T » we use the simple formula, 

’ c 

100-D ;,: =x • exp^a-b/(x- 1 )~| , (4) 

where x “ T/T , and a = 4.00, b = 1.84 from Figure 1. 

c 

5. Examination of the Virial Equation 



It is valuable to know the relative importance of the terms of eq (1). In Table 4 
we compute these for the saturated vapor, using densities from the formula of Plank 
and Kambe i tz quoted by Tester [16], We have increased the P.K. den s itie s by 0 . 088% 
to agree with the virial equation at 90 K. Pressures are from our vapor pressure 
equation [ 7] . 

In the fourth column of Table 4 we give the ratio DI/DN of ideal gas density to 

2 

the P.K calculated densities. Fifth and sixth columns give B(x).a and C(x).o . If all 
data were accurate, we should expect Z(T,d) in the last column to be the same as 
DI/DN. 

The vapor pressures of Ziegler [17] were based on second virial coefficients 
of Eucken and Parts [4], the accuracy of which Ziegler questioned. Our selection for 
B :|: also disagrees with Eucken and Parts. We therefore have recomputed our vapor 



U 11)4? A 



60 



APPENDIX E. (Continued) 



Cryogenics Division - N8S Institute for Bask Standards 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-4 


PA@g 

4 


SUBJECT 

Ethane Virial Coefficients and Saturated Vapor Densities 


NAM * R . D. Goodwin 


DATE August 14, 1973 



pressure constants using alternate vapor pressure data of Ziegler, as shown in the 
addendum to our Laboratory Note [7], This revised vapor pressure equation is used 
in the following to obtain the densities of saturated vapor. 



6, Derivation of the Saturated Vapor Densities 

For a given temperature we iterate density in the virial equation to obtain a 

pressure therefrom which is the same as the vapor pressure. Results are in Table 5. 

In previous work we have found that this method gives acceptable results at densities 

up to about D / 3 , which for ethane occurs near T = 286 K. We see that data from the 
c 

Plank-Kambeitz formula diverge increasingly from our results on approach to T . 

c 

The highest temperature at which our results are accurate remains to be seen by com- 
parison with data from other sources. Figure 2 shows ,howeve r , that in the region of 
overlap with Douslin's vapor densities [2], our results (the filled circles) appear 
reasonable . 



Figure 8 shows the results at lower temperatures. We see that powers of 
(1/T) greater U an the first will be needed to describe these data. 



7. Discussion of Uncertainties 

Experimental uncertainties for virial coefficients vary inversely as the signifi- 
cance of these coefficients in giving departure from ideal gas behavior, see Table 4. 
For the second coefficient only, for example, 



6B/B 



6 Z _ Z 
Z ’ Z-l ’ 



where 6B and 6Z are small variations in B and Z. Assume a tolerable error of 0.0 1 
percent in Z. From Table 4 we compute the approximate tolerable uncertainty in B, 
neglecting the effect of C(T), 



» mm 



hi 



APPENDIX E. (Continued) 



SUi 



Cryogenics Division - NBS hwtitatle lor Bosk Standards 

LABORATORY NOTE 


PtOJECT NO. 

2750364 


PILE NO. 

73-4 


PAOf 

5 


SUBJECT 

Ethant V irial Coefficients and Saturated Vapor Densities 


****** R. D. Goodwin 


DATE 

Au£ust 14. 1973 



T, K 


mol/-6 


6 B/B, % 


100 


0.000013 


357.0 


1 20 


0.000349 


21.6 


1 40 


0.00327 


3.37 


160 


0.01626 


0.915 


1 80 


0.05434 


0.352 


200 


0.1401 


0. 170 


220 


0.3035 


0.096 


240 


0. 5864 


0.060 


2b 0 


1.057 


0.040 


autho r s 


give estimates of unce 


;rtainty for experi 


however 


, give these estimates 


for ethane, 


T, K 


6B/B, % 


6C/C, % 





215 


1 . 0 


10.0 




240 


0.4 


4.0 


F 


273 


0 . 1 


1 . 0 



and we believe these to be reasonable estimates for very careful work. In Table 2, 
however, we see that Hoover's data, ID=4, differ from our selection by up to five per- 
cent at low temperatures (215 and 240 K). 

Our derived densities depend on the vapor pressure equation. This we estimate 
to be uncertain by several percent at the lowest temperatures approaching the triple 
point. The virial equation, on the other hand, approaches ideal gas behavior at these 
low temperatures. At the higher temperatures above 270 K, we believe the virial coef- 
ficients and vapor pressures of Douslin to be accurate as can be derived from the best 
of PVT measurements. 



62 



$ 1 * 11347 * 



APPENDIX E. (Continued) 



Cryoganks Drvitron - NBS Institute for Bosk Stamfords 

LABORATORY NOTE 


PtOJECT NO. 

2750364 


Ft IE NO. 

73-4 


PAOB 

6 


SUBJECT 

Ethane Virial Coefficients and Saturated Vapor Densities 


NAME r. 


0. Goodw 


r in 


DATE 

August 14. 1973 



8. Bibliography 

[ 1] P, L. Chueh and J. M. Prausnitz, Third virial coefficients of non polar gases 

and their mixtures, AlChE Journal 13 (5) 896 (1967). 

[2] D. R. Douslin and R. H. Harrison, Pressure-volume-temperature relations 
of ethane, (U.S. Bureau of Mines, Bartlesville, Okla. 74003). Manuscript for 
J. Cbem. Thermodynamics, July, 1973. 

[3] J. H. Dymond and E. B. Smith, The Virial Coefficients of Gases, Oxford 
Science Research Papers 2, Clarendon Press, Oxford, England, (1969). 

[4] A. Eucken and A. Parts, Z. Phys. Chem. B20, 184 (1933). 

[5] R, D. Goodwin, D. E. Diller, H. M. Roder, L. A. Weber, Second and third 
virial coefficients for hydrogen, J. Res. NBS 68A (1), 121 (1964). 

[6] R. D. Goodwin, Thermophysical Properties of Methane from 90 to 500 K at 
Pressures to 700 Bar, NBS Tech. Note, manuscript, April, 1973. 

[7] The Vapor Pressures of Ethane, Laboratory Note 73-3, July 9, 1973. 

[8] R. D. Gunn, M. S. Thesis, University. Calif. (Berkeley), 1958, quoted by 
J. A. Huff and T. M. Reed, J. Chem. Eng. Data 8, 306 (1963). 

[9] A. E. Hoover, I. Nagata, T. W. Leland, R. Kobayashi, Virial coefficients 
of methane, ethane, and their mixtures at low temperatures, J. Chem. 

Phys. 48 (6), 2633 (1968). 

[10] J. D. Lambert, G. A. H. Roberts, J. S. Rowlinson, V. J. Wilkinson, Proc. 
Roy. Soc . (London) A 196, 1 13 (1949). 

[11] E. A. Mason and T. H. Spurling, The Virial Equation of State, Pergamon Press, 
Oxford (England), 1969. 

[12] M. L. McGlashan and D. J. B. Potter, An apparatus for the measurement of 
the second virial coefficients of some n-alkanes and of some mixtures of 
n-alkanes, Proc. Roy. Soc. (London) A267, 478 (1962). 

[13] A. Michels, W. van Straaten and J. Dawson, Physica 2C[, 17 (1954). 

[14] Plank and Kambeitz, Z. Ges. Kalte Ind . 1 0 , 209 (1936), quoted by Tester. 

[15] G. A. Pope, Calculation of Argon, Methane and Ethane Virial Coefficients, etc., 
Thesis, Rice Univ. , July 1971. 

[16] H. E. Tester, ETHANE, in Thermodynamic Functions of Gases, F. Din, 

Editor, vol. 3, Butte rworths , London, 1961. 



tf 11342 IS 



¥3 



APPENDIX E. (Continued) 



Cryogenics Division - MBS Institute for Bosk Standards 

LABORATORY NOTE 


PROJECT NO. 

2750364 


PILE NO. 

73-4 


PAOC 

7 


SUBJECT 

Ethane Virial Coefficients and Saturated Vapor Densities 


NAME 

R. D. Goodwin 


DATt August 14, 1973 



[]7j Ziegler, Kirk, Mullins, Berquist, Calculation of the vapor pressures, etc., 
VII Ethane, Eng. Expt. Sta. , Georgia Inst. Tech . .Atlanta, Ga. , Dec. 1964. 

[ 18) F. Porter, J. Am. Chem. Soc. 4_8, 2055 (1926). 

(19) P. Sliwinski, Z. Phys. Chem. 63 263 (1969). 

[20] K. R. Hall and P. T. Eubank, Experimental technique for direct measurement 
of interaction second virial coefficients, J. Chem. Phys. _59(2), 709 (1973). 

[ 21] R. D. Goodwin, Estimation of critical constants T , 0 C from the p(T) and T(p) 
relations at coexistence, J. Res. NBS 74A(2), 221 1970). 



T able 1 . 
Table 2. 

T able 3 . 
Table 4. 
Table 5. 



Table Captions 

Second virial data of (6) McGlashan, (10) Douslin. 

Second virial, (1) Eucken, (2) Lambert, (3) Michels, (4) Hoover, 
( 8 ) Gunn. 

Third virial, (7) Chueh, (10) Douslin, (4) Hoover, (5) Pope. 
Terms of the virial equation for saturated vapor. 

Saturated vapor densities derived via V.P. and virial equations. 



( 5) Pope , 



» ItMJ I 



64 



APPENDIX E. (Continued) 



Oyog»nici Divnion - MBS Nflvto for Bosk Stondords 

LABORATORY NOTE 


rtOICCT NO. 

2750364 


me no. 

73-4 


PAW 1 

8 1 


Ethane Virial Coefficients and Saturated Vapor Densities 


NAME 




D- Good-w. 


dn 


DATE August 14, 1973 




Figure 1. Ethane fourth virial coefficients of Douslin [2], 
100. D 1 ' = x ^^.exp[4.0 - 1.84/(x-l)]. 



I134JI 



65 



APPENDIX E. (Continued; 



Lab. Note 73-4 p. 9 




66 



Figure 2. Ethane saturated vapor densities. Open circles from 
Douslin [2]; filled circles from Table 5, this report. 



APPENDIX E. (Continued) 




Figure 3, Ethane saturated vapor densities from Table 5, this report, 

67 



APPENDIX E. (Continued) 



Cryogmics DMwon-NK hwdtaM for Saue Standard* 

LABORATORY NOTE 


Htojecr MO. 

2750364 


nu no. 

73-4 


PAM 

1 1 


SUIJfCT 

Ethane Virial Coefficients and Saturated Vapor Densities 


NAM * R. D. Goodwin 


DATE 

August 14, 1973 



Table 1. Second virial data of (6) McGlashan, (10) Douslin. 
ETHANE SECOND VIRIAL COEFFICIENT 



EB = 0.250, TZ = 71*0.0 



7. 


993156 -10 


.672497 


9.217322 


-2.481668 0. 


842328 


ID 


T, K 


T/TC 


B* 


CALC 


0 IFF 


PC NT 


6 


150. 000 


0.4913 


-5. 309 


-5.310 


0.001 


0. 01 


6 


160.000 


0.5240 


-4.598 


-4.597 


-0.001 


-0.01 


6 


170.000 


0.5566 


-4. 031 


-4.3 30 


-0.001 


-0.02 


6 


180.000 


C . 58 95 


-3.569 


-3.5 69 


-0.000 


-0.01 


6 


190.000 


0.6223 


-3. 188 


-3.188 


0.000 


0.01 


6 


200.000 


0.6550 


-2. 868 


-2.869 


0.001 


0. 02 


6 


210.000 


0.6878 


-2.597 


-2.597 


0.001 


0.03 


6 


220.000 


0.7205 


-2. 353 


-2.364 


0. 001 


0.03 


6 


230.000 


0.7533 


-2.161 


-2.162 


0. 000 


0.02 


6 


240.000 


0.7960 


-1. 984 


-1.984 


-0.000 


-0.00 


6 


250.000 


0.8188 


-1.828 


-1.828 


-0.001 


-0. 04 


& 


260.000 


0.8515 


-1.690 


-1.688 


-0. 002 


-0. 09 


10 


27 3. 150 


0.8946 


-1. 527 


-1.527 


0.001 


0.06 


10 


298. 150 


0.9765 


-1.276 


-1.275 


-0. 001 


-0.08 


10 


30 3. 150 


0.9929 


-1.232 


-1.232 


-0. 001 


- 0. 05 


10 


323. 150 


1.0584 


-1.077 


-1.076 


-0. 001 


-0.06 


10 


348.150 


1. 1402 


-0.914 


-0.914 


0.001 


0.08 


10 


373. 150 


1. 2221 


-0.780 


-0.781 


0. 001 


0.10 


10 


398. 150 


1. 30 40 


-0.668 


-0.670 


0. 001 


0. 16 


10 


423. 150 


1.3859 


-0. 574 


-0.575 


0.000 


0.06 


10 


448.150 


1.4678 


-0. 493 


-0.493 


0.000 


0. 10 


10 


473.150 


1.5496 


-0. 423 


-0.422 


•0. 000 


-0.08 


10 


498. 150 


1.6315 


•0.360 


-0.360 


-0. 000 


-0.01 


10 


523. 150 


1.7134 


-0. 306 


-0.305 


-0. 001 


-0.27 


10 


548.150 


1.7953 


-0.256 


-0.256 


-0. 000 


-0. 19 


10 


573. 150 


1.8771 


-0.212 


-0.212 


-0.001 


— 0.30 


10 


598.150 


1.9590 


-0. 172 


-0.172 


-o. 000 


-0.02 


10 

NP 


623. 150 2. 0409 

= 23, HEA^PCT = 0. 


-0.135 

088 


-0.135 


0. 001 


0.53 



v ItWI 



68 



APPENDIX E. (Continued) 



Oy°9*nic$ Dwmon - NK 1 mMiM it tak Scnckirdt 

LABORATORY NOTE 


MKJJfCT NO. 

2750364 


nLnSo" 1 " 

73-4 


fAOt 

12 


Ethane Virial Coefficients and Saturated Vapor Densities 


NAME 

R • 


D. Good-\ 


vin 


DATE August 14 , 1973 



Table 2. Second Virial, (l)Eucken, (2) Lambert, (3) Michels, (4) Hoover 
(5) Pope, (8) Gunn. 



ID 


T,K 


me 


3 * 


CALC 


DIFF 


PC NT 


1 


2 0 U • 0 C Ci 


0.6550 


- 3. 112 


- 2.869 


- 0.243 


- 8.48 


2 


200.000 


C .6550 


- 3 . 119 


- 2.869 


- 0. 250 


- 8 . 72 


5 


209.534 


0.6863 


- 2. 533 


- 2.609 


0.076 


2 . 93 


1 


210.000 


0.68 78 


- 2.817 


- 2.597 


- 0. 219 


- 8.44 


2 


210.000 


0.6378 


- 2.817 


- 2.597 


- 0.219 


- 8 . 44 


4 


215.000 


0.7042 


- 2 . 340 


- 2.477 


0.137 


5.52 


1 


220.000 


0.7205 


- 2.542 


- 2.364 


- 0 . 178 


- 7 . 52 


2 


220.030 


0. 7205 


- 2.576 


- 2.364 


- 0.212 


- 8.97 


1 


230.000 


0. 7533 


- 2.288 


- 2.162 


- 0 . 126 


- 5*84 


2 


230.000 


0.7533 


- 2. 343 


- 2.162 


- 0 . 181 


- 8 . 38 


5 


238.759 


0.7320 


- 1.972 


- 2.005 


0.033 


1.63 


1 


240.000 


0.7860 


- 2.095 


- 1.984 


- 0.111 


- 5 . 61 


2 


240.000 


0.7860 


- 2. 116 


- 1.984 


- 0.132 


- 6.65 


4 


240.000 


0.7860 


- 1.90 0 


- 1.984 


0 . 085 


4.26 


1 


250.030 


0.8188 


- 1.924 


- 1.828 


- 0.096 


- 5 . 26 


2 


250.000 


0.8188 


- 1. 944 


- 1.828 


- 0.117 


- 6 . 39 


5 


254.607 


0.8345 


- 1.733 


- 1.759 


0.026 


1.45 


1 


250.000 


0.8515 


- 1.759 


- 1.688 


- 0.070 


- 4 . 17 


2 


250.000 


0.8515 


- 1.786 


- 1.688 


- 0.098 


- 5 . 80 


1 


270 . JO j 


0.8343 


- 1 . 614 


- 1.564 


- 0.051 


- 3 . 23 


2 


270.000 


0.8843 


- 1. 649 


- 1.564 


- 0.085 


- 5 . 43 


3 


273.150 


0.8946 


- 1.521 


- 1.527 


0.006 


0 . 39 


4 


27 3 . 150 


0.8946 


- 1. 535 


- 1.527 


- 0. 007 


- 0.48 


5 


273. 150 


0.8946 


- 1.507 


- 1.527 


0.020 


1 . 33 


8 


273.200 


0.8948 


- 1.527 


- 1.527 


0 . 000 


0 . 02 


1 


280.000 


0.9170 


- 1.470 


- 1.452 


- 0.018 


- 1.25 


2 


280. 000 


0.9170 


- 1.511 


- 1.452 


- 0.059 


- 4 . 09 


2 


290.000 


0.9498 


- 1.408 


- 1.351 


- 0. 058 


- 4 . 26 


3 


298. 138 


0.9764 


- 1.275 


- 1.275 


0 . 000 


0.03 


8 


298.200 


0.9766 


- 1.284 


- 1.275 


- 0 . 009 


- 0.71 


2 


300.000 


u • 93 25 


- 1 . 305 


- 1.259 


- 0.046 


- 3.68 


5 


336.052 


1 . 03 24 


- 1.204 


- 1.207 


0 . 003 


0 . 27 


3 


322.748 


1.0570 


- 1. 078 


- 1.079 


0 . 001 


0 . 07 


8 


323.200 


1.0585 


- 1. 082 


- 1.076 


- 0.006 


- 0. 60 


3 


347.652 


1.1386 


- 0.916 


- 0.917 


0.002 


0 . 19 


3 


372.522 


1.2201 


- 0.784 


- 0.784 


0.001 


0 . 09 


8 


377.500 


1.2367 


- 0.752 


- 0.760 


0.008 


1 . 10 


3 


397.844 


1.3030 


- 0.671 


- 0.671 


- 0. 001 


• 0.08 


8 


410. 900 


1.3458 


- 0.616 


-0 .619 


0 . 004 


Q . 61 


3 


422.700 


1.3844 


- 0.576 


- 0.576 


- 0.000 


- Q . 04 


8 


444.300 


1.4551 


- 0.508 


- 8.505 


- 0.003 


- 0.69 


6 


477.600 


1.56 42 


- 0.423 


- 0.411 


- 0.013 


- 3.09 


8 


510.900 


1.6733 


- 0. 350 


- 0.331 


- 0. 019 


- 5 . 83 



» 1TJOI 



69 



APPENDIX E. (Continued) 



Cryogenics Division - NCS Institute for Bosk Stondords 

LABORATORY NOTE 


PROJECT NO. 

2750364 


Fill NO. 

73-4 


PAM 

1 3 


SUBJECT 

Ethane Virial Coefficients and Saturated Vapor Densities 


NAME 

R . D. Goodwin 


DATE August 14, 1973 



Table 3. Third virial, (7) Chueh, (10) Douslin, (4) Hoover, (5) Pope. 



THIRD VIRIAL* 



217 


•800 0. 


253773 0 


.865299 


C. 556075 


0.000000 


ID 


T.K 


T/TCRT 


C* 


CA LCD 


DIFF 


7 


210.000 


0 ,5878 


-0. 251 


-0. 247 


-0.004 


7 


220.000 


0.7205 


0.055 


0.055 


0.000 


7 


230. U 0 0 


0.7533 


0. 249 


0.247 


0.002 


7 


240. uQO 


0 .7860 


0. 367 


0.366 


0.001 


7 


230.000 


0.8188 


0. 436 


0.438 


-0.002 


7 


280.000 


0.3515 


0. 472 


0. 477 


-0.006 


10 


273.150 


0.3946 


0. 489 


0. 499 


-0.010 


10 


298. 150 


0.9765 


0. 500 


0 . 489 


0.011 


10 


30 3. 150 


0.9929 


0. 491 


0.483 


0.008 


10 


323.150 


1.0584 


0. 455 


0. 453 


0.003 


10 


343.150 


1.1402 


0. 409 


0. 410 


-0.001 


10 


373. I5u 


1.2 221 


0. 364 


0 . 369 


-0.004 


10 


398. 150 


1.3040 


0. 328 


0 . 332 


-0.003 


10 


423. 150 


1.3859 


0. 295 


0.299 


-0.004 


10 


448. 150 


1.4678 


0.268 


0. 271 


-0.003 


10 


47 3. 150 


1.5496 


0. 250 


0.247 


0.002 


10 


498. 150 


1.5315 


0. 228 


0.227 


0.002 


1C 


523.150 


1.7134 


0.212 


0.209 


0.004 


10 


548. 150 


1.7953 


0. 195 


0 .193 


0.002 


10 


573. 150 


1.8771 


0. 182 


0 • 180 


0.002 


10 


598. 150 


1.9590 


0.167 


0.168 


•0.001 


10 


623. 150 


2.3409 


0. 154 


0.157 


-0.003 


NP = 


22. ME ANDIFF = 0. 


004 







ID 


T , < 


T/TCRT 


C* 


CALCD 


DIFF 


5 


209.534 


0.5863 


-2. 770 


-0.264 


-2.505 


4 


215. 000 


0.7042 


-3. 356 


-0.079 


-3.277 


5 


238.769 


0.7820 


0.175 


0. 354 


-0.180 


4 


240. 000 


0.7860 


-0. 121 


0. 366 


-0.487 


5 


254.807 


0.8345 


0. 401 


0. 460 


-0.059 


5 


273. 150 


0.8946 


0. 489 


0 . 499 


-0.010 


4 


273. 150 


0.8946 


0. 501 


0. 499 


0.002 


4 


273. 150 


0 .8 94 6 


0. 537 


0. 499 


0.038 


4 


298. 138 


0.9764 


0. 507 


0.489 


0.017 


5 


306.062 


1.3024 


0. 473 


0.479 


-0.006 


4 


322. 748 


1.0570 


0. 456 


0. 453 


0.003 


4 


347. 652 


1.1386 


0. 405 


0.411 


-0.006 


4 


372.522 


1.2201 


0. 364 


0. 370 


-0.006 


4 


397.844 


1.3030 


0.330 


0. 332 


-0.002 


4 


422.700 


1.3844 


0. 301 


0 . 300 


0.001 



ff 11142 A 



70 



APPENDIX E. (Continued) 



Cryogenics Division - NBS InsMtvte for Bosk Standards 

LABORATORY NOTE 



PROJECT NO. 



MM 



HIE NO. 






SUBJECT 



NAME 



Ethane Virial Coefficients and Saturated Vapor Densities 



R. D. Goodwin 



DATE 



August 14, 1973 



Table 4. Terms of the virial equation for saturated vapor, 



TERMS OF THE VIRIAL EQUATION FOR SATURATED VAPOR 



T * K 


P, ATM 


MQl/t 


DI/ON 6* S 


C*S2 


2 CT, 05 


90 


0. 0000099 


0. 0000013 


0.999996 -Q.QGG004 


-0.000000 


0.999996 


95 


0 • 0000346 


0. 0000045 


0 .999987 -0 .000011 


-0.000 000 


0 » 999989 


100 


0. 0001067 


0. 0000130 


0.999966 -0.000028 


-0.000000 


0.999972 


105 


0.0002916 


0. 0000338 


0.999920 “0 .000 064 


-0.000 000 


0.999936 


110 


0. 0007207 


0.0000799 


0.999831 -0.QC0133 


-0.000 00 0 


0.999867 


115 


0.0016337 


J. 00O1732 


0.999670 -0.000256 


-0.000 00 0 


0 .999744 


120 


0. 0034347 


0. 0003490 


0.999398 -0.000462 


-0.000 000 


0.999538 


125 


0.0067608 


0. 0006596 


0.998969 -0.000787 


-0.000 0Q0 


0.999213 


130 


0 . 0125592 


0. Ou 11793 


0.998323 -0.001276 


-0.000001 


0.998723 


135 


0. 0221670 


0. 0020063 


0.997397 -0 • 0ui982 


-0.000002 


0.998016 


140 


0.0373903 


0. 00 32674 


0.996119 -0.002961 


-0.000 005 


0 .997034 


145 


0 • 0605738 


0. 0051196 


0.994420 -0 .00427 6 


-0.000 009 


Q ,995715 


150 


0 . 0946592 


0.0077508 


0.992228 -0 .005991 


-0.000016 


0.993994 


L 5 5 


0. 1432275 


0. 0113809 


0 .989479 -0 .008171 


-0.000026 


0.991803 


1 60 


0. 2105236 


0. 0162608 


0 .936113 -0 .010 882 


-0.000 042 


0.989077 


165 


0. 30 14633 


3. 0226721 


0.982082 -0.014185 


-0.000063 


0.98575? 


170 


0. 4216243 


0. 0309256 


0 .97 7343 -0 .018141 


-0. 000 090 


0 .981769 


175 


0,5772221 


J. 0413607 


0 .971866 -0.022806 


-0.000124 


0 .977070 


1 8 C 


0. 7750743 


J. 0543439 


0.965625 -0.028233 


-0.000164 


0.971603 


185 


1. 0225573 


0. 0702692 


0.958606 -0 .034470 


-0.000206 


0.965324 


190 


1. 3275553 


0. 0695573 


0.950796 -0.041563 


-0.000248 


0.958189 


L 9 5 


1. 6984137 


0. 1126577 


0.942186 -0 .049554 


-0.00 0 281 


0.950164 


2 0 0 


2.1438785 


0. 14Q0503 


0 .932771 -0 .058485 


-0.0 00 299 


0.941217 


205 


2.6730575 


0. 1722494 


0.922541 -0.068395 


-0.000287 


0.931318 


210 


3.2953721 


J. 2098093 


0 .911484 -0 .079325 


-0.000230 


Q. 920445 


215 


4.0205218 


0.2533319 


0.899587 -0.091321 


-0.000 107 


0 .908571 


220 


4. 85845? 3 


0. 3034770 


0.886826 -0.104432 


0.000108 


3.895676 


225 


5.8193516 


0. 3609763 


0.873177 -0.118715 


0.000 440 


0.681732 


2 3u 


6. 913610 8 


0. 4266509 


0.858605 -0.134238 


0.000 952 


Q .866714 


235 


8. 1518573 


0. 5014347 


0.843069 -0.151085 


0.001 671 


0 . 850586 


240 


9 • 54495 5 1 


0. 5864036 


0 .826523 -0 .169358 


0.002667 


0.833309 


245 


11. 1040386 


0.6828144 


0 .80 8912 -0 .189185 


0.004017 


0.814032 


250 


12.8405603 


0. 7921552 


0 . 79 0 174 -0 .210 72 5 


0.005318 


0,795093 


255 


14. 7663588 


0. 9162120 


0.770240 -0.234180 


0 .008194 


0,774014 


260 


15. 8937542 


1. 0571595 


0.749033 -0.259804 


0.01130 5 


0.751500 


265 


19. 2356771 


i. 2176851 


0.726466 -0.287925 


0.01536 1 


0.727436 


270 


21. 8058475 


1. 40 11641 


0.702440 -0.318963 


0.020 642 


0.701679 


275 


24. 6190249 


1. 6119133 


0 .676839 -0 .353469 


0.027531 


3 .674063 


280 


27. 6913739 


1. 8555713 


S .649528 -0 .392177 


0.036563 


0.644386 


285 


31.0410283 


2. 1396981 


0.620339 -B. 436086 


0.048505 


0 .612418 


290 


34.6890345 


2. 4747097 


8 .589059 -0 .48660 0 


0.0 6449 8 


0.577898 


295 


38.6611522 


2. 8756823 


0.555393 -Q. 545771 


0.086320 


0.540549 


300 


42.9921502 


3. 3657409 


0.518891 -0.616818 


0.116916 


0.500098 


305 


47. 7441963 


3. 9859334 


0.478608 -0.705645 


0.161805 


0 .456160 



W 1134? A 



71 



APPENDIX E. (Continued) 



Cryogenics Ovnion - MBS Imtitvte for Bosk Stondords 

S LABORATORY NOTE 


«o*ct NO. 

2750364 


NU NO. 

73-4 


PAOC 

15 


| SUBJECT " " 

Ethane Virial Coefficients and Saturated Vapor Densities 


MAME R . C 


). Goodw 


in 


DATE August 14, 1973 



Table 5. Saturated vapor densities derived via \7.P. and virial equations 

ETHANE SATO. VAPOR DENSITIES VIA V.P. AND VIRIAL EQNS. 



ID 


T,K 


P. ATM 


PLANK/KAMB 


MOL/L 


PCT 


1 


69. 699 


9.9670-006 


1.3511-006 


1.3511-006 


0.00 


1 


90.000 


1.0238-005 


1.3863-006 


1 .3863-006 


0.00 


1 


95.000 


3.5808-005 


4.5936-006 


4.5936-006 


0.00 


1 


100.000 


1.0952-004 


1.3347-005 


1.3347-005 


0.00 


1 


105.000 


2.9651-004 


3.4649-005 


3 .4648-005 


0.00 


1 


110.000 


7.3654-004 


8.1615-005 


8.1612-005 


0 .00 


1 


115.000 


1,6670-003 


1.7671-004 


1.7670-004 


0.01 


1 


120.000 


3.4991-003 


3.5558-004 


3.5552-004 


0.01 


1 


125. 000 


6.8762-003 


6.7110-004 


6.7093-004 


0.02 


1 


130.000 


1.2752-002 


1.1974-003 


1.197 0-003 


0.04 


1 


135.000 


2.2468-002 


2.0336-003 


2.032 3-00 3 


0.06 


1 


140.000 


3.7834-002 


3.3064-003 


3.3033-003 


0.09 


1 


145.000 


6.1192-002 


5.1721-003 


5.1653-003 


0.13 


1 


150. 000 


9.5478-002 


7.8184-003 


7.8043-003 


0.18 


1 


155.000 


1.4426-001 


1.1464-002 


1 .1436-002 


0.24 


1 


160.000 


2.1176-001 


1.6358-002 


1.6308-002 


0.31 


1 


165. 000 


3.0288-001 


2.2781-002 


2.2694-002 


0.38 


1 


170.000 


4.2317-001 


3.1042-002 


3.0899-002 


0.46 


1 


175.000 


5.7882-001 


4.1479-002 


4.1252-002 


0.55 


1 


180.000 


7.7662-001 


5.4457-002 


5 .411 1-002 


0.64 


1 


185.000 


1.0239+000 


7.0369-002 


6.9860-002 


0.73 


1 


190.000 


1.3287+000 


8.9635-002 


8.8911-002 


0.81 


1 


195.000 


1.6991+000 


1.1271-001 


1 .1171-001 


0.89 


1 


200.000 


2.1440+000 


1.4006-001 


1.3872-001 


0.97 


1 


205.000 


2.6726+000 


1.7222-001 


1 .704 7- 001 


1.03 


1 


21 0. 0D 0 


3.2943+000 


2.0973-001 


2 .075 0-001 


1.08 


1 


215.003 


4.0166+000 


2.5321-001 


2.5043-001 


1.11 


1 


22 0. 00 0 


4.8561+000 


3.0 331-001 


2 .9993-001 


1.13 


1 


225.000 


5.6165+000 


3.6077-001 


3.5674-001 


1.13 


1 


230.000 


6.9105+000 


4.2642-001 


4.2173-001 


1.11 


1 


235.000 


8.1487+000 


5.0120-001 


4.9585-001 


1.08 


1 


240. 000 


9.5420+000 


5.8618-001 


5.8025-001 


1.02 


1 


245. 000 


1.1102+001 


6.8262-001 


6.7626-001 


0.94 


1 


250. 000 


1.2839+001 


7.9203-001 


7 .8551- 001 


0.83 


1 


255.000 


1.4766+001 


9.1618-001 


9.0997-001 


0.68 


1 


260.000 


1.6695+001 


1.0572+000 


1.0522+000 


0.48 


1 


265.000 


1.9238+001 


1.2179+000 


1.2154+000 


0.21 


1 


270.000 


2.1810+001 


1.4016+000 


1 .4041+ 000 


-0.18 


1 


275.000 


2.4624+001 


1.6125+000 


1 .6245+000 


-0.74 


1 


280. 000 


2.7697+001 


1.8563+000 


1 .886 1+000 


-1.58 


1 


285.000 


3.1047+001 


2.1404+000 


2.2047+000 


-2.91 


1 


290.000 


3.4693+001 


2.4754+000 


2.6108+000 


-5.19 



* 



V 111471 



72 



APPENDIX E . (Continued) 



Cryogenics Division - NftS bwtrivte for Boik Standards 

LABORATORY NOTE 


PROJECT NO. 

275036^ 


PIIE NO. 

73-4 


PAOg 

16 




NAME 






Ethane Virial Coefficients and Saturated Vapor Densities 


R. D. 


Goodwin 


DATE August 14, 1973 



PRO SRAM VIRUS : ““ — 

ETHANE VIRIAL COEFFICIENTS, X = T/TCRT, Q = X**l/2, 



C 3 V - ( B1 ♦ 32/X**E3 ♦ 133/X ♦ 84/X2 *■ 05/ X3 ) * ( 1* ( TZ / T ) **1/ 4 ) . 

C S V = (C1/X**EC *• C2/X3 f C3/X5)* (1-TZ/T) • 

C ID, (L)EUCKEN, (2 ) - AMBERT » (3)MICHELS, (4)H00VER, (5)POPE, 

C ( 6 ) MCGLASHAN, (7)CHUEH, <8)GUNN, (10) OOUSLIN»P RE PRINT* 

C V CRT, CC/ MOL , ROSSINI (195 3) /MCGLASH AM= 148 , EU 8ANK/P0PE=146. 2, 

C TESTER(1961) =141.7, OOUSLIN (197 3) =1 45 .56. 

COMMON/ 1/M, EB,EC»TZB,TZC, BVS,CVS, B(5),C(4) 

COMMON/3/ OPSOT 

COMMON/999/NP,NF,H(l5) , Y ( 20 0 ) , G ( 2 0 0 , 1 5) 

DIMENSION 10(20 0 ) , T ( 2 30 ) , BV ( 20 0 ) , CV ( 2 CO ) , X ( 20 G ) ,XQ(2QQ) 

1 F ORMA T ( 15, 2F10.0) 

2 F ORM A T ( 1 HI 13X 1HM 5X5HE(BC) 8X2HTZ 8X2HSS) 

3 FORMAT(10X 15, 2F10.3, F13.4) 

4 F ORMAT ( 1H1 1 7X *E THANE SECOND VIRIAL COEFFICIENT*// 

1 18X4HEB = F 6. 3 » EH, TZ =F6.1// 15 X 5F12.6// 

2 18X2HID 7 X 3HT » K 5X4HT/TC 7X2HB* 5X4HCALC 5X4HDIFF 5X4HPC NT ) 

5 F ORMAT (15X 15, F1L.3, r 9.4, 3F9.3, F9.2) 

6 FORMAT(lH117X*THIRD VIRIAL, M =*I2, 6H, EC =F6.3// 16X F10.3, 

1 4FL1.6// 18X2HI0 7X3HT , K 4X6HT / T CRT 6X2MC* 5X5HCALCD 6X4HD IFF ) 

7 F ORMA T( 15X 15, F1j.3, F1Q.4, 3F10.3) 

8 F ORMAT ( 1 8X 4HNP =13, 12H, MEANDIFF = F7.3) 

9 F ORMA T ( 1 8X 4HNP =13, 11H, MEANPCT =F6.3) 

10 F ORM A T ( 1 HI 15X* TERMS OF THE VIRIAL EQUATION FOR SATURATED VAPOR*// 

1 1 7X 3 HT , K 7X5HP,ATM 7X5HMOL/L 5X5HDI/DN 

2 7X 3 H B* S 5X4HC*S2 4X6HZ(T,0) ) 

11 F ORMAT ( 1 OX F10.G, 2F12.7, 4F10.6) 

12 F ORMAT ( 1H1 17X 2MID 7X3HT,K 5X4HT/TC 7X2HB* 5X4HCALC 
1 5X4HDIFF 5X4HPCNT) 

13 F0RMAT(1H117X2HID 7X3HT,K 4X6HT /T CRT 6X2HC* 5X5HCALCD 6X 4 HD IFF) 

15 T TR 3 = 89 • 899 5 TCRT=305. 33 $ DCRT= 1 . 0 / 145. 56 

C GENERATE MCGLASH AM DATA FOR BV(T), CC/MOL. 

C INCREASE ABS (MCGLASHAM) BY ONE PERCENT (148/145.56 = 1.017). 

16 N = 0 $ DO 19 J = 1 , 12 B N = N* 1 $ TT = T ( N) = 140 ♦ 10 *J 

17 X(N)=TT/TCRT B X3 (N) =SQRTF(X (N) ) $ IO (N ) = 6 

18 3 V ( M ) = 1. 0 1*GL ABF ( TT ) B Y (N) = 8V(N)*DCRT 

19 CONTINUE 

C READ DOUSLIN (1973) DATA, CC/MOL. 

20 DO 23 J=l, 99 B READ 1, IOD»TT ,BB B IF(IDD) 21,24 

21 N = N+l B ID(N) =IOD B T (N) =TT S BV ( N) =BB 

22 X ( N) =TT/ TCR T B X 3 (N> =SiRTF(X (N) ) B Y(N)=BB*OCRT 

23 CONTINUE 

24 NP = N $ NF = 5 B SSK = 1.0E+Q10 

C READ SECOND VIRIAL DATA. 

25 DO 28 J = 1 , 9 9 B READ 1, IDD,TT ,BB $ IF(IDD) 26,29 

26 N = N+l B I D ( N) = I OD B T ( N) =TT B BV(N)=BB 

27 X ( N) =TT/ TCRT B X Q ( N) = SQRTF ( X ( N) ) B Y ( N) =3B* DCRT 

28 CONTINUE / / 

29 NPP = N B M = 0 7 / 2 6 / 23 

C EXPLORE VALUES FOR EB AND FOR TZ B. 

C MCGLASHAM TZB NEAR 2.7*TCRT = 824 K. 

30 EB = 0.25 B TZ = TZB = 740 B PRINT 2 

C 31 DO 44 IE*1,3 B EB = 3.25*IE 

C 32 DO »4 I T=1 , 17 % TZ = 640 ♦ 1Q*IT 

V 1194? t 



73 



APPENDIX E . (Continued) 



Cryogenics Ownion - NBS bwtihrt. tor Bomc Stondords 

LABORATORY NOTE 


HK5JECT NO. 

2750364 


FILE NO. 

73-4 


PAOC 

17 


; SUBJECT ' 

Ethane Virtal Coefficients and Saturated Vapor Densities 


R. ■ 


3. Good-w 


in 


DATI August 14, 1973 



33 DO 36 J=1,NP B U=X ( U) $ Q=XQ(J) $ W = 1- ( TZ /T ( J) ) ** 0 . 25 

34 G«J,1)=W $ G ( J, 2 ) =W/U**E0 $ G ( J , 3 ) = W / U £ G ( J , 4 ) =W /U**2 

35 G ( J, 5 )=H/U**3 

36 CONTINUE l CALL EGLNFT £ SS = 0 

37 DO 39 J=1,NP £ YC = 3 J DO 38 K=1,N C 

38 YC = YC ♦ H <K) *G< U,K> 

39 SS = SS ♦ A8SF(Y( JT/YC-l) $ SS = 100*SS/NP 

40 IF (SS.LT.SSK) 41,44 

41 S SK= S S S EK-E3 £ TK = T Z S DO 42 K = l,5 

42 B(K) = H (K) 

44 PRINT 3, M , E8 » T Z * SS $ E 8=EK $ T Z = T ZB=TK $ SS = 0 
|i C USE SAVED CONSTANTS FOR DEVIATIONS. 

45 PRINT 4, EB, TZ, (B(K),K=1,5) 

46 DO 51 J=1,NPP £ U=X(J) £ Q=XQ(J) $ M = 1- ( TZ /T < J) ) ** 0 . 25 

47 YC = W* ( B ( 1 ) B(2)/U**EB ♦ B(3»/U ♦ B(4)/U**2 ♦ B(5)/U**3) 

48 D I F = Y ( J ) - Y C £ PCT=-1GO*OIF/YC $ S S = S S +A BS F < PCT) 

49 PRINT 5, ID (J) , T ( J) ,X ( J ) , Y( J) ,YC, OIF , PCT $ IF(J-NP) 51*50 

50 SS = SS/NP £ PRINT 9, NP,SS $ PRINT 12 

51 CONTINUE £ N = U 

C SENERATE THIRD VIRIAL DATA VIA CHUEH(1967), ID = 7. 

C DIMINISH CHUEH DATA 8Y 2 PERCENT. 

52 DO 55 J= 1, 6 £ N = N + l $ TT = T (N ) = 200 + 10*J 

53 X <N> =TT/TCRT £ X Q ( N ) = SORT F i X < N> ) $ ID(N) = 7 

54 C V ( N ) = G.98*CHUCF(TT) $ Y ( N) = CV ( N) *DCR 1**2 

55 CONTINUE £ K = N + 1 

C READ DOUSLIN (1973) DATA, (CC/M0L)**2. 

56 DO 58 U = K, 9 9 £ READ 1, 10 ( J) , T( J) , C V( J) $ I F ( ID ( J> > 57,59 

57 X (J) =T( J)/TCRT £ X Q ( J ) = SQRTF ( X ( U) ) £ Y ( J) = C V ( J) *DCRT**2 

58 CONTINUE 

59 NP = U-l £ NF = 3 £ SSK = 1.0E+31G 

C READ THIRD VIRIAL DATA. TZC NEAR 220 K. 

60 K = NP+1 £ DO 63 U=K, 99 

61 RE A3 1, ID ( U) , T ( J ) , C V ( J ) £ IF ( I D ( J ) ) 62,64 

62 X(J> = T ( U ) / T C R T £ XD ( J ) =SQRTF< X ( J ) ) $ Y ( J) =C V ( J) *DCR T* *2 

63 CONTINUE 

64 NPP = J-l 5 EC = 1.0 $ PRINT 2 

C EXPLORE VALUES FOR EC AND FOR TZ. 

C 65 00 76 I E = 1 , 4 £ EC = }.5’IE 

66 00 7 6 I T = 1 , 11 £ TZ = 217.60 ♦ 0.05*IT 

67 00 59 J=1,NP £ U = X(J) £ W = 1-TZ/TCJ) 

68 G (J»1)=W/U**EC £ G(U, 2) =W/U**3 £ G( J, 3 ) =W/U** 5 

69 CONTINUE £ CALL EGENFT £ SS = 0 

70 DO 72 J= 1, NP £ YC = 3 £ 00 71 K=1,NF 

71 YC = YC ♦ H(K)*G(U»K) ?/26/V3 

72 SS = SS ♦ ABSF < Y < J) -YC) £ SS = SS/NP 

73 IF (SS.LT.SSK) 7N,76 

74 SSK=SS $ TK = T Z £ EK = EC $ MK=M £ DO 75 K*l,4 

75 C (K) = H (K) 

76 PRINT 3, M » EC » T Z » SS £ M = MK 

77 TZC = TZ = TK $ EC s EK $ SS = C 

C USE SAVED CONSTANTS FOR DEVIATIONS. 

79 PRINT 6, M,EC,TZ, (C(K),K=1,4) 

80 DO 35 J s 1, NPP £ U = X(J> S W = 1-TZ/TCJ) 

81 YC * W* (C(1)/U**EC ♦ C(2)/U**3 ♦ CC3)/U**5) __ 

82 PCT = Y ( J) - YC £ ^ a SS ♦ ABSF(PCT) 



» 1114? I 



74 



APPENDIX E. (Continued) 



Cryogenics Division - MRS Institute for Bostc StondoHs 

LABORATORY NOTE 


MtOJICT NO. 

2750364 


me no. 

73-4 


BAOE 

18 


SUBJECT 

Ethane V irial Coefficients and Saturated Vapor Densities 


NAME R. D. Goodwin 


August 14, 1973 



VIRUS 0 7/26/7 3 

83 PRINT 7, ID ( J) , T ( J) ,X ( J) , Y< J) , YC, PCT $ IF(J-NP) 85,84 

84 SS = SS/NP 5 PRINT 8, NP,SS $ PRINT 13 

85 CONTINUE 

j C NOW EXAMINE TERMS OF THE VIRIAL EQUATION AT SATURATION. 

: C THE IDEAL GAS DENSITY IS DI = P/(R*T>, 

90 PRINT 10 B DO 95 J=l,44 $ TT = 85 ♦ 5*J 

91 PS= 3 SATF (TT ) B ON=DNGSF (TT ) $ Z = ZIPF(TT,DN) 

92 01 = PS/TT/0. «923 56156 $ DR = D I/D N 

95 PRINT It, TT,PS»DN» DR, BVS,CVS, Z 

99 STOP S ENO 

SINGLE-BANK COMPILATION. 



FUNCTION CMUCF(T) 

C ETHANE THIRD VIRIAL VIA CHUEH FORM ULA ( 1967 > , <CC/M0L)**2. 

C CV ( T) /VCRT**2 = F A *F B ♦ FC, FA = A/Q + B/X5, 

C -B = 1 - EXP (1 - A l * X2 ) , FC = EXP (- C ♦ 0* X - E»X2), X = T/TCRT. 

OATA (TCRT=305. 33 ) , < VCR T= 145 . 56 ) , <AL=1.89> 

DATA ( A = G • 2 321 , (8 = 0.463 ) , (C=2. 49) , (0 = 2.30 ) , (E=2.7 0) 

1 X=T/TCRT $ Q=SQRTF ( SQRTF ( X) ) $ X2=X**2 $ X5=X**5 

2 FA = A/Q *■ 3/ X 5 S FB = 1 - EXPF (1- AL*X2 ) 

3 FC = EX PF ( - C D*X - E*X2) 

4 CHUCF = (FA*FBfFC> *VCRT**2 S RETURN $ END 



FUNCTION DNGSF(T) 

C 3 L AN</KA MBEI TZ VIA TESTER (P.17D/0IN. VALID 17 0 TO 305 K. 

C V = R*T/P - C1/K**A - C2*P**2/X**B , X = T/100, 

C V IN CC/GRAM, T IN KELVINS, P IN KG/CM**2, 

C l ATI = 1.03323 KS/CM**2, R=2.822, Cl = 69 .0 ♦ C 2=2 7. 9, A = 2.4, 8=9.0 
DATA (R = 2.822> , ( C 1 = 89. 3 ) , (C2 =27 . 9 ) , ( A =2 .4 ) , (8=9.0 ) , <WM=3 0 .0 7) 

1 P = PSATF(T) B P = 1. Q3323*P $ P2 = P**2 

2 X = T/100 S XA = X**A B XB = X**B 

3 V = R*T/P - Ci'XA - C2*P2/XB 

4 DNGSF = 100 0.88/V/WM $ RETURN $ ENO 



» 113 - 4 ? « 



75 



APPENDIX E. (Continued) 



CryogwHcs Oviwofi - MBS bMMut. for Bmk Stondordt 

LABORATORY NOTE 


MtOXCT NO. 

275036^ 


me no. 

73-4 


BAO« 

19 


Ethane Virial Coefficients and Saturated Vapor Densities 


NAMB J- 


). Goodw 


in 


DATl August 14, 1973 



FUNCTION GLABF(T) 

C ETHANE SECOND VIRIAL COEFF. VIA MC GLASHAM FORMULA (1962), 

C 1C G. BELIEVES EUCKEN/PARTS ARE WRONG. 

0 3 V ( T) / VC R T = 31 - B2/X - B3/X2 - B4/X**4.5, X = T/TCRT. 

DATA (TCRT =335.4) * (VC RT =148.0) 

DATA (B 1=0.433) , (B2=0.886), (B 3= 0.694) *(04=0.0375) 

1 X=T'TCRT S X2=K**2 S XN = X**4.5 

2 F = 31 - 3 2 / X - 93/X2 - B4/XN 

9 GLA3F = VCRT*F $ RETURN $ ENO 



07/26/73 

FUNCTION PSATF(T) 

LN(P'PTRP) = A*K «• 8*X 2 ♦ C*X3 ♦ 0*X4 ♦ E* X* ( 1-X ) ♦ *EP . 

COMION/3/ OPSOT 

DATA (TTRP =89.899) * (TCRT=305.33), (PT RP=9. 61 6E-6) * (EP = 1.6) 

DATA ( A = 8. 454987344 ), (3 = 12.4880 39 775 ) ,(C=-4. 10428 1551) * 

1 (D=-l. 413860533) * (£= 8. 526522526) 

1 F OR1 A T ( 1 H3 9X *PSATF = 0* T EXCEEDS TCRT. * / ) 

2 XN=1-TTRP/TCRT $ X= (l-TTRP/TJ/XN $ X2=X**2 $ X3=X**3 $ X4=X**4 

3 DXDr = TTRP/XN^T**2 $ Q a 1-X $ IF(Q) 4,5,6 

4 PSATF = DPS DT = 3 $ 3 R I NT 1 $ RETURN 

5 Z = Z 1 = 0 B GO TO 7 

6 W = Q**EP $ HI = -EP*W/Q $ Z = X*H $ Z1 = W + X*W1 

7 F = A*X ♦ B*X2 «• C*X3 ♦ 0*X4 + E*Z 

8 FI = A ♦ 2*B*X f 3*C*X2 ♦ 4*D*X3 ♦ E * Z1 

9 PSATF=PTRP*EXPF(F) $ DP SO T=F 1*P SA TF* O XO T S RETURN $ END 



07/26/73 

FUNCTION ZIPF(T,0) 

C Z ( T , 0 ) a 1 ♦ BV ( T) *S ♦ CV(T)*S**2, S = D/OCRT, X = T/TCRT • 

C 3 V = ( B1 ♦ B2/X**EB ♦ B3/X ♦ B4/X2 ♦ B5/X3 ) * ( 1- ( TZ/T) **1/4 ) . 

C CV = ( Cl/ X* * EC f C2/X3 ♦ C3/X5) * (1-TZ/T) . 

C0M10N/l/i,EB,EC,TZB,TZC, BVS,CVS, B(5),C<4) 

DATA (TCRT=305. 33) , ( VCRT = 0 . 1 4556) 

1 S = D* VCRT B X= T/ TCRT S Q=SQRTF(X) $ R=X**EC 

2 X2=X**2 $ X3=X**3 $ X4=X**4 $ X5=X**5 

3 ZB = 1 - (TZB/T) **0.25 S ZC = 1 - TZC/T 

4 BV = ZB* (B ( 1) * B ( 2 ) / X* *E B ♦ 8(3) /X «• B(4)/X2 ♦ B(5)/X3) 

5 CV = ZC*(C(1)/R * C ( 2 ) / X 3 ♦ C(3)/X5) 

6 B VS = B V*S B CVS = CV*S**2 

7 ZIP ? = 1 ♦ BV S «• CVS $ RETURN $ ENO 



tf 1114? I 



76 



APPENDIX E. (Continued) 



Cryoganks DMHon-NK feaMuto ter ink 8*ondord» 

LABORATORY NOTE 


nOJCCT NO. 

2750364 


ms mo. 

73-4 


fk<m 

20 


SUBJECT 

Ethane Virial Coefficients and Saturated Vapor Densities 


MAMI R . D. Goodwin 


DATf 

August 14, 1973 



07/26/73 



PROG RAM VAPORDEN 

C ETHANE SATVAPORDEN V/ 1 A V.P. AND VIRIAL EQNS. 

C ON ISOTHERMS, ITERATE OEN IN VIRIAL EQN. TO MINIMIZE (P-PSAT). 

COM M3N/3/ DPSOI 

1 FOR.MATUHX ♦ETHANE SATO. VAPOR DENSITIES v/ 1 A V.P. AND VIRIAL EQNS , 
1 *//18X2HID 7 X 3 H T , K 7X5HP,ATM 2 X 1 OHPL ANK/KA MB 7 X5HM0L/L 7 X3HPCT ) 

2 FORMA! ( 1 5 X 15, F10.3, 3E12.4, FI 0.2) 

3 F0RMAT(I5, F10.3, 2E15.5) 

1 9 10= 1 ft T TR 3 = 30.393 ft PRINT 1 

20 DO 30 U= 1 » 4 2 4 IF(J-l) 23,22 

22 1 - rrRP ft GO TO 24 

23 T = HU 4 5 * J 

24 D I = DNGSF(T) * P = PSATF(T) ft OEN = FI NOF ( T , P, 01 ) 

2b PUNCH 3, ID, T , D E N , P 

27 Dir = DI-DEN I PCT = 100*DIF/DEN 
23 PRINT 2, ID, T,P, 01, JEN, PCT 
30 CONTINUE ft uTDP ft ENO 

SINGwE- 3 A N < COMPILATION. 



FU OCT ION F I N Q F ( I , P , 0 I ) 

C ON ISOTHERM I, ITERATE OEN TO MINIMIZE (P-PCALC). 

COMMON JZOS 

data (3K=0. 082056156), <VC2T=0. 14556) 

1 FORMAT ( 1H0 9X *FINDF = 0, FAILS TO CONVERGE.* / ) 

2 D - JI $ GT = GK* T ft DO 9 J=l,50 

3 1 - Z I P r ( T , D ) 4 PC = 0*GT*Z ft DP = P-PC ft AP = ABSF(OP) 

4 0 = AP/P-1.0E-6 5 IF ( 0 ) 10,10,5 

5 DP DO = 6 T* ( Z 4 D*OZOS* VCRT) ft ADP = ABSFCDPOD) 

6 u = AP/ADP/D-i. Cr.-6 ft IF(Q) 10,10,7 

7 D = 10 4 OP/DPOD ft IF ( 0 ) 8,8,9 

3 D = P/I/GK 

3 CONTINUE ft FINDF = 0 ft PRINT 1 ft RETURN 
10 FIN JF = U ft RETJRN ft END 



» I1MI 



77 



APPENDIX E . (Continued) 



Cryogwncj Drwdon - N>S IndttaN (or Ink Standard, 

LABORATORY NOTE 


MtOJECT NO. 

2750364 


nu no. 

73-4 


TAM 

21 


subject 

Ethane V irial Coefficients and Saturated Vapor Densities 


**** R. D. Goodw 


in 


DAT* . 

August 14, 1973 



FUNCTION DNGSF(T) 

C Pl AiX/KANBEI t z via tested. 

DATA (R=2. 822) , (01=39. 0) , (C2=27. 9) , (A=2. 4) , (I8=9),(WM=30.07) 

1 P = 1.03323*P5ATF(T) $ °2 = P**2 

2 X = T/130 f, XA = X**A 5 X3 = X**IB 

3 V = R*T/P - C 1 X X A - C2*P2/XB 

4 DNGSF = 1000.88/V/WM t RETURN I FND 



08/01/73 

FUNCTION PSATF(T) 

C lN(P/PTRP) = A*X *■ B*X2 ♦ C*X3 ♦ 0*X4 + E*X* (1-X ) **EP. 

C OMMON/ 3/ OPSOT 

C CONSTANTS VIA ZIEGLER TYPE B V.P. OATA. 

DATA (TTRP=89.899), (TCRT=305.33) » C PTRP=9. 96 7E-6 ) * (EP=1.5) 

DATA ( A = 10 • 806922651) ,0=8,344715938) , <C=-3 . 11960 3823) 

DATA (D=-0. 642995191) , (6=6.059966098) 

1 FORMAT11HO 9X *PSATF = 0, T EXCEEDS TCRT. ♦ / ) 4 

2 XN=1-TTRP/TCRT S X= ( 1- T TRP/T ) / X N $ X2=X»*2 $ X3=X**3 $ X4=X*»4 

3 DXDT = TTRP/XN7T**2 S Q = t-X $ IF(Q) 4,5,6 

4 PSATF = DPSDT =0 $ PRINT 1 $ RETURN 

5 Z = Z 1 = 0 l GO TO 7 

6 W = Q**EP 5 HI = -EP*W/Q $ Z = X*W $ Z1 = W ♦ X*W1 

7 F = A*X ♦ 8*X2 (• C*X3 ♦ D*X4 ♦ E*Z 

8 FI : A ♦ 2*8*X ♦ 3*C*X2 ♦ 4*D*X3 ♦ E*Z1 

9 PSATF=PTRP»EXPF(F) S DPSD T=F 1*P SA TF* DXD T $ RETURN $ END 



FU ACTION ZIPF (T , D) 

C Z l T , J ) = 1 f 8 V ( X ) * S + CV(X)*S**2# 

C b\l = (81 + 32/J ♦ 33/ X ♦ 34/X2 + 8 5/ X 3 ) * ( 1- ( T Z 8/ T ) ** 1 /4 ) . 

0 LV = (Gl/X f C 2 X X 3 +• C3/X5) * ( 1-TZC/T) • 

Condon d z d s 

data (TCr<T = (0 5. 3 3) , ( V CRT=0 . 1 4556) , (TZ8 = 740. 0 ) ,(TZC=217.8) , 

1 (31 = 7.9 93156), ( 92 = -10. 67249 7), (B3 = 9. 217 322 ) , (B 4 = -2 . 4 8 1 66 8 ) , 

2 ( 35 = 0 . 3 42 328) ,01=0.2 53 773), ( C 2= 0 . 86 5299 ) , (C3= 0 . 556 0 75 ) 

1 S=U»VGRT J X=T/TCRT $ Q=X**0.25 S X2=X**2 l X3=X**3 t X5=X*»5 

2 ZJ = 1 - (TZ3/T ) *+0. 25 I ZC = 1 - TZC/T 

3 b\l = ZBMB1 f 82/0 f 3 3/ X + B4/X2 + B5/X3) 

4 ^ = ZCMC1/X 4 02/ X 3 + C3/X5) 

o ZIPF = 1 + Q\l* S + CJ + S+* 2 $ DZDS = 9V ♦ 2*C\I*S 

3 RETURN $ END 



» MMil 



78 



uKom ■ uu. 



APPENDIX F. 



Cryoyo*ci Dmtton - NBS for laaic Sfcmdords 

LABORATORY NOTE 


MOJECT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

1 


SUBJECT 

The Orthobaric Densities of Ethane, Methane, Oxygen and 
Fluorine 


NAME 

R . D. Goodwin 


DATE Sept. 18, 1973 



1 . Introduction. 



These densities, and accurate analytical descriptions thereof, are essential 
for the computation of thermodynamic functions, in particular to obtain heats of 
vaporization via the Clapeyron equation, and to formulate the equation of state which 
originates on this locus [4]. 

We have had difficulties in representing the available ethane data, and there- 
fore have returned to fundamentals. For comparison we shall include oxyge n [18], 
fluorine [13], and methane [4]. Previous formulations occur in [4, 7], We start with 
the saturated liquid densities because their representation is much simpler than that 
of the saturated vapor densities. 

2. The Saturated Liquids. 

It is well known that these densities are described near the critical point by the 

form 

p = p + a • (T - T) + b • (T - T) e (1) 

c c c 

wherein the first two terms are the rectilinear diameter, and the exponent is near 
s =0.35. 

Let us constrain (1) at the boundaries by use of the variables, 

x ( T ) = ( T - T)/(T - T ), (2) 

c c t 

W(p) = (p - p )/(p - p ), (3) 

etc 

where subscripts c and t refer to critical and triple points. Equation (1) now 
become s , 

W(p)=a*x + b*x", (4) 

and the constraint requires that a + b = 1. If we solve this for the constant b, we may 
expect to obtain a function Y(p,x) which is nearly constant over the entire range 
0 < x < 1, 

Y(p , x) = [W(p) - x]/(x £ - x). (5) 

This sensitive function is useful for examining data. 

In past work we found that three arbitrary coefficients are required to describe 
saturated liquid densities. We now find the following results via many exploratory 
computations. For the smoothed data used here for oxygen and fluorine, the use of 
five arbitrary coefficients gives an improvement in the "fit". For the rough experi- 
mental data used here for methane and ethane, the use of five arbitrary coefficients 
gives virtually no improvement in the "fit" as compared with only three coefficients. 
With only three, the first equation used was, 



. 79 



V 11142 k 



APPENDIX F. (Continued) 



Cryogenics Drvison - NK IneMute for Basic Stondords 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

2 


SUBJECT 

The Orthobaric Densities of Ethane, Methane, Oxygen and 
Fluorine 


NAME _ _ , 

K . D. Goodwin 


DATE Sept. 18, 1973 



Y(P , x) = + A ^ • x + A^ • x 0- , (6) 



and we found exponent cc = 4/3 for oxygen, fluorine and methane, but a = 8/3 for 
ethane. After much exploration we have selected the following representation, 

2/3 

Y(P , x) = A i + A 2 • x + A 3 • x (7) 

Table 1 gives the fixed-point constants. Table 2A gives the exponent e found 
by trial, the least- square s coefficients, the rms of relative density deviations in 
percent, and the number of datum pairs, NP. 

Tables 3, 4, 5, 6 compare calculated with experimental densities. No 
temperature- scale adjustments have been made in present work. Column YX gives 
the experimental value of Y(p,x) via (5), whereas column YC gives the value calculated 
by the right side of (7). Table 7 compares ethane data not used for least squares. 

Tables 8, 9, 10, 11 give saturated liquid densities computed by (7) at uniform 
temperatures, and also their slopes and curvatures. 

The small deviations for oxygen and fluorine necessarily are systematic be- 
cause the data were smoothed by the authors. The overall methane deviation is large 
because experimental data from various sources are included in the critical region. 

The low-tempe rature ethane data of Miller were used to estimate the triple- 
point liquid density. Other data are from Canfield et al. , and from Klosek/McKinley . 
The high -tempe rature "data" of Eubank are a correlation of available experimental 
data down to the boiling point 184.5 K, (x = 0.561). We estimate uncertainty in our 
calculation of these densities to be about 0. 1 percent over the entire range. 

Concerning assignment of critical densities, we at first found both P c and 
exponent € simultaneously by trial to minimize the overall deviation. The results are 
rough because these two parameters are mutually compensating for data in the critical 
region. Hence we have adjusted P c one step at a time for both saturated liquid and 
saturated vapor, examining the values of e found by trial. We select that value of p c 
which yields reasonable exponents £ for both liquid and vapor. For methane it thus 
is necessary to select P c = 10. 2 mol/T, at the upper limit of uncertainty in the experi- 
mental values [4], 

3. The Saturated Vapors 

Densities of the ethane vapors range thru a factor of about 10^. We have given 
reasons for using the logarithm of vapor densities, with arguments in powers of 
(1/T), [7]. Define the normalized variables 



z(T) h ( T /T-1)/(T /T - 1), 
c c t 


(8) 


W(p) = In (o /p)/tn(p /P J. 

c c t 


(9) 



V 11947 I 



80 



APPENDIX^^^^Contimj^d^ 



Cryo9»nia Dwion- Mt6 for Saak Sfondordt 

LABORATORY NOTE 


MOJECT NO. 

2750364 


FILE NO. 

73-5 


FAOC 

3 


SUBJECT 

The Orthobaric Densities of Ethane, Methane, Oxygen and 
Fluorine 


NAMf 

R. D. Goodwin 


DATI Sept. 18, 1973 



We write the vapor densities equation for the critical region as follows, 

-W(p) = (b-1) . z - b • z e (10) 



wherein the minus sign on the left arises merely from our definition of W(p), Solving 
(10) for b yields the dependent variable, 

Y(p,z) - [W(0 - z]/(z £ - z) . (11) 

For the present work we have explored all kinds of representations, finally 
selecting the expression, 

5 

Y(p , z) = A 1 + ^ A. • z l/3 . (12) 

Table 2B gives results for (12), analagous to table 2A for the liquid. Tables 
12, 13, 14, 15 compare calculated with experimental vapor densities. Column YX is 
the experimental value of Y(p,z) via (11), whereas YC is calculated by the right side 
of (12). Table 16 compares ethane data not used for least squares. Tables 17, 18, 19 
20 give uniformly computed densities and derivatives via (12). 

Computer programs used in this work are attached as an appendix. 



» mu i 



81 



APPENDIX F. (Continued) 



Cryotanks DMaon- NH toltoPt to toe Stamtodi 

LABORATORY NOTE 


PtOJECT NO. 

2750364 


PILE NO. 

73-5 


PAOC 

4 


SUBJECT 

The Orthobaric Densities of Ethane, Methane, Oxygen and 
Fluorine 


HAMC 

R. D. Goodwin 


DAn Sept. 18, 1973 



4. Bibliography 



[1] C.H. Chui and F. B. Canfield, Trans. Faraday Soc. 67, 2933 (1971). 

[2] D. R. Douslin and R. H. Harrison, Pressure-volume-temperature relations 
for ethane, (U. S. Bureau of Mine s , Bartlesville, Okla. 74003, Manuscript for 
J. Chem. Thermodynamics, 1973). 

[3] P. T. Eubank, Thermodynamic properties of ethane: vapor-liquid coexistence, 
Advances in Cryogenic Engineering 17, 270 (Plenum Pub. Corp. , New York, 
N.Y. 10011, 1971). 

[4] R. D. Goodwin, The Thermophysical Properties of Methane from 90 to 500 K 

at Pressures to 700 Bar, NBS IR 73-342, October, 1973. Also, NBSIR 

73-300, February, 1973. 

[5] R. D. Goodwin, The Vapor Pressures of Ethane, Laboratory Note 73-3, 

July 9, 1973. 

[6] R. D. Goodwin, Ethane Virial Coefficients and Saturated Vapor Densities, 

Lab. Note 73-4, Aug. 15, 1973. 

[7] R. D. Goodwin, Estimation of critical constants T , p c from the p(T) and T(p) 
relations at coexistence, J. Res. NBS 74A ( 2), 221 (1970). 

[8] A. Harmens, Orthobaric densities of liquefied light hydrocarbons, Chem. 
Engrng. Science 20, 813 (1965); 2]_, 725 (1966). 

[9] J. Klosek and C. McKinley, Densities of liquefied natural gas and of low 
molecular weight hydrocarbons, paper 22, Session 5, Proc. First Internat. 
Conf. on LNG, Chicago, April (1968). 

[10] O. Maass and C. H. Wright, J. Am. Chem. Soc. 4_3, 1098 (1921). 

[11] Reid C. Miller, Ann. Rpt. to AGA, "Experimental Liquid Mixture Densities 
for Testing and Improving Correlations of LNG," Proj. BR-76-1, Univ. 
Wyoming, July 1, 1972. 

[12] Frank Porter, The vapor pressures and specific volumes of the saturated 
vapor of ethane, J. Am. Chem. Soc. 48^, 2055 (1926). 

[13] Rolf Prydz and G. C. Straty, The Thermodynamic Properties of Compressed 
Gaseous and Liquid Fluorine, NBS Tech. Note 392, October, 1970. 

[14] M. J. Shana'a and F. B. Canfield, Trans. Faraday Soc. 64, 2281 (1968). 



» 11M1J 



82 



APPENDIX F . (Continued) 



Drvaton NBS IimH u N for Beat S to idofds 

LABORATORY NOTE 



PBOJECT NO. 

2750364 



FILE NO. 

73-5 



FACE 

5 



SUBJECT 

The Orthobaric Densities of Ethane, Methane, Oxygen and 
Fluorine 



NAME 



R. D. Goodwin 



DATE 






[15] P. Sliwinski, The Lorenz-Lorenz function of gaseous and liquid ethane, propani 
and butane, Zeit. Phys. Chem. NeCie Folge 63, 263 (1969). 

[16] H. E. Tester, ETHANE, in Thermodynamic Functions of Gases , vol. 3, 

F. Din, Editor (Butte rworths , London, 1961). 

[17] J. R. Tomlinson (Gulf Res. and Devel. Co., Pittsburgh, Pa.), Liquid 
Densities of Ethane, Propane, and Ethane -Propane Mixtures, Tech. Pub. 

TP-1, Nat. Gas Processors Assoc. (808 Home Federal Bldg., Tulsa, Okla. 
74103, Feb. 1971). 

[18] Lloyd A. Weber, P-V-T, thermodynamic and related properties of oxygen 
from the triple point to 300 K at pressures to 33 MN/m^, NBS J. Res. 74A 
(1), 93 (1970). 

[19] David Zudkevitch (Esso Res . & Engrng. Co., Florham Park, N.J.), The 
importance of accuracy in physical and thermodynamic data to chemical 
plant design, October, 1972. (Offered for publication in the Proceedings 
of the NBS. ) 



V 1134? A 



83 



APPENDIX F. (Continued) 



Cryo9*nics Drmion- NCS huiJiluU for Ask Stondonfs 

LABORATORY NOTE 


HtOJfCT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

6 


SUWECT 

The Orthobaric Densities of Ethane, Methane, Oxygen and 


HAMt R . D . Goodwin 


DATf Sept. 18, 1973 



List of Tables 



Table 


1 . 


Table 


2A. 


Table 


2B . 


Table 


3. 


Table 


4. 


Table 


5. 


Table 


6. 


T able 


7. 


Table 


8. 


Table 


9. 


Table 


10. 


Table 


11. 


Table 


12. 


Table 


13. 


Table 


14. 


Table 


15. 


Table 


16. 


Table 


17. 


Table 


18. 


T able 


19. 


Table 


20. 



The fixed-point constants. 



Constants for vapor equation (12). 
Comparison of oxygen liquid densities. 
Comparison of fluorine liquid densities. 
Comparison of methane liquid densities. 
Comparison of ethane liquid densities. 

Ethane liquid data not used for least squares. 
Calculated oxygen liquid densities. 

Calculated fluorine liquid densities. 
Calculated methane liquid densities. 
Calculated ethane liquid densities. 
Comparison of oxygen vapor densities. 
Comparison of fluorine vapor densities. 
Comparison of methane vapor densities. 
Comparison of ethane vapor densities. 

Ethane vapor data not used for least squares. 
Calculated oxygen vapor densities. 

Calculated fluorine vapor densities. 



IP I1M7I 



84 



APPENDIX F ■ (Continued) 



LABORATORY NOTE 



nojccr no. 

2750364 



FILE NO. 

73-5 



FAOC 

7 



tu user 

The Orthobaric Densities of Ethane, Methane, Oxygen and 
Fluorine 



R. Di.GpQdwm 



DATS 



Sept. 18, 1973 



List of Authors for Computer Tables 



ID* 


Author( s) 


Reference 


1 


Goodwin (V irial + V . P . ) 


[6] 


6 


Porter 


[12] 


9 


Tester 


[16] 


10 


Douslin 


[2] 


11 


Sliwinski 


[15] 


12 


Canfield et al. 


[1. 14] 


13 


Klosek 


[9] 


14 


Miller 


[11] 


15 


Eubank 


[3] 


16 


Tomlinson 


[it] 


98 


Prydz 


[13] 


99 


Weber 


[18] 



* For METHANE, see references in [4], 



V llttf * 



85 



APPENDIX F. (Continued) 



Cryof mg Dmm-NK InrilMa tar Seat Standard* 

LABORATORY NOTE 


PIOJtCT NO. 

2750364 


nu no. 

73-5 


PAOC 

8 


SUtJKT 

The Orthobaric Densities of Ethane, Methane, Oxygen and 


HAm R . D. Goodwin 


BAn Sept.* 18, 1973 







Table 


1 . The fixed 


-point constants. 








Oxygen 


Fluorine 


Methane 


Ethane 


T t- 


K 


54. 3507 


53.4811 


90.680 


89. 899 


T C' 


K . 


154.576 


144.310 


190. 555 


305.330 


P c' 


mol/t 


13.63 


15. 15 


10. 20 


6.87 


p f 


liquid 


40. 830 


44. 8623 


28. 147 


21.680 




-4 


-4 


-2 




p t’ 


vapor 


3.36122- 10 


5.670- 10 


1.567865- 10 


1.35114- 10 






Table 2A. 


Constants for liquid equation (7) 








Oxygen 


Fluorine 


Methane 


Ethane 


e 




0.349 


0.354 


0.361 


0.350 


A 

1 




0.758 8805 


0.791 3438 


0. 837 0910 


0.761 7350 


A 2 




0. 228 3200 


0. 112 9132 


0.084 1613 


0. 298 6535 


A 3 




-0. 230 4342 


-0. 100 6980 


-0.074 7858 


-0.327 6239 


rms , % 


0.014 


0.010 


0.084 


0. 142 


NP 




50 


46 


49 


29 





Table 2B. 


Constants for 


vapor equation (12) 






Oxygen 


Fluorine 


Methane 


Ethane 


e 


0.382 


0.362 


0.382 


0.362 


A i 


0. 277 3707 


0. 257 1572 


0.374 1014 


0. 192 7743 


A 2 


-0.338 6621 


-0. 227 0644 


-0. 261 5731 


0.041 5501 


A 3 


0.769 0708 


0.605 3864 


0.675 3322 


-0 . 789 2263 


N 


-1.576 1185 


-1.391 6332 


-1.012 2063 


0. 357 6675 


A 5 


0.939 8713 


0.792 5719 


0.439 8834 


0. 124 5438 


rms , % 


0.052 


0. 134 


0. 148 


0. 104 


NP 


50 


46 


96 


29 



V 1IIUI 




, APPENDIX F. (Continued) 



NATIONAL 1UREAU OR STANDARDS, CRYOORNIC RNOINORINO LARORATORT 

LABORATORY NOTE 


raOJRCT NO. 

2750364 


fils no. 

73-5 


PAG6 

9 


susjict Qrthobaric Densities of Ethane, Methane, Oxygen and 

Fluorine 


MA *' - R .D .Goodwin 


DATI 

Saiat. 1ft 



Table 3. Comparison of oxygen liquid densities. 



TCRT = 154.576, TTRP = 54.3507 

□ CRT = 13.63C, DTRP = 40.630 0 

7.5868052-001 2.2632003-001 -2.3043415-001 

0 . 0000000*000 0 . 0000000*000 0 . 0000000*000 



ID 


T,K 


MOL/L 


CALC 


PCNT 


X 


YX 


YC 


YO IF 


99 


56.000 


40.601 


40.603 


-C.00 


0.98354 


0.75202 


0.75805 


-0.00603 


99 


58.000 


40.323 


40.326 


-0.01 


0.96359 


0 . 75397 


0.75958 


-0.00561 


99 


63.000 


40.048 


40.049 


-0.00 


0.94363 


0.76038 


0.76109 


-0.00072 


99 


62.000 


39.777 


39.770 


0.02 


0.92368 


0.76779 


0.76258 


0.00520 


99 


64.000 


39.494 


39.491 


0.01 


0.90372 


0.76630 


0.76405 


0.00225 


99 


66.000 


39.216 


39.210 


0.01 


0.88377 


0.76840 


0.76550 


0.00291 


99 


68.000 


38.926 


38.928 


-0.00 


0.86381 


0.76610 


0.76692 


-0.00081 


99 


70.000 


38.655 


38.644 


0.03 


0.84366 


0.77243 


0.76831 


0.00411 


99 


72.000 


38.358 


38.356 


-0.00 


0.82390 


0.76966 


0.76969 


-0.00002 


99 


74.000 


38.081 


38.071 


0.03 


0.80395 


0.77392 


0.77103 


0.00289 


99 


76.000 


37.779 


37.782 


-0.01 


0.78399 


0.77145 


0.77235 


-0.00090 


99 


78.000 


37.495 


37.491 


0.01 


0 . 76404 


0.77482 


0. 77364 


0.00118 


99 


60. J03 


37.202 


37.197 


0.01 


0 . 7440 8 


0.77614 


0.77490 


0.00124 


99 


82.000 


36.900 


36.901 


-0.00 


0.72413 


0.77599 


0.77613 


-0.00014 


99 


84.000 


36.603 


36.602 


0.00 


0 . 7041 7 


0. 77750 


0.77733 


0.00017 


99 


66.000 


36.298 


36.301 


-0. Cl 


0 .68422 


0.77788 


0 . 77850 


-0.00061 


99 


68.000 


35.997 


35.996 


0.00 


0.66426 


0 . 77979 


0.77963 


0.00016 


99 


90.000 


3 5 . 6o 9 


35.688 


0.00 


0.64431 


0.78081 


0 . 78073 


0.00007 


99 


92.000 


35.373 


35.377 


-0.01 


0.62435 


0.78118 


0 . 78 180 


-0. 00061 


99 


94.000 


35.063 


35.062 


0.00 


0.60440 


0.78335 


0 . 78262 


0.00023 


99 


96.000 


34. 734 


34.742 


-0.02 


0 .58444 


0.78261 


0. 78381 


-0,00120 


99 


96.000 


34.412 


34.418 


-0.02 


0.56449 


0 . 78376 


0.78475 


-0.00099 


99 


1 0 0 . 0 00 


34.083 


34.040 


-0.02 


0 .5445 3 


0.78472 


0.78565 


-0.00093 


99 


102. J00 


33.750 


33. 756 


-0.02 


0.52458 


0.78563 


0.78651 


-0.00088 


99 


104.000 


33.411 


33.417 


-0.02 


0.50462 


0.78659 


0.78732 


-0.00072 


99 


106.000 


33.069 


33.072 


-0.01 


0 .48467 


0. 78772 


0.78807 


-0.00035 


99 


1 0 8. 0 00 . 


32.712 


32.720 


-0.02 


0 . 46471 


0.78780 


0.78878 


-0.00098 


99 


1 1 0 . 0 00 


32.362 


32.361 


C.OO 


0 . 44476 


0.78960 


0.78943 


0.00017 


99 


112.000 


31.990 


31.995 


-0.02 


0.42480 


0 .78946 


0.79001 


-0.00056 


99 


114.000 


3 1 . 6 1 o 


31.620 


-0. 01 


0 . 40485 


0.79005 


0.79054 


-0.00049 


99 


11b. 000 


3 1 .230 


31.236 


-0.02 


0 . 38489 


0.79038 


0.79100 


-0.00062 


99 


113. J00 


30.845 


3C .642 


0.01 


0 . 36494 


0.79169 


0.79138 


0.00031 


99 


120.000 


30.441 


30.438 


0.01 


0 . 34498 


0.79208 


0. 79169 


0.00039 


99 


122. 000 


30.021 


30.021 


-0.00 


0.3250 3 


0 . 79190 


0.79192 


-0.00001 


99 


124.000 


29.595 


29.591 


0. Cl 


0 . 3050 7 


0.79239 


0.79205 


0.00034 


99 


126. 000 


29.146 


29.147 


-0.00 


0.28512 


0.79203 


0. 79209 


-0.00006 


99 


12 1.000 


28.686 


26.685 


0.00 


0.26516 


0. 79210 


0.79201 


0.00008 


99 


1 10.000 


28.209 


28.205 


0.01 


0.24521 


0.79216 


0.79182 


0.00033 


99 


1 32 . 0 00 


27.709 


27. 7C4 


0.02 


C. 22525 


0.79192 


0. 79150 


0.00042 


99 


1 3 4 . J 00 


27.161 


27.179 


0.01 


0.20530 


0.79129 


0.79103 


0.00026 


99 


136.000 


26.631 


26.625 


0.02 


0.18534 


0.79103 


0.79039 


0.00063 


99 


133.000 


26.042 


26.037 


0 . 02 


0 .16539 


0.78999 


0.78956 


0.00043 


99 


I** 0 . 0 00 


25.413 


2 5. 4 1C 


0.01 


0 . 14543 


0.L&M3 


0. 78851 


0.00032 


99 


142. 000 


24, 734 


24.733 


0.01 


0.1254 8 


--UT7 8 73 3 


0.78719 


0.00014 


99 


144.000 


23.992 


23.993 


-0.00 


0 . 105T2 


0.78549 


0.78555 


-0. 00006 


99 


1 4 6 . 0 uO 


23.164 


23.170 


-0.C2 


0 .08557 


0.78287 


0.78350 


-0.00063 


99 


143.000 


22.227 


22.230 


-0.C1 


C . 06561 


0.78057 


0.78090 


-0.00033 


99 


150.000 


21.106 


21.108 


-0.01 


0.04566 


0.77724 


0.77753 


-0.00029 


99 


152.000 


19.646 


19. 6h7 


-0.00 


0.02570 


0.77280 


0.77264 


-0.00004 


99 


1 5 *, . j 00 


1 7.1C6 


17.104 


0.01 


0.00575 


0.76528 


0.76488 


0.00040 




NP = 


50, RHSPCT 


= 0.C14 













OCILVIK PHKM. INC., IW8 IU.TW I*. N. T. 



37 



APPENDIX F. (Continued) 



NATIONAL BUREAU Of STANDARDS, CRYOOENIC ENOINEERINO LABORATORY 

LABORATORY NOTE 


FBOJICT NO. FlU NO. 


RAM 


SUBJECT 

The Orthobaric Densities of Ethane, Methane, Oxygen and 
Fluorine 


NAJNI 


DATS 



Table 4. Comparison of fluorine liquid densities. 



E = 0.354 

TCRT = 144 . 311 , TTRP = 53.4811 

OCRT = 15 . 150 , DTRP = 44.8623 

7 . 9134383-001 1 . 1291315-001 - 1 . 0069804-001 

0 . 0000000*000 0 . 0000000*000 0 . 0000000*000 



10 


T,K 


MOl/L 


CALC 


PCNT 


X 


YX 


YC 


YOIF 


98 


54.000 


44.781 


44.781 


0.00 


0.99429 


0.80556 


0.80 370 


0.00186 


98 


56.000 


44.465 


44.464 


0.00 


0.97227 


0.80524 


0.80425 


0.00099 


98 


58.000 


44.146 


44.146 


0.00 


0.95025 


0.80553 


0.80479 


0.00071 


98 


60.000 


43.825 


43.825 


0.00 


0.92823 


0.80574 


0.80532 


0.00042 


98 


62.000 


43.501 


43.501 


0.00 


0.90621 


0.8060 3 


0.80583 


0.00021 


98 


64.000 


43.174 


43.174 


- 0.00 


0 . 88419 


0.80632 


0.80633 


- 0.00000 


98 


66.000 


42.845 


42.845 


- 0.00 


0 . 8621 7 


0.80662 


0.80661 


- 0.00019 


98 


68.300 


42.512 


42.513 


- 0.00 


0.84015 


0.80693 


0.80728 


- 0.00034 


98 


70.000 


42.176 


42.177 


- 0.00 


0.81813 


0.80728 


0.80773 


- 0.00045 


98 


72.000 


41.836 


41.838 


- 0.01 


0.79611 


0.80760 


0.80817 


- 0.00056 


98 


74.000 


41.493 


41.496 


- 0.01 


0.77409 


0.80796 


0.80859 


- 0.00063 


98 


76.000 


41.146 


41.149 


- 0.01 


0 . 7520 7 


0.80831 


0.80899 


- 0.00068 


98 


78.000 


40.795 


40.799 


- 0.01 


0.73005 


0.80368 


0.80938 


- 0.00069 


98 


60.000 


40 .440 


40.444 


- 0.01 


0.70803 


0.80903 


0.80974 


- 0.00071 


98 


82.000 


40.081 


40.085 


- 0.01 


0.68602 


0.80941 


0.81009 


- 0.00068 


98 


84.000 


39. 717 


39.720 


- 0.01 


0 .66400 


0.80977 


0.81042 


- 0.00065 


98 


86.000 


39.347 


39.351 


- 0.01 


0.64198 


0.81011 


0.81073 


- 0.00061 


98 


88.000 


38.973 


38.976 


- 0.01 


0.61996 


0.31347 


0.81101 


- 0.00054 


98 


90.000 


38.592 


38.596 


o 

0 

1 


0.59794 


0.81080 


0.81127 


- 0.00047 


98 


92.000 


38 .206 


38 . 2 C 9 


yH 

0 

CD 

1 


0.57592 


0.81112 


0.81151 


- 0.00039 


98 


94.000 


37.613 


37.815 


- 0.01 


0.55390 


0.31143 


0.81172 


- 0.00029 


98 


96.000 


37.413 


37.415 


- 0.00 


0.53188 


0.31171 


* 0.81191 


- 0.00019 


98 


98.000 


37.005 


37.006 


- 0.00 


0.50986 


0.81197 


0 . 812 C 6 


- 0.00009 


98 


100.000 


36.590 


36.590 


0.00 


0.48784 


0.31220 


0.81219 


0.00001 


98 


1 0 2. 0 00 


36.165 


36.164 


0.00 


0.46582 


0.31240 


0.81229 


0.00012 


98 


104.000 


35.731 


35.729 


0.01 


0 .44380 


0.81256 


0.81235 


0.00021 


98 


1 u 6 . 0 00 


35.286 


35.283 


0.01 


0.42178 


3.31268 


0.81238 


0.00030 


96 


1 0 3.0 00 


34.829 


34.826 


0.01 


0 . 39976 


0.81274 


0.81236 


0.00036 


98 


11 0.000 


34.361 


34.356 


0.01 


0 . 37774 


0.31276 


0.81231 


0. 00045 


98 


112.000 


33.878 


33.873 


0.01 


0.35572 


0.81272 


0.61221 


3.00050 


98 


114.000 


33.379 


33.374 


0.02 


0.33370 


0.81261 


0.81206 


0.00055 


98 


116.000 


32.864 


32.856 


0.02 


0.31168 


0.81243 


0.81186 


0.00056 


98 


118.000 


32.330 


32. 324 


0.02 


0.28967 


0.81218 


0.81161 


0.00057 


98 


120.000 


31.774 


31.768 


0 . C 2 


0.26765 


0.81183 


0.81129 


0.00055 


98 


122.000 


31.193 


31.188 


0.02 


0.24563 


0.31139 


0.81090 


0.00049 


93 


124.000 


30.584 


30.579 


0.02 


0.22361 


0.81086 


0.81342 


0.00043 


98 


126.000 


29.942 


29.939 


0.01 


C .20159 


0.81020 


0.80986 


0.00034 


98 


123.000 


2 9 . 2 fc >2 


29.260 


0.01 


0 .17957 


0.80942 


0.80920 


0.00022 


98 


130.000 


28.535 


28.534 


o.co 


C .15755 


0 .30 850 


0.80842 


0.00009 


98 


132.000 


27. 750 


27.751 


- 0.00 


0 .13553 


0.80742 


0.80 749 


- 0.00007 


98 


13 *. 000 


26.691 


26.894 


- 0.01 


0.11351 


0.30617 


0.80638 


- 0.00022 


98 


136.000 


25.935 


25.939 


- 0.01 


0.09149 


0.30470 


0.80506 


- 0.00036 


98 


133.000 


24.839 


24.843 


- C . C 2 


0.06947 


0.80300 


0.80343 


- 0.00043 


96 


140.000 


23.521 


23.524 


- 0.01 


0.04745 


0.80096 - 


0.80137 


- 0.00040 


98 


142.000 


21.769 


21.770 


-o.co 


0.02543 


0.79843 


0.79855 


- 0.00012 


98 


144.000 


18.327 


18.328 


- 0.00 


0.00341 


0.79340 


0.79356 


- 0.00016 




NP = 


46 , RMSPCT 


= 0.010 













OBILVIS WN, INC.. MMMtkYN tT, N. Y. 



88 



APPENDIX F. (Continued) 



NATIONAL BUREAU OP STANDARDS, CAYOORNIC MOMHttNO LABORATORY 

LABORATORY NOTE 


PROJKT NO. 

275Q3M 


FILS NO. 

73^5 


RASE 

11 


subject Orthobaric Densities of Ethane, Methane, Oxygen and 

Fluorine 


**** R.D .Goodwin 


DATI 


IS 1Q79 



Table 5. Comparison of methane liquid densities. 



E 



0*361 



TCRT =190.555, TTRP = 90.6800 

DCRT = 10.200, DTRP = 28.1470 

8.370910 3-001 8.4161267-002 -7 .4785753-002 

0 . 0000000*000 0 . 0000000*000 0 . 0000000*000 



£= 0.361 



ID 


T,K 


MOL/L 


CALC 


PCNT 


X ■ 


YX 


YC 


YDIP 


1 


93.512 


27.910 


27.912 


-0.01 


0.97164 


0.84050 


0.84699 


-0.00649 


1 


97.173 


27.605 


27.605 


0. CO 


0.93499 


0.84830 


0.84764 


0.00066 


1 


10 1.434 


27.243 


27.240 


0.01 


0.89233 


0.85043 


0.84836 


0.00207 


1 


105.165 


26.916 


26.916 


0.00 


0.85497 


0.84900 


0.84896 


0.00003 


1 


109.611 


26.527 


26.521 


0.02 


0.81045 


0.85231 


0.84964 


0.00267 


1 


113.772 


26.146 


26.144 


0.01 


0.76879 


0.85112 


0.85023 


0.00089 


1 


117.746 


25.782 


25.775 


0.03 


0.72900 


0.85327 


0.85074 


0.00252 


1 


121.893 


25.388 


25.380 


0.03 


0.68748 


0.85373 


0.85123 


0.00249 


1 


125.825 


24.999 


24.995 


0.02 


0.64811 


0.85272 


0.85165 


0.00107 


1 


129.657 


24.611 


24.610 


0.01 


0.60974 


0.85236 


0.85201 


0.00035 


10 1 


130.000 


24.558 


24.575 


-0.07 


0.60631 


0.84803 


0.85204 


-0.00400 


1 


13 3. 773 


24.186 


24.182 


0 . 01 


0.56853 


0.85313 


0.85233 


0.00080 


1 


133.678 


24.176 


24.171 


0.02 


0.56748 


0.85338 


0.85234 


0.00104 


102 


135.000 


24.041 


24.052 


-0.05 


0.55625 


0.85002 


0.85242 


-0.00240 


1 


1 39. 352 


2 3.578 


23.579 


-0.C0 


0.51267 


0.85249 


0.85266 


-0.00017 


103 


140.000 


23.50C 


23.507 


-0. C3 


0.50618 


0.85132 


0.85269 


-0.00137 


104 


145.000 


22.932 


22.934 


-0.01 


0.45612 


0.85255 


0.85285 


-0.00030 


1 


145.448 


2 2 . 8 b 0 


22.881 


-0.00 


0.45163 


0.85272 


0.85286 


-0.00013 


105 


150.000 


22.329 


22.328 


0.01 


0 . 40606 


0.85315 


0.85287 


0.00027 


60 1 


15 J. J00 


22.332 


22.328 


0.02 


C .40606 


0.85357 


0.85287 


0.00070 


1 


151.553 


22.130 


22.132 


-0.01 


0.39051 


0.85255 


0.85285 


-0.00030 


106 


155. JC0 


21.686 


21.682 


0.02 


0.35599 


0.85341 


0.85274 


0.00067 


1 


15 7.199 


21.375 


21.363 


-0.02 


0.33398 


0.85201 


0.85263 


-0.00062 


107 


lo J. 000 


20.991 


20.986 


0. C2 


C. 30593 


0.85311 


0.85242 


0.00069 


1 


lb 3.659 


20.428 


2 0.438 


-0.05 


0.26930 


0.85048 


0.85205 


-0.00157 


108 


165.000 


20.234 


20.227 


0.03 


0.25587 


0.85289 


0.85188 


0.00102 


1 


169. 326 


19.492 


19.502 


-0.05 


0 .21256 


0.84962 


0.85117 


-0.00155 


109 


170.000 


19.387 


1 9 . 3 e2 


0.03 


0.20581 


0.85180 


0.85104 


0.00076 


110 


1 75.000 


18.417 


18.414 


0.01 


0 . 15574 


0.85022 


0.84981 


0.00042 


602 


175.000 


18.42C 


16.414 


0.03 


C . 15574 


0.85080 


0.84981 


0.00100 


1 


175.053 


18.390 


18.403 


-0.07 


0.15521 


0 . 84 777 


0.84979 


-0.00203 


111 


16 J. 000 


17.249 


17.250 


-0.00 


0 .10568 


0.84786 


0.84800 


-0.00014 


bO 3 


180.000 


17.254 


17.250 


0.02 


0.10568 


0.84367 


0.84800 


0.00067 


112 


16 4. j u 0 


16.054 


16.061 


-0.04 


0.C6563 


0.84466 


0.84588 


-0.00121 


604 


184.000 


16.060 


16.061 


-0.00 


0 . 06563 


0.84575 


0.84568 


-0.00013 


6 


1 65. J 30 


15.710 


15.688 


0.14 


0.05532 


0.84922 


0.84517 


0.00405 


113 


186.000 


15.286 


15.299 


-0.08 


0.04561 


0.34203 


0.84442 


-0.00240 


b 


1 6 6 . 0 30 


15.3C2 


15.286 


0.11 


0 .0453 0 


0.84765 


0.84440 


0.00325 


6 


1 8 7 . 0 31 


14.836 


14.826 


0.07 


0 .03528 


0 • d 45 72 


0.84351 


0.00221 


5 


187. *89 


14.582 


14.589 


-0.05 


0.03070 


0.84158 


0.84305 


-0.00147 


114 


186.000 


14.284 


14.298 


-0.10 


0.02558 


0.33922 


0.84248 


-0.00327 


6 


18 6.0 31 


14.285 


14.279 


0.04 


0.02527 


0.84388 


0.84245 


0.00143 


6 


189.032 


13.578 


13.578 


0.00 


0.01525 


0.84114 


0.84113 


0.00002 


5 


1 89. 331 


13.3Gu 


13.315 


-0.11 


0.01226 


0.83640 


0.84065 


-0.00425 


5 


189. 7C7 


12.879 


12.920 


-0.31 


0 .00849 


0.82667 


0.83996 


-0.01329 


6 


190.032 


12.474 


12.477 


-0.02 


0 .00524 


0.83812 


0.83924 


-0.00111 


5 


190.066 


12.367 


12.418 


-0.17 


0.00488 


0.83082 


0.83915 


-0.00833 


7 


190.070 


12.440 


12.415 


0.20 


0.00466 


0.84908 


0.83914 


0.00994 


7 


190.170 


12.270 


12.235 


0.28 


0.00385 


9.85369 


0.63887 


0.01462 




NP - 


49, RMSPCT 


= 0.084 













APPENDIX F. (Continued) 



NATIONAL BUREAU Of STANDARDS, CRYOGENIC ENGINEERING LABORATORY 


PROJECT NO. 


FILE NO. 




PAOE 


- LABORATORY NOTE 


2750364 


73-5 




12 


oubject Orthobaric Densities of Ethane, Methane, Oxygen and 


NAM£ R.D, Goodwin 




Fluorine 


DATE _ 

SeDt 


. 18. 1973 





T able 


6 


9 


Comparison of ethane liquid densities 


. 














u. 


OJ 


O' lO 


o 


4 O' fs 


ro 4 csj 


o m 


rH 


co rs 


4 rs cvi rs 


i0 


ffl 


ro 


CVI 


(VI 


O' 


00 


K 


in 


ro 


IH 


r-4 


fv. 


to 


O' N. «0 4 O' tf\ to 


rs n. 


lO 


rp4 


in 


U> 


UJ CSJ O' 


in 




O' 


u> 




ro 


fs 


O 




Q 


<M 


IfN 


R^ 


4 


K a s 


oj .u 4 is o' 


CO 


N. 


in 


ro 


rIN ^ 


ps 


« 


30 


in 


ro 


© 


o 




ro 


« 


>- 


rH 


o 


o 


o 


o 0 a 


O 0 0 


O 0 


o 


© 


O 


o 


0 0 0 


o 


o 


o 


o 


e 


o 


o 


G 


a 


o 




O 


o 


© 


© 


a o o 


O 0 o 


o & 


o 


o 


o 


o 


o o o 


0 


0 


© 


0 


© 


O 


a 


O 


o 


o 




© 


a 


© 


O 


O 0 0 


O 0 o 


o o 


o 


© 


o 


0 


o ® © 


© 


© 


© 


© 


o 


© 


a 


© 


© 


o 




• 


i 






l l 


1 












1 1 


1 


• 


1 


• 


l 












a 


ro 


ro 


CO 


h © o> O' oun ir\ 


O' ® 


in 


e 


O' 


4 




ro 


O' 


rs 


H 


-h in 


fs O' OJ 


rH 


>• 


4 


fs 


ro 


4 


C\J vD O H tH 


o o 


CVJ 


O' H 


o 


4 "H CVJ 


4- 


CVJ 


® 


U> 


cvj n. 


« 


ro 


0J 


rH 




to 


® 


ro 


ro 


4 fs fs 


CO T-» J’ 


rs t-i 


ro 


UJ 


o 


ro 


ms® 


30 


CO 


uj 


ro 


N- 


rH 


4 00 


cr» 


4 




to 


to 


4 4 


4 4 4 


4 in in 


in ® 


co 


00 




O' 


O' O' O' 


O' 


O' 


O' 


O' 


« 


® 


rs fs 


UJ 


u> 




fs 


fs 


rs 




is rs rs 


fs N> P» 


fs rs 


N. 


rs 


Is 


K. 


is N- rs 


N. 


N> 


IS 


N- 


rs 


rs 


is. s- 


fs 


rs 




o 


© 


© 


© 


O O 0 


0 0 o 


o © 


o 


o 


o 


a 


o o o 


o 


o 


© 


o 


o 


o 


O 


o 


o 


o 



X 




4 


4- *4 


4 o 


vO 


in O' rs 


O' ro 


VJD 


CO 


u> 


® 


fs 


vO 


O' 


V. 


o 


4 


O' 


® 


ro 


O vO 


N. 


4 


>- 


ro 


O' o- ro 


CVJ 


4 


rl 


•rH ® 


4 


Is 


® 


CO 


o 


rs 


U> 


o 


O' 


OJ 


cvj 


fs 


N. 


UJ 


in 


O' 


H 


rH 


CVJ 


CVJ 




rH 


CVJ 


4 ® 


N. 


vO 


50 


in cvj 


CO 


4 


CD 


rH 


4 


in 


vD 


Is 


4 


ro 


h a> 


® 


rs 


ro 


rH 


in 


4 


CVJ 


CVJ 




CVJ 


ro 


4 4 


ro 


4 


4 


4 in in 


UJ 


O' O' 


O' 


O' 


O' O' O' O' 


O' ® 


« 


® 


« 


® 


fs fs 


rs 


N. 




rs 


N- N. fs 


fs 


rs 


fs 


fs rs 


rs 


fs 


rs 


rs 


fs 


rs 


rs 


rs 


N- 


fs 


fs 


fs 


rs 


rs 


N. 


rs 


fs 




N. 


N* 




0. 


0. 


o © 


o 


© 


o 


o o 


o 


o 


o 


o 


o 


o 


CD 


o 


o 


o 


o 


0. 


o 


O 


0. 


o 


CD 


0. 


o 


0 . 













X 


4 


cvj rs ® 


O' in 


a rH ro 


4 


rH 


in 


ro th 


O' fs 


in ro 


rH a> 


rs 


UJ 


4 


ro 


UJ CVJ 


« 


4 


o 












® 


O 


4 CVJ 


ro 


CVJ O' 


vD ® o 


CVJ 


O 


ro 


O' in 


CD 


vO 


CVJ ® 


CVI 


rs 


ro 


O' in ro 


N* rH 


4 


® 


in 












4 


ro 


m in 


cvj ro O' 


mom 


O' 


rH 


in 


® CVJ 


u> o' ro uj 


CVJ 


in 


O' 


CVJ 


u> ro 


CD 


in 


© 


ro 












O' 


in 


r4 H 


o 


® rs 


rs m cvj 


O' vO 


ro 


® 4 O' 


4 


o in 


4 


O' 


4 


CD 


in ro 


rH r-^ 


o 


© 


• 












O' 


O' O' O' O' 


® ® 


® ® ® 


s 


in 


in 


4 4 


ro 


ro 


ro cvj 


CVJ 


rH 


rH 


H 


CD 


o 


a o 


© 


o 


o 








o 






















































O 


© 




o 


O 


o o 


o 


a o 


0 

0 

0 


CD 


O 


o 


CD O 


CD 


CD 


o o 


o 


CD 


CD 


CD 


O 


CD 


o © 


© 


CD 


II 






0 

1 


o 

♦ 
















































UJ 






4 


o 






















































O' 


© 
















































•V 






ro 


o 
















































in 






CVJ 


o 
















































UJ 


O 


O 


vO 


o 
















































hH 


O' 


o 


rs 


o 
















































*- 


O' 


® 


CVJ 


© 


p- 


O 


rH 


rH (\J 


ro 


CD O 


CVJ -rH ro 


rs 


o 


O' 


® in 


rH 


in 


ao « 


u» 


ro 


ro 


4 


in 


rH 


▼h in 


® 


to 


HH 


ao 


vO 


• 


• 


z 


O 


O 


o a 


CD 


o o 


CD CD CD 


o 


CVJ 


rH 


rH rH 


rH 


CD 


O rH 


CVJ 


ro 


ro 


CVJ 


rH 


CD 


© o 


© 


rH 


in 


• 


• 


ro 


o 


o 














































z 


O' 


H 


1 




CL 


O 


o 


o o 


O 


o o 


0 

0 

0 


CD 


CD 


CD 


a o 


o 


a 


o o 


o 


o 


CD 


o 


o 


CD 


CD O 


o 


O 


UJ 


® 


CVJ 








• 


1 




» 


1 


i 














1 1 


1 


1 


i 


( 


1 










o 






H 


CD 


















































II 


II 


o 


O 
















































o 






o 


o 
















































EH 


0 . 


CL 


1 


4- 


o 


o 


in 


4 CVJ 


CVJ 


CVJ vO 


ricrm 


cvj 


® 


CD 


in cvi 


s 


un 


rs 4 


CVJ 


UJ 


UJ 


O' 


4 ® 


ro u> 


© 


O 


=3 


(Z 


a: 


tH 


a 


_l 


4 


rH 


cvj cvj 


CVJ 


rs 4 


CVJ •H t-( 


rH 


ro 


rH 


30 4 


rs 


<x> 


in ® 


O' 


ro 


-O 


® 


rH G** 


4 O' ro 


OJ 


a 


1- 


t- 


in 


o 




u> 


ro 


o o 


O' rs s 


s in ro 


rH 


rH 


O' 


st O 


in 


CD 


in O' 


rs 


rH 


ro 


4 


ro 


4 


in .h 


IS 


® 


EH 


u- 


o 


ro 


CD 


o 














































_j 






in 


O 




rH 


rH 


rH rH 


CD 


O O 


CD CD CD 


CD 


® 


s 


rs N. 


UJ 


U) 


in 4 


4 


4 


ro 


OJ 


rH 


o 


9 

9 


CO 


rs 




•* 


•* 


U) 


o 




CVJ 


CVJ 


CVJ CVJ 


CVJ 


CVJ CVJ 


CVJ CVJ CVJ 


C'J 


rH 


rH 


rH rH 


H 


rH 


rH rH 


•H 


rH 


rH 


rH 


rH 


rH 








Q 


CJ 


CD 


CO 


u 
















































UJ 


ro 




O' 


o 
















































r- 


ro 


GO 


• 


• 


















































• 


t 


CVJ 


o 
















































ct 


in 


U3 






-I 


O' 


ro 


in v© 


in 


■H S 


rs -h ro 


U3 


in 


4 


V© ® 


in 


ro 


in is 


ro 


O' 


cvj 


® 


fs 


O' 


4 »H 


rs 


o 


3 


Q 








V. 


ro 




CVJ CVJ 


S 4 


.-4 CVJ CVJ 


CVJ 


rs 


4 


rH vXD 


O' 


O' 4 in 


in 


® 


4 


in 


O' O' 


4 O 


ro 


ro 


>- 


ro 




H 


0 




U> 


ro 0 o 


o' n. rs 


n. in ro 


rH 


rH 


O' 


in o in 


o in O' rs 


0 


ro 


4 CVJ 


4 


in cvi rs 


e 


<£ 






CD 


CD 


o 














































in 


II 


II 


o 


o 


X 


H 


rH 


•H »U 


CD 


O CD 


o a a 


o 


® 


rs 


N N 




uj in 4 


4 


4 


ro 


CVJ 


rH 


O 


6 

6 


« 


rs 








1 


+ 




CVJ 


CVJ 


CVJ CVJ 


CVJ 


CVJ CVJ 


CVJ CVJ CVJ 


CVJ 




rH 


rH rH 


rH 


rH 


■H T-< 


rH 


rH 


rH 


H 


rH 


rH 








UJ 


E— 


k- 


ro 


o 
















































z 


cr 


Cfc 


o 


a 
















































< 


o 


o 


in 


o 
















































X 


u- 


a 


ro 


o 














































© 








IS 


o 


V 


a 


0 


o o 


« 


CD CD 


ro o' 4 


o 


O 


© 


o a 


CD 


CD 


o o 


© 


O 


o 


o 


O 


o 


o o 


o 


Ul 






H 


© 


•t 


.-i cvj •h in 


CVJ 


in rs 


« ro O' 


U' 


rs 


o 


O CD 


o 


O 


a o 


in in 


in 


in 


in in 


in in 


in in 








UD 


a 


1- 


o 


o 


r4 rH 


O' o s 


4 o in 


rH 


4 


O 


O 0 


O 


o 


o o 


rH 


rH 


rH 


rH 






rH rH 


rH 


rH 








rs 


CD 




rH 


a a ® 


® in in 


uj cvj rs R* 


4 


CD 


o o 


o 


CD 


O CD 


ro 


ro 


ro 


ro 


ro 


ao 


oj ro 


4 in 














O' 


o 


O © 


H 


-1 r-t 


«r-l CVJ CVJ 


ro 


® 


O' 


O rH 


(M 


ro 


4 in 


in 


U) 


rs 


® O' 


O' o 0 


o 


O 
















t4 


H H 


rH 


•H •H 


rH r4 H 




rH 


rH 


CVJ CVJ 


CVI 


CVI 


CVI CVJ 


CVJ 


CVJ 


CVJ 


CVJ 


CVI 0J 


ro ro 


ro 


ro 












a 


4 


4 


4cvjro4cvjrororo 


ro 


in in 


in in 


in 


in 


in in 


0 


o 


0 


o 


o 


a 


a o 


o 


a 












M 




rH 


R^ RH 




rH H 


H H H 




rH 


rH 


r4 H 


rH 


rH 


H rH 


rH 


r=4 






rH 


rH 


rH H 


rH 


•H 



oaiLVIE PNBS0. INC.. BROOKLYN 17. N. Y. 



STOCK NO. 4 BO 



90 



APPENDIX F. (Continued) 



NATIONAL BUREAU Of STANDARDS, CRYOGENIC ENOINORINO LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

27*50364 


PI LB NO. 

73.5 


PAQf 

13 


subject Orthobaric Densities of Ethane, Methane, Oxygen and 

Fluorine 


HAM£ R . D . Goodwin 




DATE 

Sent. IB. Km 



Table 7. Ethane liquid data not used for least squares,, 



u. 


© 


•H © 


® 4 Ps 


in 


Ps 


CM © 


PO O' 9 


9 y-8 y>8 CM 


CM 


4 


po 


« CM 


CM 


s4 


© 


N- 


© © ps 


© 


<5*4 


© 


CM 


4 




O' 




CM 


O' © 


© 


© 


p* © cm 


4 4© 


« 4 in © 


© a 


a 


Ps K 


«H) 


© 


a 


P» 


© 


© 


© 


*4 




O' 




© 


Q 


*■4 


PO 


© 


© 4 


in 


© 


CM 


CM 4 


HCPN 


*-4 0® 


© 


in 


in cm 


© 


o 


*-t © 


© 


in 


o 


O* Ps 


4 


CM 


94 


fs 


9=$ 


>■ 


CM 


80 


ro 


*-» S3 


CM 


PO 


4 


in ss 


© © **8 


H rl O 


a 


o 


9 


o 


© 


o 


e 


m 


CM 


© s. 


© 


a 


S 


© 


9 


o 








o 


a 


© © 


© 


© 


o 


© © 


O © 


9 9© 


ra 


& 


© 


O 


© 


© 


© 


a 


© 


o 


*4 


O 


© 


© 


& 


© 


© 


o 




© 


© 


o 


© © 


© 


© 


© 


© o 


© © © 


O © © 


© 


© 


O 


m 


o 


o 


© 


© 


© 


© 


© 


© 


a 




o 


O 


© 


© 






1 


1 


1 












e » « 


1 


8 


1 


8 


1 








8 


8 


1 


8 


8 


6 


8 








U 


tvj 


ro 


4 


4- © 


© 


4 


O' © o' 


tH O' © 


O' CM © 


4 


cm in 


m © 


CM 


ro 


*-i 


CM 


*-» in 


O' CM 


S 


4 


CM 


in 


m 


>• 


fs 


o © 


•4 ESI O' 9 •H 


4 © 




© 


© 


ro 


CM 


t4 




© 


© ro 


in O' 


+4 


is 


p- 


a 


© 




© 


o 


o 


© O' © 


PO 


P. 


® 4 O' ffl M 


noN 


4 




fs 


4 CM O' 


p- 


4 


sSl 


© 


in 


fO 


© 


s. 


4 


**8 fs 


4 




PO 


© © 


Ps P*. 


© 


O' 


O' O' O' © Ps © 


O' O' © 


© © 


p. p. p. 


© 


© 


© 


4 


© 


fo 


O' 


O' © © 


C 


ps IN. 




fs 


fs 


Ps 


fs fs ps 


Is 


P- fs Ps 


P> fs P- 


ps p- ps. 




Ps 


Is fs 


P* 


n- 


fs 


N- 


fs 


fs 


Ps 


fs 


P- 


fs 


Ps 


IN 


Ps 




o 


& 


o 


© 9 


© 


© 


© 


© 9 


0. 

0. 

0. 


0 9 0 


© 


© 


© 


© 


© 


O 


o 


9 


© 


O 


© 


© 


© 


9 


© 


© 


O 


© 



X 


fs 


CM 


© 


© 


r< 


© O' 


© Ps 


in 


ro 


© © O' Y"C IS 


CM 


© 


*-i cm O' 4 in 


CM 


© 


4 © 


4 © 


CM CM 


Ps 


K 


O' 


> 


lO 


O' fo 


4 


■v-4 


in © 


O' O' *-8 




4 O' K © © 8s 




© © in o' cm 


<H1 


fs 


SS 


© 


© 


PO 


a © 


© O' © 




© 


vO 


CM 




4 CM O' 


+4 is© © 


*-8 0© 


© © 


CM CM *=• O' 


« 


9 


© 


CM 


4 


4 


80 


80 CM 


ro 


4 © 




© 


▼4 CM 


© 


o 


*■8 cm 


ro © 


© Ps 


© © 


® ® fs 


IV (S. 


Ps tv fs. © 


© fs 




© 


© 


© © 


© © 


© 


© 


© 




© 


P» 


P- 


fs 


ps 


© « 


© © 


Si 


© 


© ps 


Ps fs p. 


fs 


fs 


Ps Ps Ps Ps 


fs 


Ps 


K 


© © 


fs 


N. 


fs fs 


fs 


fs 


fs 




© 


© 


© 


s 


o 


© © 


o o 


© 


© 


© © 


9 0 0 


© 


9 


0 9 9 9 


9 


o 


o 


© 


o 


© 


o 


O 9 


O 


Q 


O 



X 

1 


© 


4 


9 


© n 


O' © CM 


© © 


4 fs 


CM © O 


4 4 © Y*c fs ® © 


4 


© © © CM © 


o 


4 


4 © 




^*8 


CM 


4 


© ps 


O' 


9 


CM 


4 © 


t 4 fs fO fs © 4 


© CM © fs 9 4 






*H O' IS 


p. © 


4 


© 


CM © 


Ps 


PO 


© Ps 


4 


<H © 


© 


PO 


© 


fs 


*-» 4 9 CM O' © 


4PO«44S©POO 


© fO O' CM O' © 


4 80 




4 


© 


© 


© 


Ps 


a 


Ql! 


O' o 


H 




CM O 


9 fs © 


4 fO CM *4 *-l 9 


o 


« CM © fs 


9 Ps 


m 


4 


© 


CM 


H 


O' 


<i£> 


fs 


© © 


4 


PO 


PO 


CM 




o 


© © 


*-10 9 


9 9 9 9 0 0 


o 


£3 


O' O' O' 


© 


© 


© 


© 


© 


© 


0. 


© 


9 


© 


o 


© 


© 


a 


O 


© 


e 


o o 


0 0 9 


0 9 0 0 9 0 


9 


© 


0< 
0 , 
0. 


© © 


© 


© 


© 


o, 


o 



N* 


© 




rtO'QW 


fs 


© o 


© 


© 


O CM 


O' fO 4 CM 


<H © fs CM CM 


fO 


O' 


© 




© O' 




Ps 


© 


fs 


© 


O' 


2 


CM 


CM 


4 


CM 




© 


a 


4 O 


© 


fO 


O CM 


4 4 PO 


PO 


CM 


^3 


© 


o 


© 


© 


& 


© 




*H PO 


PO 




© 


© 


CM 


PO 


o 

QL 


© 


© 


© 


© 


© 


© 




■H CM 


PO 


(O 


4 9 


0. 

0. 

0. 


o 


© 


© 


© 


© 


© 


© 


o 


© 


Q> 


O O 


9 


© 


© 


© 


© 


© 






8 


8 


1 
















8 1 1 


8 


8 


8 


8 


1 








8 


8 


8 8 


8 


8 


9 









o 


© 


fO 


O' © 


o © 


fs 


Ps 




CM 


O' CM PO 


4 © O' 


4’ 


4 © 


9 CM O 


© 9 


CM 


PO 


(O 


4 


© O' 


4 


4 © © 


J 




O' © 


© 


CM 


© 


fs 


© © 


O' CM *-l « 


© 4 9 


PO 


O' © 


4 O' 80 


O' CM 


CM 


CM 


CM 


u 


^ O 


PO 


O' © 4 


o 


PO 


© 


© 




PO 


4 


© 


© 


PO fs 


P- *-( © 


4 O' PO O' 


4 © 


© *H fs 


PO © 


vH) 


PO 


© 


4 


O' ro 


O' 


4 O' © 


t4 


o O' 


O' 


© 


Ps 


© 


© 


4 


CM 


rlBP 


CM *-l *-8 


© 


9 O' 


O' O' © 


© fs 


*4 


*4 


■H CM 


H 


a 


o O' © 




CM 


CM 


t-4 


H 


■Y-l 


*-c 












r4 *4 *4 




▼*3 






CM 


CM 


CM 


*-4 


<H r4 


*4 


H 



9 




O' fs 


o 


p* 


© 


© 


nj 


© 


PO 


CM © O 


ro © © 


O' CM P» 4 9 CM 


fs 


fs 


© 


© O 4 O' 


© 


4 


CM 


9 © 


s. 


Ps 


4 fs 


© 


PO 


© © 


© 


PO 


© 


CM *-8 9 


CM © Ps 


O' K po fo a* po 


O' CM 




O' O' PO 9 


O' 


CM 




© Ps 


sJ 


ro 


© P* 


O 


PO 


© 


fs 


ps 


© 




n m vO 


4 © CM 


© 4 O' © r-8 Ps 


ro 


© 




CM 4 4 S' CM 


O' © 


O' © 


s 


*4 


o O' O' 


© 


Ps 


© 


© 


4 ro 


CM © Ps 


CM *N 


O 9 O' © O' © 


© 


ps 


sH 


■^=4 ^=4 CVS ^=4 




a 


9 


O' O' 




CM 


CM <H 


v4 


■*4 


■H 






0=4 




^■4 <*4 


^4 v4 *4 








CM 


CM CM *H *-) 


*4 


•H 







X 


o 


O 


o 


9 


o 


© 


9 


9 


© 


O 


9 9 9 


© 


9 


9 


o 


9 


9 


9 


9 


Q 


aeiM 


Ps 




9 


=) 


O 


9 


© 


O 


S' 


91 


o 


® 


© 


9 


© 


o 


£3 


9 


S'- 


© 


0 9© 


9 O' © fs Ps © 


© © © © 


© ps 


*-8 © 9 O' © 


Ps fs 


© © 


p- 


o 


o 


o 


O 


9 


© 


© 


9 


9 


9 


o a N N *8 N 


© 


*-8 © 


▼*8 






© 


*■8 fO 


© CM CM 






© 




© 


*-8 




o 


C3 


a 


® 


o 




a 


9 


© 


& 


0 9© 


80 


© 


PO 


© 


S' 


O 


< M 


PO 


4 


4 


© 


© 




4 


80 


© 


PO 


© 


© 


© 


CM 




9 


CM 


4 


© 


© 


© 


CM 


4 


© 


© 


S' 9 © 


© 


© 


© 


O' 


O' 


® 


® 


9 


9 


® 






O* 


O' 


© 


© 


O' 


O' 


O' 


© 


© 




■v-4 


^4 




*4 




CM 


CM 


CM CM 


CM 


CM PO PO 


CM 


CM 


CM 


CM 


CM 


80 


80 


ro 


PO 


PO 


PO 


y4 






CM 


CM 


CM 


CM 


CM PO 


80 


a 


o> 


m 


O' 


C7» 


O' 


O' 


O' 


O' O' 


®* 


9 

9 

0 




*4 




*4 


■rt 






*4 


*4 






I'v 


PO 


PO 


© 


© 


© 


© 


© © 


© 


M 
























*4 


*4 


*N 






f*4 




Vi 


*4 


*-8 


<94 






‘H 




94 


*-8 


*-8 


v4 


<rO 


t-8 



osilvik rime*, me.. Brooklyn it. n. ▼. 



STOCK NO. 4*0 



91 



APPENDIX F. (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

14 


subject Orthobaric Densities of Ethane , Methane, Oxygen and 

Fluorine 


name r .D. Goodwin 


DATE 

Sent. 18. 1973 



Table 8. Calculated oxygen liquid densities 



T,K 


R, MOL/L 


54.351 


40.830 


56.300 


40.603 


58.000 


40.326 


60.000 


40.049 


62.000 


39.770 


64.000 


39.491 


66.000 


39.210 


68.000 


38.928 


70.000 


38.644 


72. 000 


38.358 


74.000 


38.071 


76.000 


37.782 


78.000 


37.491 


80.000 


37.197 


82.000 


36.901 


84.000 


36.602 


86.000 


36.301 


83.000 


35.996 


90.000 


35.688 


92.000 


35.377 


94.000 


35.062 


96.000 


34.742 


98.000 


34.418 


1 0 0.0 00 


34.090 


102.000 


33.756 


104.000 


33.417 


106.000 


33.072 


108.000 


32.720 


110.000 


32.361 


112.000 


31.995 


114.000 


31.620 


116.000 


31.236 


118.000 


30.842 


120.000 


30.438 


122 .000 


30.021 


124.000 


29.591 


126. 000 


29.147 


128.000 


28.685 


130.000 


28.205 


132.000 


27.704 


134.000 


27.179 


136.000 


26.625 


133.000 


26.037 


1 4 0 . 0 Q 0 


25.410 


142.000 


24.733 


144.000 


23.993 


146.000 


23.170 


143.000 


22.230 


150.000 


21.108 


152.000 


19.647 


154.000 


17.104 


154.576 


13.63C 



DR/OT 


D2R/DT2 


-0.1377 


-0.00019 


-0.1380 


-0.00021 


-0 .1385 


-0.00023 


-0 .1390 


-0.00026 


-0.1395 


-0.00029 


-0.1401 


-0.00032 


-C .1408 


-0.00035 


-0 .1415 


-0.00038 


-0.1423 


-0.00041 


-0.1432 


-0.00045 


-0 .1441 


-0.00049 


-0.1451 


-0.00053 


-0 .1462 


-0.00057 


-0 .1474 


-0.00061 


-G .1487 


-0.G0066 


-0 . 1500 


-0.00071 


-0.1515 


-0.00077 


-0 .1531 


-0.00083 


-0.1548 


-0.00089 


-0 .1567 


-0.00096 


-0.1586 


-0.00103 


-0 .1608 


-0.00111 


-0.1631 


-0.00119 


-0 .1655 


-0.00129 


-0 .1682 


-0.00139 


-0 . 1711 


-0.00150 


-0 .1742 


-0.00162 


-C .1776 


-0.00176 


-0.1813 


-0.00191 


-0 .1852 


-0.00207 


-C .1896 


-0.00226 


-C .1943 


-0.00248 


-0.1995 


-0.00272 


-0 .2052 


-0.00300 


-0.2115 


-0.00332 


-0.2185 


-0.00369 


-0.2263 


-0.00413 


-0.2351 


-0 .00466 


-0 .2450 


-0 .00530 


-0.2564 


-0.00608 


-0.2695 


-0.00707 


-0.2848 


-0.00833 


-0 . 30 31 


-0.01000 


-0 .3253 


-0.01229 


-0 . 3529 


-0.01555 


-0 .3886 


-0.02051 


-C .4370 


-0.02869 


-0 .5079 


-0.04396 


-0.6253 


-0.07893 


-0 .8749 


-0.2C084 


-2.1732 


-2.34479 


0 .0000 


0.00000 



OaiLVIK PRKS®. INC.. BROOKLYN 17. N. Y. 



•TOCK NO. 480 



92 



APPENDIX F . (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

?7RmA4 


FILE NO. 

73-5 


PACE 

15 


subject O r thobaric Densities of Ethane, Methane, Oxygen and 

Fluorine 


name q .Goodwin 


° ATE Sent. 18. 1973 



Table 9. Calculated fluorine liquid densities. 



T,< 


R, MOL/L 


DR/DT 


D2R/DT2 


53.481 


44.862 


-0.1573 


-0.00054 


54.000 


44.781 


-0.1576 


-0.00055 


56.000 


44.464 


-C .1587 


-0.0005b 


58.000 


44.146 


-C .1599 


-0.00061 


60.000 


43.825 


-0.1612 


-0.00065 


62.000 


43.501 


-0.1625 


-0.00068 


64.000 


43.174 


-0 .1639 


-0.00072 


66.000 


42.845 


-C .1654 


-0.00076 


68.000 


42.513 


-0.1670 


-0.00081 


70.000 


42.177 


-0 .1686 


-0.00085 


72.000 


41.838 


-0.1704 


-0.00090 


74.000 


41.496 


-0.1722 


-0.00095 


76.000 


41.149 


-0.1742 


-0.00101 


78.000 


40.799 


-0 .1763 


-0.00107 


80.000 


40.444 


-0 .1785 


- C • 0 0 11 4 


82.000 


40.085 


-C . 18 C 8 


-0.00121 


84.000 


39.720 


-0.1833 


-0.00129 


86.000 


39.351 


-0 .1860 


-0.00137 


88.000 


38.976 


-0 .1888 


-0.00146 


90.000 


38.596 


-0 .1918 


-0.00156 


92.000 


38.209 


-0.1951 


-0.00167 


94. 000 


37.815 


-0 .1985 


-0.00179 


96.000 


37.415 


-0 .2022 


-0.00192 


98.000 


37.006 


-0 .2062 


-0.00207 


10 0.0 00 


36.590 


-C . 2105 


-0.00223 


102.000 


36.164 


-0 .2151 


-0.00242 


104.000 


35.729 


-0 .2202 


-0.00262 


10 6. JQQ 


35.283 


-0 .2257 


-0.00286 


108.000 


34.826 


-0 . 2316 


-0.00313 


110.000 


34.356 


-0 .2382 


-0.00344 


112. 000 


33.873 


-0.2454 


-0.00380 


114.000 


3 3 . 3 74 


-C .2534 


-0.00422 


116.000 


32.858 


-0.2624 


-0.00472 


118.000 


32.324 


-0.2724 


-0.00533 


120.000 


31.768 


-C .28 38 


-0.00606 


1 2 2 . J 0 0 


31.188 


-0 .2967 


-0.00696 


124.000 


30.579 


-0 . 3118 


-0.00811 


126.000 


2 9 . 9 3 9 


-0 .3294 


-0.00959 


128.000 


29.26G 


-0.3505 


-0.01156 


1 3 J . J 0 0 


28.534 


-0 .3762 


-0.01428 


132.000 


27. 751 


-0.4084 


-0.01821 


134.000 


26.894 


- 0 .4504 


-0. 02426 


13o. 000 


25.939 


-0.5081 


-C .0 3440 


138.000 


24.843 


-0.5939 


-0.05377 


140.000 


23.524 


-0.7400 


-0.09999 


142.000 


21.770 


-1.0696 


-0 .2770 4 


144.000 


18.328 


-3.6894 


-7.49794 


144. 310 


15.150 


0 . 0 0 0 0 


0.00000 






OGILVIE PRESS. INC., BROOKLYN 17. N. Y. 



STOCK NO. 480 



APPENDIX F. (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

16 


subject Orthobaric Densities of Ethane, Methane, Oxygen and 

Fluorine 


name r ,D .Goodwin 


DATE Sept. 18, 1973 



Table 10. Calculated methane liquid densities 



T,K 

90.680 

92.000 

94.000 

96.000 

98. 000 
1 0 0 . 0 00 

102.000 

104.000 

106.000 

108.000 
11 J . 000 

112.000 

114.000 

116.000 

118.000 
12 0.300 

122.000 

124.000 

126.000 

128.000 

1 3 0 . 000 

132.000 
1 34. 300 

136.000 

138.000 

140.000 

142. 0 00 

144. 000 

146. 000 

148.000 
15 0. J00 

152. 000 

154.000 

156. 000 

153.000 

160.000 

162.000 

164.000 

166.000 

163.000 

170.000 

172. 000 

174.000 

176.000 

178. 000 

180.000 

182 .0 00 
184. jCQ 

186.000 

188.000 

190.000 
190.555 



OGILVIE PRESS. INC.. BROOKLYN 17. N. Y. STOCK NO. 430 



R, MOL/L 


DR/DT 


D2R/DT2 


28.147 


-C .0825 


-0.00031 


28.038 


-0.0829 


-0.00032 


27.871 


-0 .0836 


-0.00033 


27.704 


-0 .0842 


-0.00035 


27.534 


-0.0849 


-0.00036 


27.364 


-0 .0857 


-0.00038 


27.192 


-0 .0865 


-0.00040 


27.018 


-0.0873 


-0.00041 


26.843 


-0.0881 


-0.00043 


26.665 


-0 .0890 


-0.00045 


26.486 


-C .0899 


-0.00048 


26.306 


-0 .0909 


-0.00050 


26.123 


-0.0919 


-0.00052 


25.938 


-0 .0930 


-0.00055 


25.751 


-0 .0941 


-0.00058 


25.561 


-0.0953 


-0.00061 


25.369 


-0.0966 


-0.00064 


25.175 


-0.0979 


-0.00068 


24.978 


-C .0993 


-0.00072 


24.778 


-C .1008 


-0.00076 


24.575 


-0.1023 


-0.00080 


24.368 


-0.1040 


-0.00085 


24.158 


-0.1057 


-0.00090 


23.945 


-0 .1076 


-0.00096 


23.728 


-0.1096 


-0.00103 


23.5G7 


-0.1117 


-0.00110 


23.281 


-C .1140 


-0 .00117 


23.051 


-0 .1164 


-0.00126 


22.815 


-0.1190 


-0.00136 


22.574 


-0.1219 


-0.00147 


22.328 


-0 .1249 


-0.00159 


22.0 75 


-u .1282 


-0.0G173 


21.815 


-0.1318 


-0.00188 


21.547 


-0 .1358 


-0.00207 


21.271 


-0 . 1401 


-0.00228 


2G.986 


-0 .1449 


-0.0C253 


20.691 


-0.1503 


-0.00282 


20 .385 


-C .1562 


-0.00318 


20.066 


-C .1630 


-0.00361 


19.732 


-0 .1707 


-0.00414 


19.382 


-0.1797 


-0.00481 


19.012 


-0 .1901 


-C . 0 0568 


18.620 


-0.2026 


-0.00683 


18.200 


-0 .2177 


-0.00841 


1 7.747 


-0.2367 


-0 .0 1068 


17.25G 


-0.2612 


-0.01415 


16.696 


-0 .2947 


-0.01988 


16.061 


-0 .3440 


-0.03064 


15.299 


-0 .4261 


-0.05538 


14.298 


-0 .6021 


-0.14217 


12.527 


-1.5385 


-1 .72796 


1 0.2C 0 


0 . 0 0 00 


0.00000 



94 



APPENDIX F. (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

17 


SUBJECT 

The Orthobaric Densities of Ethane . Methane, Oxygen and 
Fluorine 


NAME , 

R.D .Goodwin 


DATE 

Sept . 18 . 1973 



Table 11. Calculated ethane liquid densities. 



ETHANE SATURATED LIQUID DENSITIES 



T,K 


R, MOL/L 


DR/DT 


D2R/DT2 


83.899 


21.680 


-0.0360 


0.00000 


90.000 


21.676 


-0.0360 


0.00000 


95.000 


21.496 


-0 .0360 


-0 .ocooo 


1 0 0 .000 


21.316 


-0 .0360 


-0.00001 


105.000 


21.136 


-C .0361 


-0.00001 


110.000 


20.955 


-0 .0362 


-0.00002 


115.000 


20.774 


-0.0363 


-0 .0000 2 


120.000 


20.593 


-C .0364 


-0.00003 


125.000 


20.411 


-0.0365 


-0.00003 


130.000 


20.220 


-0.0367 


-0.00004 


135.000 


20.044 


-0 .0369 


-0.00004 


143.000 


19.859 


-0 .0371 


-0.00005 


145.000 


19.673 


-0 .0374 


-0.00006 


150.000 


19.485 


-0 .0377 


-0.00006 


155.000 


19.296 


-0.0380 


-0.00007 


1 6 0 . J 0 0 


19.105 


-0 .0384 


-0.00000 


lb5.000 


18.912 


-0 .0388 


-0.00009 


170.000 


18.717 


-0 .0392 


-0.00010 


175.000 


18.520 


-0 .0398 


-0 . 0 0 01 1 


180.000 


lb. 320 


-0 .0403 


-0.00012 


185.000 


18.116 


-0.0410 


-0.00013 


190.000 


17.910 


-0.0417 


-0.00015 


195.000 


17.700 


-0 .0424 


-0.00016 


200.000 


17.405 


-0.0433 


-0.00018 


205.000 


17.266 


-0.0443 


-0.00020 


210.000 


17.042 


-0.0453 


-0.00022 


215.000 


16.813 


-0 .0465 


-0.00025 


22 5.000 


16.577 


-C .0478 


- 0 .00028 


225.000 


16.335 


-0.0493 


-0.00031 


233.000 


16.085 


-0 .0509 


-0.00035 


235. 000 


15.826 


-0 .0527 


-C.0C039 


240.000 


15.557 


-0.0540 


-0.00045 


245.000 


15.277 


-0.0572 


-0.00051 


250.000 


14.984 


-0 .06GG 


-0.00059 


255.300 


14.676 


-0 .0632 


-0 .00069 


260.300 


14.351 


-0 . C 6 69 


-0.00082 


265.000 


14.005 


-0.0715 


-0.00099 


270.000 


13.635 


-0 .077C 


- 0 . QC123 


275.000 


13.233 


-0 .0839 


-C.0C156 


280.300 


12.792 


-0.0929 


-0.00208 


285.000 


12.299 


-0 . 1053 


-0.00295 


290.000 


11.729 


-0.1238 


-C .00463 


295.000 


11.040 


-C .1554 


-0.00871 


3 Q 0 . 3 0 0 


10.112 


-u .2206 


-0.02539 


305.000 


8.048 


-1.2696 


-2.44167 


30 5 . 330 


6.870 


0.0000 


0. OCOOO 



T5 



OGILVIE PRESS. INC.. BROOKLYN 17. N. Y. 



STOCK NO. 490 



APPENDIX F . (Continued) 


NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

18 


subject TRe Qrthobaric Densities of Ethane, Methane, Oxygen and 


NAME R D 


.Goodwin 




Fluorine 


° ATE Sept 


. 18, 1973 



Table 12. Comparison of oxygen vapor densities. 

6. = 0.3e2 

T CRT = 154.57b, TTRP = 54. 3507 
DCRT . = 13.631, DTRP = 3.36122-004 

2.7737066-001 -3.3666205-001 7.6907075-001 -1 . 5761185*000 

9.3987130-001 0.0000000+000 0.0000000+000 0.0000000+000 



ID 


T,K 


MOl/L 


CAL CD 


PCNT 


Z 


YX 


YC 


YDIF 


99 


56.000 


5.3300-004 


5.3288-004 


0.02 


0.95458 


0.07082 


0.07159 


-O.OOC77 


99 


58.000 


8.9930-004 


8.9941-004 


-0.01 


0.90296 


0.07289 


0.07270 


0 . 00019 


99 


60.003 


1.4640-003 


1.4644-003 


-0.03 


0 .85479 


0.07505 


0.07474 


0.00031 


99 


62.000 


2.3057-003 


2.3068-003 


-0.05 


0.80972 


0.07792 


0.07752 


0 . 0 0 C 4 3 


99 


64.000 


3.5233-003 


3.5251-003 


-0.05 


0 . 76747 


0. 08123 


0.08089 


0.00034 


99 


66.000 


5.2367-003 


5. 2388-003 


-0.04 


0.72778 


0.08497 


0.08473 


0.00024 


99 


68.000 


7.5880-003 


7. 5899-003 


-0.02 


0 . 69042 


0 .08906 


0.08893 


0.00013 


99 


70.000 


1. 0742-002 


1. 0742-0 32 


-0.00 


0.65520 


0.09343 


0.09341 


0.00001 


69 


72.000 


1 . 4885-002 


1.4883-002 


0.01 


0.62194 


0.09804 


0.09811 


-0.00006 


99 


74.000 


2. 0227-002 


2. 0220-002 


0.04 


0.59048 


0.10281 


0.10 296 


-0.00015 


99 


76.000 


2.6996-002 


2.6983-002 


0.05 


0.56067 


0.10773 


0.10 792 


-0.00019 


99 


78.000 


3 . 5441-002 


3.5421-002 


0.06 


0.53239 


0.11275 


0.11296 


-0.0002 1 


99 


80.000 


4.5831-002 


4.5602-002 


0.06 


0 .50552 


0.11781 


0.11804 


-0.00023 


99 


82. 000 


5.8449-002 


5.8412-002 


0.06 


0.47996 


0.12292 


0.12314 


-0.00022 


99 


84.000 


7.3595-002 


7.3552-002 


0.06 


0.45562 


0.12804 


0.12823 


-0.00019 


99 


8 6 . J 0 0 


9.1589-002 


9. 1542-002 


0.05 


0.43242 


0.13313 


0.13330 


-0.00017 


99 


88.000 


1 . 1276-001 


1.1271-001 


0.04 


0.41026 


0.13821 


0.13833 


-0.00012 


99 


93.000 


1. 3745-001 


1. 3741-001 


0.0 3 


0 .38910 


0.14323 


0.14331 


-0.00C03 


99 


92.000 


1 .6603-001 


1. 660 1-C01 


0.0 1 


0.36885 


0.14820 


0.14824 


-0 .00 00 4 


99 


94.000 


1 . 968 7-00 1 


1. 9887-C01 


-0.00 


0. 34946 


0.15311 


0 .15 310 


0.00000 


99 


96.000 


2. 3637-001 


2.3641-001 


-0.01 


0. 33088 


0.15794 


0.15790 


0.00004 


99 


98. 000 


2. 7894-001 


2.7902-001 


-3.0 3 


0.31306 


0.16270 


0 .16262 


0.00009 


99 


10 3.0 00 


3.2702-001 


3.2716-001 


-0.04 


0.29596 


0.16738 


0.16726 


0 .00 01 2 


99 


102.000 


3. 8108-001 


3.6127-001 


-0.05 


0 .27952 


0.17196 


0.17182 


0 . 0001 + 


99 


104.000 


4.4162-001 


4.4186-001 


-0.05 


0.26372 


.0.17645 


0.17630 


0.00015 


99 


106.000 


5.0914-001 


5.0943-001 


-0.06 


0 .24851 


3 .18086 


0.18070 


0 .00 01 6 


99 


1 u 8 . 0 00 


5.8421-001 


5.8455-001 


-0.06 


0.23387 


0.18518 


0.185C2 


0.00016 


99 


11 3.000 


6. 6747-001 


6. b783- 0 0 1 


-0.05 


0 . 21975 


0.18940 


0.18925 


0.00015 


99 


1 12. JOU 


7. 5953-001 


7.5992-0 01 


-0.05 


0 .20615 


0.19355 


0.19341 


0.00014 


99 


1 1 4 . J 0 0 


8.6121-001 


8.6155-001 


-0.0 4 


0.19302 


0.19759 


0.19748 


0.00011 


99 


116.000 


9. 7325-001 


9. 7353-031 


-0.03 


0.18034 


0.20156 


0.20148 


3.000G3 


99 


118.000 


1. 0965+000 


1.0967+000 


-0.02 


0 . 16809 


0.20545 


0.20540 


0.00005 


99 


120.000 


1.2321+000 


1. 2322+ 000 


-0.00 


0 .15625 


0.20926 


0.20925 


0.00000 


99 


1 2 2 . 0 0 0 


1.3812+000 


1.3810+000 


0.01 


0 .14480 


0.21299 


0 .21 303 


- 0 . C 0 0 0 4 


99 


124. 000 


1 . 5450+000 


1.5445+030 


3.0 3 


0.13372 


0.21666 


0 .21674 


-0.00009 


99 


126.000 


1 . 7250 +00 0 


1. 7243+0U0 


0.04 


0.12299 


0.22027 


0.22039 


-0.00012 


99 


128.000 


1.9230+000 


1.9220+0^0 


3.05 


0.11259 


0.22383 


0.22398 


-0.00015 


99 


13 .000 


2.1411+000 


2.1399+030 


0.06 


C. 10252 


0.22735 


0.22751 


-0.00017 


99 


1 32.000 


2. 3819+000 


2. 3e05+000 


0.06 


0. C9275 


0.23083 


0.23100 


-0.00017 


99 


1 8 *4 • 0 0 0 


2.6483+000 


2. 64 70+000 


0.05 


0.08327 


0.23429 


0 . 23444 


-0.00016 


99 


1 3 o . 0 0 0 


2. 9444+000 


2. 9433+000 


0.04 


0. 07407 


0.23773 


0.23786 


-J.OOC12 


99 


1 3 8 . 0 0 0 


3.2750+000 


3 . 27 4 5 + C 30 


0.01 


0.06514 


0. 24119 


0 .24124 


-0.00005 


99 


14 3.000 


3.6468+000 


3.6474+000 


-0.02 


0.05646 


0 . 24466 


0.24462 


0.00006 


9 6 


1 2 . 0 0 0 


4. 0692+000 


4. 0712+000 


-0.05 


0. 04803 


0.24819 


0.24801 


0.00013 


99 


1 4 4 . J 0 J 


4.5552+000 


4.5592+000 


-0.09 


0.03983 


0.25176 


0.25143 


0.00033 


99 


1 4 6 . 0 0 0 


5 . 1261+000 


5.1316+000 


-0.11 


0.03185 


0.25536 


0.25493 


0 .0 0 04 3 


99 


1 h 8 . 0 0 0 


5.6177+00C 


5.6225+CjC 


-0.C8 


0.02410 


0.25892 


J .25 857 


0.00035 


99 


1 5 0 . 0 0 0 


6 . 7 U56 + 000 


6.6967+000 


0.13 


0.01654 


0.26182 


0.26247 


-0.00065 


99 


152.000 


7 . 9239+000 


7.9138+000 


0.13 


0.00919 


0.26616 


0.26692 


-0.00076 


99 


1 5 *♦ . J 00 


1.C225+001 


1.0230+001 


-0.05 


0. CQ203 


0.27367 


0.27313 


0.00054 




NP 


= 50, RHSPCT = 


0.052 













OOILVIK PMtaa. INC.. BROOKLYN 17. N. ▼. STOCK NO. «RO 



96 



APPENDIX F. (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

19 


subject ,pk e Orthobaric Densities of Ethane, Methane, Oxygen and 
Fluorine 


NAME 

R .D .Goodwin 


DATE 

Sent. 18. 1973 



Table 13. Comparison of fluorine vapor densities. 



E = 0.362 



TCRT = 144 . 310 , TTRP = 53.4611 
OCRT = 15 . 150 , DTRP = 5 . 67000-004 

2 . 5715721-001 - 2 . 270 6443-001 6 . 0538644-001 - 1 . 3916332*000 

7 . 9257188-001 0 . 0000000*000 0 . 0000000*000 0 . 0000000*000 



ID 


T,K 


MOL/L 


CflLCD 


PCNT 


z 


YX 


YC 


YDIF 


98 


54.000 


6 . 6000-004 


6 . 6001-004 


- 0.00 


0.98473 


0.03779 


0.03766 


0.00010 


98 


56.000 


1 . 1500-003 


1 . 1518-003 


- 0.16 


0.92853 


0.04645 


0.04297 


0.00348 


98 


58.000 


1 . 9300-003 


1 . 9272-003 


0.14 


0.87621 


0.04693 


0.04877 


- 0.00184 


98 


60.000 


3 . 1100-003 


3 . 1038-003 


0.20 


0.82738 


0.05309 


0.05493 


- 0.00184 


98 


62.000 


4 . 8400-003 


4 . 8291-003 


0.23 


0.78169 


0.05968 


0.06135 


-0 .00167 


98 


64.000 


7 . 2900-003 


7 . 2821-003 


0.11 


0.73887 


0.06725 


0 .06792 


- 0.00067 


98 


66.000 


1 . 0660-002 


1 . 0675-002 


0.05 


0.69063 


0.07434 


0.07459 


- 0.00026 


98 


68.000 


1 . 5250-002 


1 . 5253-002 


- 0.02 


0.66077 


0.08139 


0.08130 


0.00009 


98 


70.000 


2 . 1280-002 


2 . 1293-002 


- 0.06 


0.62507 


0.08827 


0.08799 


0.00028 


98 


72.000 


2 . 9(37 0-002 


2 . 9105-002 


- 0.12 


0.59135 


0.09515 


0.09464 


0.00051 


98 


74.000 


3 . 8970-002 


3 . 9029-002 


- 0.15 


0 .55945 


0.10181 


0.10121 


0.00063 


98 


76.000 


5 . 1350-002 


5 . 1434-002 


- 0.16 


0 .52923 


0.10829 


0.10769 


0.00063 


98 


76.000 


6 . 6600-002 


6 . 6713-002 


- 0.17 


0 .50057 


0.11466 


0.11406 


0.00060 


98 


80.000 


8 . 5150-002 


8 . 5291-002 


- 0.17 


0.47333 


0.12086 


0.12030 


0.00056 


98 


82.000 


1 . 0745-001 


1 . 0761-001 


- 0.15 


0.44742 


0.12691 


0.12641 


0.00053 


98 


64.000 


1 . 3397-001 


1 . 3416-001 


- 0.14 


0.42275 


0.13281 


0.13238 


0.00044 


98 


86.000 


1 . 6523-001 


1 . 6541-001 


- 0.11 


0.39923 


0.13854 


0.13820 


0.00034 


98 


88.000 


2 . 0174-001 


2 . 0191-001 


- 0.08 


0. 37677 


0.14413 


0.14388 


0.00025 


98 


90.000 


2 . 4407-001 


2 . 4420-001 


- 0.05 


0.35532 


0 .14956 


0.14940 


0.00015 


98 


92.000 


2 . 9280-001 


2 . 9286-001 


- 0.02 


0.33479 


0.15484 


0.15478 


0.00006 


98 


94.000 


3 . 4857-001 


3 . 4852-001 


0.01 


0.31514 


0.15997 


0.16001 


-0.00004 


98 


96.000 


4 . 1203-001 


4 . 1184-001 


0.05 


. 0.29631 


0.16496 


0.16509 


- 0.00013 


98 


98.000 


4 . 8389-001 


4 . 8352-001 


0.08 


0 .27824 


0.16981 


0.17003 


- 0.00021 


98 


10 J . 000 


5 . 6491-001 


5 . 6432-001 


0.10 


C . 26090 ' 


3.17453 


0.17482 


- 0 .00029 


98 


102. 0 00 


6 . 5591-001 


6 . 5507-001 


0.13 


0 . 24424 


0.17912 


0 .17947 


- 0.00035 


98 


10 9.000 


7 . 5778-001 


7 . 5667 - 001 


0.15 


0.22822 


0.18356 


0.18398 


- 0.00040 


96 


106.000 


8 . 7151-001 


8 . 70 1 2 - C 0 1 


0.16 


0.21281 


0.18792 


0.18836 


- 3.00044 


98 


1 U 8.000 


9 . 9617-001 


9 . 6651-001 


0.17 


0.19796 


0.19215 


0.19261 


- 0.00046 


98 


110.000 


1 . 1390*000 


1 . 1371*000 


0.17 


0.18366 


0.19627 


0.19673 


- 0.00046 


98 


1 1 2 . 000 


1 . 2 ^ 53*000 


1 . 2932*000 


0.16 


0 .16986 


0.20028 


0.20072 


- 0.00044 


98 


114.000 


1 . 4687*000 


1 . 4666*000 


0.15 


0.15655 


0.20419 


0.20460 


- 0.00041 


96 


116 . 0 CJ 


1 . 6610*000 


1 . 6590*000 


0.12 


0. 14370 


0.20801 


3.20836 


- 0.00035 


98 


118.000 


1 . 8743*000 


1 . 6725*000 


0.09 


0.13129 


0.21174 


0.21200 


- 0.00027 


98 


1 2 0. 0 00 


2 . 1111*000 


2 . 1099*000 


0.06 


0.11928 


0.21538 


0.21554 


- 0.00016 


98 


122.000 


2 . 3744*000 


2 . 3741*000 


0.01 


0.10768 


0.21894 


0.21898 


- 0.00004 


98 


124.000 


2 . 6680*000 


2 . 6690*000 


- 0.04 


0.09644 


0.22243 


0.22232 


0.00011 


96 


1 2 o . 0 0 0 


2 . 9965*000 


2 . 9992+000 


- 0.09 


0. 08556 


0.22584 


0.22556 


0.00027 


98 


126. 000 


3 . 3661*000 


3 . 3709+000 


- 0.14 


0.07503 


0.22917 


0.22873 


0.00045 


98 


130.000 


3 . 7 o 48*000 


3 . 7921*000 


- 0.19 


0.06481 


0. 23243 


0.23181 


0.00062 


98 


1 3 2 . 0 0 0 


4 . 2641*000 


4 . 2735 +OuO 


- 0.23 


0.05491 


0.23560 


0.23484 


0.00076 


98 


1 34 . 0 00 


4 . 8207*000 


4 . 8319*000 


- 0.23 


0.04530 


0.23862 


0.23782 


0.00031 


98 


1 3 b . 0 0 0 


5 . 4816*000 


5 . 4905*000 


- 0.16 


0.03598 


0.24138 


0.24077 


3.00061 


98 


138.000 


6 . 2910*000 


6 . 2909*000 


o.co 


0 . C 2692 


0.24374 


0.24375 


- 0.00003 


98 


140.000 


7 . 322 6 * 00 C 


7 . 3133*000 


0.13 


0.01813 


0.24625 


0.24683 


- 0.00058 


98 


142.000 


8 . 7654*000 


6 . 7644*000 


0.24 


0.00958 


0.24889 


0.25 0 23 


- 0.00133 


96 


144. 000 


1 . 1668*001 


1 . 1893*001 


- 0.04 


0.00127 


0.25552 


0.25509 


3.00044 




NP 


= 4 b , RMSPCT = 


0.134 
















OttlLVII PRKSt. INC.. BROOKLYN 17. N. T. 



STOCK NO. 



97 



APPENDIX F. (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 



SUBJECT 




The Orthobaric Densities of Ethane, Methane, Oxygen and 
Fluorine 



PROJECT NO. 



NAME 



FILE NO. 

73-5 



PAGE 

ML 



R . D . Goodwin 



DAT! 



Sent. 18. 1973 



Table 14„ Comparison of methane vapor densitie: 



TCRT s 190.555s TTRP 
OORT s i 0 o 20 0 « DTRP 



3 . 7410143-001 
4 « 3988336=001 



• 2 e 61 5 730 9-0 01 

0 . 0000000 * 00(2 



E = 0 o 382 



90.6800 

1 . 56787=002 

6 . 7533217=001 

o . oooooaa+ooo 



■ 1 . 0122063*000 

0 . 0000000*000 



10 


T,K 


MOL/L 


CALCO 


PCNT 


2 


YX 


YC 


YDXF 


2 


92.000 


1 . 8280=002 


1 . 8280-002 


0.00 


0.97263 


0=21853 


0 .21874 


- 0.00021 


2 


94.000 


2 . 2860-002 


2 . 2858-002 


0.01 


0.93261 


0.22329 


0.22354 


- 0.00025 


2 


96.000 


2 . 8290-002 


2 . 8294=002 


- 0.01 


0.89427 


0=22864 


0 .22828 


0.00036 


2 


93.060 


3 . 4690=002 


3 . 4691=002 


= 0.00 


0.85749 


0.23301 


0.23295 


0.00006 


2 


100.000 


4 . 2160=002 


4 . 2159=002 


0.00 


0.82218 


0.23752 


0.23755 


- 0.00003 


2 


102. 3 00 


5 . 0810-002 


5 . C 813-002 


- 0.01 


0.78826 


0.24213 


0.24207 


0 .0000 7 


2 


104.000 


6 . 0770-002 


6 . 0772=002 


- 0.00 


0.75 564 


0. 2465 3 


0.24650 


0.00003 


2 


106.000 


7 . 2160=002 


7 . 2161 = C 02 


- 0.00 


0.72425 


0.25086 


0=25084 


0.00002 


2 


106.060 


8 . 5110=002 


8 . 5110=002 


- 0.00 


0.69402 


0.25510 


0 .25510 


0.00003 


2 


110.000 


9 . 9750-002 


9 . 9753-002 


- 0.00 


0.66490 


0.25928 


0.25926 


0.00002 


2 


112.000 


1 . 1623-001 


1 . 1623-001 


0.00 


0.63681 


0.26332 


0.26333 


- 0.00000 


2 


114.000 


1 o 3468-001 


1 -. 34 6 8 - 0 0 1 


- 0.00 


0.60971 


0 .26732 


0.26730 


0.00002 


2 


116.000 


1 . 5527-001 


1 . 5527-001 


3.00 


0 .58354 


0.27117 


0.27119 


- 0.00002 


2 


118. 000 


1 . 7814-001 


1 . 7813=001 


0.00 


0.55826 


0 .27495 


0.27498 


- 0.0000 2 


2 


120.000 


2 . 0346-001 


2 . 0345-001 


0.01 


0.53383 


0.27864 


0.27668 


- 0.00004 


2 


122.000 


2 . 3139=001 


2 . 3138-001 


0.00 


0.51019 


0.28226 


0.28228 


= 0.00003 


2 


124. 000 


2 . 6212-001 


2 . 6211-001 


0.00 


0.48732 


0.28577 


0.28500 


- 0.00003 


2 


126.000 


2 . 9583-001 


2 . 9582-001 


C . Q 0 


0 . 46517 


0.28921 


0.28923 


- 0.00002 


2 


128.000 


3 . 3272-001 


3 . 3271-001 


0.00 


0. 44372 


0.29255 


0.29257 


- 0.00002 


2 


130.000 


3 . 7299-00 1 


3 . 7299-001 


0.00 


0 . 42292 


0.29582 


0.29583 


- 0 .0000 1 


2 


132.000 


4 . 1686-001 


4 . 1687-001 


- 0.00 


0.40276 


0.29902 


0.29900 


0.00002 


2 


134.000 


4 . 6457-001 


4 . 6461-001 


- 0.01 


0. 38320 


0. 30213 


0.30209 


0.00004 


2 


136.000 


5 . 1638-001 


5 . 1644-001 


- 0.0 1 


0 . 36421 


0.30515 


0.30510 


0.00006 


2 


136.000 


5 . 7255-001 


5 . 7264=001 


- 3.02 


0 . 34577 


0 . 30811 


0.30003 


0=00003 


2 


140 .000 


6 . 3337-001 


6 . 3351=001 


- 0.02 


0 .32786 


0.31099 


0.31088 


0 = 00011 


2 


142.000 


6 . 9916-001 


5 . 9937-001 


- 0.03 


0. 31046 


0.31380 


0.31366 


0=00014 


2 


144.000 


7 . 7028-001 


7 . 7055=001 


- 0.04 


0.29353 


0 . 31654 


0.31637 


0=00016 


2 


146.000 


8 . 4711-001 


8 . 4745-001 


- 0.04 


0 .27703 


3. 31920 


0.31901 


0.00019 


• 2 


143 . Q 0 □ 


9 . 3007-001 


9 . 3049-001 


- 0.05 


0.26106 


0.32179 


0.32158 


0=00021 


2 


15 0. 000 


1 . 0196*000 


1 . 0201*000 


- 0.05 


0.24548 


0.32431 


0 .32409 


0=00022 


2 


152.000 


1 . 1164*000 


1 . 1169*000 


- 0.05 


0.23030 


0.32675 


0.32653 


0.00022 


2 


154.000 


1 . 2209*000 


1 . 2214*000 


- 0.05 


0.21552 


0.32912 


0.32891 


0.00021 


2 


156.000 


1 . 3333*000 


1 . 3343*000 


-0 o 0 4 


0.20111 


0.33140 


0.33123 


0.00017 


2 


158.000 


1 . 4560*000 


1 . 4563*000 


- 0.02 


0.18707 


0. 3336 1 


0.33350 


0.00011 


2 


160.000 


1 . 5884*000 


1 . 5884*000 


- 0.00 


0.17339 


0.33571 


0.33571 


0.00003 


2 


162.000 


1 . 7322*000 


1 . 7316*000 


0.03 


0. 16004 


0=33772 


0.33788 


- 0.00016 


2 


164.000 


1 . 8886*000 


1 . 8670*000 


0.06 


0.14701 


0.33981 


0 o 34 0 0 0 


- 0.00039 


2 


166.000 


2 . 0593*000 


2 . 0561*000 


0.16 


0.13430 


0 . 34135 


0.34208 


- 0.00073 


2 


163.000 


2 . 2465*000 


2 . 2408 * 000 


0.26 


0.12190 


0.34291 


0=34412 


- 0.00121 


1616 


169.067 


2 . 3438*000 


2 . 3463*000 


0.11 


0.11540 


3.34469 


0,34520 


- 0.00051 


1614 


169.270 


2 . 3687*000 


2 . 3670*000 


0.0 7 


0.11417 


0.34506 


0.34540 


- 0.00035 


912 


169.417 


2 . 3858*000 


2 . 3821*000 


0.16 


0.11328 


0 . 34480 


0.34555 


- 0.00075 


1612 


169.468 


2 . 3801*000 


2 . 3873*000 


0.03 


0.11297 


0. 34545 


0=34560 


- 0=00015 


910 


169.601 


2 . 4 C 54*000 


2 . 4011*000 


0.18 


C . 11217 


0. 34488 


0.34573 


-0 .00085 


308 


169.794 


2 . 4236*000 


2 . 4213*000 


0.10 


0.11101 


0. 34547 


0.34593 


- 0.00046 


1716 


173.088 


2 . 7972*000 


2 . 7964*000 


0.03 


0.09162 


0.34905 


0.34920 


- 0.00015 


1714 


173.290 


2 . 6203*000 


2 . 8215*000 


- 0.04 


0=09046 


0.34961 


0=34940 


3=00021 



oaiLVIC PMIt. INC., 1MMLTN 17. N. ▼. 9TM* N*. tn 



98 



APPENDIX F. (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

21 


SUBJECT 

The Orthobaric Densities of Ethane, Methane, Oxygen and 
Fluorine 


NAME _ . 

R . D . Goodwin 


DATE 

Sent. 18, 1973 



Table 14 (Continued) . Methane vapor densities. 



ID 


T,K 


MOL/L 


CftLCD 


PCNT 


z 


YX 


YC 


YOIF 


1712 


173.469 


2.8457+000 


2.8465+000 


-0.03 


0.08931 


0.34973 


0.34959 


0.00014 


1012 


173.473 


2.8480+000 


2.8445+000 


0.12 


0.08940 


0.34896 


0.34958 


-0.00062 


1010 


1 73.675 


2 . 8700+000 


2.8701+000 


-0.00 


0.08824 


0.34980 


0.34978 


0.00002 


1006 


173.857 


2.8935+000 


2.8934+000 


0.00 


0.08720 


0.34995 


0.34996 


-0.00001 


161b 


1 7 7. 094 


3.3501+000 


3.3513+000 


-0.03 


0.06901 


0. 35333 


0.35315 


0.00013 


1814 


1 77.292 


3.3601+000 


3.3822+000 


-0.06 


0.06792 


0. 35369 


0.35335 


0.00034 


1114 


177.328 


3.3863+000 


3.3879+000 


-0.05 


0.06772 


0. 35364 


0 .35339 


0.00025 


1612 


1 77.485 


3.4108+000 


3.4128+000 


-0.06 


0.06686 


0. 35386 


0 .35354 


0.00031 


1112 


177.509 


3.4209+000 


3.4166+000 


0.12 


0.06673 


0.35290 


0 .35357 


-0.00067 


1110 


177.700 


3. 4602+000 


3. 44 73+ 0 C C 


0.37 


0.06568 


0.35175 


0.35376 


-0.00200 


1916 


181.105 


4. 0663+000 


4.0686+000 


-0.06 


0.04738 


0.35755 


0.35722 


0.00033 


1914 


181.304 


4. 1077 + 00 0 


4. 1101+000 


-0.06 


0. 04633 


0. 35778 


0.35743 


0.00034 


1213 


181.389 


4 . 1269+000 


4. 1281+000 


-0.03 


0 .04588 


0.35769 


0 .35 752 


0 .0001 7 


1912 


181.506 


4.1496+000 


4.1530+000 


-0.08 


0.04527 


0.35813 


0 .35765 


0 .00048 


1211 


181.589 


4.1656+000 


4. 1708+000 


-0.12 


0.04483 


0 . 35848 


0.35774 


0.00074 


1209 


181.763 


4.2042+000 


4.2097+000 


-0.13 


0. 04389 


0.35870 


0 .35793 


0.00078 


1516 


183.117 


4 . 5212+000 


4. 5240+000 


-0.06 


0.03688 


0.35978 


0 .35940 


0 .00 0 3 9 


1514 


18 3. 322 


4.5704+000 


4. 5754+ 0CC 


-0.11 


0. 03582 


0 . 36032 


0.35963 


0.00069 


1512 


IS 3.514 


4.6189+000 


4.6246+000 


-0.12 


0 . 03484 


0. 36063 


0 .35985 


0.00078 


1316 


164.125 


4 . 7622+ J00 


4. 7880+000 


. -0.12 


' 0.03171 


0.36134 


0.36055 


0.00079 


2108 


164.087 


4. 7625+000 


4. 7775+000 


0.10 


0. 03190 


0 . 35982 


0.36051 


-0.00068 


210 7 


164.285 


4. 8263 + 00C 


4. 8327+000 


-0.13 


0.03089 


0.36161 


0.36074 


0 .00 087 


1314 


184. 370 


4. 8462+000 


4. 8567+000 


-0.22 


0.03046 


0.36228 


0 .36 0 84 


0.00144 


2 1 0 b 


184.471 


4.8797+000 


4.6857+000 


-0.12 


0.02994 


0. 36177 


0 . 360 96 


0.00081 


1312 


184.510 


4. 367b+00U 


4.8969+000 


-0.19 


0.02975 


0. 36228 


0.36101 


0.00127 


6 


185.030 


5. j38G+00u 


5. C524+O0C 


-0.28 


O'. 02711 


0.36359 


0.36164 


0.00195 


6 


1 8o. 030 


5.3640+000 


5. 3838+000 


0.00 


0. 02208 


0. 36290 


0.36292 


-0.00002 


22 0 6 


166.103 


6. 4077+000 


5.4098+000 


-0.04 


0.02172 


0.36331 


0.36302 


0.00029 


141b 


130.129 


5. 4096+000 


5.4192+0C0 


-0.18 


0.02159 


0 . 3b43 6 


0.36305 


0.00131 


1414 


18-.. 319 


5. 4795+00 J 


5.4691+000 


-C.17 


0.02064 


0.36461 


0.36331 


0.00130 


22 0 7 


18o.304 


5 . 4627+000 


5.4835+000 


-0.01 


0. C2072 


0.36339 


0.36329 


0.00010 


22 0 b 


136.501 


5. 5571+000 


5.5581+000 


-0.02 


0. 0 1974 


0. 36369 


0.36356 


0.00013 


1412 


130.518 


5.5591+000 


5.5646+0CC 


-0.10 


0 . C 1965 


C. 36434 


0 . 36359 


0.00075 


6 


1 6 7.0 51 


5. 7360 +00C 


5 . 7 7 2 3 ♦ 0 0 u 


0.2 4 


0.01711 


0. 36244 


0.36433 


-0.00189 


b 


1 8 3 . 0 31 


6. 2750+ 000 


6.2474+0OG 


0.44 


0. 01219 


0. 3620 1 


0.36592 


-0.00392 


2306 


138.140 


6. 2930+000 


6. 3064+000 


-0.21 


0.C1165 


0 . 3680 4 


0.36612 


0.00193 


2 10 7 


183.343 


6.4067+000 


6. 4218+000 


-0.24 


0. r 1066 


0 . 36868 


0.36648 


0.00219 


230b 


168.545 


6.5278+000 


6.5441+0U0 


-0.25 


0.0 0 968 


0.36926 


0 . 36686 


0.00239 


6 


1 6 9 . 0 32 


6. 916O+OU0 


6.6777+000 


0.59 


0. C0732 


0. 36167 


0.36787 


-0.00620 


5 


16). 765 


7.561C+000 


7.5576+0C0 


-0.09 


0.00378 


0.37093 


0.36975 


0 .00117 


6 


190. J32 


7.9oU0+30Q 


7.9153+000 


0.56 


0.00250 


0 . 3618b 


0.37065 


-0 .C0879 


c, 


130.046 


7.9-5 50+^00 


7.9371+000 


-0.0 3 


0 . C 0 243 


0.37113 


0.37070 


0.00043 


7 


190.070 


8. OOOC + OOG 


7.9756+000 


0.31 


0.00232 


0 . 36588 


0.37079 


-0.00491 


7 


1 9 J . 1 7 J 


6.170C+000 


8. 1508+000 


0.24 


0.00184 


0 . 36709 


0 .37120 


-0 .0041 2 


7 


190.270 


8.360C+OOL 


8.3595+000 


0.0 1 


0.00136 


0 . 37154 


0.37166 


-0.00013 


5 


1)0.279 


S . 390 0 ♦ 0 C 0 


8.3805+000 


0.14 


0.00132 


0.36899 


0.37171 


-0.00272 


7 


1 9 0 . 570 


8. b 200+000 


8.6242+ 000 


-0.05 


0.00088 


0. 37333 


0.37221 


0.00112 


7 


1 9 0.4 70 


9. ouUC+OjC 


9 . C 1 16+CuC 


-0.13 


0 . C a 041 


0.37689 


3.37291 


0.00397 


r, 


13'. 500 


9.1610+006 


9.ie67+0C0 


-C.26 


C . C 0 026 


0.36333 


0.37319 


0.01014 



NP - 96, RHL^CT = 0.146 



yy 



OQILVIE PRESS. INC.. BROOKLYN 17. N. Y. 



STOCK NO. 480 



APPENDIX F . (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

22 


subject 'ppg Orthobaric Densities of Ethane, Methane, Oxygen and 
Fluorine 


name p . p) ^ Goodwin 


DATE 

Sent. 18 1973 



pm 

03 

ro 

• 

O 

II 



Table 15. Compari son of ethane vapor densities. 







Ll_ 




on 


ro 


4 


4 


CD 


4 


T 


m 


03 




o- 


J- 


03 


in 


-»-4 




CM 


rw 


CD 


N. 


in 


K- 




ro 


co ro 


r- 


U3 






IH 


4 


of 


j- 


^4 


H 


ro 


ro 


CM 


vH 


o 


CD 


H 


CM 


CM 


CM 


CM 


=?4 


▼4 


t4 


CM 


r4 


CD 


N. 


o 


ro 


O' in 


o 


4- 






D 


o 


o 


O 


CD 


O 


o 


O 


o 


S' 


CD 


CD 


O 


o 


CD 


o 


o 


O 


CD 


O 


CD 


O 


CD 


o 


o 


CD 


o o 


•S' 


o 






>- 


CD 


o 


Q 


•S' 


a 


o 


o 


o 


CD 


O 


CD 


o 


o 


CD 


CD 


o 


O 


CD 


o 


CD 


O 


O 


o 


o 


O 


G O 


o 


o 








o 


G 


O 


o 


CD 


CD 


o 


o 


O 


CD 


O 


CD 


o 


CD 


O 


o 


CD 


CP 


CD 


O 


o 


CD 


a 


o 


o 


CD O 


o 


o 








CD 

1 


CD 


CD 


a 


O 

• 


0 

1 


0 

1 


o 

• 


0 

1 


O 

1 


CD 


CD 


CD 


O 


CD 


o 


CD 


a 


O 

1 


CD 

• 


o 

• 


CD 

1 


o 

• 


CD 

1 


CD 


CT> O 


0 

1 


0 

1 






C-3 


K- 


ro 


CM 


N- 


tH 


CO 


O' 


ro 


03 


cp 


in 


<x> 


N- 


H 


ro 


03 


*4 


•X) 


in 


*4 


^4 


B0 


CM 


▼4 


O' 


to 4- 


in 


GO 






>- 


in 


os 


VO 


CO 


▼4 


CM 


CD 


C\J 


03 


ro 


4 


CO 


03 


CP 


03 


OO 


CO 


M3 


03 


O' 


<=0 


ro 


03 


iO 


•n 


>*4 


N. 


N. 








00 


CO 


CO 


in 


CT P- 


CO 


oo 


CM 


i£> 


CP 


rl 


ro 


J- 


in 


in 


CD 


in 


CO 


p- 


M3 


in 


ro 


N. 


o 


•*4 CVJ 


CM 


CM 












4 


CM 


o 


CD 


CM 


ro 


in 


03 


P- 


O' 


CD 




CM 


ro 


4 


4 


j- 


in 


iO 


N- 


GO 


BO 


O' 


O' O' 


O' 


O' 








o 


o 


o 


o 


a 


CD 


CD 


o 


CD 


o 


CD 


O 


•H 


▼4 


W 


<5-4 


*4 


▼4 


*4 


▼4 


▼4 


▼4 


▼4 


*4 




^4 ^4 


-*H 


▼4 








CD 

1 


CD 

1 


CD 

• 


CD 

• 


a 

• 


CD 


CD 


CD 


CD 


CD 


O 


o 


CD 


CD 


O 


CD 


CD 


O 


CD 


CD 


CD 


O 


O 


CD 


O 


G CD 


o 


O 






X 




in 


CP 


ro 


4 


GO 


in 


ro 




4 


CM 


ro 


O 


r^ 


CO 


N- 


CO 


CO 


CO 


*4 


in 


TO 


in 


in 


i£> 


4 N. 


BO 


ro 






>- 


CD 


▼4 


▼4 




CM 


cr 


N. 


O' 


4 


ro 


in 


CD 


CP 


▼4 


<JD 


CD 


O' K. 


4 p- 


03 


ro 


<o 


in 


ro 


4- v£> 


•n 


ro 








ro 


ao 


CM 


in 


O' 03 


CM 


N. 


CM 


03 


O' CM 


ro 


in 


in 


O) 


o 


in 


GO 


p- 


03 


in 


CM 


r- 


o 


CM CM 


CM 


CM 








N- 


m 


4 


CM 


a 


O 


CM 


TO 


in 


03 




CP 


CD 


▼4 


CM 


ro 


J- 


4 


Jf 


in 


03 




OO 


B0 


O' 


O' O' 


O' 


O' 


rH 


CD 




CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CT 


o 


o 


CD 


*4 


▼4 


*4 


•*4 


▼4 


▼4 


t4 


▼4 


▼4 


t4 




t4 


▼4 


t4 4 


^4 


^4 


CD 


CD 




























































CD 


CD 




CD 


CD 


CD 


CD 


CT 


CD 


CD 


CD 


CD 


CD 


o 


CD 


O 


CD 


CD 


CD 


CD 


O 


CD 


O 


a 


CD 


O 


O 


CD 


CD O 


O 


CD 


i 


4- 




i 


» 


i 


i 


• 
















































CD 


CD 




























































in 


O 




























































N- 


CD 


M 


■*4 


4 


*4 


03 


*4 


CD 


ro 


4 


C P 


os 


CD 




ro 


in 


N- 


O' 


03 


03 


▼4 


O' 


o> 


O' 


4- 


in 


CP 


o r\j 


in 


▼4 


03 


G 




j- 


<© 


O 


4 


ao 


•JO 


▼4 


CD 


▼4 


in 


ro 


N» 


4 


CO 


\D 


in 




ro 


CD 


oo 


H 


03 


P0 


G 


ro 


cj iD 


CM 


▼4 


03- 


CD 




X) 


vO 


rl 


j- 


oj 


ro 


rj 


cr> 


00 


CD 


ro 


CP 


CP 


▼4 


03 


ro 


00 


CM 


03 


03 


O' 


0J 


r- 


CD 


4- 


ro 


o 


CD 


N* 


CD 




(T 


in 




4 


n 


O' 


ro 


N- 


ro 


CP 


in 


▼4 


OO 


03 


ro 


*4 


o 


O' 


03 


03 


J- 


ro 


^4 


4 


CD 


CD CD 


CD 


O 


in 


CD 




CP 


<x> 


N- 


03 


in 


J- 


j- 


ro 


ro 


CM 


CM 


OJ 


▼4 


H 


▼4 


*4 


t 4 


CD 


CD 


CD 


o 


G 


a 


O 


G 


o o 


G 


O 


ro 


O 




o 


o 


o 


CD 


o 


CD 


o 


o 


o 


o 


CD 


o 


CD 


CD 


O 


CD 


CD 


CD 


O 


O 


O 


O 


o 


a 


O 


O CD 


O 


O 







cD 


CP 


G 


1— 


O 


r^ 


G 


-t 


in 


ro 


cO 


in 


CD 


ro 


4 


O' 


ro 


4 


4 


t4 


CP 


10 


03 


G 


n- 


nj 


in 


CM 


r- 


CO 


CO 


▼4 


ro 




UJ 




G 


0J 


o 


z 


O 


G 


4 


o 


o 




*4 


▼4 


t4 


G 


UJ 


O 


*4 


4 


*4 


▼4 


CD 


CD 


G 


p4 


a 


o 


ro 


o 


a 


*4 


CD 


CD 


o 








G 


ID 


o 


o 


































































i 


CM 


CD 


a 


G 


CD 


CD 


G 


CD 


O 


O 


CD 


CD 


CD 


G 


CD 


a 


CD 


O 


CD 


O 


G 


O 


CD 


a 


o 


CD 


G 


CD 


O 


CD 


CD 


a 




CO 


O 


4- 


CM 


CD 






1 


i 


t 














i 


i 


• 


t 


i 


i 


• 


i 
















i 


i 








UJ 


O' 


4 


CP 


CD 
































































1 — 1 


O' 


t4 


00 


CD 
































































y— 


a0 


in 


• 


• 
































































H4 


• 


ro 


0- 


CD 


o 


n 


in 


in 


4 


ro 


ro 


ro 


CvJ 


CM 


0J 


CM 


▼4 


*4 


^4 


^4 


▼4 


t4 


▼4 


t4 


CD 


a 


G 


O 


CD 


CD 


a 


a 


CD 


CD 




(/I 


O' 


• 


1 




o 


a 


o 


a 


G 


CD 


a 


CD 


CD 


CD 


"D 


LJ 


CD 


CD 


CD 


O 


CD 


a 


CD 


CD 


CD 


o 


CD 


G 


CD 


O 


o 


CD 


CD 


CD 




z 


CO 


▼4 






— J 


o 


o 


CD 


G 


CD 


G 


CD 


o 


CD 


O 


G 


O 


CD 


O 


G 


CD 


a 


CD 


G 


o 


CD 


v-D 


O 


O 


O 


o 


o 


CD 


O 




UJ 






rvj 


G 


< 


i 


« 


i 


i 


i 


i 


» 


1 


i 


i 


i 


i 


i 


t 


i 


i 


t 


• 


i 


4- 


4- 


4- 


4- 


4- 


4- 


4- 


4 


4 


4 




Q 


II 


II 


o 


O 


o 


ro 




03 


03 


ro 


CD 


B0 


4 


CP 


4 


4 


in 


p- 


lO 


CD 


cO 


in 


CP 


N- 


CP 


O' 


03 




4 


CD 


ro 


O' 


N- 


4 


4 








o 


O 




n 


in 


CP 


i0 


•D 


O' 


4 


TO 




O' 


4 


ao 




ro 


ro 


<D 


ao 


CP 


ro 


▼4 


in 


03 


0J 


t4 


4 


CM 


ao 


CM 


CO 


CD 


Ct 


a 


CL 


1 


4- 




GO 


ro 


<£> 


in 


CP 


CP 


CP 


CM 


ao 


t-D 


CP 


CO 




o 


CM 


o 


vU 


in 


(M 


in 


ro 


03 


1^ 


a 


CD 


▼4 


ro 


*4 


4 


▼4 


O 


O' 


ac 


•£> 


CD 




ro 


ro 


■*4 


in 


^4 


CM 


N- 


cO 


G 


4 


GO 


ro 


CD 


o 


0J 


CO 


r^. 


03 


C0 


t4 


in 


Cl 


ao 


in 


ro 


03 


CD 


CP 


■*4 


• 


a 


1- 


1 — 


CO 


O 






























































LD 


d 


1— 


o 


a 


O 




*4 


*4 


ao 


ro 




ro 


N. 


t4 


ro 


l n 


CO 


▼4 


0J 


ro 


4 


in 


iO 




ao 


^4 


*4 


0J 


0J 


ro 


4 


4 


in 


in 


03 





CD CD 

in ct 



o 


f-D 


G 


in 


G 
































































UJ 


ro 


N. 


»4 


a 


-j 


03 


in 


in 


4 


ro 


ro 


ro 


CM 


(M 


CM 


(\J 


▼4 


▼4 


▼4 


▼4 


*4 


4 


▼4 


*4 


O 


O 


CT 


CT 


O 


CD 


CT 


CD 


CT 


CT 




¥— 


ro 


GO 


• 


• 




CD 


CD 


CD 


a 


G 


G 


o 


G 


CD 


CT 


O 


CD 


O 


CD 


O 


CD 


CD 


CD 


O 


CT 


o 


CT 


G 


o 


CD 


CT 


CT 


O 


CD 


C_3 


d 


• 


• 


4 


o 


_i 


CD 


CD 


CD 


CD 


a 


G 


o 


G 


CD 


CD 


CT 


CT 


CT 


CT 


CT 


CT 


CD 


CD 


CT 


CT 


o 


CT 


G 


o 


CD 


CT 


O 


CT 


CD 


a 


QC 


in 


03 






o 


i 


« 


i 


i 


i 


i 


1 


i 


i 


i 


i 


| 


i 


i 


i 


i 


i 


i 


i 


4- 


+ 


4- 


4- 


+ 


+ 


4- 


♦ 


4» 


+ 


10 


r> 


CD 








r 


<0 




0J 


tM 


G 


rp 


ro 


JO 


CP 


t4 


'H 


PM 


O 


0J 


PM 


in 


03 


▼4 


CT 


CT 


o 


CD 


G 


CT 


G 


O 


CT 


O 


CD 


X 


w- 


TO 




*4 


▼4 




0) 


4 


'H 


in 


r^ 


m 


4 


G 


CP 


4 


▼4 


P* 


in 


O' 


s. 


00 


0J 


in 


▼4 


ro 


fs. 


N. 


CT 


PM 


N- 


4 


in 


ro 


o CL 


cl 






a 


CD 




r 


P3 


03 


in 


CP 


CD 


o 


ro 


GO 


▼4 


O' 


CO 


0- 


CP 


4 


o 


03 


in 


ro 


in 


ro 


03 


<X3 


CD 


CD 


CT 


ro 


^4 


in 




in 


II 


II 


o 


CD 




ro 


ro 


▼4 


in 


▼4 


ro 


a0 


03 


O 


4 


B0 


ro 


o 


CP 


CVJ 


CO 


N» 


CO 


03 


▼4 


in 


CT 


ao 


in 


ro 


03 


CT 


O' 


4 




UJ 




k- 


l 

0J 


03 




4 


▼4 


rO 


ro 


*4 


ro 


N. 


*4 


ro 


in 


ao 


▼4 


PM 


0J 


4 


in 


03 


r^ 


CO 


▼4 


^4 


PM 


0J 


ro 


4 


4 in 


in 


03 


0J 


z 


nc 


CL 


ro 


































































<r 


o 


O 


4 


ro 






























































II 


X 


1— 


Q 


N- 


4 
































































1— 






rc 


in 




a 


O 


CD 


CD 


CD 


CD 


G 


CT 


G 


CT 


CT 


CT 


CT 


CT 


o 


CD 


CD 


CT 


CD 


O 


O 


CT 


CD 


CT 


CT 


CT 


CT 


CT 


CD 


CL 


UJ 






CM 


4 


•L 


CD 


o 


CD 


CD 


CD 


G 


O 


CT 


O 


CD 


a 


CD 


o 


CD 


CT 


CT 


CT 


CD 


in 


in 


in 


tn 


in 


in 


in 


in 


in 


in 


in 


z 










0J 




CD 


G 


CD 


n 


fD 


CT 


CD 


CT 


CD 


CD 


CD 


CD 


CT 


CT 


CT 


CT 


CT 


CT 


▼4 


4 


"«4 


▼4 


▼4 


4 


*4 


▼4 


▼4 


•4 


OJ 










4 


▼4 




CD 


CD 


CD 


o 


CT 


CD 


r D 


CT 


CT 


CD 


CD 


CT 


CT 


CD 


CD 


CT 


in 


CD 


ro 


ro 


ro 


m 


ro 


a0 


PM 


ro 


4 


in 


in 
















<T> 


O 


▼4 


oo 


ro 


4 


in 


03 




O 


O' 


O 


▼4 


PM 


ro 


4 


4 


in 


in 


03 


N. 


ao 


O' 


CP 


CT 


G 


CT 


CT 


CD 


















•*4 


-4 


▼4 


4 


▼4 


4 


▼4 


4 


t4 


*4 


PsJ 


PM 


PM 


PM 


PM 


PM 


PM 


PM 


CM 


PM 


OJ 


PM 


PM 


ro 


ro 


ro 


ro 


ro 














Q 


r4 


▼4 


H 


4 


■H 


▼4 


▼4 


*4 


▼4 


▼4 


*4 


▼4 


▼4 


4 


*4 


t4 


*4 


*4 


o 


o 


CT 


CD 


CT 


CT 


o 


CD 


CD 


CT 


o 














1-4 






































4 


t4 


▼4 




^4 


▼4 


▼4 


t4 


■*4 


▼4 


*4 





OGILVIE PRESS. INC., BROOKLYN 17, N. Y. 



STOCK NO. 490 



100 



APPENDIX F. (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

23 


SUBJECT 

The Orthobaric Densities of Ethane, Methane, Oxygen and 


NAME „ ^ 

R.D 


. Goodwin 




F luorine 


DATE 


IS 1 Q7T 





Table 16. Ethane vapor data not used for least squares. 



u. 


vi> 


rvj 


CVJ 


<30 


ro 


CO 


C V 


in 


vD 


O' 


X 


rr> 


LT» 




CT 




x 




3 




f\J 




x 


in 


in 


eo 


3 


X 


<50 


in 


CD 


CM 


ao 


fr—4 


cd 


CD 


9-4 


CVJ 


X 


X 


00 


CD 


CD 


ro 


CM 


ao 


PO 


3 


ee 


o 


<r> 


® 


o O' 


O' O' 


▼4 


ao 


3 


3 


3 


O' 


TO 


CM 


in 


■9-4 


fO 


o 


o 


CD 


CD 


CD 


CO 


o 


H 


j- 


CM 


CM 




CD 


CD 


CD 


CD 


9-4 


o 


CD 


9"4 


SD 


O 


9-4 


CD 


o 


o 


o 


o 


o 


H 


9-4 


CM 


3 


O 


V 


CD 


a 


CD 


CD 


CD 


o 


O 


CD 


CD 


CD 


O 


o 


O 


O 


o 


a 


o 


o 


CD 


O 


o 


O 


O 


o 


o 


o 


o 


o 


CD 


O 


CD 


CD 






O 


o 


o 


CD 


CD 


o 


O 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CD 


CD 


o 


o 


cd 


o 


o 


CD 


© 


o 


o 


o 


o 


CD 


O 


O 


CD 


CD 




CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


O 


CD 


o 


CD 


O 


o 


CD 




CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


cd 


CD 


CD 


CD 


CD 


CD 


O 






i 


i 


i 


i 


i 


i 


i 


i 


i 


i 


• 


i 


i 


1 


1 


• 


i 


i 


• 





























o 


CD 


j- 


O' 


in 


CM 


9-4 


TO 


X 


in 


CM 


CD 


CO 


® 




in 


3 


3 


CM 


X 


in 


3 


ro 


CM 


P- 


in 


X 


ro 


X 


CD 


j- 


3 


P- 


in 


>- 


3 


o 


in 


CD 


3 


N. 


O’ 


o 


ro 


XI 


3 




a 


ro 


in 


O' C3 


O' 


p- 


m 


N. 


X 


3 


in 


X 


X 


X 


Lf\ 


IV. 


3 


9-4 


3 


N. 




O 


in 


O' 


3 


® 


CM 


X 


•=H 


CM 


9-4 


CD 


3 


O' 


3 


to 


TO 


® 


CM 


X 


9-4 


in 


o' in 


O' ro 


X 


N* 


O' o 


9-4 


CM 


CM 


CM 




in 


in 


m 


x 




P. 


N- 


OO 




CM 


ro 


ro 


eo 


3 


3 


in 


IT' 


X 


X 




P- 


P. 


r^ 


p» 


eo 


® 


to 


X 


O' 


O' 


X 


X 


X 




9-4 


9-4 


9“4 


9-4 


9H 


9-4 


9-4 


9-4 


o 


9-4 


9-4 




9=4 


9-4 


▼4 


9-4 


9-4 


9—4 


9-4 


9-4 


9-4 


^4 


9~4 


9-4 


9-4 


9-4 


9-4 


9-4 


9-4 


9-4 


9-4 


9—4 


9-4 






CD 


O 


CD 


CD 


CD 


O 


O 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


O 


rD 


CD 


O 



X 


X 


CM 


X N- 


X 


ro 


3 


9-4 


X 


ro 


3 


CD 


ro 


IO 


p. 


CO 


ao 


9-4 


CM 


9-4 


X 


X 


® 


CM 


X CM 




CM 


ao 


X 


at 


X 


ro 


>- 


3 


o 


3 N. 


to 


p- 


o 


a 


CM 


CM 


9-4 


X 


p- 


X 


X 


to 


9-4 


9-4 




X 


X 


X X 


-t 


o 


*r4 


CD 


X 


o 


X 


X 


X 


9-4 




CD 


X 


X 


ro 


P» 


9-4 


X 


p- 


o 


X 


X 


ro 


eo 


TO 


p. 


CM 


K 


CM 


X 


O 


X 


9-4 


X 


O 


3 X 


® 


CD 


CM 


CM 


3 


X 


ro 




X 


X 


in 


X 


X 


p. 




r^ 


p- 


9-4 


CM 


ro 


ro 


3 


3 


X 


X 


X 


X 


N. 


p. 


ao 


P- 


® 


co 


® 


® 


X 


X 


X 


X 


X 


a 




9-4 


9-4 


▼4 


9-4 


9-4 


9-4 


9-4 


9-4 


CD 


9-4 


9-4 


9-4 


9-4 


9-4 


9—4 


9-4 


9-4 


9—4 


9-4 


9-4 


9-4 


9-4 


▼4 


9—4 


9-4 


9-4 


9-4 


9-4 


▼4 


9-4 


9—4 


9-4 


CM 




CD 


O 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


O 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


O 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


rrj 


a 



PJ X 


IT. 


9*4 


O 


CM 


in 


p. 


X 


X 


X 


9-4 


X 


CM 


X 


ro 


9-4 




ro 


X 




9-4 


CM 


9-4 


CM 


X 


ro 


CM 


® 


GO 


X 


CM 


ro 


X 


ro 




X 


X 


O 


r^ 




CD 


CM 


X 


® 


X 


X 


o 


CM 


CD 


X 


® 


CM 


X 


CD 


p- 


X 


® 


CM 


X 


O 




ro 


X 


X 


X 


CM 


CM 


CM 


ro 


3 


X 


N> 


X 


CM 


ro 


X 


in 


X 


X 


X 


X 


X 


X 


X 


X 


X 


nj 


-r 


(M 






ro 


O 


X 




CM 


9-4 


CD 


CD 


® 




X 


X 


3 


ro 


CM 


CM 


K. 


3 


CM 


9-4 


CD 


X 


<o 


N- 


X 


X 




ro 


ro 


CM 


ro 


(M 


■9-4 


9-4 


9-4 


CD 


o 


a 


O 


a 


O 


o 


a 


O 


O 


CD 


o 


o 


CD 


CM 


9-4 


9-4 


9-4 


9-4 


o 


o 


O 


CD 


CD 


o 


CD 


o 


CD 


o 


CD 


CD 


CD 


CD 


a 


CD 


o 


CD 


CD 


o 


o 


o 


CD 


a 


CD 


o 


o 


CD 


o 


o 


O 


o 


a 


o 


o 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


O 


o 


CD 


CD 


CD 





ro 


9-4 


X 


P0 


ro 


9-4 


ro 


at 


CM 


9-4 


K- 




® 


ro 




CM 


▼4 


p» 


X 


X 


X 


CD 


X 


9-4 


X 


ef 


CM 


ro 


X 


ro 




CD 


GO 


z 


o 


CD 


O 


9-4 


CM 


■3- 


p- 


J- 


9-4 


ro 


X 


j- 


9-4 


CM 


j- 


X 


j- 


ro 




ro 


ro 


p» 


o 


ro 


9-4 


9*4 


9-4 


CM 


CM 


CM 


ro 


X 


N- 


CL 


CD 

l 


CD 


CD 


CD 


CD 


CD 


CD 


9-4 


9-4 


9-4 


CD 


CD 


O 


CD 


CD 


CD 


a 


CD 


CD 


o 


o 

1 


o 

• 


CD 


C) 

I 


a 

1 


CD 

1 


CD 

8 


CD 

8 


CD 

J 


o 

• 


CD 

1 


CD 

1 


CD 

1 



□ 


9-4 


CJ 


a 


a 


CD 


CD 


a 


CD 


CM 


9-4 


9-4 


9—4 


9-4 


9-4 


9-4 


CD 


CD 


CD 


O 


O 


CD 


CD 


o 


<o 


GO 


CD 


CD 


CO 


CO 


CD 


CO 


CD 


CD 


o 


'ID 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


O 


CD 


O 


CD 


CD 


CO 


o 


CD 


CD 


CD 


CD 


CD 


o 


CD 


O 


CD 


CD 


CD 


o 


CD 


o 


O 


O 




a 


CD 


o 


O 


o 


CD 


o 


O 


O 


CD 


o 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


o 


Q 


Q 


CD 


O 


CD 


CO 


CD 


< 


i 


4* 


4- 


<♦» 


•f 


4- 


4- 


4- 


i 


t 


1 


• 


i 


i 


i 


4- 


4- 


4 


4- 


4- 


•+• 


4- 


♦ 


4* 


4 


V 


4- 


4- 


4- 


4- 


4 


4 


4* 


o 


X 


9-4 




ro 


r^ 


J- 


X 


X 


ro 


N- 


CM 


ro 


CM 


X 


3 


X 


3 


9-4 


CM 


N» 


X 


X 


® 


X 


rO 


X 


X 


X 


N* 


X) 


X 


3 






PJ 


MJ 


-3 


CM 


o 


® 


® 


ro 


3- 


9-4 


CM 




X 


3 


X 


X 


X 


CM 


ro 


ro 


ro 


CO 


X 


ro 


X 


CO 


3 


X 


X 


tn 


® 


3 


CM 




CD 


X 


9—4 


CD 


CM 


P- 


® 


r- 


9-4 


CM 


o 


9-4 


9-4 


X 


X 


9-4 


X 


X 


ro 


CD 


X 


CM 


X 


CM 




X 


o 


3 


O 


9-4 


ro 


X 


9-4 




9-4 


D 


CM 


df 


X 


GO 


9-4 


X 


® 


p~ 


X 


X 


-J 


in 


X 


CD 


94 


ro 


X 


GO 


GO 


J* 


a 


3 


® 


9-4 


X 


X 


ro 


X 


CD 


ro 


X 




X 


9-4 


9-4 


9-4 


9-4 


9-4 


CM 


CM 


X 


ro 


3 


in 


X 


p. 


CO 


9-4 


9-4 


9-4 


9-4 


9-4 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


•J* 


3 


X 


X 


X 



X 


9-4 


O 


CD 


O 


O 


CD 


O 


o 


CM 


H 


9-4 


9-4 


9-4 


94 


9-4 


CD 


CD 


CD 


a 


a 


CD 


O 


a 


CD 


CD 


CD 


a 


o 


o 


CD 


CD 


CO 


o 


N. 


CO 


O 


a 


CD 


O 


r D 


CD 


o 


o 


CO 


O 


O 


CD 


O 


CD 


CD 


CD 


CD 


o 


o 


CD 


o 


CD 


CD 


O 


CD 


o 


o 


o 


ro 


a 


CD 


CD 


X 


CD 


o 


o 


o 


a 


CD 


CD 


CD 


CD 


' ) 


CD 


O 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


r C) 


o 


CD 


o 


o 


CD 


CD 


CD 


CD 


CD 


o 


i 


4- 


4- 


+ 


4- 


4- 


4- 


4- 


i 


1 


i 


i 


i 


i 


i 


4 


4- 


4- 


+ 


4- 


4- 


+ 


4* 


4* 


4- 


4- 


4> 


4- 


4- 


4- 


4- 


4- 


4- 


s: 




CM 


3 


9-4 


X 


9-4 




N. 


CD 


X 


ro 


N- 


CD 


N. 


x> 


X 


9-4 


9-4 


ro 


ao 


CM 


X 


X 


CO 


X 


ro 


CM 


cO 


ro 


ro 


ro 


X 


ro 




X 


CM 


X 


3 


3 


X 


3 


CD 




o 


X 


ro 


® 


9-4 


3 


9=4 


^4 


rs* 


CD 


o 


X 


9-4 


® 


X 


9-4 


3 


o 


O 


3 


X 


CD 


N- 


X 




X 


X 


9-4 


CD 


CM 


® 


CD 


9-4 


X 


r^ 


ro 


3 


CM 




ro 


CM 


X 


in 


3 


9-4 


® 


9-4 


X 


9-4 




X 


CD 


3 


X 


CD 


(M 


CM 


X 




CD 


CD 


CM 


3 


X 


® 


CM 


X 


® 


p- 


X 


X 


3 


X 


X 


CD 


94 


ro 


X 


GO 


CD 


3 


CD 


3 


CO 


9—4 


in 


X 


CM 




CD 


ro 


® 




X 


9-4 


9-4 


9-4 


9*4 


9-4 


CM 


CM 


X 


ro 


3 


X 


X 


N. 


GO 


9-4 


9-4 


9-4 


9-4 


9-4 


(M 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


3 


3 


X 


X 


X 



y 


CD 


CD 


CD 


O 


O 


CD 


O 


CD 


Q> 


N- 


ro 


9-4 


® 


m 


CM 


X 


X 


CM 


CD 


ao 


X 


3 


a 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


o 


O 


•t 


O 


CD 


o 


a 


C3 


O 


o 


CD 


GO 


O 


o 


CM 


ro 


X 


3 


a 


® 


ro 


X 


ro 


rw 


X 


o 


X 


® 






X 


X 


X 


in 


in 


in 


4— 


O 


C7D 


CD 


CD 


CD 


CD 


CD 


CD 


X 


CM 


X 


X 


r\j 


X 


o 


® 


nj 


N» 


O 


X 


in 


CM 


CM 


—4 


9-4 


X 


9—4 


X 


9-4 




9—4 


X 


9-4 






CD 


in 


CD 


X 


'D 


in 


O 


3 


X 


cr 


ao 


ro 


GO 


ro 


ao 


ro 


ao 


ro 


ao 


ro 


GO 


*o 


GD 


ro 


m 


CO 


rD 


CM 


ro 


3 


3 


X 




in 


X 


X 


K. 


r^ 


GO 


cO 


X 


® 


CM 


ro 


ro 


3 


3 


in 


X 


D 


X 




N. 


® 


GO 


o 


aO 


X 


X 


O’' 


CO 


I D 


o 


D 


D 


O 




CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


9-4 


CM 


CM 


(M 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


(M 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


a 


9-4 


9—4 


9-4 


9-4 


9-4 


9-4 


9=4 


9-4 


X 


X 


X 


X 


X 


X 


X 


X 


X 


X 


X 


X 


X 


X 


9-4 


9-4 


9-4 


9=4 


9-4 


9-4 


9 f =4 


9—4 


9 ^ 


9-4 


9-4 



OGILVIE PRESS. INC.. BROOKLYN 17. N. Y. 



STOCK NO. 480 



101 



APPENDIX F. (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

24 


The Orthobaric Densities of Ethane, Methane, Oxygen and 
Fluorine 


name p Goodwin 


DATE 

Spot. 18 1 973 



Table 


17. Calculated 


oxygen vapor 


densitie s . 


T, K 


R, MOL/L 


DR/DT 


D2R/DT2 


54.351 


3.3612-004 


9.6727-005 


2.4354-005 


56.000 


5.3288-004 


1.4452-004 


3.4007-005 


53.000 


8.9941-004 


2.2709-004 


4.9253-005 


6 J. 000 


1.4644-003 


3.4449-004 


6.8929-005 


62.000 


2.3068-003 


5.0609-004 


9.3527-005 


64.000 


3.5251-003 


7.2213-004 


1.2342-004 


66.000 


5.2388-003 


1. 0035-003 


1. $884-004 


63.000 


7.5899-003 


1.3613-003 


1.9990-004 


7 0 . 0 0 0 


1 . 0742-002 


1.8068-003 


2.4655-004 


72.000 


1 . 4883-002 


2.3511-003 


2.9868-004 


74.000 


2.0220-002 


3.0050-003 


3.5605-004 


76.000 


2.6983-002 


3. 7786-003 


4.1840-004 


73.000 


3.5421-002 


4.6817-003 


4.8543-004 


30.000 


4.5802-00 2 


5. 7233-003 


5 • 5684-0 0 4 


32.000 


5.8412-002 


6.9118-003 


6.3239-CC4 


84.000 


7. 3552-002 


8.2554-003 


7.1185-004 


86.000 


9.1542-002 


9.7617-003 


7.9510-004 


88.000 


1. 1271-001 


1.1438-002 


8.8208-004 


90.000 


1.3741-001 


1.3293-002 


9.7286-0C4 


92.000 


1.6601-001 


1. 5332-002 


1.0676-003 


94.000 


1 . 9887-00 1 


1.7566-002 


1.1666-003 


96.000 


2. 3641-001 


2. GO 02- 0 02 


1.2703-003 


93.000 


2. 7902-00 1 


2.2651-0G2 


1.3793-C03 


100.000 


3.2716-001 


2. 5523-002 


1.4944-003 


102.000 


3.8127-001 


2. 6633-002 


1.6164-003 


104.000 


4.4186-001 


3.1994-002 


1.7466-003 


106.000 


5. C943-001 


3.5626-002 


1.8865-003 


1 0 3 . 0 0 0 


5.8455-001 


3.9548-002 


2.0377-003 


110.000 


6.6783-001 


4. 3785-002 


2.2023-003 


112.000 


7.5992-001 


4.8368-002 


2.3830-003 


114.000 


8.6155-001 


5.3330-002 


2.5829-003 


116. 000 


9. 7353-001 


5. 8715-002 


2.8059-003 


113.000 


1.0967+000 


6.4572-002 


3.0569-003 


12 J. 000 


1 . 2322+000 


7 . Q9b5- 0 02 


3.3422-CG3 


122. 000 


1.3810+000 


7. 7969-002 


3.6695-003 


124.000 


1 . 5445+000 


8.5678-002 


4.0493-003 


12o. 000 


1. 7243+000 


9.4210-002 


4.4951-003 


128.000 


1.9220+000 


1. 0371- 0 01 


5.0254-CC3 


13. .000 


2. 1399+000 


1.1438-001 


5. 6657-C 0 3 


132.000 


2.3605+000 


1. 2647-001 


6.4520-003 


134.000 


2.6470+000 


1.4032-001 


7.4368-003 


1 3 6 • J 3 Q 


2.9433+000 


1. 5641-001 


8.6997-C03 


1 3 5 . 0 00 


3.2745+000 


1.7539-CGi 


1.0366-002 


140.000 


3 . 64 7 4 + 000 


1.9828-001 


1.2644-002 


142.000 


4. 3712+000 


2.2661-001 


1.5903-002 


1 44. J 00 


4.5592+000 


2.6300-001 


2.0854-002 


1 4 b . 0 0 0 


5. 1316+GOO 


3.1214-001 


2.9031-002 


143.000 


5.8225+000 


3. 8373-001 


4.4334-C 02 


15 0. 000 


6.6967+300 


5.G204-C 01 


7.9575-002 


152. OUO 


7 .9138+300 


7. 542G-001 


2.0346-001 


154.000 


1. 023C+001 


2. 0622+000 


2.4109+000 


154.576 


1 . 3bJG+001 


0. 0000 + 000 


0 . 00 0 0 + 0 0 0 



OG1LVIE PRESS, INC., BROOKLYN 17. N. Y. 



STOCK NO. 490 



102 



APPENDIX F. (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 


PROJECT NO. 


FILE NO. 


PAGE 


LABORATORY NOTE 


7750364 


73-5 


75 


subject Tkg Orthobaric Densities of Ethane, Methane, Oxygen and 


NAME 

R.D 


■ Goodwin 




Fluorine 


DATE 


...13. 19,71 



Table 18. Calculated fluorine vapor densities. 



T,K 


R» MOL/L 


DR/DT 


D2R/DT2 


53.481 


5.6700-004 


1.6771-004 


4.2852-005 


54.000 


6.6001-004 


1.9119-004 


4.7718-005 


56.000 


1.1518-003 


3.0817-004 


7.0323-005 


58.000 


1. 9272-003 


4.7699-004 


9.9683-005 


60.000 


3.1038-003 


7.1188-004 


1.3650-004 


62.000 


4. 8291-003 


1. 0283-003 


1.8127-004 


64.000 


7.2821-003 


1.4424-003 


2.3426-004 


66.000 


1 . 0675-002 


1.9709-003 


2.9554-004 


68.000 


1.5253-002 


2.6301-003 


3.6499-004 


70.000 


2. 1293-002 


3.4361-003 


4. 4236-004 


72.000 


2.9105-002 


4.4046-003 


5 .2731-004 


74.000 


3.9029-002 


5.5501-003 


6.1945-004 


7o. 000 


5.1434-002 


6.6869-003 


7. 1844-0 04 


78.000 


6.6713-002 


8.4282-003 


8.2395-004 


80.000 


8.5291-002 


1.0187-002 


9. 3580-004 


82.000 


1.0761-001 


1.2176-002 


1.0539-003 


64.000 


1.3416-001 


1. 4407-002 


1.1783-003 


3 6. J 0 0 


1 . 6541-001 


1.6893-002 


. 1.3094-003 


68.000 


2.0191-001 


1.9649-002 


1.4475-003 


90.000 


2.4420-001 


2.2689-002 


1.5935-003 


92.000 


2.9286-001 


2. 6029-002 


1.7482-003 


94.000 


3.4852-001 


2.9688-002 


1.9129-003 


96.000 


4.1184-001 


3.3688-002 


2.0693-003 


99.000 


4. 8352-001 


3. 8054-002 


2.2793-003 


1 0 0 . 0 00 


5.6432-001 


4.2816-002 


2.4854-003 


102.000 


6.55G7-001 


4.8009-002 


2.7105-003 


104.000 


7. 5667-001 


5.3674-002 


2.9585-C03 


106.000 


8 . 7012-001 


5.9861-002 


3.2339-003 


108.000 


9.9651-001 


6.6631-002 


3.5426-003 


il 3. J00 


1. 1371+000 


7. 4058-G02 


3.8918-003 


112.000 


1.2932+00 0 


3.2232-032 


4.2910-003 


114.000 


1.4666+000 


9.1264-002 


4.7523-003 


116.000 


1.6590+000 


1.0129-001 


5.2919-003 


113. UG0 


1.8725+000 


1.1250-031 


5.9315-003 


120.000 


2. 1099 + 000 


1.2511-001 


6.7C13-003 


122. 000 


2 . 3741+000 


1.3942-001 


7.6437-003 


124.000 


2.6690+000 


1. 5584-001 


8.8210-003 


1 2 6 • 0 0 0 


2 . 9992+000 


1.7492-001 


1.0328-002 


126.000 


3.37C9+0C0 


1.9746-GC1 


1. 2313-0 02 


130.000 


3 . 7921+000 


2.2465-001 


1.5026-002 


132.000 


4.2739+000 


2.5834-001 


1.8913-002 


134.000 


4. 8319+000 


3.0165-001 


2.4841-002 


136.000 


5 . 49C5+000 


3.6028-001 


3.4720-CC2 


139.000 


6.2909+000 


4.4628-001 


5.3532-002 


140.000 


7.3133+000 


5.9079-001 


9.6476-002 


1 <+ 2 . J 0 0 


8.7644+000 


9.1469-001 


2.72 51-001 


144. 000 


1.1893+001 


3. 5620+00 0 


7.7289+000 


144. 310 


1 . 5150+001 


0.0000+000 


0.0000+000 



OG1LVIE PRESS. INC.. BROOKLYN 17. N. Y. 



STOCK NO. 450 



103 



APPENDIX F. (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

-73-5 


PAGE 

26 


SUBJECT 

The Orthobaric Densities of Ethane, Methane, Oxygen and 
Fluorine 


NAME 

R . D . Goodwin 


DATE 

ciopf 18 1Q78 



Table 


19. Calculated methane vapor 


densitie s . 


T,K 


Rf MOL/L 


DR/DT 


D2R/DT2 


90.680 


1.5679-002 


1.8523-003 


1.7385-004 


92.000 


1.8280-002 


2.0919-003 


1.8937-004 


94.000 


2.2858-002 


2.4952-003 


2.1409-004 


96.000 


2.8294-002 


2.9492-003 


2.4020-004 


98.000 


3.4691-002 


3.4569-003 


2.6763-004 


100.000 


4.2159-002 


4.0206-003 


2.9634-004 


102. 00C 


5.0813-002 


4.6430-003 


3.2628-004 


104.000 


6. 0772-002 


5. 3265-003 


3.5744-004 


106.000 


7.2161-002 


6.0736-003 


3.8980-004 


106.000 


8.5110-002 


6.8866-003 


4.2339-004 


11 0.000 


9.9753-002 


7. 7680-003 


4.5823-004 


112.000 


1.1623-001 


B. 7204-003 


4.9439-004 


114.003 


1.3468-001 


9. 7465-003 


5.3195-004 


116.000 


1.5527-001 


1.0849-002 


5.7100-004 


113.000 


1.7813-001 


1.2032-002 


6.1170-004 


120.000 


2.0345-001 


1.3297-002 


6. 54 20-004 


122.300 


2.3138-001 


1.4650-002 


6.9870-004 


124.000 


2 . 6211-001 


1.6093-002 


7.4545-004 


126.000 


2.9582-001 


1.7633-002 


7.9471-004 


128.000 


3.3271-001 


1. 9274-002 


8.4681-004 


130.300 


3.7299-001 


2. 1023-002 


9.C214-0C4 


132.000 


4. 1687-001 


2.2885-002 


9.6113-004 


134.000 


4.6461-001 


2.4870-002 


1.0243-003 


136.000 


5.1644-001 


2.6986-002 


1.0922-003 


138.000 


5.7264-001 


2.9242-CG2 


1. 1657-00 3 


14 0. 000 


6.3351-001 


3.1652-002 


1.2454-003 


142.000 


6.9937-001 


3.4229-002 


1.3325-003 


144.000 


7. 7055-001 


3.6988-002 


1.4280-003 


146.000 


8.4745-001 


3.9948-C02 


1.5335-C03 


148.000 


9.3049-001 


4. 3130-002 


1.6506-003 


150.000 


1.0201+000 


4.6559-002 


1.7815-003 


152.000 


1 .1169+000 


5. 0267-002 


1.9288-003 


154.000 


1 . 2214+000 


5.4288-002 


2.0957-003 


156. 300 


1. 3343+000 


5. 8665-002 


2.2865-003 


156.000 


1.4563+000 


6. 3453-002 


2.5065-003 


160.000 


1 . 5884+000 


6.8715-002 


2.7627-003 


162. J00 


1 . 7316+000 


7.4534-002 


3.0643-003 


164.000 


1 .8870+000 


8.1011-002 


3.4240-003 


166.000 


2.0561+000 


8.8280-002 


3 . 85 92-0 G 3 


168.000 


2.2408+000 


9.6514-002 


4.3945-003 


170.000 


2. 4430+000 


1. 0595-0C1 


5.0661-003 


172.000 


2.6656+000 


1.1691-001 


5.9289-003 


174.000 


2.9119+000 


1.2985-001 


7.0695-003 


176.000 


3.1867+000 


1.4546-001 


8.6322-003 


178.000 


3.4963+000 


1.6482-0C1 


1.0873-002 


180.000 


3.6497+000 


1.8973-001 


1.4288-002 


182.000 


4.2610+000 


2.2344-001 


1.9949-002 


164.000 


4.7537+000 


2. 7274-001 


3.0592-002 


186.000 


5. 3730+000 


3.5464-001 


5.5251-002 


168.000 


6.2307+000 


5. 3071-001 


1.4281-001 


190 . 000 


7 . 8668+000 


1.4868+000 


1.7833+000 


190.555 


1. 020C+001 


G . 000 0 + 000 


0.0000+000 



OQILVIE PRESS. INC., BROOKLYN 17. N. Y. 



STOCK NO. 4SO 



104 



APPENDIX F. (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

27 


subject Orthobaric Densities of Ethane, Methane, Oxygen and 

Fluorine 


name p Goodwin 


DATE 

SeDt. 18. 1 073 



Table 20. Calculated ethane vapor densities. 



ETHANE SATURATED VAPOR DENSITIES 



T,K 


R, MOL/L 


DR/DT 


D2R/DT2 


89.699 


1. 3511-006 


3.4416-007 


7.9422-006 


90.000 


1 .3863-006 


3.5229-007 


8.1081-008 


95.000 


4.5944-006 


1. G378-0C6 


2.1037-C07 


i o o . o o o 


1.3356-005 


2.6924-006 


4.8256-0 0 7 


105.000 


3.4683-005 


6.2648-006 


9.9665-007 


110.000 


8.1696-005 


1.3276-005 


1.8818-006 


115. J00 


1. 7684-304 


2. 5955-005 


3.2903-006 


120.000 


3.5568-004 


4.7323-005 


5.3851-006 


125.000 


6.7091-004 


8. 1216-005 


8.3256-006 


1 3 . 0 0 0 


1 .1963-003 


1. 3223-004 


1.2254-005 


135.000 


2. C304-003 


2.0559-004 


1.7283-005 


1 4 0.0 00 


3.2990-003 


3.0703-004 


2.3493-005 


145.000 


5. 1575-003 


4.4257-004 


3.0926-005 


150.000 


7. 7918-003 


6.1835-004 


3.9592-005 


155.000 


1. 1418-002 


8. 405 1-004 


4.9474-005 


160.000 


1.6284-002 


1.1151-003 


6.0539-005 


165.000 


2.2666-002 


1.4478-003 


7.2744-005 


i 7 0 . 0 0 0 


3.0869-002 


1.8443-003 


8. 60 50-005 


175. OGu 


4. 1225-002 


2. 3101-C03 


1.0C43-CC4 


1 8 0. 0 00 


5.4094-002 


2.8504-003 


1.1588-004 


135.000 


6. 9862-002 


3.4707-003 


1. 3243-004 


19 J .000 


8.8944-002 


4.1767-003 


1.5C14-C04 


195. 000 


1 . 1178-00 1 


4.9742-003 


1.6912-004 


2 u 0.000 


1 . 3885-001 


5.8703-003 


1 . 8956-004 


205.000 


1. 7066-301 


6. 8727-003 


2.1170-004 


210.000 


2. 0777-301 


7.9907-003 


2.3587-C04 


215. 0C0 


2. 5u78-JQi 


9. 2355-Cu3 


2.6252-004 


22 0. 0 00 


3. 0036-001 


1. 0621-0G2 


2.9224-004 


225.000 


3.5725-001 


1.2164-002 


3.2581-004 


230.000 


4. 223 C -3 01 


1.3887-002 


3.6425-004 


235.000 


4.9647-001 


1. 5817-002 


4.0894-C04 


240.000 


5. 8386-001 


1.7990-002 


4.6176-004 


245.000 


6. 7685-001 


2.0453-002 


5.2532-004 


250 . 000 


7.6599-001 


2.3267-002 


6.0 3 30 -0 0 4 


255.000 


9. Iu25-J0l 


2 . 6519-C 02 


7.0116-004 


260.000 


1.0521+000 


3.0325-002 


8.2712-C04 


265.000 


1.2147+000 


3.4858-002 


9.9430-004 


270.000 


1 « 4G23 + 30G 


4. 1373-CC2 


1.2246-003 


275.000 


1 . 6207+000 


4. 7273-002 


1.5572-003 


280.000 


1.6784+000 


5. 6239-002 


2.0691-003 


285.000 


2. 1686+300 


6.8532-002 


2.9298-003 


290.000 


2. 5736+000 


8. 68 20-002 


4.58 76-CG3 


295.000 


3 . C777 + 30 0 


1.1613-001 


8.6241-003 


3 0 U . 0 00 


3.8180+000 


1.9083-001 


2.5135-002 


305.300 


5.6689+000 


1. 2377+000 


2.4827+GCC 


305.330 


6. 870G+000 


0. 0000+000 


0 . 0000+000 



OGILVIE PRESS. !MC.. BROOKLYN 17. N. Y. 



STOCK NO. 4SO 



105 



APPENDIX F . (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

28 


subject Orthobaric Densities of Ethane, Methane. Oxygen and 


NAME R.D 


. Goodwin 




Fluorine 


DATE 








Sent. 18. 1973 



10/10/73 

PROGRAM LICKFIT 

C REPRESENT ETHANE SATURATED LIQUID DENSITIES. 

C DEFINE X = ( TC-T ) /TC-TT) , Q = X»*l/3, XE = X**E, AND - 

C DEFINE YY = < 0 - DC ) / ( D T-0 C ) , WHEN THE EQN. IS - 

C (YY-X)/ (XE-X) = A1 ♦ A2*Q2 + A3*Q3 ♦ . . . 

C DCRT = 6.86, 6.87 POSSIBLY VIA MY VAPORDEN EQN. 

C DTRP = 21.68 ESTIM. VIA REIO C. MILLER. 

C ID, (9) TESTER, (lO)DOUSLIN, ( 1 1 ) SLIWINSKI , (12) CANFIELD ET AL., 

C 10, (13) KLOSEK, ( 14) MI LLER, (15) EUBANK , ( 16) TOMLI NSON 

COMMON E,AZ, TTRP,TCRT , DTRP, DCRT, DRDT, D2RDT2 , A(6) 
C0MM0N/999/NP,NF ,H(15 ),Y(200),G(200,15) 

DIMENSION I D C 9 9 ) ,T (99) ,0EN(99) , U ( 99 ) , W ( 99 ) , XQ ( 99 ) 

1 F ORM AT (15, 2F10.0) 

2 FORMAT (1H1 13X 1HE 8X2HAZ 6X4HDCRT 8X2HSS) 

3 F ORMAT ( 5X 4F10.3) 

4 FORMAT (1H1 1ZX ♦ETHANE SATURATED LIQUID DENSITIES, E =* F6.3// 

1 20 X 6HTCRT -F8.3, 8H , TTRP =F8.4// 

2 20 X 6HDCRT =F6.3, 8H, DTRP =F8.4// 2(13X 3E15.7/) / 

3 8X2HID 7 X 3 H T , K 5X5HM0L/L 6X4HCALC 4X4HPCNT 

4 1 4 X 1 H X 8 X 2HY X 8X2HYC 6X4HYDIF ) 

5 F OR TAT ( 5X 15, 3F10.3, F8.2, F15.5, 3F10.5) 

6 F ORMAT ( 1H1 16X ♦ETHANE SATURATED LIQUID DENSITIES* // 

1 17X 3 H T , K 3X7HR,MOL/L 5X5HDR/0T 3X 7HD2R/DT 2 ) 

7 FORMAT ( 1 0 X 2F1C.3, FIG. 4, F10.5) 

9 F ORMAT ( 1 8X 4HNP =13, 10H, RMSPCT =F7.3/) 

C 

C DO ALL FOUR, OXYGEN, FLUORINE, MFTHANE, AND ETHANE. 

1C DO T9 I G= 1 , 4 $ GOTO (11,13, 15,17) , IG 

C CONSTANTS FOR OXYGEN. 

11 TTRP=54.3507 t TCRT=154.576 S TZ=52 « DT=2 I NZ=52 

12 D TRP = 4 0.63 $ OCR T = 13 . 63 S DZ=13.58 t EZ = 0.340 $ GOTO 19 

C CONSTANTS FOR FLUORINE . 

13 T T R 3 = 5 3.481 1 J TCRT = 144.31 S TZ = 50 $ DT=2 t NZ = 48 

14 D T RP = 44 .862 3 { DCRT = 15.15 $ DZ = 15.10 J EZ = 0.342 S GOTO 19 

C CONSTANTS FOR METHANF. 

15 TTRP=90.680 * TCRT=19C.555 * TZ=88 i OT=2 ? NZ=52 

16 DTRP =2 3.147 S DCRT=10.20 S DZ=10.05 t EZ=0.350 S GOTO 19 

C CONSTANTS FOR ETHANE. 

17 TTRP =89. 899 S TCRT=305.33 S TZ=8C t DT=5 t NZ=46 
lb D TRP = 2 1.68 $ OCR T= 6.87 $ DZ= 6.82 S EZ = 0.349 

19 XN = TCRT-TTKP t YN = DTRP- OCR T 

C RtAU NP DATA FOR LEAST SQUARES. 

C READ L. A. WEBER S OXYGEN VOLUMES, CC/MOL. 

20 OO 27 J = 1 , 9 9 t READ 1, I D ( J ) , T ( J ) , DEN ( J ) t IF(IO(J>> 21,28 

21 XF(ID(J>— 15) 23,22 

22 CONTINUE 

23 I F ( I 0 ( J ) -99) 25,24 

24 DEN(J) = 10Gv'/DEN(J) 

25 U(J> = X = ( TCRT-T ( J) ) /XN $ Q = CU3ERTF ( X ) I DO 26 K=2,6 

26 G ( J,K) = Q* * K $ G (J ,1) = 1 

27 W(J) = (DEN (J) -DCRT) /YN 

28 NPP = NP = J-l i NF = 3 $ E = 0.36 

C EXPLORE E, AZ, AND DCRT. 

29 AZ = NF % SSK = 1.CE+01C 

30 DO *9 I E= 1 , 21 i E = EZ ♦ 0.001*IE 



OGILVIE PRESS. INC.. BROOKLYN 17. N. Y. 



STOCK NO. 480 



106 



APPENDIX F. (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

29 


SUBJECT . _ , w , „ , 

The Orthobaric Densities of Ethane, Methane, Oxygen and 
Fluorine 


NAME _ 

R .D .Goodwin 


DATE 

Sent. 18. 1973 



LICKFIT 1C/10/73 

C SET UP THE LEAST SQUARES ARRAYS. 

36 00 40 J = 1 , N P $ X = U(J) $ XQ ( J ) = XE = X**E 

37 Y < J ) = (W ( J ) -X) / (XE-X ) 

40 CONTINUE $ CALL EGENFT J SS=0 $ DO 43 J=1,NP $ YC = 0 l 00 41 K=1,NF 

41 YC - YC 4 H(K)*G(J,K) $ X = U(J) $ XE = XQ(J) 

42 UC = DCRT 4 (X 4 (XE-X)*YC)*YN 

43 SS = SS 4 ( DEN ( J ) /DC - 1 ) * *2 $ SS = IOC *SQRTF (SS/NP) 

44 IF (SS.LT.SSK) 45,46 

45 S 3K = SS i EK = E i AZK = AZ S DK = DCRT 

46 DO h 7 K = 1 , 6 

47 A (K) = H (K) 

46 CONTINUE 

49 CONTINUE 

50 E=E< % AZ = A ZK i OCRT= DK J YN = DTRP - OCRT 
C USE SAVED CONSTANTS FOR DEVIATIONS. 

60 PRINT 4, E, TCRT , TTRP, DCRT, DTRP, <A(K> ,K=1,6> $ SS = 0 

61 00 7 U J=1,NPP J X = U(J) t XE = X**E t XEX = XE-X 

62 YC = 0 $ 00 63 K=1,NF 

63 YC = YC 4 A ( K ) *G (J,K) 

64 YS = X 4 XEX*YC l DC = DCRT 4 YN*YS 

65 YX = (W ( J ) -X) /XEX $ YD = YX-YC 

66 PCT = ICO* (OEN ( J) /OC-1) J SS = SS 4 PCT**2 

67 PRINT 5, ID (J) , T ( J) ,DEN< J) , DC, PCT, X,YX,YC,YD 

68 IF(J-NP) 70, b9 

69 SC = S QR T F (SS/NP) J PRINT 9, NP, SS 

70 CONTINUE 

C PRINT UNIFORM TABLE FOR PUBLICATION. 

71 PRINT 6 * DO 8J J=1,NZ $ IF(J-l) 73,72 

72 TT = TTRP $ GO TO 76 

73 IF(J-NZ) 75,74 

74 TT = TCRT f GO TO 76 

75 TT = TZ 4 Q T* J 

76 R = DENLIQF (TT) 

60 PRINT 7, TT , R , D R D T ,D2RDT2 
99 CONTINUE 

C 00 OTHER ETHANE DATA WITH EXISTING COEFFICIENTS. 

100 PRINT 4, E, TCRT, TTRP, DCRT, DTRP, CA(K) ,K = 1, 6) J SS = 0 

101 00 110 J = 1 , 99 $ READ 1, I DD , TT , DN $ IF(IDD) 1 3 2,99 3 

102 X= (TCRT-TT) /XN $ Q = CUBERTF ( X) * XE=X**E J XEX = XF-X 

103 YC = A ( 1) S DO 104 K=2 ,NF 

104 YC = YC 4 A ( K ) * Q * * K 

1 J 5 DC = DCRT 4 YN* ( X4XE X*YC) J P CT = 1 0 C ♦ ( DN / DC - 1 ) 

106 YY - (DN-DCRT) /YN S YX = (YY-X)ZXEX $ YD = YX-YC 
110 PRINT 5, I DO , T T , DN , DC, PCT, X,YX,YC,YD 
999 STOP I END 



OOILVIE PRESS. INC., BROOKLYN 17. N. Y. 



STOCK NO. 480 



107 



APPENDIX F. (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

30 


suBJtd Orthobaric Densities of Ethane, Methane, Oxygen and 

Fluorine 


NAME 

K .D .Goodwin 




DATE 

Sent. 18. 1973 



10 / 10/73 



PROGRAM VAPORFIT 

C REPRESENT ETHANE SATURATED VAPOR DENSITIES. 

C THIS FORM IS CONSTRAINED AT THE TRIPLE POINT, ANO 
C DEFINE X ( T ) AS FOR THE VAPOR PRESSURE EQUATION - 
C Z = ( 1- X ) = (TC/T-1) / ( TC/TT-1) , ZE = Z’*E, Q = Z”l/3, AND - 

C DEFINE YY = L N ( DC/D) /L N ( DC/ D T) , AND THE DEPENDENT VARIABLE - 

C Y (Z,YY) = (YY-Z) / (ZE-Z) , WHEN THE L.S. EQN. IS - 

C Y ( Z » Y Y ) = A1 + A 2 ’Q2 + A3*Q3 + A4’Q4 + . . . 

C ID., (1) VIRIAL/V.P. , ( 6 ) PORTER , (lO)OOUSLIN, (11 ) SL IWINSKI . 

COMMON E , A L , TTRP, TCRT , DTRP , DCRT , DRDT,D2RDT2, A ( 9 ) 
C0MM0N/999/NP,NF , H ( 1 5 ) ,Y(23C),G(2C0,15> 

DIMENSION ID(99) *T (99) ,DEN(99) , U(99),W<99), ZQ(99) 

1 FORMAT ( 15 , F10.C, E15.5) 

2 FORMAT ( 1 HI 10X 1 HE 8X2HAL 6X4HDCRT 8X2HSS) 

3 FORMAT ( 1C X 4F10.3) 

4 F ORMAT { 1 HI 17X * E T H A N E SATURATED VAPOR DENSITIES, E =* F6.3// 

1 2 0 X 6HTCRT =F8.3, 8H , TTRP =F8.4/ 

2 2 u X 6HDCRT =F8.3, 6H, DTRP =E12.5// 2(13X 4E15.7/) / 

2 3 X 2 HI D 7X 3HT , K 8X5HMOL/L 8X5HCALCD 4X4HPCNT 

3 12X 1HZ 8X2HYX 3X2HYC 6X4HY0IF ) 

5 FORMAT ( 5X 15, F1U.3, 2E13.4, Fd.2, F13.5, 3F10.5) 

6 F ORMAT (15, 2F1C.0) 

7 FORMAT (1H1 1 6X ’ETHANE SATURATED VAPOR DENSITIES’ // 

1 1 7 X 3 H T , K 6X7HR,M0L/L 8X5HDR/DT 6X7HD2R/DT 2 ) 

8 F ORMAT ( 1 G X F10.3, 3E13.4) 

9 FORMAT (18X 4HNP =13, 10H, RMSPCT =F7.3/) 

61 FORMAT (1H1 7X2HIO 7X3HT,K 8X5HMOL/L 8X5HCALCD 4X4HPCNT 
1 1 2 X 1HZ 8X2HYX 8X2HYC 6X4HYDIF ) 

C 

C DO ALL FOUR, OXYGEN, FLUORINE, METHANE, ETHANE. 

10 DO 31 I G = 1 , 4 $ GOTO (11,13,15,17) ,IG 

C CONSTANTS FOR OXYGEN. 

11 T TRP=54. 35C 7 $ TCRT=154.576 t TZ=52 $ CT=2 S NZ=52 

12 DTRP=3. 36122E-4 « OCRT=13.63 ? DZ=13.58 * EZ=0.360 * GOTO 19 

C CONSTANTS FOR FLUORINE. 

13 TfRP=53.4811 £ TCRT=144.31 £ TZ=50 £ DT=2 £ NZ=48 

14 DTRP=5.670E-4 I DCRT=15.15 « DZ=15.1G * EZ=0.340 t GOTO 19 

c Constants for methane. 

15 T T RP = 9 J . 6 8 0 $ TCRT = 190.555 £ TZ = 88 S DT=2 £ NZ = 52 

16 DTRP=0. 01567865 l OCRT=1C.20 J DZ=1C.05 J EZ=0.360 ? GOTO 19 

C CONSTANTS FOR ETHANE. 

C OMIT 24, AND FIX DTkF. 

17 T T RP = 8 9. 899 % TCRT = 30 5.3 3 S TZ = 8C l 0T=5 t NZ = 46 

16 OTRP= 1.35114E-6 $ DCRT=6.P7 S DZ=6.84 S EZ=0.34J 

19 ZN = TCRT/TTkP-1 £ YN = L OG F ( DCRT / 0 TRP ) 

C READ OUR I D ( 1 ) DATA MIXED WITH DOUSLIN. 

C INCREASE OUR DEN BY 0.15 PCT TO AGREE WITH COUSLIN. 

20 DO 27 J = 1 , 2 0 0 £ IF(IG-4) 22,21 

21 READ 1, ID ( J) , T ( J) ,DEN (J) $ I F < I D ( J ) ) 23,28 

22 READ 6, I D ( J ) , T ( J ) , DE N ( J ) $ I F < I D ( J ) ) 25,28 

23 IFlIO(J)-l) 25,24 

24 CONTINUE 

25 U(J> = Z = (TCRT/T ( J) -1) /ZN T Q = CUQERTF ( Z) f DO 26 K =2,7 

26 G ( J , K) = Q”K $ G (J,l) = 1 

27 W(J) = LOGF (DCRT/DEN ( J) ) /YN 



OOILVIE PRESS. INC., BROOKLYN 17. N. Y. 



STOCK NO. 490 



108 



APPENDIX F. (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 


FILE NO. 

73_5 


PAGE 

T. 1 


subject The Orthobaric Densities of Ethane, Methane, Oxygen and 
Fluorine 


NAME 

R .D .Goodwin 


DATE 

Sept 18 1Q77 



VA PORFIT 10/10/73 

26 NP = J-l 2 AL = NF = 5 $ E = 0.360 
C EXPLORE OCR T , AND EXPONENT E. 

33 SSK = 1.GE+01C 

34 DO 48 I E= 1 , 2 1 2 E = EZ + 0.002*IE 

C SET UP THE ARRAYS FOR LEAST SQUARES. 

36 DO 39 J=1,NP $ Z = U(J) $ ZQ(J) = ZE = Z**E 

37 Y ( U ) = (W(J)-Z)/ (ZE-Z) 

39 CONTINUE 2 CALL EGENFT $ SS = 0 
C NOW GET THE RMS DEVIATION. 

40 DO 44 J=1»NP 2 YC = 0 $ DO 41 K=1,NF 

41 YC = YC + H < K > * G (U » K ) 

42 Z = U<J) S YS = Z + (ZQ(J)-Z)*YC 

43 DC = OCRT*EXPF ( - YN* Y S ) 

44 SS = SS + ( DC/ DEN ( J ) - 1 ) **2 2 SS = 100 *SQRTF (SS/NP) 

45 IF (SS.LT.SSK) 46,46 

46 S SK = SS 2 EK = E 2 ALK-AL 2 DK = DCRT 2 DO 47 K = l,9 

47 A (K) = H ( K ) 

46 CONTINUE 

49 E = E< 2 AL= ALK 2 DCRT = DK 2 YN = LOGF (DK/DTRP) 

C USE SAVED CONSTANTS FOR DEVIATIONS. 

50 PRINT 4, E, TCRT , TTRF , DCRT,DTRP, ( A ( K ) ,K=1,8) 2 SS = 0 

51 DO 59 U=1,NP 2 Z = U(J) 2 ZE = Z**F 2 ZEZ = ZE - Z 

52 YC = 0 2 DO 53 K=1,NF 

53 YC = YC ♦ A (K) *G (U,K) 

54 YS = Z + ZEZ*YC 2 DC = CCRT * EX PF ( - YN* Y S ) 

55 YX = (W(J)-Z)/ZEZ 2 YD = YX - YC 

56 PCT = 100* (DEN (J)/DC-1) 2 SS = SS + PCT **2 

57 IF (IG.EQ.3. AND.J.EQ.46) 58,59 

58 PRINT 61 

59 PRINT 5, ID ( J) ,T (J) ,DEN( J) , DC, PCT, Z,YX,YC,YO 

60 SS = SQRTF ( SS/ NP ) 2 PRINT 9, NP, SS 

C PRINT UNIFORM TABLE FOR PUBLICATION. 

71 PRINT 7 2 DO 60 J=1,NZ 2 IF(J-l) 73,72 

72 TT = TTRP 2 GO TO 76 

73 IF(J-NZ) 75,74 

74 TT = TCRT 2 GO TO 76 

75 TT = TZ * D T*U 

76 R = DENGASF (TT) 

80 PRINT 9, T T , R, DRDT , D2RDT2 

81 CONTINUE 2 PRINT 61 

C DO OTHER ETHANE DATA WITH EXISTING COEFFICIENTS. 

82 DO 88 J = 1 , 9 9 2 READ 6, I DO, T T , DN 2 IF(IDO) 83,99 

83 Z = (TCRT/TT-1) /ZN 2 ZE = Z**E 2 ZEZ = ZE - Z 

84 Q = CU3ERTF (Z) 2 YC = A(l) 2 DO 85 K=2,NF 

a 5 YC = YC + A ( K ) *Q**K 

86 YY = LOGF (OCRT/DN) /YN 2 YX = (YY-Z)/ZEZ 2 YD = YX-YC 

87 DC = DCRT*EXPF(-YN*(Z 4 -ZEZ*YC) ) 2 PCT = 1C0MON/DC-1) 

86 PRINT 5, I D D , T T , DN , DC, PCT, Z,YX,YC,YD 

99 STOP 2 ENO 



CGILVIE PRESS. INC.. BROOKLYN 17. N. Y. 



STOCK NO. 450 



109 



APPENDIX F. (Continued) 



NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY 

LABORATORY NOTE 


PROJECT NO. 

2750364 


FILE NO. 

73-5 


PAGE 

- \ *> 


bUBJECT i . f , . 

1 he Ortnonaric Den ~ 1 ti- *s of Kthane, Methane, Oxygen and 
*\1 no One 


NAME _ _ _ 

R . O . Goodwin 


DATE 

Sent. 18. 



10/ 10/ 73 

FUNCTION DENLIC)F(T) 

C ETHANE SATURATED LIQUID DENSITIES, MOL/L. 

C y = A1 + A2*Q2 + A3* C 3 + . . . , YN = DTRP-DCRT, 

C C-N - DCRT ♦ Y N * ( X + ( X E - X ) * Y ) . 

CUM 'ION E,AZ,TTRP,TCRT ,DTRP,DCRT, DRDT ,D2RDT2 , A ( 6 ) 

1 FORMAT (1H0 9X * DENL IGF = 0, T EXCEEDS T CRT . * / ) 

2 IF(TCRT-T) 3,4,5 

3 PRINT 1 t STOP 

4 DENlIQF = DCRT $ DRDT = D2RD T2= G S RETURN 

5 XN=TCRT-TTRP i YN=DTRF-OCRT S X = ( TCR T- T ) / X N ? DXCT=-1/XN 

6 X E = X * * E S XE1 = E * X E / X $ X E 2 = <E-1)*XE1/X 

7 n = CU 3E R T F ( X ) i W1 = W/3/X $ W2 = -2*Wl/3/X 

tt Q = XE-X $ Qi = XE1 - 1 $ Q2 = XE2 

S N F = A Z f Y = A ( 1 ) f Y1 = Y2 = 0 f D0 11K = 2,NF 

1C Y = Y + A ( K ) * W * * K J Y 1 = Y 1 + K* A ( K ) * W * * ( K- 1 ) 

11 Y2 = Y2 ♦ K* (K-l ) *A ( K ) *W** ( K-2 ) 

12 Y 2 = Y1*W2 + Y2*W1**2 S Y1 = Y1*W1 

13 OENLIQF = DCRT ♦ ( X ♦ Q* Y ) * YN 

14 OROT = (1 f Q* Y 1 + Q 1 * Y ) * Y N* D X 0 T 

15 D2R0T2 = ( Q * Y 2 ♦- 2*C1*Y1 ♦ Q2 * Y ) * YN * OXO T* * 2 $ EET'JRN t END 



1 0 / 1 J / 7 3 

FUNCTION DENGASF(T) 

C ETHANE SATURATED i/APGR DENSITIES, MOL/L. 

C Y = A1 * A 2 * G2 * A 3 * C 3 ♦ . . , NF = AL, YN = L N ( D CR T / 0 T RP ) , 

C U = Z + (ZE-Z)*Y, DEN = DCRT*EXP(-YN*U) . 

C NOTE THAT Z - C ONLY AT T = TCFT, WHICH IS EXCLUDED. 

COMMON t , A L , TTRP,TCRT, DT RP , OCR T , DRDT , D 2 R 0 T 2 , A(9) 

1 c OR MAT (1HC hX *DENGASF = 0, T EXCEEDS TCRT. * / ) 

2 IF(TCRT-T) 3,4,5 

3 PRINT 1 $ STOP 

4 D E No AS F = DCRT S L^OT = D2RDT2 = C ? RETURN 

5 ZN = TCRT/TTRP-1 $ Y N = L OOF ( DC R T/ D TR P ) t Z= < TCR T / T - 1 > / ZN 



f 


n Z 


DT = -TCRT/ZN/T**2 


% D2ZD 


T 2 = -2*DZDT/T 


7 


7 r 


= Z * * E % Z E 1 = E * 


ZE/Z S 


ZE2 = (E- 


1 ) * Z E 1 / Z 


t 


X 


= ZE-Z % XI = ZF 1 


- 1 9 


X 2 = ZE2 




5 


1 


= CU3ERTF (Z) l Cl 


= G/3/Z 


i Q2 = - 


2*01 /3/Z 


1C 


NF 


= AL t Y - A ( 1 ) 


-< 

K* 

II 


Y 2 = u * 


DO 13 K=2,NF 


1 1 


T 


- Y +• A ( < ) *Q**< 








L 2 


Y 1 


= Y 1 * <*m<K)*Q**(K 


-1 ) 






13 


i l 


= Y 2 + K*(K-1)*A(K) 


♦Q** (K- 


2 ) 




14 


Y 2 


= Y 1 *G2 ♦ Y 2 * Ql * * 2 


S Y 1 


= Y 1 * Q 1 




1 c, 


U 


= Z y X * Y i UA = 1 


+ X * Y 1 


y x 1 ♦ Y t 


U 1 = U A * D Z D T 


lb 


J 2 


= UA*D2ZDT2 ♦ (X*Y2 


♦ 

r\) 

♦ 

X 

H* 


* Y 1 + X 2 * Y ) 


*DZDT**2 



1 7 k 2 r E X P F ( - Y N * U ) t CENGASF = F = DCRT*XP * YU = -YN*Ui 
IE DOT = Y U * F l D2RDT2 = ( YU* YU- YN* U2 ) * F l RETURN $ Fn 



110 



1 G I LV I E PRECIS, INC , BROOKLYN 17. N Y. 



STOCK NO. 450 



1 



APPENDIX G. 



Cryogenics Division — NBS Institute for Basic Standards 

LABORATORY NOTE 


COST CENTER 

2750364 


FILE NO 

73-6 


PAGE 


SUBJECT 

Liquid-Vapor Saturation (Orthobaric) Temperatures of 
Ethane and Meth£ne_ 


name £). Goodwin 


DATE Nov. 28, 1973 



1. Introduction . 

The present, new investigation has been necessary to accommodate the 
extreme range of ethane saturated vapor densities (a factor of 10 7 ). Our previous 
work on ethane appears in Lab. Notes 73-2,3,4,5. 

Analytical description of the two-phase, liquid-vapor equilibrium (tempera- 
ture-density relationship) is needed for our new equation of state which originates 
on this locus (NBS IR 73-342). In particular, the forms used below give the important 
property that all derivatives are zero at the critical point. 

In the following we split the range, using different functions according 
P ^ P c . In each case the dependent variable is 

Y(T) = (T c /T-1)/(T C /T t -1) (1) 

The symbols used here appear in a LIST. 

2. The Saturated Vapor Temperatures . 

The analytical formulation is 

Y(T) = U (t ) . [1 + Ao • In (a /ct 6 ) + W(a )] 

where 

U(a) ~ exp [a . (ug - u)], 
and n 

W('-r) - l At • (q 1 - cp 5 ). 

i = 1 

1/3 1 / 3 

The notation is q o' , q^ 0 g , and Ug 1 / 1 cr g - l j . 

This equation is constrained at the vapor triple point. 

Fixed-point constants are given by table 1, and coefficients by table 2. 

The comparisons of results for ethane and for methane are in tables 3,5. Deviations 
necessarily are systematic because the "data" are smoothed analytically (Lab. Note 
73-5). We believe all deviations to be well within the real accuracy of the data. 

3. The Saturated Liquid Temperatures. 

The analytical formulation is 

f.n(Y) = 8 • ( ut - u) + W(o ) (3) 

where n 

W(cr) o ; B t • (x 1 - x|). (3 -a) 

iYl 



( 2 ) 

( 2-a) 
( 2-b) 



SP 11342 A 



111 



☆ U S. Government Printing Office. 1973- a 780-339 



APPENDIX G. (Continued) 



Cryogenics Division-NBS Institute for Basic Standards 

LABORATORY NOTE 


COST CENTER 

2750364 


FILE NO 

73-6 


PAGE 

2 


SUBJECT 

Liquid-Vapor Saturation (Orthobaric) Temperatures of 
Ethane and Methane 


namEr.d. Goodwin 


DATE Nov. 28, 1973 



The notation is x t = | (J t - 1 1 , = 1 /x t . 

This equation is constrained at the liquid triple point. 

The comparisons of results for ethane and for methane are in tables 4,6, 
Computer programs are attached. 

LIST OF SYMBOLS 



d, 
d c , 
d* , 
d t . 

q> 

D, 

CT, 

, 

T, 
Tc , 

T t , 



x, 



density, mol/t, DEN 

critical-point density, DCRT 

vapor triple-point density, DGAT 
liquid triple-point density, DTRP 
1/3 



q g = 



_ _ 1/3 

s 



d/d t , density reduced at liquid triple point 
d / cl, , density reduced at the critical point 
d ? /d c , reduced triple-point vapor density 
d t /d c , reduced triple-point liquid density 

T a (p), the saturation temperature 
critical-point temperature, TCRT 

triple-point temperature, TTRP 

1 /x, u g = 1 /x g , Ut = i /x t 

| a - 1 1 , Xg s | a g - 1 1 , xt s | a t - 1 1 

Table 1. The fixed-point constants 





Ethane 


Methane 


T t , K 


89.899 


90.680 


T c , K 


305.330 


190.555 


d c , mol/T 


6.87 


10. 20 


d t , liquid 


21.68 


28. 147 


d ? , vapor 


1.35114. 10" 6 


1. 567 865. 



nr 2 



SP 11342 A 



112 



☆ U S. Government Printing Office 1973- # 730-339 



APPENDIX G. (Continued) 



Cryogenics Division — MBS Institute for Basic Standards 

LABORATORY NOTE 


COST CENTER 

2750364 


FILE NO 

73-6 


PAGE 

3 


SUBJECT 

Liquid-Vapor Saturation (Orthobaric) Temperatures of 
Ethane and Methane 


name R.p). Goodwin 


DATE Nov. 28, 1973 



Table 2. Coefficients for the equations 







Ethane 


Methane 


V apor 


a 


3/2 


1/2 




At 


-0.0610 6983 


-0. 1596 5159 




At 


-0.5510 7806 


-0.6669 5380 




As 


1.8906 0757 


1.0242 2995 




A? 


-4.8476 0684 


-0.5885 7993 




A* 


8. 5887 8625 


0. 2042 8358 




As 


-8.3103 1296 


- 




Ag 


3.3001 3887 


- 


rms, % 


d 


0.111 


0.043 




T 


0.009 


0.004 


Liquid 


6 


1/3 


1/3 




Bi 


9. 1071 7170 


8. 5837 7917 




b 2 


-7.9603 9387 


-7.0525 4699 




b 3 


4. 8472 6284 


4. 1610 2443 




b 4 


-1.5919 0104 


-1.3691 9291 




b 5 


0.2253 7899 


0. 2067 1342 


rms, % 


d 


0.004 


0.006 




T 


0.016 


0.006 



SP 11342 A 



113 



•ir U S Government Printing Office. 1973- tbo-339 



APPENDIX G. (Continued) 



Liquid- Vapor Saturation (Orthobaric) Temperatures of 
Ethane and Methane 


COST CENTER 

2750364 


FILE NO 

73-6 


PAGE 

4 


SUbJ- 

Table 3. Ethane Saturated Vapor Temperatures 


NAME R.D. Goodwin 




DATE Nov. 28 


1973 







NF = 7, AL = 1.500, PE = 0.000, DGAT = 1.35114-006 



TTRP 


= 89.899, TCRT 


= 305.330, 


DTRP = 21. 


680, DCRT 


= 6.870 






-0 . 


C6106983 -0. 


55107806 


1.89060757 


4.84760684 






8 . 


58878625 -8. 


31X31 296 


3.3 0813887 


0.03000000 






o • 


UOOOQOOO C. 


0LC 0 0 000 


0.00000000 


0.00000000 






MOL/L 


CALC 


PCNT 


T,K 


CALC 


PCNT 


DTS/DD 


V 


1.35 114-006 


1. 35114-006 


0.00 


89.899 


89. 899 


0.00 


2-915+006 




1 .38631-006 


1. 38619-006 


-0.01 


90 .0 00 


90.000 


0.00 


2.848+0G6 




4.59443-006 


4.58134-006 


-0.28 


95.000 


95. 013 


0.01 


9.651+005 




1 • 33561 — Q05 


1. 33129-005 


-0.32 


100.000 


100. 016 


0.02 


3.714+005 




3 .46326—005 


3.46067-005 


-0 .22 


105.000 


105. Q12 


0.01 


1.594+005 




8 . 16960-005 


3. 16454-005 


-0.06 


110.000 


110. 004 


0.00 


7.518+004 




1.76344-004 


1.76987-004 


0 .08 


115.000 


Ilk. 995 


-o.o a _ 


3.346+004 




3 .55631-004 


3.56292-004 


0 .17 


120 .0 00 


119.907 


-0.01 


2.111+004 




6.7 0 90 3-Q 04 


6.72259-004 


0.20 


125.000 


124. 983 


-0.01 


1.231+004 




1 . 19634-JG3 


1. 19845-003 


0.18 


130.000 


129. 984 


-0.01 


7.567+003 




2. 03041-0 G 3 


2. 03275-003 


Q .12 


135.000 


134. 969 


-0.01 


4.970+003 




3.29903-003 


3.30029-003 


0.04 


140.000 


139. 996 


-0.00 


3.262+003 




5 . 15754-o03 


5.15568-033 


-0.04 


145. 000 


145. Q 04 


0.00 


2.263+003 




7 .79177-003 


7. 73449-003 


-0 .09 


150.000 


150. 012 


0.01 


1.619+003 




1 . 14133-002 


1. 1404 0-002 


-0.13 


155.000 


155.017 


0.01 


1.191+003 




1.62542-002 


1. 62620-002 


-0.13 


160.000 


160.019 


0.01 


8.969+002 




2 .26660-002 


2.2640 2-002 


-0 .11 


165.000 


165. 018 


0.01 


6.903+002 




3.08636-002 


3. 08446-00 2 


-0.08 


170.000 


170. 013 


0.01 


5.415+002 




4. 12247-03 2 


4. 12114-002 


-0,03 


175. 0QQ 


175.006 


0.00 


4.322+002 




5.4C 1 39-002 


5.41016-002 


0 .01 


180.000 


179. 997 


-0.00 


3.502+002 




6 . 98623-002 


6. 990C 3-002 


0 .05 


185 .0 00 


184. 989 


-0.01 


2.877+002 




3.89439-002 


8. 90172-002 


0.08 


190.000 


189. 982 


-0.01 


2. 392+002 




1. 117 32— C o 1 


1. 11888-G01 


0.10 


195.000 


194. 979 


-0.01 


2 .009 + 00 2 




1.38350-001 


1 . 33978-001 


0 .09 


200.000 


199. 978 


-0.01 


1.704+002 




1.7(1662-001 


1 . 73 78 7-0 01 


0.07 


205.000 


204.982 


-0.01 


1.457+002 




2. j777Q-G01 


2 . 0786 2-0 01 


0 .04 


210.000 


209. 988 


-0.01 


1.253+002 




2 .50780-001 


2. 5080 3-001 


0 .01 


215.000 


214. 997 


-0.00 


1.085+002 




3.00 559-00 1 


3 . 0 328 0 -0 01 


-0.03 


220.000 


220. 007 


0.00 


9.434+001 




3 . 5 7 7 5 3 - 0 0 1 


3.57050-031 


-0 . 06 


225.0011 . 


225.017 


0.01 


9.234+001 




4.22301-001 


4. 21977-001 


-0 .08 


230.000 


230. 023 


0.01 


7 .2G8 + 001 




4. 96469-001 


4.96061-001 


-0.08 


235.000 


235. 026 


0.01 


6.322+001 




5 .80*77-001 


5 . 30460-001 


-0.07 


240 . 000 


240.023 


C . 01 


5.553+001 




6.76*52-001 


6. 76541-001 


-0.05 


245.000 


245.015 


0.01 


4.879+001 




7.85990-001 


7. 85922-001 


-0 .01 


250.000 


250.003 


0.00 


4.286+001 




9.10251-001 


9. 13553-001 


0.03 


255.000 


254. 989 


-0.00 


3.760+001 




1.J5210+030 


1. 0528 3 +0 00 


0 . 07 


260.000 


259. 976 


-0.01 


3.291+001 




1 .21471+000 


1. 21579+000 


0 .09 


265.000 


264. 969 


-0.01 


2.367+001 




1 . 4 C 2 3 1 + 0 0 0 


1 . 40343+000 


0 .08 


270.000 


269.972 


-0.01 


2.482+001 


A 


1.62073+00 0 


1.62131+000 


0 .04 


275.000 


274. 988 


-0.00 


2.124+0C1 


i' 


1 . 37345+003 


1.37773+000 


-0.04 


280.000 


280. 013 


0.00 


1 .788 + 00 1 




2.16363+uGG 


2 . 1861 8 + 0 00 


-0.11 


285.000 


285. 035 


0.01 


1.463+001 




2.57 357 + uOO 


2 .57381+000 


-0.11 


290.000 


290.032 


0.01 


1.146+001 




3.07773+309 


3 . 0301 1+0CQ 


0.00 


295 .0.00 


294. 980 


.... -0.01 


8.351+00C 




3.31 3 0 3 + 00 0 


3. 82166+OOG 


0 . 10 


300.000 


299. 980 


-0.01 


5.426+0CC 





= 0.009 



1 14 



P 



44, DNRMSPCT 



0.111, TSRMEPCT 



APPENDIX G. (Continued) 



1 



Cryogenics Division — N B S Institute for Basic Standards 

LABORATORY NOTE 


COST CENTER 

2750364 


FILE NO 

73-6 


PAGE 

5 


subject Liquid-Vapor Saturation (Orthobaric) Temperatures of 
Ethane and Methane 


NAME R.D. Goodwin 


° ATE Nov. 28. 1973 



Table 4. Ethane Saturated Liquid Temperatures 



NF = 


5 , AL = 0.000 


, BE = 0 . 


333 , DGAT = 


1.35114 


- 


006 




TTRP 


= 89 . 899 , TCRT 


= 305 . 330 , 


OTRP = 21 . 


660 , OCRT 




= 6.970 




9. 


10717170 - 7 . 


96039387 


4.84726284 


1 


.59190104 




0 . 


22537699 0 . 


00000000 


0.00000000 


0 


.00000000 




0 . 


00000000 0 . 


ooocoooo 


0.00000000 


0 


.00000000 




MOL/L 


CALC 


PCNT 


T,K 


CALC 




PCNT 


DTS/OO 


2. 1680 0 + 001 


2 . 16800+001 


0.00 


39.899 


89.899 




0.00 


- 2 . 753+001 


2 . 16764+001 


2 . 16763+001 


- 0.00 


90.000 


89.999 




- 0.00 


- 2 . 753+001 


2 . 14963+001 


2 . 14951 + 001 ' 


-0 .01 


95.000 


94.967 




- 0.04 


- 2 . 764+001 


2 . 13162+001 


2 . 13145 + 001 


- 0.01 


100.000 


99.952 




- C .05 


- 2 . 771+001 


2 . 11359+001 


2 . 11341 + 001 


- 0.01 


105.000 


104.951 




- 0.05 


- 2 . 773+001 


2 . 09553+001 


2 . 09538+001 


-0 .01 


110.000 


109.958 




- 0.04 


- 2 . 771+001 


2 . 07743+001 


2 . 07732 + 00 1 


- 0.01 


115.000 


114.969 




- 0.03 


- 2 . 766+00 1 


2 . 05928 + 001 


2 . 05921 + 00 1 


- 0.00 


120.000 


119.983 




- 0.01 


- 2 . 758+00 1 


2 . 041 06 + 0 01 


2 . 041 05 + 001 


- 0.00 


125.000 


124.997 




- 0.00 


- 2 . 746+001 


2 . 02276+001 


2 . 02280 + 00 1 


0.00 


130.000 


130.010 




0.01 


- 2 . 733+001 


2 . 00438+001 


2 .00445 + 0 0 1 


0.00 


135.000 


135.020 




0.0 1 


- 2 . 717+001 


1 . 9 Q 588+001 


1 .98598 + 00 1 


0.01 


140.000 


140. 027 




0.02 


- 2 . 698+001 


1 . 96727+001 


1 . 96739 + 0 C 1 


0 .01 


145.000 


145.0 31 




0.02 


- 2 . 673+001 


1 . 94852+001 


1 . 94964+001 


0.01 


150.000 


150.032 




0.02 


- 2 . 655+00 1 


1 . 92961+001 


1 . 92972+001 


0.01 


155.000 


155.031 




0.02 


- 2 . 631+001 


1 . 91052+001 


1 . 91062+001 


0 .01 


160.000 


160.027 




0.02 


- 2 . 604+001 


1 . e 9123 + 0 0 1 


1 . 89132 + 00 1 


0.00 


165.000 


165.021 




0.01 


- 2 . 575+001 


1 . 87173+001 


1 . 37178+00 1 


0 .00 


170.000 


170.014 




0.01 


- 2 . 544+001 


1 . 85190+001 


1 . 85201+001 


0.00 


175.000 


175.006 




0.00 


- 2 . 511+001 


1 . 83196+001 


1 . 83195+001 


- 0.00 


160.000 


179.999 




- 0.00 


- 2 . 476+001 


1 . 61164+001 


1 . 811 60 + 00 1 


- 0.00 


185.000 


184.992 




- 0.00 


- 2 . 438+00 1 


1 . 79098+001 


1 . 79092+001 


- 0.00 


190.000 


109.986 




- 0.01 


- 2 . 397+001 


1 . 76996+001 


1 . 76987 + 0 0 1 


- 0.00 


195.000 


194.981 




- 0.01 


- 2 . 354+001 


1 . 74652 + 0 01 


1 . 74843+001 


- 0.01 


200.000 


199.978 




- 0.01 


- 2 . 308+001 


1 . 72664 + 0 01 


1 . 72653+001 


-0 . 01 


205.000 


204.977 




- 0.01 


- 2 . 260+001 


1 . 70425+001 


1 . 70415+001 


-0 .01 


210.000 


209.973 




- 0.01 


- 2 . 203+001 


1 . 68130+001 


1 . 60121+001 


-0 .01 


215.000 


214.981 




- 0.01 


- 2 . 153+001 


1 . 65774+001 


1 . 65767+001 


- 0.00 


220.000 


219.985 




- 0.01 


- 2 . 094+00 1 


1 . 63348+001 


1 . 63344 + 0 0 1 


- 0.00 


225.000 


224.990 




- 0.00 


- 2 . 033+001 


1 . 60845+001 


1 . 60043+001 


- 0.00 


230.000 


229.996 




- 0.00 


- 1 . 967+001 


1 . 58255 + 001 


1 . 58256+001 


0 .00 


235.000 


235.002 




0.00 


- 1 . 898+00 1 


1 . 55567+001 


1 . 55571+001 


0.00 


240 .00 0 


240.007 




0.00 


- 1 . 825+00 1 


1 . 52767+001 


1 . 52773+001 


0.00 


245.000 


245.011 




0.00 


- 1 . 749+001 


1 . 49638+001 


1 . 49846+001 


0 .01 


250.000 


250.013 




0.01 


- 1 . 668+001 


1 . 46761+001 


1 . 46770+001 


0.01 


255.000 


255.014 




0.01 


- 1 . 582+001 


1 . 43511+001 


1 . 43518+001 


0 .01 


260.000 


260.012 




0.0 0 


- 1. 49 3 + 00 1 


1 . 40054+001 


1 . 40059+001 


0.00 


265.000 


265.0 0 3 




0.0 0 


- 1 . 399+001 


1 . 36340+001 


1 . 36350+001 


0.00 


270 .0 0 0 


27 0 . 0 0 2 




0.0 0 


- 1 . 298+00 1 


1 . 32333+001 


1 . 32331 + 0 0 1 


-0 .00 


275 . 00 0 


274.997 




- 0.00 


- 1 . 191+001 


1 .27923 + 001 


1 . 27917+001 


- 0.00 


280.000 


279.994 




- 0.00 


- 1 . 076+001 


1 . 22965+001 


1 . 22978+001 


- 0.01 


285.000 


204.993 




- 0.00 


- 9.500 +00 0 


1 . 17293+001 


1 . 17290+001 


- 0.00 


290.000 


289.997 




- 0.00 


- 8. 090 + 00 0 


1 . 10398+001 


1 . 10403+001 


0.00 


295.000 


295.003 




0.00 


- 6 . 441+000 


1 . 01117+001 


1 . 01117+001 


0.00 


300.000 


300.000 




- 0.00 


- 4.358 + 00 0 



NP 



44, DNRMSPCT 



0.004, TSRMSPCT 



0.016 



115 



APPENDIX G. (Continued) 

Liquid-Vapor Saturation (Orthobaric) Temperatures of 
Ethane and Methane 

Table 5. Methane Saturated Vapor Temperatures 



NP = 


5, AL = 0.500 


, 35 = 0. 


0 00 , DGAT = 


1. 56787 


-002 




TTOp 


- 90.680, TC P T 


= 190.555, 


DTRP = 28. 


147, DCRT 


=10. 200 




-0 . 


15965159 -0. 


66695380 


1.02422995 


0 .53857993 




0 . 


20428358 0. 


o o ooooon 


0.00000000 


0.00000999 





0 . 


00000000 0. 


00000000 


0.00000000 


0.00000000 




MOL/L 


CALC 


PCNT 


T , K 


CALC 


PONT 


DTS/OD 


t .5678 6-00? 


1 .56786-002 


0.00 


90.680 


90.630 


0.00 


5 . 39 1 +-99-2 


1 . 6?79 1-002 


1 .8 2830-00 2 


0.02 


92.000 


91.998 


-0.00 


4. 775+002 


2.? 6 579-00? 


2.28663-002 


0.0 4 


94,000 


93 .996 


-9.0 0 


4* 0 05 +90 2 


2. 8?943-00? 


2 . 6 3066-002 


0.0 4 


96.000 


95 .996 


-0.0 0 


3. 390+002 


3.46926-002 


3.47064-002 


0.04 


98.000 


97.996 


-0.00 


2^8934-002 


4.2162 5-002 


4.21756-002 


0.03 


100.000 


99.9 97 


-0.0 0 


2.488+002 


5.06166-00? 


5.0 8288-00? 


0.02 


102.000 


101.998 


— 0 »0 9 


A. 1544-002 


5.07803-00? 


6,0785 r -002 


0.01 


104.000 


103.999 


-0.00 


1.878+002 


7 .*1719-902 


7 .21702-00? 


-0. 00 


106.000 


106. 0 90 


0.09 


1.6474-90 2 


3.51224-00? 


8.51123-002 


-0. 01 


103.000 


108.091 


0.00 


1. 453+002 


9. 9 765 6-00 2 


9.97466-002 


-0. 0? 


110.000 


110*092 


0.00 


1. 289+092 


1 . 1624 1-00 1 


1 .16213-001 


-0. 0? 


112.000 


112.093 


0.0 0 


1.147+002 


1 . 3469 2-001 


1 .34655-001 


-0.03 


114. 000 


114.094 


0.00 


1. 026+902 


1 . 5526 9-00 1 


1.55226-001 


-0. 03 


116.000 


115.094 


0.0 0 


9. 221+001 


1 . 761? 8-no 1 


1.7 308 f1 -OOl 


-0.0 3 


113.000 


113 .094 


0.0 0 


8.314+091 


2.0 343 1 -00 1 


2.03383-001 


-0. 02 


120.000 


120.014 


0.00 


7. 522+001 


2.7134^-001 


2.31304-001 


-0.02 


122.000 


122.013 


0.00 


6.827+091 


2 . 6205 8-001 


2.62022-001 


-0. 0 1 


124.000 


124.092 


0.0 0 


6.215+001 


2 . 9574 4—001 


2.9572 c -001 


-0. 0 1 


126.000 


125.091 


0.00 


5.672+991 


3 . 1261 6-0 0 1 


3.3261 1-001 


-0.00 


128.0 00 


128.010 


0.0 0 


5.189+001 


3. 72670-001 


3.72889-001 


0. 01 


130.000 


129.999 


-0.00 


4. 757+991 


4 . 1673 7-0 0 1 


4.16790-001 


0. 01 


132.000 


131.998 


-0 .0 0 


4. 370+001 


4.641+44-001 


4,64520-001 


0.02 


134.000 


133.997 


-0 .00 


4. 0 2 1 + 901 


5.16255-001 


5. lo3 62-001 


0.0? 


136.000 


135.996 


-0.0 0 


3. 706+001 


5.7?44 l-0 n l 


5.72576-001 


0. 02 


133.000 


177.995 


-a .o o 


3.420+001 


6. 3729 7-001 


6.33462-001 


0.03 


140. 000 


139.9 95 


-0.00 


3. 159+001 


5 . 99144-ng 1 


6.9 9 331-001 


0.03 


142.000 


141 .995 


-0.00 


2.921+001 


7.70734-001 


7.70534-001 


0.0 3 


144.000 


143.995 


-0.00 


2. 704+001 


3 .4725 1 -00 1 


0.4745 1-001 


0.0? 


1 4 6. 000 


145.995 


-0.0 0 


2.503+001 


9 . 70 32 0- 00 1 


9.30504-001 


0. 0? 


148.000 


147 .9 96 


-0.00 


2. 319+001 


1 . 0?00 1+000 


1.02016+000' 


0.01 


150.000 


149.997 


-0.00 


2. 146+001 


1 . 1 1 68 5 +0 o n 


1.11694+000 


0.0 1 


152.000 


151 .9 98 


-0.0 0 


1.989+001 


1.?? 147+000 


1.22144+000 


0,00 


154.000 


1 54 . 0 1 0 


-0.00 


1. 842+901 


1.33441+000 


1. 33437+000 


-0.0 1 


156.000 


156.011 


0.0 0 


1. 705+001 


1 .+5656 + 00 0 


1.45636+000 


-0. 01 


158.000 


158.013 


0.0 0 


1. 576+001 


1. . 5*87 '’+000 


1.58943+000 


-0.0? 


160.000 


150.015 


0.0 0 


1. 455+001 


1 .7 3 20+ + 0 00 


1.73156+000 


-0.0 3 


162.000 


162.017 


0.00 


1.341+001 


1 . 6 3 75 ° + 0 0 0 


1 »o 3697 + 000 


-0. 03 


164.000 


164.0 9 8 


0.0 0 


1.234+001 


2.05665+000 


2.0561 0+000 


-0,04 


166.000 


166.099 


0.01 


1. 132+001 


?.?4l5 p +90n 


2.24077+000 


-0. 04 


168.000 


168.098 


0.0 1 


1. 036+001 


2.44331+000 


2.44300+000 


-0.03 


170.000 


170.098 


0.00 


9. 433 + 000 


2 ,6663 1+000 


2.66564+000 


-0.03 


172,000 


172.096 


0.00 


8 . 548+000 


?. 9 124 P +000 


2.91214+000 


-0. 0 1 


174.000 


174.013 


0.00 


7.696+000 


3. 13601 + 0 no 


3.13711+000 


0.0 1 


176.000 


1 7 5 . 9 99 


-0.0 0 


6.871 + 00 0 


3. ■-*•9531 + 0 00 


3.49685+000 


0.0 3 


178.000 


177.994 


-0.00 


6. 066+000 


3.343? 7 + 0 0 n 


3.95039+000 


0.0 6 


180.000 


179.939 


-0.0 1 


5. 275+00 0 


4 .25606+000 


4.26143+Q00 


0.08 


132.000 


1 31.935 


-0 .0 1 


4.486+000 


4.74367+300 


4.75265+000 


0.08 


184.000 


133.935 


-0.0 1 


3. 690+000 


5 . 3 65 ? 6 + 0 0 0 


5,36670+000 


0.0 3 


186.000 


135.9 96 


-0.0 0 


2. 858+090 


6.2^000+000 


6.20577+000 


-0.23 


183.000 


138.028 


0.01 


1.935+000 



p 



-in , n iPMs°rT 



(1.0 43 , TS’MSPCT 



0.00 4 H6 



M (\l CM M CVJ (VI PU <\l CVJ fvl C\J CM CM CM CM <\J CM (\J (\J CM CM CM (VI CM CM CM CM (\f 



File 73.6 



APPENDIX G. (Continued) 

Liquid-Vapor Saturation (Orthobaric) Temperatures of 
Ethane and Methane 

Table 6. Methane'Saturated Liquid Temperatures 



NF = 


5, AL = 0.000 


, BE = 0 


.333, DGAT 


= 1.56787- 


002 






T7RP = 


90.680, TCRT 


= 190.555 


, DTRP = 28 


.147, OCRT 


= 10. 200 






8.53377917 -7. 


05254699 


4.16102443 -1 


.36919291 






0.20671342 0. 


00000000 


0.00000000 0 


.00000000 




1 


MOL/L 


CALC 


PCNT 


T , K 


cal: 


PCNT 




DTS/DD 


2.81470+001 


2.81470+001 


0.00 


90.680 


90.630 


0.0 0 


- 


1.208+001 


2.80376+001 


2.60375+001 


- 0 . 00 


92.000 


91.996 


-0 .0 0 


- 


1.203+001 


2.7871 4+001 


2.76706+001 


- 0 . 00 


94.000 


93.9 n 


- 0.0 1 


- 


1. 194+001 


2.77036+001 


2.77026+001 


- 0 . 00 


96.000 


95,936 


- 0.0 1 


- 


1.186+001 


2.75344+001 


2.75332+001 


- 0 . 00 


95.000 


97.936 


- 0.01 


- 


1.176+001 


2. 7363 e + 001 


2.73625+001 


- 0 . 00 


100.000 


99.935 


- 0.01 


- 


1. 167+001 


2.71916+001 


2.71904+001 


- 0 . 00 


102.000 


101.936 


- 0 .01 


- 


1. 157+001 


2.70179+001 


2.70167+001 


- 0 . 00 


104.000 


103.937 


- 0.01 


- 


1.147+001 


2.68425+001 


2.63415+001 


- 0 . 00 


106.000 


105.938 


- 0.0 1 


- 


1. 136+001 


2.66654+001 


2.6o645+001 


- 0.00 


108.000 


107.990 


- 0.0 1 


- 


1. 125+001 


2 . 64 8 6 5 + 001 


2.64657+001 


- 0 . 00 


110.000 


109.992 


- 0.0 1 


- 


1. 113+001 


2 . 6305 6 + 001 


2.63051+001 


-0. 00 


112.000 


111.994 


-0 .0 1 


- 


1 . 101+001 


2.61226+001 


2.61224+001 


-0. 00 


114.000 


113.996 


-0.00 


- 


1.089+001 


2.59379+001 


2.59377+001 


-0.00 


116.000 


115.998 


-0.00 


- 


1 . 076+001 


2.57507+001 


2.57507+001 


0.00 


113.000 


113.000 


0.0 0 


- 


1. 063+001 


2.55612+001 


2.55615+001 


0.00 


120.000 


120.002 


0.0 0 


- 


1 . 050+001 


2.53693+001 


2.53697+001 


0,00 


122.000 


122.004 


0.00 


- 


1. 036+001 


2.51749+001 


2.5175^+001 


0.00 


124.000 


124.006 


0.00 


- 


1 . 022+001 


2.41777+001 


2.49784+001 


0. 00 


126.000 


126.007 


0.0 1 


- 


1 . 008+001 


2 . 47776 + 00 1 


2 .47784+001 


0.00 


128.000 


128.005 


0.0 1 


- 


9.928+000 


2 .45745+001 


2.^5754+001 


0.00 


130.000 


130.009 


0.0 1 


- 


9. 775+000 


2.43632+001 


2.43692+001 


0.00 


1 32. 0 00 


132.009 


0.0 1 


- 


9.616+000 


2.41535+001 


2.41595+001 


0. 00 


134.000 


134.009 


0.0 1 


- 


9.457+000 


2.39452+001 


2.39462+001 


0 . 00 


136.000 


1 36 . 0 0 9 


0.0 1 


- 


9.292+000 


2.37230+001 


2.37290+001 


0. 00 


138.000 


138.009 


0,0 1 


- 


9. 122+000 


2.35067+001 


2.35076+001 


0. 00 


140.000 


140.008 


0.01 


- 


8.948+000 


2.3281 0+001 


2.32816+001 


0. 00 


142.000 


142.007 


0.0 1 


- 


8.768+000 


2.30506+001 


2.30513+001 


0. 00 


144.000 


144.006 


0.0 0 


- 


8.584+000 


2.26152+001 


2.28156+001 


0. 00 


146.000 


146.005 


0.0 0 


- 


8.395+000 


2 .25744+001 


2.2574^+001 


0.00 


148.000 


148.003 


0.0 0 


- 


8 . 200+000 


2.2327 6 + 00 1 


2.23278+001 


0.00 


150.000 


150.002 


0.0 0 


- 


7.999+000 


2.20746+001 


2.20745+001 


-0.00 


152.000 


152.000 


-0.00 


- 


7. 793+000 


2.18146+001 


2.16143+001 


-0.00 


154. 000 


153.933 


“0.0 0 


- 


7. 579+000 


2. 1547 1+001 


2.15466+001 


-0.00 


156.000 


155.9 35 


-0.00 


- 


7. 359+000 


2.1271 3+001 


2.12705+001 


-0.00 


153.000 


157.995 


-0.0 0 


- 


7.132+000 


2 . 0 986 3 + 00 1 


2.09853+001 


-0. 00 


160.000 


159.9 93 


-0.0 0 


- 


6 . 896+000 


2.06912+001 


2.06901+001 


- 0.01 


162.000 


161.932 


-0.00 


- 


6.652+000 


2.03349+001 


2.03835+001 


-0.01 


164.000 


163.9 91 


- 0.01 


- 


6. 399+000 


2.00656+001 


2.00643+001 


- 0.01 


166.000 


165.9 91 


-0 .0 1 


- 


6.135+000 


1 . 9732 2 + 0 0 1 


1.97307+001 


-0.0 1 


168.000 


167.932 


-0.00 


- 


5. 859+000 


1 . 9332 0 + 0 0 1 


1.93607+001 


- 0.01 


170.000 


169.933 


“0.0 0 


- 


5.570+000 


1.90125+001 


1.90114+001 


-0. 01 


172.000 


171.9 34 


-0.0 0 


- 


5. 265+000 


1.86201+001 


1.86195+001 


-0. 00 


174.000 


173.997 


-0.0 0 


- 


4. 943 + 00 0 


1 .3200 4 + 0 0 1 


1.82004+001 


0.00 


176,000 


176.000 


“0.0 0 


- 


4. 60 0+000 


1 . 7745 7 + 001 


1.77475+001 


0.00 


176.000 


173.003 


0.0 0 


“ 


4.232+000 


1 .72^9 9 + 00 1 


1.72516+001 


0 . 0 1 


180 . 0 0 0 


130.0 35 


0,00 


- 


3. 833+000 


1 .6695 8 + 00 1 


1 .669o3+001 


0.01 


182,000 


1 32.0 0 8 


0.0 0 


- 


3. 394+000 


1.60606+001 


1.60632+001 


0.02 


184.000 


1 84.0 0 8 


0.0 0 


- 


2.903+000 


1 .52986+001 


1.52997+001 


0.01 


186.000 


136.033 


0.0 0 


- 


2.338+000 


1.42978+001 


1.42937+001 


-0.0 3 


183.000 


187. y 33 


-0.0 0 


- 


1.65 2 + 000 


1.25270+001 


1.25276+001 


0 . 00 


190.000 


190.000 


0.0 0 


- 


6. 700-001 


=51, DNRMSP 


FT = G.OOo, T SR M S PC T = 


0.006 


117 









APPENDIX G. (Continued) 



Cryogenics Division — N B S Institute tor Basic Standards 

LABORATORY NOTE 


COST CENTER 

2750364 


FILE NO 

73-6 


PAGE 

8 


subject Liquid-Vapor Saturation (Orthobaric) Temperatures 


NAME „ _ 

R D 


Goodwin 




of Ethane and Methane 


DATE TV T 

Nov. 


28, 1973 





11/28/73 

Appendix I. The Computer Programs 
PROGRAM TSATFIT 

C DESCRIBE ETHANE SATN. TEMPS., TSAT(QEN). 

C DEFINE R=D/DTRP, S=D/DCRT, S T = D TRP/DCR T , AND - 
C YYJTSAT) = ITCRT/T-1J/ ITCPT/ITRP-l) , AND. - 
C 

COMMON NG,AL*££,TTRP.,I£RJ,_ OGAT , DTRP , QCRT-* DTSQR, A(15J,B(15) 
C0MM0N/999/NP,NF ,H(15),Y(200),G<200,15) 

DIMENSION T (99) * DEN ( 991 *Y Y ( 99) _»E115J 
DIMENSION UL (99) 

_2 FORMAT ( 1H1 3.0X * ETHANE. SATURATION TEMPERATURES* // 

1 16X4HNF =13, 6H , AL =F7.3, 6H , BE =F7.3, 8H, OGAT =E13.5// 

1 16X 6HTTRP =F7 • 3 , 8H , TCRT =F 8 . 3 , 8H, DTRP =F7.3, 

2 8 H » DCRT =F6. 3/ / 3(12X 4F16.8/ ) / 

315 X5HMOL/L 11X4HCALC 5 X4HPCNT 8X3HT,K 6X4HCALC 5X4HPCNT6X6HDTS/DD) 

3 FORMAT (1H1 14X 5HMOL/L 11X4HCALC 5X4HPC NT 

3 8X3HT,K 6X4HCALG 5X4HPCNT 6XEHDTS/DD ) 

4 FORMAT ( 5X 2E15.5, F9.2, F11.3, F10.3, F9.2, E12.3) 

5 FURMAT E13X 2HNF 13X2HAL 13X2HBE 8X2HSSI 

6 FORMAT (10 X 15, 2E15.5, F10.3) 

9 FORMAT (1HC 6X 4HNP =13, 12H , DNRMSPCT =F6.3, 12H , TSRMSPCT =F6.3) 
11 TTRP=89.899 $ TCRT=3D5.33 $ YN = TCRT/TTRP-1 
1.2 DTRP = 21.68 S D CRT = 6 ♦ 67 $ DGAT=1. 351 14 E-6 

13 ST = DGAT /DCRT $ VT=1/(1-ST) S QT = CUBE RTF ( S T) 

C 

C SATO. VAPOR TEMPS. CONSTRAINED AT T.P. BY SUBTRACTION - 
C EQUATION, YY = U < S) * ( 1 +W ( S ) ) , U = E XP ( A L* ( VT- V ) ) , 

C V = 1/ABS(S-1), Q = S** (1/3) , AND - 

C W = A1*LN(S/ST) * A2MQ.-QT) + A3MQ2-QJ2) + . . . 

C GENERATE THE SATO. VAPOR CAT A . 

25 DO 29 J=1 ,44 $ IF(J-l) 27,26 

26 T ( J) = TTPP $ GO TO 28 

27 T ( J ) = 80 + 5* J 

2« DEN (J) = DENGASF ( T ( J) ) 

29 YYIJ) = ( TCRT/T { J) -1) / YN $ NP = 44 
C PRINT FOR NF, GET AL BY TRIAL. 

30 AL = 1.50 

31 DO 69 NF=4,10 $ NG = NF $ SSK = 1.0E+100 

32 DO 40 J=1,NP t S=DEN ( J) /DCRT $ Q = CU BE RT F ( S) J V=l/(1-S) 

33 U = EXPF ( AL* (VT- V) ) $ C-(J,1) = U*LOGF(S/ST) 

...35, DO 36 K=2,NF $ N = K-i„ . 

36 G ( J , K ) = U*(Q**N - QT * *N ) 

40 Y ( J) = YY ( J) - U 

49 CALL EGENFT $ DO 50 K=1,NF 

5C A ( K) = H(K) $ SD = SS = 0 

51 OO 52 J= 1 , NP S TC = TS A T F ( DE N ( J ) ) 

52 SS = SS + (TC/T(.J)-1) **2 . $ SS = 100*SQRTF (SS/NP) 

53 IF (SS.LT.SSK) 54,56 

54 SS K = SS $ NGK = NG $ A L K = A L $ BEK = BE S DO 55 K=1,NF 

55 F ( K) = AIK) 

56 CONTINUE 

57 CONTINUE S NG=- NG K $ AL = ALK $ BE = BEK $ DO 58 K=1,NF 

58 A ( K ) = F ( K) $ SS = SD = 0 



SP 11342 A 



118 



☆ U S Government Printing Office 1973- H 790-339 



APPENDIX G. (Continued) 



Cryogenics Omiion-NBS Institute tor Bone Stindords 

LABORATORY NOTE 


COST CENTER 

2750364 


FILE NO 

73-6 


PAGE 

9 


SUBJECT 

Liquid-Vapor Saturation (Orthobaric) Temperatures of 
Ethane and Methane 


name j-j Goodwin 


DATE Nov. 28, 1973 



Appendix I. (continued) 



C PRINT CONSTANTS AND DEVIATIONS. 

60 PRINT 2, NG» AL + BEtDGAT , TTRP,TCRT ,DTRP^DCRT j_ (A_( K) , K=1 , 12) 

61 DO 67 J= 1 * NP $ 0=0 E N ( J ) $ X=T(J) $ DC=FIND S AT F ( 0 , X ) 



TSATFIT 11/28/73 



62 DPCT = 100MOC/D-1) $ SD = SD + DPCT*0PCT 

64 T.C = TSATF(D) $ DTSDD = D TSDR/DTRP 

65 TPCT = 1 0 0 * { TC/X- 1) $ SS = SS + TPCT*TPCT 

67 PRINT 4 4 0 ,QC,OPCT . X. TC.JPCT* DTSQO 

68 SD=SQRTF (SD/NP) $ SS=S0RTF < SS/NP) $ PRINT 9, NP, SD, SS 

69 CONTINUE $ AL = 0 
C 

C SATD. LIQUID TEMPS. CONSTFAI NED AT THE T.P. 3Y SUBTRACTION, - 
C EQN . , LN(YY) = W(S), WHFRE X = ABS(S-1), XT=ABS { ST-1) , AND - 

C W(S) = BE* LL/XT-l/X) + B1MX-XT) + 82MX2-XT2) + . . . 

C GENERATE LIQUID DATA. 

70 DO 74 J=1 , 44 $ IF(J-l) 72,71 

71 T « J ) = TTRP $ GO TO 73 

72 TtJ) = 30 + 5* J 

73 DEN ( J) = DENLIQF ( T ( J) ) 

74 YYU) = LOGF { (TCRT/T ( J) -1) / YN) 

75 NP = 44 $ NG = NF = 5 $ XT = DTRP/DCRT - 1 

C SET UP FIXED LEAST SQUARES FUNCTIONS,. 

30 DO 35 J= 1 , NP S S = DEN ( J ) /DCRT $ X = ABSF(S-l) 

31 UL ( J ) = 1/XT - 1/X $ DO 82 K=1,NF $ N = K 

32 G ( J , K ) = X**N - XT**N 

35 CONTINUE _ 

C FIND NF, BE BY TRIAL. 

90 BE = 1. 0/3.0 S DO 91 J = 1,NP 

91 Y ( J ) = YYU) - BE*UL(J) $ CALL EGENFT $ DO 92 K= i , NF 

92 9 ( K) = H ( K ) S SD = SS = 0 

C PRINT LIQUID DEVIATIONS. 

1QJL PRINT 2, NG, AL, BE, DGAT, TTRP, TCRT,DTRP, DCRT, (B ( K) , K=1 , 12 ) 

101 DO 105 J = 1 , N P $ D = DEN<J) $ X = T(J) $ DC = F I ND S AT F ( 1 , X ) 

102 DPCT = 10 0*1 DC/D - 1) $ SO = SD + DPCT**2 

103 TC = TSATF(D) $ DTSDD = DTSDR/DTRP 

104 TPCT = 100* (TC/X-1) $ SS = SS + TPCT**2 

105 PRINT 4, D, DC, DPCT, X,TC,TPCT, DTSDD 

106 3U = SORT F (SO/NP ) S SS = SGRTF<SS/NP) 

107 PRINT 9, NP, SO,SS 
11C CONTINUE 

S9 C STOP $ END 



SP 11342 A 



119 



■fr US Government Printing Office. 1973- # 790-339 



APPENDIX G. (Continued) 



Cryogenics Division — NBS Institute for Basic Standards 

LABORATORY NOTE 


COST CENTER 

2750364 


FILE NO 

73-6 


PAGE 

10 


SUBJECT 

Liquid-Vapor Saturation (Orthobaric) Temperatures 
of Ethane and Methane 


name R.D. Goodwin 


° ATE Nov. 28, 1973 



Appendix I. (continued) 11/28/73 



FUNCTION TSATF1DEN) 

CQ-MWON NG ,AL *BE,-J TRP ,-ICRT , OGA T *-DTRP ,-DCRT , DTSDR * A(15),B(15J 

1 R= DEN/OTRP $ S=DEN/DCRT ! QS = S-l $ OSOR=DTRP/D CRT S IF(QS) 2,30 

2 X„J5._ABS£ I QS3 S- XI = OS£R*QS/X $ YN = TCRT/TTRP - 1 

3 V = 1/X $ Vi = -DSOR/QS/X $ IF(QS) 4,30,15 

C SAT D • VAPOR TEMPS. CON-STRAINED AT T.P. BY SUBTRACTION - 
C EQUATION, YY = U t S) * < i+W <S ) ) , U = EXP ( A L* < VT- V )> , 

C = l/ABSCS-i), a = S** (1/3) , AND_=— 

C W = Al*LN(S/ST) + A2*<Q-QT) + A3MQ2-QT2) ♦ . . . 

-k_- ST ^DGAT /HCRX S.JI L=1/X1-ST) QI-.CUBERI.EAS T) 

5 U = EXPF(AL*(VT-V)) $ U1 = -AL*V1*U 
- 6 Q — = CU-BERTF (ST S Q1 = -£*OS0R23VS- 
7 W = 1 + A t 1 ) *L0GF (S/ST) $ W1 = A<i)*DSDR/S 
B M ID JC~2 , NG $ N = X-l - _ 

9 W = W + A{K)*(Q**N - QT**N) 

IQ HI = W1 + N* A ( K) * Qi * Q** Xfclr.l 1 

12 F = U*W $ Fi = U*W1 L'l * W $ 0=1 + YN*F 

14 TSATF = TCRT/Q $ DTSDR = - YN*F 1*TSATF/Q $ RETURN 

C SATO. LIQUID TEMPS. CONSTRAINED AT THE T.P. BY SUBTRACTION, - 
C EQN . , LNIYY) = W ( WHERE X=ABS(S-1), XT = ABS ( ST- 1) , AND - 
C W(S) = BE* (1/XT-l/X) + B1MX-XT) + B2*(X2-XT2) + . . . 

.15 XT = OSDR-1 S H- = BE* (l/XT.-VJ $ -BE*V1 

17 DO 19 K= 1 , NG $ N = K 

18 W = W + B X K ) * ( X* *tX - XT **N ) 

19 W 1 = W 1 + B(K)*N*X1*X**(N-1) 

20 F = EXPFIW). ,„i FI = W1*F $ Q =_ 1 + YN* F 

22 TSATF = TCRT/Q $ OTSDR = - YN *F 1* TS A TF /Q S RETURN 

3 C TSATF = TCRT- S DTSOR.= 0 _J .RETURN .. $ END 



FUNCTION DENGASF { T) 

C ETHANE SATURATED VAPOR DENSITIES, MOL/L. 

C Y = A1 + A2*Q 2 ♦ A 3* Q3 + . . , NF = AL, YN = LN (OCRT/OTRP) , 

C U = Z + (ZE-Z) *Y* QEN = DCRT*£ XP l- YN*U) . 

DIMENSION A ( 5 ) 

DATA (TTRP=89.899) ,(TCRT=305.33J, (E=fl.362) 

DATA ( DCRT = 6.87) , (OTRP = 1 . 3 5 1 14 E- 6 ) 

3 AT A { A = 0.19277431, 0.041550G9, -fl. 78922629, 

1 0.35766750, 0.12454376) 

1 FORMAT (1H0 9X *OENGASF = 0, T EXCEEOS TCRT. * / ) 

2 IF (TCRT-T) 3,4,5 

3 PRINT 1 $ STOP 

4 DENGASF = OCRT $ DRDT = D2RDT2 =0 $ RETURN 

5 ZN=TCRT/TTRP-1 $ YN= L OC-F { OCR T / D TRP) $ Z= ( TCRT/T-1) /ZN 



6 


D ZD T = -T CRT /ZN/ T /T $ 


ZE 


= Z**E $ Z El = 


E*ZE/Z 


a. 


X = ZE-Z $ XI = ZE1-1 


$ 


Q = CUBERTF ( Z ) 


$ Q1 = G/3/Z 


10 

11 


Y = A ( 1 ) $ Y 1 = 0 $ 

Y = Y + AIK) *Q**K 


ro 


13 <=2,5 





12 Y 1 = Y 1 + K* A ( K) * Q** ( K- 1 ) 

13 CONTINUE £ Y1 =-Yi*Ql 

15 U = Z + X * Y $ UA = 1 + X ♦ Y1 + XI *Y $ U1 = UA *DZDT 

16 XP = E XPF ( - Y N*U) .$ DENGASF = F._= DCRT*XP 

17 DRDT = -YN*U1*F $ PFTURN $ END 



SP 11342 A 



120 



☆ U S. Government Fainting Office; 1973- # 790-339 



APPENDIX G. (Continued) 



Cryogenics Division — NBS Institute for Basic Standards 


COST CENTER 


FILE NO 


PAGE 


LABORATORY NOTE 


2750364 


73-6 


1 1 


subject Ljquicl_ "Vapor Saturation (Orthobaric) Temperatures 


NAME R. D. Goodwin 


of Ethane and Methane 


DflTE Nov. 28, 1 973 



Appendix I. (continued) 



11/23/73 



1 

2 

3 

4 

5 

6 

7 

8 
o 

11 

11 

12 

13 

14 

15 

16 

17 

18 
2 C 
21 
22 
23 



FUNCTION F I NOS AT F (M,T) 

THIS FINDSATF AOJUSTED FOR ETHANE, 

ITERATE DEN TO MINIMIZE (T-TS) VIA TSATF(DEN). 

1 = 0 FOR VAPOR, M = 1 FOR LIQUID. 

COMMON NG,AL,BE, TTRP»TCR7 , OGAT , DTRP, DCRT , DTSDR , A(15),B<15) 
DATA (DGT = i. QE-6) , (QLT=23. Q) 

FAILS TO CONVERGE. * 

T EXCEEDS T CRT • * / ) 



/ ) 



FORMAT (1H0 9X *F I NOSATF = 0, 

FORMAT (1H0 9X *F INDSATF - 0, 

IF { T-T CRT ) 4,22,23 
IF(M.EQ.O) 5,6 
□ = DENGASF ( T ) $ GO TO 7 

D = DENLIQF ( T) 

DO 20 J= 1 , 5 0 $ D T =T-TS ATF ( 0 ) $ I F ( ABSF ( OT /T ) - 1 . 0 E -6 ) 21,21,8 
DT D-D = DTSDR/DTRP $ IF (DT OD. EQ. 0 . 0) 22,9 
DD = OT/DTDO $ IF ( A BSF (CD /D) - 1 • 0E-6 ) 21,21,10 
D = D + DL S IF (M.EQ.0) 11,15 
IF ID, GT . DGT ) 13,12 
O = DGT $ GO TO 20 
IF ( 0 , LT. DCRT) 20,14 
D = DCRT - 0.02 I GO TC 20 
IF (D.GT.OLT) 16,17 
D = DL T $ GO VO 20 
IF (O.GT.OCRT) 2C , 18 
O = DCRT + 0.02 
CONTINUE $ FINDSATF 
FINDSATF =0 $ 

FINDSATF = DCRT 

FINDSATF = 0 $ PRINT 2 $ RETURN $ END 



= t $ PRINT 1 $ RETURN 



RETURt 
$ RETURN 
PRINT 2 $ 



11/28/73 

FUNCTION DENLIQF (T) 

ETHANE SATURATED LIQUID DENSITIES, MOL/L. 

Y = Al + A 2* Q 2 f A3*Q3 + . . . , YN = QTRP-OCRT, 

DEN = DCRT ♦. YN*(X + (XE-X)*YL*. . 

DATA (TCRT=3G5.33),(TTPP=89.899), (DCRT=6 . 87),(DTRP=21.68),<E=0.35» 
DATA (A=Q. 76173503) , (B = 0. 29365351) , ( C =- 0 . 3276 23 94 ) 

1 FORMAT (1HC 9X ♦DENLIQF = 0, T EXCEEDS TCRT. * / ) 

IF { T CRT -T ) 3,4,5 

PRINT 1 $ STOP 

$ DRDT = D2FD T 2 = 0 . $ RETURN 



DENLIQF=DCRI 

XN = TCRT-TTRP $ YN=DTRP-DCPT $ X = ( T CRT -T ) / XN $ DXDT=-1/XN 



$ 



XE = X**E 
Q = XE-X $ 

WW = W*W $ 

1C Y 1 = 2*B*W + 

11 Y 1 = Y 1 * W 1 

13 DENLIQF = DCRT +■ 

14 DRDT - (1 + Q*Y1 



XE 1 = E*XE/X 
Q 1 = XF1-1 
Y = A + B*WL + 
3*C* WW 



$ H = CUBERTF(X) 



C*X 



W1 = W/3/X 



(X + Q*Y)*YN 
*■ Q1*Y) *YN*DXDT 



RETURN 



END 



SP 11342 A 



121 



☆ U S Government Printing Office. 1973- # 7&0-339 



APPENDIX G. (Continued) 



Cryogenics Division — NBS Institute for Basic Standards 

LABORATORY NOTE 


COST CENTER 

2750364 


FILE NO 

73-6 


PAGE 

12 


subject Liquid- Vapor Saturation (Orthobaric) Temperatures 


name r . d t Goodwin 


of Ethane and Methane 


0ATE Nov. 28, 1973 


Appendix I. (continued) 


11/28/73 





1 

2 

3 

4 

5 

6 
8 

10 

11 

12 

13 

15 

16 
17 



FUNCTION DENGASF(T) 

METHANE SAT*. VAPOR DEN, MOL/L, VIA VAPORFIT, 

Y = Ai ♦ A 2 * Q2 ♦ A3*Q3 ♦ . . , NF = AL, YN 

U = Z_ + <ZE-Z)*Y, J3EN = DCRT*EXP (-YN*U) • 

DIMENSION A (5 ) 

D ATA (TTRP = 9Q.,68) , (TCRT= 190. 555) , <E = 0 . 3 88) 

OAT A (DCRT=10.2) , (DTRP=0 . 01567365 ) 

3 AT A ( A = 0,3925579, -0.4976888, 1.3200516, 

1 -1.6817790, 0.6848609) 

FORMATUHO 9X ♦DENGASF = 0, T EXCEEOS TCRT , * / ) 
I F ( TCRT-T ) 3,4,5 
PRINT 1 $ STOP 

DENGASF - DCRT % DROT = 02RDT2 = 0 
ZN=TQRT/TTRP-1 l YN=LOGF(DCRT/DTRP) 

DZOT = -TCRT/ ZN/T/T $ ZE = Z**E $ 

X = ZE-Z $ J(1 = ZE1-1 $ Q = CU8ERTF ( Z ) 

Y = A (1 ) $ Y 1 = 0 $ DO 13 < = 2,5 

Y = Y ♦ A(K)*Q**K 
Y 1 = Y1 + K*A <K) *Q**(K-l ) 

CONTINUE $ Y1 = Y1*Q1 

U = Z ♦ X *Y $ UA = 1 * X*Y 1 f X 1*Y $ U1 

XP = EXPF(-YN*U) $ DENGASF J= F = DCRT*XP 
DPDT = -YN*U1*F $ RETURN $ END 



11/19/73*1 
= LN( OCRT/DTRP) 



% RETURN 

S Z= (TCRT/T-1) /ZN 
ZE1 = E*ZE/Z 

$ Q1 = Q/3/Z 



= UA* DZ DT 



LAB • NOTE 73-5. 
= DTRP-OCRT, 



1 

2 

3 

4 

5 

6 
8 
9 

10 

11 

13 

14 



FUNCTION OENLIQF(T) 

METHANE SATD. LIQUID DEN, MOL/L,-VIA 
Y = Al + A2*Q2 ♦ A3*Q3 *■ . . . , YN 
DEN = DC P.T ♦ Y N* ( X + (XE-X)*Y). 

DATA ( T TRP= 90 .68) , ( T CRT = 1 90 . 55 5 ) , (E= 0.361) 

DATA (DCRT=10.2) , ( DT RP=2 8 .147 ) 

DATA ( A =0.8 37 0910 3) , (B=0. 08416127) , (C=-0. 07478575) 
FORMAT ( IHO 9X *DENLIQF = 0, T EXCEEDS TCRT. * / ) 

I F { TCRT-T) 3,4,5 



PRINT 1 $ 

DENLIQF=DCRT 
X N=TCRT-TTRP 
XE = X* *E $ 

Q = XE-X $ 

W H = W* H S 

Y 1 = 2* 9* W + 

Y 1 = Y1*W1 
DENLIQF = DCRT ♦ 
DPDT = (1 + Q*Y 1 



STOP 

$ DRDT = D2 ROT2 = 0 t RETURN 
$ YN=DTR p - DCRT $ X= ( TCRT-T ) /XN $ 
XE1 = E*X E / X t W = CUBERTF ( X ) 
Q1 = XE1-1 
Y = A + 8* W W ♦ C*X 
3*C* WW _ 



DXDT = -l/XN 
$ rfl = W/3/X 



(X + Q* Y ) * Y N 
+ Q1*Y> *YN*DX DT 



RETURN $ END 



SP 11342 A 



122 



☆ U S Government Printing Office 1973- # 780-3 3 9 

USCOMM ERL 



oo OOOOOOOOOO 



06/05/74 



APPENDIX H„ 

Computer Programs for Equation of State 

PROGRAM ETHANE 

GOODWIN EQUATION OF STATE APPLIED TO ETHANE. 

EQN. (Y-YSAT) = F(R,T), WHERE Y = (Z-1)*X/R, AND - 
F (R,T) = 9* XBF ♦ E*XEF, NOTE ONLY TWO TERMS. 

XBF = SQRT CT/TC) *LN (T/TS) . 

XEF = PSI-PSISAT, PSI - (1-W*LN d+l/W)) /X, W = EP*(T/TH-i). 

9 = 81 + 82*R ♦ B3*R2/(1+BE*R2) , BE = 1, APPROX., 

E = (S-l) * (S-ER) * (El + E2*R), ER - 1.9, NF = 5. 

NOTE, PRESSURE IN BARS, 1.01325 BAR/ATM. 

LET GAS CONSTANT GK = 0.0831434*DTRP, PN = R*GK*T. 

AUTHOR 10. VIRIAH2), PAL(4), REAMER (8) , MICHELS<9), DOUSLIN(IO). 
COMMON B1,B2,B3,B4, ER, E1,E2,E3 

COMMON/l/AL ,BE,EP, GK, DCRT , TCRT , PCRT , DTRP, TTRP , PTRP 
COMMON/2/NP ,NF,IO<999) ,T (999) , P (999) ,OEN (999) 

COMMON/ 3/0 POT ,D2POT2,DPSDT,OPMCT,DPDO,DPCR,DTSOR,DTHOR 
COMMON/4/ XB1 ,XB2 , XC1,XC2, XE1,XE2, OXBOR,DXCDR , DXEDR 
COMMON/6/ TSAT, THETA, PSAT 
COMMON/7/ XB,XC,XO,XE 

COMMON/ 8/IP ,NPP, PI ,P2,P3,P4,P5, I DP (99) , TPS (99) ,PPS(99) 

COMMON/ 9/ IS , NPS »EG ,EL,ALS,BES,AL1,AL2,AL3,CG(5) , AY (8) , AW (5) 
COMMON/ 10 / IDS (99) , TSS(99), DNS(99) 

COMMON/11/ MP4, NP5 
COMMON/999/ NFUN,Y,F(30> 

DIMENSION G ( 30 ) , DND (30) ,TD (16) , PPO(30,16) 

1 FORMAT (15, 3F10.0) 

2 FORMAT ( 15 , F10.3, E15.5) 

3 FORMAT ( 1H0 9X *EQN. OF STATE, OTRP =*F7.3, 8H, DCRT =F7.3, 

1 8H , TCRT =F8. 3//1 0X4HAL =F5.2, 6H, BE =F5.2, 6H, EP =F5.2// 

2 10X 4HNP =14, 10H, PAVPCT =F6.3) 

6 FORMA T ( 1H1 16X *THE ISOCHORE AT* F6.2, * MOL/L* // 

1 17X 3HT , K 5X5HP,B AR 5X5HDP/DD 5X5H0P/DT 4X7HD2P/0T2) 

7 FORMATdOX F10.1, 2F10.3, F10.4, F11.5) 

8 FORMAT ( 1H1 14X *THE ISOTHERM AT* F7.2, * OEG. K* // 

1 10X 5HM0L/L 5X5 HP, BAR 5X5H0P/CD 5X5HDP/0T 5X 7HD2P/DT 2 ) 

9 FORMA T ( 5X F10.2, 2F10.3, F10.4, F12.6) 

11 FORMAT ( 1H1 7X *EQU ATION OF STATE VS. PVT DATA* // 

1 8X 2 HI D 7X 3HT , K 5X5HMCL/L 5X5HCALCD 4X5H0,PCT 

2 6X5HP, BAR 5X5HCAL CD 4X5HP,PCT) 

12 F ORMA T ( 5X 15, F10.3, 2F10.4, F9.2, F11.3, F10.3, F9.2) 

13 FORMA T ( 1H0 8X 4HNP =14, 12H, DNRMSPCT =F6.3, 12H, PMEANPC T =F6.3) 

14 FORMAT ( 8F1 0 . 0) 

15 FORMAT ( 16X 8F8.0) 

16 FORMATdOX 7F10.0) 

22 TTRP= 89. 899 $ 0TRP = 21.68 $ 0 = 1.01325 f PTRP=Q*9 . 967E-6 

23 TCRT = 305.37 $ DCRT = 6.74 

24 WM=30 .07 $ QP=Q/14. 69595 J GKK=0 .0831434 f GK = DTRP*GKK 

25 AL=2 • 0 J BE=1. 0 $ EP=0.5 i ER=1.9 



READ MIXED VAPOR PRESSURE DATA, ALL IN T-68, BAR. 

26 DO 27 J=1 , 99 S READ 2, I OP ( J ) , T PS ( J) , PPS ( J) f IF(IOP(J) ) 27,28 

27 CONTINUE 

C READ TSAT (DEN) DATA (ORTHOBARIC DENSITIES). 

28 NPP = J-l 5 DO 29 J=l,28 

29 READ 2, I DS ( J) , TSS ( J ) , DNS ( J ) $ DO 31 J = 29,99 

30 REAO 1, IDD,TSS(J) ,DNS(J) S IF(IDD) 31,32 



123 



oo o o o o o oo 



ETHANE 



APPENDIX H. (Continued) 



06 / 85 / 71 * 



31 XDS«J) - IOD 

32 NPS = J — 1 

GENERATE VIRIAL PVT DATA BELOW 1 MOL/L. 

34 NP1 =38 2 DN = 0,4 2 OO 37 J=i,NPl f N = J 

35 TT = 220 «• 10*N 2 ID(N> = 2 $ T (N) = TT 2 DEN (N) = ON 
37 P (N) = ON*GKK*TT*ZIPF(TT,DN) 

READ DOUSLIN ETHANE PVT DATA. 

39 N=N«-1 2 DEN (N) =0.7 0 2 T(N)=248.15 S P(N ) =Q* 11 . 6 0 87 S ID(N) = 10 
SET UP HIS DENSITIES, AND READ HIS TEMPERATURES. 

40 ONO(l) = 0.75 $ OO 41 1=2,30 

41 OND(I) = 0.5*1 2 REAO 14, (TO ( J ) , J=i, 16) 

READ PRESSURES (ATM) ALONG ISOCHORES (MANY BLANKS). 

42 00 43 1=1,30 S READ 15, ( PPO ( I , J) , J=1 , 16) 

CONVERT TO ONE PVT POINT PER INDEX, N. 

43 CONTINUE 2 OO 46 1=1,30 $ OO 46 J=l,16 $ IF(PPOfI,J)) 44,46 

44 N = N41 2 ID (N) =10 2 T (N) = 273.15 ♦ TD(J) 

45 0ENCN) = ONO(I) S P(N) = Q*PPD(I,J) 

46 CONTINUE 2 DO 48 J=i,5 2 READ 1, IDD,ON,TT,PP 

47 N=N*1 2 ID ( N) = IOO S OEN (N) =ON I T (N) =TT $ P(N> = Q*PP 
READ MICHELS, DEG. C, AMAGAT DEN, AMAGAT (PM). 

48 CONTINUE 2 NP2 = N * READ 16, (TO ( J) ,J=1 ,7) S DO 49 1*1,17 

49 READ 14, ONO(I), (PPD (I, J) , J=i ,7) 

50 00 53 1=1,17 S DC 53 J=i,7 2 IF(PPD(I,J)) 51,53 

51 N = N*1 $ ID (N) = 9 J T (N) = 273.15 ♦ TO(J) 

52 DEN (N ) = 0. 045064*DND(I) J P(N) = Q*DN0(I)*PPD (I , J) 

53 CONTINUE 2 NP3 = N 

READ 8 PAL/POPE ISOCHORES NO. 17 THRU 24, GRAM/CCf PSIA. 

THESE DATA AOJUSTED BY RICE UNIV., APRIL, 1974. 

57 CO 62 1=1,12 2 DO 61 J=l,99 

58 READ 14, DN,TT,PP 2 IF (DN) 59,62 

59 N = N*1 2 ID ( N) = 1200 ♦ 100*1 ♦ J 

60 T (N) = TT 2 P (N) = QP*PP S OEN(N) = 1000*DN/HM 

61 CONTINUE 

C READ REAMER ET AL UP TO NP5. 

62 CONTINUE 2 NP4 = N I CALL REAOIT 

C USE ONLY OATA THRU PAL/POPE FOR LEAST SQUARES. 

63 NP = NP4 2 NF = 5 2 SSK = 1.0E+100 2 IP = IS = 1 
C 

C EXPLORE NONLINEAR PARAMETERS DTRP , DCRT ,TCRT,AL,BE,EP. 

64 CALL PSATFIT $ PCRT = PSATF(TCRT) 

65 CALL OSATFIT 2 CALL TSATFIT 
C 66 CO 74 MA=i , 3 2 AL = 0.5MMA+2) 

C 67 00 74 ME=1 , 3 f EP = 1.0/(6-ME) 

66 CALL SETUP 2 SS = 0 2 DO 69 J=1,NP 

69 SS = SS ♦ ABSF ( 1-PVTE (T(J) , DEN ( J) )/P(J) ) 2 SS = 100*SS/NP 

70 IE ( SS -SSK ) 7 1,74,74 

71 SSK=S S 2 DC R=DCRT 2 TCR=TCRT 2 AL K= AL 2 BEK=BE 2 EPK=EP 

72 CO 73 K=1 , NF 

73 G (K) = F (K) 

74 PRINT 3, DTRP, DCRT, TCRT, AL ,BE»EF , NP,SS 

76 DCRT = OCR 2 TCRT =TCR 2 AL =AL K 2 BE=BEK 2 EP=EPK 

77 81=G ( 1) 2 82=G (2) 2 B3=G(3) 

7e E 1=G ( 4) 2 E2=G (5) 

80 CALL PEEK 2 CALL ISOTHERM 



124 



o o o o 



ETHANE 



APPENDIX H. (Continued) 



06/05/74 



GET DEVIATIONS FOR INDIVIDUAL AUTHORS. 

83 DO 100 IG=1,5 I G0T0<84, 85,86,87,88) ,IC- 

84 M=1 S N=NP1 $ GO TO 90 

85 M=N*1 * N = NP2 S GO TO 90 

86 M = NM $ N=NP3 $ GO TO 90 

87 R=N*- 1 t N = NP4 $ GO TO 90 

88 R=N + 1 $ N=NP5 $ GO TO 90 

90 PRINT 11 t SO = SS = K = L = 0 

91 DO 98 J=M , N $ K=K+1 I L = L*1 S IF(L-53) 93,92 

92 L = 0 * PRINT 11 

93 FC = PVTF (T (J) , DEN (J) ) $ DC = FINOENF (T(J),F(J),CEN(J) ) 

94 PPCT=10Q* <1-PC/P(J) ) S SS-SS+AESF (PPCT) $ IF(DC) 95,96 

95 DPCT = 100* (l-DC/DEN (J) ) $ GC TO 97 

96 DPCT - 0.0 

97 SO = SO «■ DPCT**2 

96 PRINT 12, ID(J),T(J), DEN ( J) , DC , DPCT , P(J),PC,PPCT 
99 SS = SS/K J SD = SQRTF (SD/K) f PRINT 13, K, SD,SS 
100 CONTINUE 

PRINTOUT ISOCHORES. 

130 DO 160 1 = 1,22 S I F ( I -7 ) 132,131 

131 DN = OCRT $ GO TC 133 

132 DN = I 

133 FRINT 6, DN 

138 IF ( ON-OTRP ) 140,141,141 

140 TS = TSATF(DN) $ GO TO 142 

141 TS = TTRP* (ON/DTRP) **4 

142 IF(I-ll) 143,143,144 

143 IT = 8 $ GO TO 150 

144 IF (1—15) 145,145,146 

145 IT = 4 % GO TO 150 

146 IF (I - 19) 147,148,1 48 

147 IT = 2 $ GO TO 150 

148 IT = 1 

150 00 159 J= 90, 600, IT $ TT = J $ IF(TT-TS) 159,159,151 

151 FP = PVTF ( T T ,ON) J PX = DPDRF ( T T , DN) 

153 IFCPP-700.0) 155,155,160 
155 PRINT 7, T T , PP , DPDD , OPDT , 02PDT2 

159 CONTINUE 

160 CONTINUE 

C PRINTOUT ISOTHERHS (NEED FINDSATF). 

200 DC 230 1=1,99 

201 READ 1, IDD,TT,DS ? IF(IDD) 210,999 

210 PRINT 8, TT 

211 OH = OTRP* (TT/TTRP) **0.25 S IF(TT-TCRT) 212,212,213 
21? DG = FINDSATF(TT,0) J 01 = F I NCSA T F ( T T , 1 ) 

213 DO 220 N= 1 , 5 0 0 $ DN = N*DS I IF ( TT- T CRT ) 214,215,215 

214 IF(ON.GT.DG.AND.DN.LT.DL) 220,215 

215 IF (ON.GT.OH) 230,216 

216 FP = CPORF ( TT, DN ) I IF(PP-750.0) 217,217,230 

217 PX = PV TF ( T T , DN ) 

219 FRINT 9, ON,PP, DPDD, 0PDT,D2PDT2 

220 CONTINUE 
230 CONTINUE 

999 CONTINUE S STOP J END 



125 



APPENDIX H. (Continued) 



06/15/74 



SUBROUTINE READIT 

C REAO ETHANE PVT DATA OF REAMER ET AL. T,F, PSIA, Z(P,R,T). 

C IND. ENG. CHEM. 36, 956-958, (OCT. ,1944). 

C0MM0N/2/NP , NF ,IO(9S9),T (999), F (999) ,DEN (999) 

COMMON/ll/ NP4 , NP5 
DIMENSION TA(7) ,PSI (22) ,Z(22,7) 

DATA (GKK = 0.0831 43 4) , ( 0= 1. 0 1325 ) , (PA=14 . 69595 ) 

1 FORMAT ( 24X 7F8.0) 

2 FORMA T ( 15, F11.0, 8X 7F8.0) 

3 FORMAT ( 15 , F11.0, F16.0) 

C REAO THE SUPPLEMENTARY PVT DATA. ONE POINT PER CARD. 

9 CO 15 1=1,99 $ REAP 3, I00,PF,ZA $ IF(IDO) 10*16 

10 N = NP4 ♦ I 

11 ID(N) = IOO t P ( N ) = Q*PP/PA J IF( I - 13) 12,12,13 

12 TF = 100 $ GO TO 14 

13 TF = 160 

14 T (N ) = 273.15 ♦ (TF-32)/1.8 

15 DEN(N) = P(N)/ZA/GKK/T (N) 

16 CONTINUE 

C NCW REAO 22 ISOBARS OF THE SQUARE TABLE 1. 

20 EFAD 1, (TA (J) , J=1 ,7) $ DC 21 1=1,22 

21 READ 2, IOO, PSI (I ) , (Z ( I , J ) , J = 1 , 7) 

C NCW CONVERT TO ONE FCINT PER INCEX, N. 

25 DO 29 1=1,22 $ DC 29 J=l,7 

26 N = N+l S ID (N) = 8 $ P(N) = Q*PSI(I)/PA 

27 T (N) = 273.15 ♦ (T A ( J ) -3 2 ) / 1 . 8 

28 DEN(N) = P (N)/Z (I, J)/T (N) /GKK 

29 CONTINUE J NP5 = N 

30 RETURN I ENO 

SINGLE-BANK COMPILATION. 



126 



oooo oooooo ooo 



APPENDIX H. (Continued) 



06/05/7** 



SUBROUTINE OSATFIT 

FIND COEFFS. FOR DENGASF(T), DENLICF(T), ETHANE. 

FUNCTIONS VIA GOODWIN LAB. NOTE 73-5. 

DATA ARRANGED IN OROFR OF INCREASING DENSITIES. 

COMMON/l/AL ,BE,EP, GK, DC RT , TCP T , F CRT , D TFP , TT RF , F T R F 
C0MM0N/9/IS,NPS,EG,EL, ALS,BES, AL1 ,AL2,AL3,CG(5) ,AV(8),AW(5) 
COMMON/iO/ IDS(99), TSS(99>, DNS(99) 

COMMON/ 999/ NFUN,Y,F(30) 

DIMENSION G ( 9) 

OATA (DGAT = 1.35114E-6) 

1 FORMA T(1H19X*SATURATED VAPOR DENSITIES, E = *F6 . 3 // 1 0 X 6HT TRP =F7.3, 

1 8H , TCRT =F8. 3 , 8H, OCRT =F6.3, 8H, DGAT =E12.5// 7X 5F13.6// 

2 13X2HI0 7 X 3HT , K 8X5HM0L/L 8X5HC A LCD 4X4HPCNT ) 

2 F CRM A T ( 1 0 X 15, F10.3, 2E13.4, F8.2) 

3 FORMAT (1H19X*SATD. LIQUID DENSITIES, E = * F6.3// 1IX6HTTFF =F7.3, 

1 8H , TCRT = F 8 • 3 , 8H, DCRT =F6.3, 8H, DT R F =F7.3// 9X 3F15.9// 

2 13X2 HID 7 X 3HT , K 5X5HMCL/L 5X5HCALC0 5X5HPRCNT) 

4 FORMA T ( 10X 15, 3F10.3, F10.2) 

5 FORMAT(1HO 15X 4HNP =13, 10H, RMSFCT =F6.3> 

FCR THE SATURATED VAPOR, DEFINE - 

Z = (TC/T-1) /(TC/TT-1) , Q = Z**l/3, ZF = Z**E, 

YY = LN(DC/D) /LN (DC/DT) , ANO THE DEPENDENT VAFIAELE - 
Y ( Z, Y Y ) = (YY-Z) /(ZE-Z) , WHEN THE L.S. ECN. IS - 
Y(Z,YY) = Al ♦ A2*Q2 ♦ A3*Q3 ♦ A4*C4 ♦ A5*Q5. 

6 ZN=TCRT/TTRP-1 S Y N=LOGF ( OCR T / D GA T ) 5 SSK=1.0E+100 
EXPLORE VALUES FOR EXPONENT EG. 

7 CO 18 1=1,11 S EG = 0.33 + 0.01*1 

8 NFUN =5 $ DO 12 J = l,99 $ I F ( CNS ( J ) - OOP T) 9,13,13 

9 Z = ( TCRT/TSSC J)-l ) /ZN S Q = CUBERTE ( Z ) 

10 YY = LOGF (OCRT/DNS (J) )/YN $ F(l) =1 $ OO 1 1 K=2,5 



11 


F (K) 


= Q**K 


t Y = (YY-Z) / (Z** 


EG-Z) 








12 


CALL 


FIT 












13 


NP = 


J-l $ 


CALL CCEFF J SS 


= 0 


S 


DC 14 K = 1 


,5 


14 


CG ( K ) 


= F ( K ) 


l DO 15 J = 1 , NP 


i DC 


- 


DENGASF ( T 


SS ( J) ) 


15 


SS - 


SS ♦ ( OC/ DNS ( J ) -1 ) * * 2 t 


IF (SS 


.LT 


.SSK) 16, 


18 


16 


SSK = 


SS t 


E GK = EG * DO 17 


K=l, 


5 






17 


G (K) 


= F ( K ) 












16 


CONTINUE $ 


EG = EGK J 00 19 


K = l, 


5 







19 CG(K) = G ( K ) $ IF(IS) 20,26 

20 PPINT 1, EG, TTRP, TCRT , DCRT, DGAT, (G(K),K=1,5) 

21 SS = 0 t OO 24 J = 1 , N P $ DC = DENGAS F ( TSS ( J ) > 

22 FCT = 100* (DNS(J)/DC-1) J SS = SS ♦ PCT**2 

24 FRINT 2, IDS(J), T S S ( J ) , DNS ( J ) , CC,PCT 

25 SS = SQRTF ( SS/NP) $ FRINT 5, NP, SS 
FCR THE SATURATED LICUID, DEFINE - 
X = (TC-T) / (TC-TT), Q = X**l/3, XE = X**E, 

YY = ( O-DC) / (DT-OC) , WHEN THE L.S. EQN . IS - 
(YY-K) /(XE-X) = A1 + A 2*Q2 ♦ A3*Q3. 

26 M = NP ♦ 1 % SSK = 1.0E+100 

27 XN = TCRT-TTRP $ YN = DTRP-DCRT 
C EXPLORE VALUES FOR EXPONENT EL. 

26 CO 37 1=1,14 * EL = 0.25 * 0.01*1 J NFUN = 3 

29 00 32 J = M , NPS $ X = (TCR T-TSS ( J ) ) / XN 

30 C = CUBERTF(X) 5 YY = ( DN S ( J ) -C CRT ) / Y N 

31 F ( 1 ) = 1 S F ( 2 ) =Q * Q $ F ( 3 ) = X $ Y = ( YY- X ) / ( X* ♦ F L - X ) 



127 



DSATFIT 



APPENDIX H. (Continued) 



06/85/74 



32 CALL FIT $ CALL CCEFF $ AL1=F(1) * AL2=F(2) f AL3=F(3) 

33 SS = 0 $ DO 34 J=M,NPS $ DC = DENLIQF (TSS ( J) ) 

34 SS = SS ♦ (DC/DNS(J)-1)**2 * IF (SS .LT. SSK) 35,37 

35 SSK = SS J ELK - EL $ DO 36 K=l, 3 

36 G (K) = F ( K ) 

37 CONTINUE $ EL = ELK $ AL1=G(1) S AL2=G(2) $ AL3=G<3) 

36 IF(IS) 40,99 

40 PRINT 3, EL, TTRP, TCRT , OCRT , OTRP , <G(K),K=1,3> 

41 SS = N = 0 

42 00 44 J=M , NPS l N = N+l S DC = DENL I QF ( TSS < J > ♦ 

43 PCT = 100* (DNS (J)/OC-l) t SS = SS ♦ PCT**2 

44 PRINT 4, IDS (J) ,TSS (J) ,DNS ( J) , OC,PCT 

45 SS = SQRTF ( SS/N) $ PRINT 5, N, SS 
99 RETURN J END 

SINGLE-RANK COMPILATION. 




128 



oo oooo ooooo 



APPENDIX H. (Continued) 



06/85/71* 



SUBROUTINE TSATFIT 

FIT TSAT DATA VIA FUNCTIONS OF TSA TFI T (METHANE ) , 4/19/74 AT 09.00. 
NCTE, ALS = BES = 0.5, E - 1/4, VAPOR NF=6, LIQUID NF = 3. 

NOTE DIFFERENT FUNCTIONS AS OEN L . T. OR G.T. DCPT. 

DEFINE YY(TS) = ( TC R T /T -1 ) / ( TCR T /T TRP-1 ) FOR EACH FUNCTION. 

DATA ARRANGED IN ORDER OF INCREASING DENSITIES. 

COMMON/l/AL,BE,EP, GK, DCRT , TCRT , PCRT , D T RP , TT RF , P T R P 
COMMON/3/ OP OT,D2PDT 2, DPS DT,DPM0T, OPOD , O PDR , D TSDR , 0 THOR 
COMMON/ 9/1 S,NPS, EG , EL, ALS, BES, AL1 , AL 2 , AL 3 , C G ( 5 ) , AV (8) *AW (5) 
COMMON/10/ IOS( 99) , TSSI99), DNS 1 99 ) 

COMMON/999/ NFUN,Y,F(30) 

OATA (DGAT = 1.35114E-6) 

1 FORMAT ( 1H1 3 OX ’ETHANE SATURATION TEMPERATURES’ // 

1 16X 4HAL =F 6.3, 6H, BE =F6.3, 8H, DGAT =E12.5// 

2 16X 6HTTRP =F7.3, 6H, TCRT =F8.3, 8H, DTRP =F7.3, 

3 8H , DCRT =F6. 3 // 2(13X 4F15.9/) ) 

2 FORMATdHO 12X 2HI O 10X5HMOL/L 1 1 X4HCAL C 5X4HPCNT 
1 8X3HT,K 6X4HCALC 5X4HPCNT 6X6HDTS/0D ) 

3 F ORMA T ( 10 X 15, 2E15.5, F9.2, Fll.3, ri0.3, F9.2, E12.3) 

4 FORMATdHO 12X 4HNP =13, 12H, DNFMSPCT =F6.3, 12H, TSRMSPCT =F6.3) 
FOR SAT. VAPOR DEFINE, X=ABS(S-1), XT= ABS ( ST- 1 ) , WHEN EQN. IS - 
IN(YY) - AL’ (1/XT-l/X) = Al’LOG (LN ( 1 + E/S ) /LN ( 1 «-E / ST ) ) ♦ W«S), 

W ( S > = A2MQ-QT) ♦ A3*(02-QT2) + A4’(S-ST) ♦ A5*(S2-ST2) ♦ . . . 

WHERE, Q = S” 1/3, AND OT = ST”l/3. 

5 ALS = BES =0.5 S E = 0.25 S YN = T CRT/TTRP - 1 

6 ST = DG AT /DCRT I XT= 1-ST $ EK=LOGF ( 1 + E/ST) 

7 GT = CUBERTF (ST ) % NFUN = NF = 8 

9 OO 16 J = 1 , NPS $ IF (DNS (J) -OCRT) 10,17,17 

10 S = DNS ( J ) / DCRT $ X = 1-S * 0 = CUBERTF (S ) 

11 F ( 1 ) = LOGF (LOGFC1 +E/S) /EK) 

12 F ( 2 ) = Q-QT $ F ( 3 ) = Q’O - OT’CT 

13 DO 14 K=4 , NF $ N = K-3 

14 F(K) = S”N - ST” N 

15 Y = LOGF( (TCRT/TSS C J) -1) /YN) - AL S’ (1/ X T - 1/ X) 

16 CALL FIT 

17 NF = J-l $ CALL CCEFF * DO 18 K=1,NF 

18 A V ( K ) = F ( K ) $ IF (IS) 20,28 

20 PRINT 1, ALS, BES, DGAT, TTRP,TCRT , DTRP, DCRT, {F ( K ) , K = 1 , N f > 

21 PRINT 2 J SD = SS = N = 0 

22 CO 26 J = 1 , N P $ T = TSS(J) $ C = DNS(J) 

23 CC = FINDSATF (T, 0) * DPC T= 1 0 0 ’ ( 1 - DC /O ) $ S0=SD+DPCT”2 

24 TC = TSATF(O) $ DTSCD = DTSDR/DTRP 

25 TPCT = 10 0’ (1-TC/T ) J SS = SS ♦ TPCT”2 

26 PRINT 3, IDS ( J ) , 0,CC,CPCT, T,TC,TPCT, OTSDD 

27 SD = SORT F ( S O/N P ) f SS = SQRTF(SS/NP) $ PRINT 4, NP, C C,SS 

FOP SATO. LIQ. USE, X=ABS(S-1), XT=ABS(ST-1) IN THE EON. - 
LN(YY) = BE’ C 1/XT-l/X) ♦ Bl’(S-ST) + 92’(S2-ST?) + . . . 

28 NFUN = NF = 5 $ M=1 f ST= OTRP/DCRT « XT = ST-1 

29 00 35 J= 1 , N PS * IF (DNS (J) -DCRT) 30,30 , 31 

30 M = M *• 1 % GO TC 35 

31 S = D NS ( J ) / OCR T $ X = S-l % DC 32 K = 1,NF 

32 F(K) = S”K - ST” K 

33 YY = (TCRT/TSS (J)-l) /YN % Y = LOGF(YY) - BES’ (1/ X T- 1 /X ) ' 

34 CALL FIT 

35 CONTINUE $ CALL COEFF $ OO 36 K=1,NF 



129 



o o 



TSATFIT 



APPENDIX H. (Continued) 



06/85/74 



36 AW < K) = F(K) $ IF(IS) 40,99 

40 PRINT 1, ALS ,8ES,0GAT , TTRP , TCRT , 0TRP,0CRT, (F ( K) , K= 1 , NF ) 

41 PRINT 2 $ SD = SS = N = 0 

42 DO 46 J=M , N PS * N = N+l « D = ONS(J) $ T = TSS(J) 

43 CC=FINOSATF <T, 1) $ DPCT= 1 0 0 * < 1 -DC /O) J SD=S0+0FCT**2 

44 TC = TSATF(D) $ DTSDD = DTSOR/DTRP 

45 TPCT = 10 0 * ( 1— TC/T ) $ SS = SS ♦ TPCT**2 

46 PRINT 3, IDS(J), D,DC,DPCT, T,TC,TPCT, DTSDD 

47 SD = SQRTF ( SD/N ) I SS = SQRTF(SS/N) t PRINT 4, N, SO, SS 

99 RETURN S END 



06/05/74 

SUBROUTINE PSATFIT 

FIT GOODWIN EQN . TO VAPOR PRESSURE DATA, ALL ON T-68, BAR. 
LMP/PT) = P1*X + P 2* X 2 ♦ P3*X3 ♦ P4* X4 ♦ P 5*X* < 1 -X ) * * 1 . 5 . 
COMMON/l/AL,BE,EP,GK» DCRT , TCRT , PCRT , D TRP , TTRP , P TRP 
COMMON/8/IP,NPP,Pl ,P2,F3,F4,P5, I0P(99) , TPS ( 9 9 ) , FPS ( 9 9 ) 
C0MM0N/999/NFUN,Y, F (30) 

1 FORMAT ( 1H1 14X *VAFOR PRESSURES, TTRP =*F7.3, 8H, TCRT = F 8 . 3 ) 

2 FORMA T ( 1H0 12X 5F13.8) 

3 FORMAT ( 1H0 17X 2HI D 7X3HT,K 10X5HP,BAR 10X5HCALCD 6X4HPCNT ) 

4 FORMAT (15X 15, F10.3, 2E15.5, F10.3) 

5 FORMAT ( 1H0 16X 4HNP =14, 10H, RMSPCT =F6.3) 

6 NFUN =5 « XK = 1 - TTRP/TCRT J DO 10 J=1,NPP 

7 X = ( 1-TTRP/TPS ( J) )/XK $ QC = X* (1 -X) ♦SQRTF (1 -X) 

8 F ( 1 ) = X t F(2) = X*X $ F ( 3) =X*X*X J F < 4 > =F ( 2) * F ( 2 ) ? F(5)=QC 

9 Y = LOGFtPPS (J) /PTRP) 

10 CALL FIT $ CALL COEFF 

11 P 1=F ( 1) S P2=F (2) $ P 3=F ( 3 ) I F4 = F<4> f F5 = F(5) * IF(IF) 12,20 

12 SS = L = 0 $ PRINT 1, TTRP, TCRT 

13 PRINT 2, PI ,P2,P3, P4,P5 S FRINT 3 

14 DO 18 J = 1 , NPP $ P = PPS(J) ! PC = PSATF (TPS ( J) ) 

15 L = L ♦ 1 J PCT=10 0* (P/PC-1) I SS=SS+PCT**2 $ IF(L-45) 18,17 

17 L = 0 l PRINT 1, TTRP, TCRT I PRINT 3 

18 FRINT 4, IOP(J) ,TPS ( J) , P,PC,PCT 

19 SS = SQRTF ( SS/NPP) I PRINT 5, NPP, SS 

20 RETURN $ END 



130 



APPENDIX H. (Continued) 



06/85/74 



SUBROUTINE PEEK 

C EXAMINE BEHAVIOR OF THE COEFFICIENTS. 

COMMON B1,B2,B3,B4, ER * E1,E2,E3 

COMMON/l/AL , BE, EP,GK, DC RT , TCRT , F CRT , DTRP, TTRP , FTRF 
COMMON/6/ TSAT, THETA, PSAT 

4 FORMA T ( 1H1 14X ’EQUATION OF STATE, COEFFICIENTS* // 

1 15X 6H0TRP =F8 • 4, 8H, TTRP =F 8 . 3 , 8H, PTRP =F13.9/ 

2 15X 6H0CRT =F8.4, 6H, TCRT =F8.3, 8H, PCRT =F13.9// 

3 15 X 4HAL =F5. 2 , 6H, BE =F5.2, 6H, EP =F5.2// 

5 12X 3F15.9/ 12X 2F15.9/ ) 

5 FORMAT ( 15X 5HM0L/L 6X4HTSAT 5X5HTHETA 6 X4HPSAT 
1 9X1HB 9X1HC ) 

6 FORMAT (10X F10.1, 5F10.3) 

70 FRINT 4, DTRP, TTRP, FTRP, DCR T , T CR T , PCRT , AL ,BE , EP , 

1 B1,B2,83, E1,E2 

71 PRINT 5 $ DO 77 J=l,46 $ ON = 0.5*J $ S = ON/DCRT 

72 R=DN/ DTRP % R2=R**2 J R3=R**3 

73 5 = 31 t B2*R «• 83*R2/(1+BE*R2) 

74 E = (S-l)* (S-ER)*(E1 ♦ E2*R) 

76 TS=TSAT=TSATF(ON> S TH=THETAF (DN) $ PS=PSATF(TS) 

77 PRINT 6, DN, TS,TH,PS, B, E 

99 RETURN % END 



06/05/74 

SUBROUTINE ISOTHERM 
C PRINTOUT THE CRITICAL ISOTHERM. 

COMMON/l/AL , BE, EP, GK, CCRT , TCPT , FCRT , D TRP, TTRP , FTRF 
C0MM0N/3/DPDT ,D2PDT2,DPSDT , DPMCT ,DPDC,DPCR, OTSCP , 0 THOR 
C0MM0N/4/XBl,XB2, XC1,XC2, XE1,XE2, DXB 0 R , D XC OR , C X E CR 

1 FORMAT ( 1H1 14X *THE CRITICAL ISOTHERM* // 

1 10X 4HTC =F8.3, 6H, OC =F7.3, 6H , PC =F8.4// 

2 11X 4HD/DC 9X4HP/PC 8X5HDP/DD 4X6H0TS/0R 4X6HDTH/DR 

3 4X6HDPS/DR 4X6HDX B/DP 4X6HDXC/DF ) 

2 FORMA T (5X F10.2, 2F13.9, 5F10.5) 

5 FRINT 1, TCRT, DCRT , FCRT $ CO 8 J=l,51 

6 OR : 0.74 <► 0.01*J $ DN = OCPT’DR 

7 FR = OPORF ( TCRT , ON ) /PCRT $ DPSOR = OPSDT’DTSOR 

8 PRINT 2, DR , PR , DPD D , D TS DR , DTH DR , DPS DR , CXBDR ,DXEDR 

9 RETURN t END 



131 



o o o o 



APPENDIX H. (Continued) 



06/85/74 



SUBROUTINE SETUP 

C SET UP THE ARRAYS FOR LEAST SQUARES. 

COMMON B1,B2,B3,B4, ER, E1,E2,E3 

COMMON/l/AL ,BE,EP, GK, DCRT , TOR T , PCRT , DTRP, TTRF, PTSP 
COMMON/ 2/NP,NF, 10 (999) ,T(999) , P (999) , DEN (999) 

COMMON/6/ TSAT, THETA, PSAT 
COMMON/999/ NFUN,Y,F(30) 

1 NFUN = NF $ DO 10 J=1,NP 

2 TT = T ( J) J X = TT/TCRT $ 0 = DEN(J) f S = D/OCRT 

3 R = D/OTRP S R2 = R*R $ R3 = R*R2 $ RG = R*GK 

4 TS=TSAT=TSATF(D) I THETA=THETAF (D) « PS = PSATF(TS) t XS=TS/TCRT 

5 XB = XBF (TT , D) $ XE = ( S- 1 ) * ( S- ER) *XEF (TT , D ) 

6 F (1 ) =XB * F(2)=XB*R $ F ( 3) =XB*R2/ (1+BE* R2) 

7 F (4 ) = XE $ F ( 5) = XE* R 

9 Y = (P( J)/RG/TT-1) *X/R - ( PS/RG / T S-l ) *X S /R 

10 CALL FIT $ CALL COEFF J CALL STAT 

11 8i = F ( 1 ) S B2=F(2) $ B 3=F ( 3 ) 

12 Ei=F(4) * E2=F (5) 

30 RFTURN $ END 



06/05/74 



FUNCTION THETAF (OEN) 

THFTA = TS AT *EXP (U ( S ) ) . 

LET Q = (S-l) /(ST-1) , WHERE ST = DTRP/D CRT , THEN - 
IF S < 1, U = AL*Q**3, IF S > 1, U = -AL*Q**3, 

YIELOS ALSO THE FIRST DERIVATIVE RSP, TO RHO r OEN/DTRP. 
COMMON/1/ AL , BE, EP, GK, DC RT , TCRT , PCRT , D TRP, TTRP , PTRP 
COMMON/3/DPOT,D2PDT2,OPSDT , OPMC T , DPO C , D P CR , DTSCR,OTHOR 
COMMON/6/ TSAT, THETA, PSAT 
1 S = DEN/DCRT t D SDR = DTRP/DCRT S C = DSOF-1 
20= (S-l)/C $ Q2 = Q*Q $ U = AL*Q*Q2 

3 U1 = 3*AL*Q2*DSDR/C * IF(Q) 5,9,4 

4 U = -U $ U1 = -U 1 

5 XP = EXPF(U) J THETAF = TSAT*XP 

6 CTHDR = ( TS A T* U1 ♦ OTSOR)*XP f RFTURN 

9 THETAF = TCRT f OTHDR =0 $ RETURN f END 



132 



o o o o 



APPENDIX H. (Continued) 



06 / 05/74 



FUNCTION PVTF(T,DEN) 

C YIFLDS P,8AR, ALSO DP/DT, D2P/DT2. 

COMMON 81, 82, 83, B4 , ER, E1,E2,E3 

COMMON/l/AL ,BE,EP, GK, OCRT , TCRT , PCRT , D TRP, TTRP , PTRP 
COMMON/3/DPDT,D2PDT2, DPSOT, DPMCT, CPOO,DPCR, DTSDR,0TH0R 
C0MM0N/4/X81,XB2, XC1,XC2, XE1,XE2, OXBOR , DXCDP , CXEDR 
C0MM0N/6/ TSAT, THETA, PSAT 

1 Q = DEN * S = Q/DCRT £ R = Q/DTRP 

2 R2 = R*R $ R3 - R*R2 $ RG = R *GK 

3 TS=TSAT=TSATF(Q) I THETA =THETAF ( C ) * PS=FSATF(TS) 

4 XB = XBF (T , Q ) $ XE = XEF (T , Q ) 

5 e = B1 + B2*R + B3*R2/(1+BE*R2) 

6 E - (S-l) * (S-ER) *( El + E2*R> 

9 F = B*X8 + E*XE $ FI = B*XB1 + E*XE1 $ F2 = E*XB2 + F*XF2 
11 YS = <PS/RG/TS-1)*TS/TCRT/R 

15 FVTF = (T ♦ R* (F+YS)*TCRT)*RG £ DPOT = (1+R*F1)*RG 
17 C2P0T2 = R* RG*F 2/T CRT $ RETURN £ END 



06/05/74 

FUNCTION OPDRF CT ,DEN) 

DPORF = P,BAR. OP/DR IS IN COMMON • GK = 0* 08 31434*DTRP. 
EQNSTATE IS Y = YS AT + F (R , T ) , WHERE Y = (Z-1)*X/R, AND - 
F (R , T ) = B*XB + C*XC + 0*XD + E«XE, YIELDS DFR I V . - 
DP/DR = 2*P/R - GK*T + R2*GK*TCRT* (F 1 + YS1). 

COMMON B1,B2,B3,B4, ER, E1,E2,E3 

COMMON/l/AL, BE, EP,GK, DC RT , TCR T , P CRT , D TRP , TTRP , PTRP 
COMMON/3/DPDT, D2PD T 2 , DPS DT , OPMD T , DPD D, D P CR , DTSDR , D THOR 
C0MM0N/4/XB1 ,XB2, XC1,XC2, XE1,XE2, DXB O R , D XC DR , D X E DR 
COMMON/6/ TSAT, THETA, PSAT 
COMMON/7/ XE,XC,XD,XE 

1 X=T/TCRT S Q=DEN £ S=Q/DCRT f CS D F=DTRP / DCR T 

2 R-Q/DTRP £ R2=R*R $ R3=R*P2 £ RG - R* GK 

3 TS=TSAT = TSATF (O) £ THETA =THETAF (C ) $ PS = PSATF(TS) £ XS = TS/TCRT 

4 XB = XBF (T , G ) $ XE = X EF ( T , G ) 

5 BS = 1 + BE *R2 £ BS1 = 2*BE*R 
66=91+ B2*R + B3*P2/BS 

7 ED = B2 + B 3* ( 2*R/ 8S - R2* BS1/BS/BS) 

6 SX = (S-l)MS-ER) £ E = El + E2*R 

9 ED = SX *E2 + (2*S - 1 - ER)*OSOR*E £ E = SX*E 

12 F = B * X B ♦ E*XE £ YS = < P S/R G / T S- 1 ) * X S /R 

13 FI = 8*0XB0R + BO*XB + E*OXECR + EQ*XE 

16 YS1 = (TS - R* D TSO R + DPSDT*DTSDR /GK - 2*PS/RG) /TCRT 

17 C = <F+YS)*R/X £ DP DR = (1 + 2*Q + <R2*Fi + YS1)/X)*GK*T 
16 CPORF = ( 1 +Q ) *RG*T £ DPOD = CPCR/DTRP £ RETURN £ ENC 



133 



o o o o 



APPENDIX H. (Continued) 



06/05/74 



FUNCTION XBF(T,0) 

C XEF = SORT <T/TC)*LN (T/TS) = Q<T)*Z(R,T), 

C Z(R,T> = LN(U), U(R,T) = T/TS(R). 

COMMON/l/AL,BE,EP,GK, DCRT , TCRT , PCRT , 0 TRP , TTRP , PTRF 
COMMON/3/DPOT,D2PDT2,OPSOT,OPMCT,CPOO,DPCR, OTSCR ,OTHDR 
C0MM0N/4/XBi,XB2, XCi,XC2, XE1, XE2, DXBDR ,DXCOR , DXEOR 
COMMON/6/ TSAT, THETA, PSAT 

1 TC = TCRT t TS = TSAT $ X = T/TC 

2 U = T/TS S U1X = TC/TS J U1R = -U*DTSDR/TS 

3 Z = LOGF(U) $ Z1R=U1R/U $ Z1X=U1X/U $ Z2X=-Z1X*Z1X 

4 C = SQRTF(X) $ Qi = 0.5/Q $ 02 = -Q1/2/X 

5 X8F = Q*Z $ OXBDR = Q*Z1R $ XB1 = Q*Z1X ♦ Cl*Z 

6 XB2 = Q*Z2X ♦ 2*Q1 *Z1X + Q2*Z I RETURN t END 



06/05/74 



FUNCTION XEF (T , D) 

XEF = PSI-PSISAT, PSI = <l-W*l_N (1+1/W) ) /X, W = EPMT/TH-i). 

XEF = F(R,T)/X - FS (R ) / XS 

F (R , T ) = 1-W*P<R,T> , P (R , T ) = LN(U), U = i+l/W(P,T), 

FS (R) = 1-WS*PS(R), PS (R) = LN(V>, \l ~ 1 + 1/HS(R). 

COMMON/l/AL ,BE,EP, GK, DCRT , TCRT , PCRT , D TRP, TTRP , PTRP 
C0MM0N/3/DPDT,D2PDT2, DPSDT, DPMOT, DPDD, DP CR , DTSDR , D THOR 
C0MM0N/4/XBl,XB2, XC1,XC2, XE1,XE2, DXB D R , OXC DR , DX EDR 
COMMON/6/ TSAT, THETA, PSAT 

1 E=EP t TC = T CRT $ T F=THET A $ TS = TS AT J W = E*(T/TH-i) $ IF(W) 30,30,2 

2 WW = W*H J MIX = E*TC/TH t W 1 R = -E * T*D THDR/ TH / TH 

3 U=l*l/W I U1R=-W1R/WH $ U1X=-W1X/WW $ U2X = -2»U1X*N1X/W 

4 F=LOGF(U) t P1R = U1 R/U * P1X=U1X/U $ P 2 X = U2X/L - PIX*P1X 

5 F = 1 - W*P $ FIR = -W*P1R - W 1 R* P 

6 FIX = -W*P1X - W1X*P t F 2 X = -H*P2X - 2*W1X*P1X 

7 WS = E* (TS/TH— 1) $ IF(WS) 8,8,9 

6 FS = 1 * FS1 =0 $ GO TO 12 

9 WS1 = E* ( DTSDR - TS*DTHDR/TH)/TH J U = 1M/WS 

10 PS = LOGF(U) I PSI = -WSl/U/fcS/WS 

11 FS - 1-WS*PS $ FS1 = -WS*PS1 - WS1*PS 

12 X=T/TC t X2=X*X % XS=TS/TC I XS1=CTS0R/TC 

13 XFF = F/X - FS/XS I XE1 = F1X/X - F/X2 

14 XE2 = F2X/X - 2*F 1X/X2 ♦ 2*F/X/X2 

15 CXEDR = F1R/X - FS1/XS ♦ FS*XS1/XS/XS $ RETURN 

30 XEF - XE1 = XE2 = OXEDR =0 f RETURN $ END 



134 



o o o o o o 



APPENDIX H. (Continued) 



06/95/74 



FUNCTION DENGASF (T ) 

ETHANE SATD . VAPOR DENSITIES, MCL/L, VIA LAB. NOTE 73-4, 73-5 . 
Y = Ai ♦ A2*Q2 ♦ A3 *0 3 ♦ . . , NF = AL , YN - L N < DC RT / DT R F ) , 

U = 2 ♦ (ZE-Z) *Y , DEN = DCRT* E XP (-Y N*U ) . 
COMMON/l/AL,BE,EP,GK, DCRT , TCRT , FCRT , D T RP , TTRF , F T R F 
C0MM0N/9/IS,NPS,EG ,EL, ALS,BES,AL1 ,AL2,AL3,CG(5),AV(8),AW(5) 
DATA (OGAT = 1.35114E-6) 

1 FORMAT ( 1H0 9X *DENGASF = 0, T EXCEEDS TCRT. * / ) 

2 IF (TCRT-T) 3,4,5 

3 PRINT 1 * STOP 

4 CENG A SF = DCRT $ RETURN 

5 YN = LOGF (DCRT/DGA T) f Z = ( TCP T/T -1 )/( TCRT /T T RP - 1 ) 

6 C = CUBERTF(Z) $ Y = CG(1> $ DO 7 K=2,5 

7 Y = Y ♦ CG(K)*Q**K J U = Z ♦ (Z**EG-Z)*Y 

8 CENG A SF = OCRT*EXPF ( - YN* U) $ RETURN * END 



06/05/74 

FUNCTION DENLIQF (T ) 

ETHANE SATD. LIQUID DENSITIES, MOL/L, VIA LAB. NOTE 73-5. 

Y = Al ♦ A2*Q2 + A3*G3 + . . . , YN = DTRP-DCRT, 

DEN = DCRT ♦ YN*(X + (XE-X)*Y). 

COMMON/l/AL ,BE,EP,GK, CC RT , TCR T , F CRT , D TRP , TT RF , F T R P 
C0MM0N/9/IS ,NPS,EG ,EL ,ALS,BES,AL1 ,AL2,AL3,CG(5),AV(8),AW(5> 

1 FORMAT ( 1H 0 9X *DENLIQF = 0, T EXCEEDS TCRT. * / ) 

2 IE (TCRT-T) 3,4,5 

3 PRINT 1 t STOP 

4 OENLIQF = OCRT S RETURN 

5 X = ( TCRT-T) / (TCRT-TTRP) S W = X**EL - X 

6 0 = C U8 ER TE ( X ) $ Y = A L 1 «- AL2*C*Q ♦ AL3*X 

7 CENLIQE = DCRT ♦ ( D TR P -D CR T ) * ( X ♦ W*Y) J RETURN % END 



06/05/74 

FUNCTION PMELTF(T) 

C ETHANE MELT P TO 42 ATM., CL US I US / WE I GAN D , 1940 . 

C SIMON EON., P = PT RF + A*(X**2 -1), X = T/TTRF. 

C0MM0N/3/DPDT,D2PDT2, DPSDT, OPMD T , DPD D, D P CR , DTSCR,OTHDR 
CATA (TTRP = 8 9. 8 99) , ( PTRP =9 . 96 7E -6 ) ,(A= 2840.0) ,(Q = 1.013 25 ) 

1 X = T/T TRP « PMELTF = QMPTRF + A*(X*X-1)) 

2 CPMOT = 0*A*2*X/TTRP $ RETURN S END 

* SINGLE-BANK COMPILATION. 

ROGRAM LENGTH 00063 



135 



ooo ooooo 



APPENDIX H. (Continued) 



0 6/ 1) 5/ 74 



FUNCTION PSATF(T) 

C ETHANE V.P., BAR , VIA LAB. NOTE 73-3. 

COMMON/l/AL,BE,EP,GK, OCRT , TCRT , PCRT , DTRP, TTRP , PTRP 
COMMON/3/DPDT,D2PDT2,DPSOT,DPMCT,DPDO,DPDR, DTSDR ,QTH0R 
COMMON/ 8 /I P*NPP,P1*P2»P3,P4,P5» IDP(99) ,TPS(99) ,PPS(99) 

1 FORMAT ( 1H0 9X *PSATF = 0, T EXCEEDS TCRT. * / ) 

2 XN = 1-TTRP/TCRT $ OXDT = TTRP/XN/T/T 

3 X=(i-TTRP/T)/XN $ X2=X*X $ X3=X*X2 S X4=X2*X2 

4 V = 1-X I IF (V ) 5,6,7 

5 PSATF = OPSOT =0 $ PRINT 1 $ RETURN 

6 Z = Z 1 = 0 t GO TO 9 

7 C = SQRTF(V) $ W = V*Q $ W1 = -3*Q/2 

8 Z = X*W * Z1 = W ♦ X*W1 

9 F = P1*X ♦ P2*X2 ♦ P3*X3 ♦ P4*X4 ♦ P5*Z 

10 FI = PI * 2*P2*X ♦ 3*P3*X2 ♦ 4*P4*X3 ♦ P5*Z1 

11 PSATF = PTRP*EXPF ( F ) f DPSDT = FI* DXO T *PS ATF $ RETURN « ENC 



06/85/74 

FUNCTION TSATF (DEN ) 

C THIS NEW TSATF VIA TSATFIT, 4/19/74 AT 09.00. 

COMMON/1/AL,0E,EP,GK, DCRT , TCRT , PCRT , D TRP, TTRP , P TRP 
C0MM0N/3/0P0T,D2P0T2, OPSOT, OPMOT, DPDD, DP DR, DTSDR, 0 THOR 
C0MM0N/9/IS,NPS,EG,EL,ALS,BES,ALl ,AL?,AL3,CG(5) , AV (8) , AH (5) 

DATA (NFG= 8 ) , (NFL=5 ) 

DATA (E = 0.25) , (DGAT = 1.35114E-6) 

SATD* VAPOR TEMPS. CONSTRAINED AT T.P. BY SUBTRACTION - 
DEFINE X = ABS(S-l), XT = ABS(ST-l), WHEN THE FQN • IS - 
LN(YY) = AL* ( 1/XT-l/X) ♦ A 1* LOG ( LN ( 1 * E/S ) /L N ( 1 +E / ST ) ) ♦ W(S>, 

W(S) = A 2* ( Q— QT ) ♦ A3* ( Q2-QT 2) ♦ A4*(S-ST) «• A5*(S2-ST2) ♦ . . . 

WHERE, Q = S**l/3, AND OT = ST**l/3. 

1 S = OEN/OCRT $ D SDR = DTRP/DCRT t QS = S-l $ IF(QS) 2,30 

2 X = ABSF(QS) $ XI = OSDR*QS/X S YN = TCRT/TTPP - 1 

3 V=l/X $ Vl=— OSDR/X /CS $ ST=OGAT/CCRT $ IF(QS) 4,30,15 

4 XT = 1-ST t V T = l/ XT I U=ALS*(VT^V) $ U1=-ALS*V1 f EK=LOGF(l* E/ST) 

5 P = 1 «■ E/S $ PI = -E*DSDR/S/S $ PG = LCGF(P)/EK 

6 G = LOGF(PG) t Gi = Pl/P/PG/EK 

7 0 = C U8ERTF ( S) $ QT = CUBERTF (ST) S 01 = 0*DS09/3/S 

8 W = U ♦ A V ( 1 ) *G ♦ AV (2 )* (Q-QT) ♦ AV ( 3) * ( G*C-Q T* Q T ) 

9 HI = Ui ♦ A V (1 ) *G1 + A V ( 2 ) * Q 1 + AV(3)*2*0*Q1 

10 CO 11 K = 4 , NFG f N = K- 3 $ W = W + A V (K) * ( S**N-ST**N) ft 

11 HI = HI ♦ N*OSDR*A V (K) *S** (N-l) t GO TO 18 

SATO. LIQUID TEMPS. CONSTRAINED AT THE T.P. 8Y SUBTRACTION, - 
EQN. , LN(YY) = H (S ) , WHERE X = ABS(S-1), XT= ABS (ST-1 ) , AND - 
W (S) = BE* (1/XT - 1/X) ♦ El* (S-ST) <• B2*(S2-ST2) ♦ . . . 

15 ST = DSDR S XT = ST-1 $ W = eES*(l/XT-V) $ Wi = -BES*V1 

16 CO 17 K=1 , NFL $ W = W ♦ AW(K)*(S**K - ST**K) 

17 Wl = Wl ♦ AW (K)*K*OSOR*S** (K-l ) 

18 F = EXPF(H) $ FI = Wl* F $ Q = 1 ♦ Y N*F 

19 TSATF = TCRT/Q $ OTSDR = -YN*Fi*TSATF/Q * RETURN 

30 TSATF = TCRT $ DTSDR =0 t RETURN S END 



136 



o o o 



APPENDIX H. (Continued) 



06 / 0 5 / 7*4 



FUNCTION FINDENF(T,P,DI) 

ON ISOTHERM T, ITERATE DEN TO MINIMIZE (P-PCALC). 
NEWTON-RAPHS0N ITERATION. INITIAL OEN = 01. 

NOTE STATEMENTS 14,15 FOR ETHANE . 

COMMON/l/AL » BE,EP, GK, OCRT , TCRT , PORT , D TRP , TTRP , P TRP 
COMMQN/3/OPDT,D2PDT2, DPSDT, OPMD T , DPDD, D P OR , DTSDR » 0 THOR 

1 FORMATdHO 9X *FINDENF = 0, FAILS TO CONVERGE. * t ) 

2 FORMATdHO 9X ♦FINDENF = DCRT, DP/DR ZERO OR N EG • * / ) 

3 FORMATdHO 9X *F IN DENF = 0, 01 INSIDE DOME.* / ) 

4 D=DI $ Dr1=OTRP* < T/ TTPP ) * ♦ 0 . 25 % DX=DM+1 $ IF(T-TCRT) 5,7,8 

5 DG=DENG ASF ( T ) % OL =DENLI OF ( T) % P S=PSATF(T) 

6 IF CO. GT.OG.AND.O.LT .DL) 32,8 

7 OG=OL =OCRT $ PS=PCRT $ IF (0 . EQ. DCRT ) 33,8 

8 DO 30 J=l,50 * DP = P - DPDRF ( T ,D ) 

9 IF(ABSF(OP/P)-1.0E-6) 31,31,10 

10 IF ( DP DO ) 33,33,11 

11 CD = DP/DPDD $ IF (ABSF (DD/D) -1. OE-6) 31,31,12 

12 0 = 0 + DO $ IFtO.GT. 0.001) 14,13 

13 0 = 0.001 S GO TO 30 

14 IF(O.GT.OX) 15,16 

15 0 = DM $ GO TO 30 

16 IFCT-TCRT) 17,22,30 

17 IF(P.LT.PS) 18,20 

18 IF(D.GT.OG) 19,30 

19 C = OG J GO TO 30 

20 IF(O.LT.DL) 21,30 

21 C = DL % GO TO 30 

22 IF(P.LT.PCRT) 23,25 

23 IFCO.LT.DCRT) 30,24 

24 C = DCRT - 0.02 $ GO TO 30 

25 IFtO.GT. DCRT) 30,26 

26 0 = DCRT ♦ 0.02 

30 CONTINUE $ FI NOE NF = 0 $ PRINT 1 $ RETURN 

31 FINDENF = D $ RETURN 

32 FINOENF = 0 $ PRINT 3 $ RETURN 

33 FINDENF = DCRT % PRINT 2 * RETURN t END 

SINGLE-BANK COMPILATION. 



137 



o o o 



APPENDIX H. (Continued) 



06/85/74 



FUNCTION FINDSATF ( T , M) 

ITERATE OEN TO MINIMIZE (T-TS) VIA TSATF ( DEN) . 

THIS FINOSATF ADJUSTED FOR ETHANE, 

M = 0 FOR VAPOR, M = 1 FOR LIQUID, 

COMMON/ 1/AL , BE, EP, GK , DCRT , TCR T , FCRT , D TRP , TTRP , PTRP 
COMMON/ 3/OPOT, 02PDT2, DPS DT , DPMCT , DPDD, DP CR,DTSOR,D THOR 
DATA (DGT=5.0E-7>, <DLT=23.0> 

1 FORMATdHO 9X *FINOSATF = 0, FAILS TO CONVERGE.* / ) 

2 FORMATdHO 9X *FIN DSA TF = 0, T EXCEEDS TCRT.* / ) 

3 IF ( T- TCRT ) 4,22,23 

4 IF(M.EQ.O) 5,6 

5 D = OENGASFCT) S GO TO 7 
60= DENLIQF (T) 

7 00 20 J = l, 50 t DT=T-TSATF ( D) $ IF ( A BSF ( D T/T ) - 1 . 0 E-6 ) 21,21,8 

8 OTDD = DTSOR/OTRP $ IF ( DTDO. EQ . 0. 0 ) 22,9 

9 DO = DT /OTDD $ I F ( A BSF ( DO /0 ) - 1 . 0E-6) 21,21,10 

10 D = 0 t DO $ IF(M.EQ.O) 11,15 

11 IF(O.GT.OGT) 13,12 

12 0 = OGT t GO TO 20 

13 IF(O.LT.OCRT) 20,14 

14 0 = DCRT - 0.02 $ GO TO 20 

15 IF(D.GT.DLT) 16,17 

16 D = DLT $ GO TO 20 

17 IF CD.GT .DCRT) 20,18 

18 0 = DCRT «• 0.02 

20 CONTINUE $ FINDSATF = 0 $ PRINT 1 $ RETURN 

21 FINOSATF = D S RETURN 

22 FINDSATF = OCRT $ RETURN 

23 FINDSATF = 0 t PRINT 2 $ RETURN * END 



06/05/74 



C 



FUNCTION Z I PF ( T , D) 

ETHANE VIRIAL EON. VIA LAB. NOTE 73-4. 

DIMENSION B (5) , C( 3) 

CAT A (TCRT = 3 05. 33) , ( VCRT = 0 . 1 45 5 6 ) ,(TB=7 40.0),(TC = 217.8) 

CATA ( B = 7.993156, -10.672497, 9.217322, -2.481668, 0.842328) 
DATA ( C = 0.253773, 0.865299, 0.556075) 



S = 0 *VCRT 
X2 = 

ZB = 

BV = 

CV = 

ZIPF 



t X = T/T CRT 
X*X $ X 3 = X* X 2 2 
1 - ( T B/T ) **0 .25 2 

ZBM8<1) + 8<2)/C ♦ 

ZC*(C(1)/X + C ( 2 ) /X 3 
= 1 ♦ B V*S CV*S*S 



* 0 = X* *0 • 2 5 

X5 = X 2* X 3 
ZC = 1 - TC/T 

B (3) /X ♦ B (4) /X2 ♦ B ( 5 ) / X 3 ) 
+ C ( 3 > / X5 ) 

f RETURN t END 



138 



APPENDIX H. (Continued) 



05/09/74 



SUBROUTINE FITTER 
COMMON/999/ NCOF,V,G(30) 

OIMENSION A(30,31) ,B<30,31) 

COMMON /77 7/ A,SY,SYY,RES 
TYPE DOUBLE SY , SYY ,RES , A, B 
DATA <NTR=-1), <NDIM=30) 

EQUIVALENCE (A,B) 

37 FORMAT (*i T HE COEFFICIENTS AND THEIR ESTIMATED ERRORS ARE 0 */ /) 

38 FORMAT <*0 * /*0*/*OE STIMATE D RESIDUAL SUM OF SQUARES =*E17.9/ 

1 * ESTIMATED REGRESSION SUM OF SQUARES =*E17.9/ 

2 * ESTIMATED TOTAL SUM OF SQUARES =*E17.9/ 

3* VARIANCE OF FIT =*E17.9/* DETERMINANT OF THE MATRIX =*E17.9/ 

4* CORRELATION COEFFICIENT =*E17.9/* NUMBER OF POINTS = *I5) 

45 FORMAT (*1 THE ARRAYS IN THE FITTING PROGRAM ARE TOO SMALL TO HOLD T 
1HE NUMBER OF CONSTRAINTS AND FUNCTIONS ASKED FOR IN THE CALLING PR 
20 GRAM* ) 

371 FORMAT (E19.10,* +0R-*E9.2> 

C ENTER HERE TO FIT THE DATA 

ENTRY FIT 
IF(NTR) 1,3,3 

1 NP = 0 
NF=NCOF 

IF ( NF • GT. N DIM) GO TO 44 
NCO N= 0 
S Y= 0 • 

SYY =3. 

NY=NF+1 
DO 2 1=1, NY 
DO 2 J = 1 , N F 

2 A (J ,1) =0. 

IF(NTR.EQ.O) GO TO 11 
N TR = 0 

3 SY=Y+SY 

SYY =SY Y +Y * Y 
DO 4 J= 1 , NF 

A ( J , NY ) =A ( J , NY ) +Y* G (J) 

00 4 1=1, NF 

4 A (I , J) =A ( I , J) *G (I) *G ( J ) 

N P= NP+ 1 

RETURN 

C ENTER HERE TO CONSTRAIN THE EQUATION 

ENTRY CONS TR 
IF(NTR) 10,11,11 

10 N TR = Q 
GO TO 1 

11 N = N Y—l 

IF( (NY *NC0N*2) .GT.NDIM) GO TO 44 
00 12 1=1, N 
A (I ,NY + 1) =A (I, NY) 

A (NDIM-NCON,!) =G(I ) 

A(NY,I)=G(I) 

12 A (I , NY ) =G ( I ) 

NCON=NCON+l 
DO 13 I =NF , N 
A (NY,I + 1) = 0.0 



139 



o O «-> 



APPENDIX H. (Continued) 



FITTER 

13 A ( I +1 , NY) = 0 • 0 
NY=NY+1 
A (NY-1 , NY) = Y 
RETURN 

C ENTER HERE TO INVERT MATRIX ANG GET COEFFICIENTS 

ENTRY COEFF 
N =N Y-l 

00 20 1=1, NF 

20 G(I)=A(I,NY) 

DO 22 1=2, N 
DO 21 J=I , N Y 

21 A (1-1, J)=A (1-1, J)/A(I-1,I-1) 

DO 22 J=I , N 

DO 22 K=I , NY 

22 A (J,K) =A( J,K)-A (J, 1-1) *A(I-i,K> 

A (N ,NY ) =A (N,NY) / A ( N , N ) 

DO 24 1=2, N 

1 =N -I ♦ 2 

DO 24 J=L , N 

24 A (L -1 , NY) = A (L-l , NY > - A ( L-l , J ) *A ( J , NY > 

RES=SYY 

DO 25 1=1, NF 
RES=RES-A(I,NY)*G(I) 

25 G (I ) =A (I, NY) 

DF=NP-NF+NCON 

Y=NCON 

N TR = -1 
RETURN 

C ENTER HERE FOR STATISTICS OF COEFFICIENTS 

ENTRY STAT 
DO 27 1=1 , NCON 
DO 27 J=1 , NF 

2 7 RES=RES-A (NDIM-I+i , J ) * A ( J , NY ) * A (NF + I ,NY ) 
TOT=SYY-SY*SY/NP 
REG=TOT-RES 
S Y Y =RE S/DF 

ST=l*96+2»72/DF+8. 04/DF**3 
D ET = 1 • 

DO 30 1=1, NF 
0ET=DET*B (1,1) 

30 A (I ,1) =1. 0/A (I , I) 

DO 32 1=2, NF 

DO 32 J=2 , I 
S Y= 0 • 

00 31 K=J , I 

31 SY=SY-A(I,K-1) *A(K-1,J-1) 

32 A (I ,J-1)=SY*A(I ,1) 

PRINT 37 

DO 36 1=1, NF 
L =NF-I 
DO 33 J = 1 , L 
K = NF- J 
DO 33 H =1 , J 
N=NF-M ♦ 1 

33 A (K,I) =A(K,I)-A (K, N) # A (N» I ) 



05/09/74 



140 



APPENDIX H. (Continued) 



FITTER 05/09/74 

DO 34 J~2 t I 

34 A < J-l, I) = A <I,J-1)*SYY 
DO 35 J=1,I 

35 A (I ,J)=A(I,J)*SYY 

88 = 8 ( 1 , 1 ) 

C 88 IS THE VARIANCE OF THE COEFFICIENTS 

IF< 8B.LT. 0 .0)BB=-8B 
FF=ST*SGRT (BB) 

B3B=B(I,NY) 

36 PRINT 371, BBS, FF 
IF(SYY.LT. 0.0) SYY =-SY Y 
CORR=REG/TOT 

PRINT 38, RES, REG, TOT, SYY, DET,CORR,NP 
Y = SQRT (RES/OF) 

RETURN 

44 PRINT 45 
STOP 
END 

SINGL E-9ANK COMPILATION. 



141 



o o o 



APPENDIX I. 



Computer Programs for Thermofunctions 



06/06/74 



PROGRAM ETHERM02 

C START ETHANE PROVISIONAL THERMOFUNCTIONS, 14 FEB., 1974. 

COMMON B1,B2,B3, ER, E1,E2 

COMMON/l/AL,BE,EP,GK, OCRT , TCR T , PORT , D TRP , TTRP , PTRP 
C0MM0N/3/DPDT,D2PDT2,CPSDT ,DPMCT ,DPDO,DTSDR,OTHDR 
COMMON/4/ XB1,XB2, XE1.XE2, OXeDR,OXEDR 
COMMON/6/ TSAT, THETA, PSAT 
COMMON/7/ T B , PB , H B , SB 

COMMON/8/ P , T, DEN, E,H,S, CV,CP,CSAT, W,WK 
CCMMON/9/ El (60), SI (60), CVI (60) 

COMMON/ 10/ 0F(34),EF (34) ,SF (34) , C VF (34) 

COMMON/99/ TI,EZZ, EZ,SZ,CVZ, HZ,CPZ 
DIMENSION PP (99 ) 

3 FORMATdHl 11X *LOOF CLOSURE CHECK FOR SATURATED LIQUID,* / 

1 12 X ^ENTHALPY, H, VIA FURTADO CP(T). HC VIA CLAPEYRON EQN • * // 

2 12X 3HT,K 9X1HH 8X2HHC 7X3HFCT 9X1HS 8X2HSC 7X3HPCT » 

4 F ORM A T ( 5X 3F10.0, 4F10.2) 

5 FORMAT(IX) 

1C FORMATdHl 9X * ETH ANE FUNCTIONS AT TB ON THE CP ISCEAR AT PE.*// 



1 


10X 


5HT9 =F8.3, 


6H , 


PB 


= F 8 . 3 , 6 H, 


2 


10X 


5HEZ =F 1 0 • 2 , 


6 H , 


E 


=F10.2// 


3 


10X 


5HHZ =F10.2, 


6 H , 


H 


=F10.2// 


u 


10X 


5HSZ = FI 0 . 4, 


EH, 


S 


=F10 .4// 


5 


10X 


5HCVZ =F 1 0 . 3 , 


6 H , 


C V 


= F 1 0 • 3/ / 


6 


10X 


5HCPZ =F1 0 . 3 , 


EH, 


CP 


=F10. 3// 


7 


10X 


21HFURT ADOS VALUE 


t 


CP =F 1 0 • 3) 



15 FORMA TC3F10.0) 

16 FORMA T(//////// 1H1 18X ♦ ETHANE ISOBAR AT P =*F6.1, 4H EAR// 

1 19 X 1HT 6X3HDEN 6X3HV0L 5X5HDP/DT 5X5HDP/PO 8X1HE 8X1HH 8X1HS 

2 6X2HCV 6X2HCP 5X1HW / 

3 1 5 X 5HDEG K 4X5HMCL/L 4X5HL/MCL 5X5HBAR/K 1X9HB AR-L/MOL 4X5HJ/M0L 

4 ^X5H J/MOL 2X7HJ/MCL/K 1X7HJ/MCL/K 1X7H J/MCL/K 1X5HM/SEC ) 

17 FORMAT ( 10X F10.3, F5.3, F9.5, F10.4, F10.3, 2 F9 . 1 , F 9 . 3 , 2F 8 . 2 ,F 6. 0 ) 

18 FCRMATdOX F10.3, F9.5, F9.3, F10.6, F10.3, 2F9 . 1 , F9 . 3 , 2F8 . 2 ,F6. 0 ) 

CONSTANTS OF EQNSTATE, 6/5/74 AT 8.21. 

NOTE, EZZ FROM TESTER. 

30 WM = 30.07 I WK = 100000/WM $ Q = 1.01325 $ GKK = 0.0831434 

31 TTRP = 89.899 * DTRP = 21.68 ? PTRP = 0*9.6676-6 

32 TORT - 305.37 I DCRT = 6.74 t PORT = PSATF(TCRT) 

33 GK - DTRP*GKK $ EZZ = 4.1868*4827.2 

34 AL =2 $ BE = 1 $ EP = 0.5 $ ER = 1.90 

35 ei = 1.348167996 $ B2 = 1.569704511 * B3 = 5.560186452 

36 El = -1.042842462 $ F2 = 0.224978299 

C INTEGRATE ON ISOTHERM TB UP TO POINT (TB , FB) , THFN - 
C GET FURTADO, S CP(T) FOR COMPARISON, AND PRINT ALL VALUES. 

40 TP = T = 340 $ PB = P = 137.895 

41 CALL SAVIDEAL $ CALL HOMO THRM ? TI = T * CALL IDEAL 
4? HB = H $ SB = S $ CPX = CPXF(T) 

43 PRINT 10, T , P , D EN , EZ,E, HZ,H, SZ,S, CVZ,CV, CFZ,CF, CPX 

44 CALL MEMORY 

C 

C NCW COMPARE SATLIQ FUNCTIONS VIA FURTADO WITH CLAPEYRON. 

50 PRINT 3 S DO 60 J=l,43 S T = 85 + 5*J 

51 P = PS - PSATF(T) ? CALL SATC-STRM ? CG = DEN 



142 



o o ooooooo 



APPENDIX I. (Continued) 



ETHERM02 



06/06/74 



52 DL = FINOSA TE ( T , 1) $ Q = 100*T*DPSDT* ( 1/DL-1/DC-) 

53 HC = H + Q « SC = S + Q/T 

55 CALL SATLQTRM $ HF = 100MHC/H-1) $ SR = 100*(SC/S-1) 

60 PRINT 4, T, H,HC,HR, S,SC,SR 
98 CALL JTLOCUS * CALL TA6LIQ 

COMPUTE THERMOFUNCT ICNS ON ISOBARS. 

EACH ISOBAR STARTS ON THE MELTING LINE. 

ISOBARS AT P UNDER PORT TRAVERSE THE OOME. 

LET THE FIRST ISOBAR BE AT P = 0.1 BAR. 

ENTER COMPRESSED LIQUID V/ 1 A FUPTACC CP(T) ON 1 37.695 BARISC0AR. 



10C NI = 68 $ PP ( 1 ) = 0.1 % READ 15, ( P P ( I ) , I = 2 , N I ) 

102 DO 30 0 1 = 1, NI * P = PP < I > % PFINT 16, P 

103 CALL MELTHERM * V = 1/DEN 

104 PRINT 17, T , DEN , V, DPDT , DPDD, E,H,S, CV,CP,W 

105 IT = T/10 $ IF(P.LT.PCRT) 110,199 



C 



C 



C 

C 



r 



C 



CASES FOR P LESS THAN PCRT. 

110 TS = FINDTSF (P) $ TX = TS + 10 $ K = L = 

111 DO 150 J= 1 ,99 ? T = JT = 10*(IT*J) 

112 IF(T.LT.TS) 113,115 

113 call LIQTHERM % V = 1/DEN 

114 PRINT 17, T , DEN , V, DPDT, DPDD, E,H,S, CV,CP,W 

115 IF(T.LT.TX) 118,130 

CASE FOR THE SATURATED LIQUID AND VAPOR. 

116 T = TS I CALL SATLCTPM J V = 1/DEN 

119 PRINT 17, T , OEN , V, DPDT , DPDD, E,H,S, CV,CP,W 

120 CALL SATGSTRM * V = 1/DEN 

121 IF(P.LT.20. 0) 122, 123 

122 PRINT 18, T , D E N , V , DPDT, DPDD, E,H,S, CV,CP,W 

123 FPINT 17, T , DEN , V, CPCT,CFDC, E,P,S, CV,CP,W 

124 T = JT 

CASES FOP THE HOMOGENEOUS DOMAIN. 

130 IF (JT-5Q9) 135,135,131 

131 K = K + 1 * T = JT = JT + 10*K 

132 IF (JT-600) 135,135 , 300 

135 CALL HOMOTHRM f V = 1/DEN 
13C IF(P.LT.20. 0) 137,138 

137 PFINT 18, T , DEN , V, DPDT, DPDD, E,H,S, CV,CP,W 

13fc PRINT 17, T,DEN,V, DPDT, DPDD, F,H,S, CV,CP,W 

1 5 C CONTINUE 



0 






f 



f 



? 



CASES FOR P GREATER THAN FCRT. 

199 K = L = 3 

200 DO 25 0 J = 1 , 9 9 J T = JT = 10MIT+J) 

201 IF (T.LT.TB) 202,21 0 

202 IF ( T . GT .TCRT ) 203,205 

203 PX = PVTF (T ,QCRT,0 ) J IF(P.GT.FX) 205,220 
CASE FOR THE COMPRESSED LIQUID. 

205 CALL LIQTHERM $ V = 1/DEN 

206 PRINT 17, T , OEN , V, DPDT, DPDD, E,H,S, CV,CP,W ? 
CASES FOR THE HOMOGENEOUS DOMAIN. 

210 IF(JT-500) 220,220,211 

211 K = K+t ? T = JT = JT + 1 0 * K 



GC TC 1 5 C 



PRINT 5 



GC TO 1?4 



GC TC 150 



GC TO 2 5 C 



143 



APPENDIX I. (Continued) 



ETHERM02 

212 IF (JT-600) 220,220,300 

220 CALL HOMOTHRM $ V = 1/DEN 

221 PRINT 17, T , DEN , V, DPDT , DPDD, E,H,S, CV,CP,W 
250 CONTINUE 

300 CONTINUE 

999 STOP % END 



SUBROUTINE SAVIDEAL 

C MEMORIZE IDEAL GAS FUNCTIONS EVERY 10 K THRU 600 K. 
C NCTE USE BY HOMOTHRM ONLY. 

COMMON/9/ El (60) ,SI (60) ,CVI (60) 

COMMON/99/ TI , EZZ , EZ,SZ,CVZ, HZ,CPZ 

1 DC 9 J = 9 , 6 0 * TI = 10* J J CALL IDEAL 

2 E I ( J ) = EZ $ SI < J ) = SZ $ C VI (J) = CVZ 
9 CONTINUE J RETURN J END 



SUBROUTINE MEMORY 

C MEMORIZE CPSUMIT RESULTS EVERY 1C K FROM 90 TO 340 
C NOTE USE BY L IQTHERM ONLY. 

COMMON/3/P, T ,DEN, E,H,S, CV,CP,CSAT, W,WK 
COMMON/ 10/ DF(34),EF (34) ,SF(34),CVF(34) 



1 


00 9 J= 9, 33 


J 


T = 10*J 


$ 


CALL CPSUMIT 


2 


C F ( J ) = DEN 


* 


EF ( J) = E 


J 


SF ( J) = S $ CVF ( J) 


9 


CONTINUE 


* 


RETURN 


S 


END 



06/06/74 



06/06/74 



06/06/74 

K. 

= CV 



144 



APPENDIX I. (Continued) 






06/06/74 



SUBROUTINE JTLOCUS 

C DERIVE THE J-T INVERSION CURVE. USE ROUTINE DEL TAP ( T ,01) . 
DIMENSION TT (99) ,PP (99) , ON (99) 

DATA (QCRT=6.76) , ( TCP T = 3 0 5 . 4 3 ) 

1 FORMAT ( 1H1 16X *THE JCULE-THCMSON INVERSION LOCUS FOR ETHANE*// 
1 17X3HT,K 5 X5HP * BA R 5X5HM0L/L 7X3HT,K 5X5HP,BAR 5X5HM0L/L) 

2 FORMAT ( 10X F10.0, F10.1, F10.2, F1C.C, F1C.1, F10.2) 

6 TA = 240 « NP = 72 

7 PRINT 1 I DO 25 1=1, NP S DX = 1.6 

8 T = TA + 5*1 $ X - T/TCRT 



o 


Cl = OCRT* (2.40 - 0. 


un 

OD 

* 

X 


+ 0. 


2 4 / X ) 


10 


IF(T-TCRT) 11,12,12 










11 


CL = DENLIQF(T) $ 


IF (DI 


-DL) 


25,12,12 


12 


SS = DELT AF ( T, 01 ) ? 




DO 


20 I T = 1 , 15 


14 


0 =D I - DX ? SL = OELTAF(T 


*D) 


$ 


D = DI ♦ DX t SP=DEL T AF ( T 


15 


IF(SS-SL) 18,16,16 










16 


IF(SP-SL) 19,17,17 










17 


SS = SL S DI= D I 


- 


DX 


$ 


GC TC 20 


18 


IF(SS-SP) 20,20,19 










19 


SS = SP $ DI = D I 


+ 


DX 






20 


OX = DX/2 










23 


T T ( I ) = T J D N ( I ) 


= 


DI 


$ 


PP(I) = PVTF(T,OI,0) 


25 


CONTINUE $ N = NP/2 


$ 


DO 


2 9 J =1 , N 


29 


PRINT 2, TT ( J) ,PP( J) 


* 


D N ( J ) , 


TT (J+N) ,PP (J + N) , CN (J + N) 



30 RETURN $ END 



06 /06/74 



FUNCTION DEL TAF (T, D) 

C GET (T*OR/OT - D*DP / DD ) FOR THE J-T INVERSION CURVE. 
C0MM0N/3/DPDT, D2PD T2,DPSDT ,DPMCT ,DPDD,DTSDF,DTHDF 
DATA (DCRT = 6.76) , ( TCPT = 305. 43) 

1 IF(T-TCRT) 2,4,4 

2 DL = DENLIQF(T) $ IF(O-DL) 3,3,4 



QFLTAF = 1 . 0E+10 0 I 


RETURN 






P = PVTF (T, D , 1 ) 

DELTAF = ABSF ( T*DPOT - 


D*OPDO ) 




RETURN 



145 



o o o 



APPENDIX I. (Continued) 



06/86/74 



SUBROUTINE TABLIQ 

C TABULATE THE ETHANE SATURATED LIQUID FUNCTIONS. 

COMMON/l/AL,BE,EP,GK, DCRT , TCRT , FCRT , D TRP , TTRP , PT RP 
COMMON/3/DPDT,D2PDT2,DPSDT,DPMOT, DPDD, D TSDR ,D THDR 
COMMON/3/ P,T,DEN, E,H,S, CV,CP,CSAT, W , WK 
DIMENSION TSA<46), PSA(46> 

4 FORMA T ( 1H1 13X ’PROPERTIES OF SATURATED LIQUID ETHANE* // 

1 14X1HT 10X1HP 5X3HDEN 4X5HV,LIQ 6X5HV,GAS 5X6HDFS/DT 3X6HDCL/DT 

2 6X5H0P/0T 6X5H0P/0D 2X5HQ,VAP 2X5HQ,XPT / 

3 10X5HOEG K 8X3HBAR 3X5HMOL/L 4X5HL/M0L 6X5HL/M0L 6X5H3AR/K 

4 2X7HM0L/L/K 6X5HBAR/K 2 X9H B A R-L / MOL 2X5 H J/ MOL 2X5HJ/M0L ) 

5 FORMAT(5XF10.3, Ell. 3, F8.3, F9.5, 2E11.3, F9.4, 2E11.3, 2F7.0) 

11 FORMAT ( 1H1 13X ’PROPERTIES OF SATURATED LIQUID ETHANE* // 

1 14X1HT 1 1 X 1 HP 9X1 HE 9X1 HH 9X1HS 

2 6X2HCV 6X2HCS 6X2HCP 6X1HW 2X6HCS,XPT / 

3 10X5HOEG K 9X3HBAR 5X5HJ/MOL 5X5HJ/MOL 3X7HJ/M0L/K 

4 1X7H J/MOL/K 1X7HJ/M0L/K 1X7HJ/MCL/K 2X5 HM/SEC 1X7HJ/M0L/K ) 

12 FORMA T ( 5X F10.3, E12.3, 2F10.1, F10.3, 3F8.2, F7.0, F8.2) 

C FOR PAGE ONE OF TABLIQ. 

140 PRINT 4 J NP = 46 

141 DO 151 J-1,NP t IF(J.EQ.l) 142,143 

142 r = TTRP $ GO TO 147 

143 IF(J.EQ.NP) 144,146 

144 T = TCRT J OG = DL = DCRT $ CDLDT = 0 

145 VG = VL = 1/OG J GO TO 149 

146 T = 80 + 5 * J 

147 OL = FINOSA TF ( T , 1) $ DDL DT = DT RP/DTSDR 

146 DG = FINOSATF (T ,0) J VG = 1/DG $ \ll = 1/OL 

149 TSA(J) = T t PSA(J) = PS = PSATF(T) 

150 QC = 100*T* DPSDT* ( VG-VL) $ PX = PVTF(T,DL,1) S QX = CVAFXF(T) 

151 PRINT 5, T,PS,OL, VL,VG, DPSDT, DDLDT, DPDT, OPDD , QC,OX 
FOR PAGE TWO OF TABLIQ. 

NOW INTEGRATE ALONG FB, THEN ON ISOTHERM T DOWN TO THE SATLIQ. 

USE SUBROUTINE SATLQTRM FOR THIS OPERATION. 

1 6 C PRINT 11 % OO 165 J = 1,NP 

161 T = TSA (J ) J P = PSA ( J) 

162 CALL SATLQTRM J CSX = CSATXF(T) 

165 PRINT 12, T,P, E,H,S, C\/,CSAT,CP, W, CSX 
999 RFTURN $ END 

SINGLE-BANK COMPILATION. 



146 



o o o o o o o 



APPENDIX I. (Continued) 



06/06/74 

FUNCTION PVTF(T,D,M> 

P V TF = P,3AR. M= 0 YIELDS DP/ 0 T , C 2 F /DT2 . M = 1 YIELDS ALSC DF/DC. 
NOTE GK = 0. 0831434*DTPP, AND R = DEN/DTRP* 

P = PS (R) + R*GK*(T-TS) + R2 *GK* TC * ( B*XB + E*XE>. 

COMMON B1,B2,83, ER, E1,E2 

COMMON/l/AL, BE,EP,GK, DCRT , TCRT , FCRT , D TRP , TTRF , P TRP 
C0MM0N/3/0PDT,02PDT2,DPSDT, DPMCT,DPOC,DTSDR, OTHDR 
COMMON/4/ XB1,XB2, XE1*XE2, OXBDP,DXEDR 
COMMON/6/ TSAT, THETA, PSAT 

1 S = 0 /DCRT f DSD R = DTRP/OCRT J R = D/D TRP 

2 R2=R*R * R3=R*R2 S R4=R2*R2 I RG = R*GK 

3 TC = TCRT $ TS = TSAT = TSATF(D) J THETA = THETAF(C) 

4 PS = PSATF(TS) S XB = XBF(T,C) * XE = XEF(T,D) 

5 BN ■= 1 + 3E* R2 $ B = B1*R2 + B2*P3 + B3*R4/8N 

6 EM = E1*R2 ♦ E2*R3 * S X = (S-1)*(S-ER) $ E = SX*EM 

7 F = 8*XB + E*XE J Fi = B*XP1 + E*XE1 S F2 = P*XB2 ♦ E*XE2 
g PVTF = PS + (T-TS) *RG + GK*TC*F 

9 DPDT = RG + GK*F1 f D2PDT2 = GK*F2/TC t IF(M.EQ.l) 10,20 

10 3D = 2* 91 * R ♦ 3* B2 *F 2 + (2-BE*R2/PN) *2*B3*R3/PN 

11 ED = SX*(2*E1*R + 3* E 2* R 2 ) + (2*S-1-ER) *EM*OSDR 

12 FI = B*DXBDR + BD* X B + E*OXECR + ED* X E 

13 DPDR = OPSD T*DTSDR + GK* ( T - TS-R* 0 TSD R) + GK*TC*F1 

14 OPDO = OPDR/DTRP 
20 RFTURN $ END 



06/06/74 

FUNCTION THETAF (DEN) 

THETA = TS A T *EXP (U( S ) ) . 

LET Q = (3-1 ) / (ST-1 ) , WHERE ST = DTRP/D CRT , THEN - 
IF S < 1, U = AL *Q* * 3 , IF S > 1, U = -AL*Q**3, 

YIELDS ALSO THE FIRST DERIVATIVE RSP. TO RHO = DEN/DTRP. 
COMMON/l/AL , BE, EP, GK, DCRT , TCRT , F CRT , D T RP , TT RP , F T R F 
COMMON/3/DPDT ,D2POT2,DPSDT ,OPMCT,OPOC,OTSDP,OTHDF 
COMMON/6/ TSAT, THETA, PSAT 

1 S = DEN/OCRT * D SDR = DTRP/DCRT $ C = DSDR-1 

2 Q = (S-l)/C S Q2 = O *Q S U = AL*Q*02 

3 U1 - 3*AL*Q2*DSDR/C f IF(O) 5,9,4 

4 U = -U $ U 1 = -U1 

5 XP - EXPF(U) J THETAF = TSAT*XP 

6 OTHDR = ( T S AT* U 1 + CTSDR)*XP S RFTURN 

9 THETAF = TCRT $ OTHDR =0 $ RETURN J END 



147 



o o o o o o 



APPENDIX I. (Continued) 



06/86/74 



FUNCTION XBF(T,D) 

XBF = SORT (T/TC) *LN (T/TS) = Q(T)«Z<R,T>, 

Z(P,T) = LN(U>, U(R,T) = T/TS (R ) • 

COMMON/i/AL,BE,EP,GK, OCRT , TCRT , PCRT , 0 TRP , TTRP , PTRP 
C0MM0N/3/DPDT,D2PDT2, DPSDT, DPMOT , DPDO, D TSDR ,DTHOP 
COMMON/4/ XB1,XB2, XE1,XE2, OXBDR , DXEDF 
COMMON/6/ TSAT, THETA, PSAT 

TS = TSAT $ X = T/TC 
U1X = TC/TS $ U1R = —U*D TSOR/TS 
2 Z1R=U1R/U 2 Z1X=U1X/U 2 Z2X=-Z1X*Z1X 
$ Q1 = 0.5/Q 2 G2 = -Q1/2/X 

OXBDR = C*Z1R $ XB1 = Q * Z1X *• Q1*Z 
• 2*Q1*Z1X + Q2*Z $ RETURN 2 END 



1 


TC 


= TCRT I 


2 


U = 


T/TS $ 


3 


z = 


LOGF (U) 


4 


Q = 


SQRTF (X ) 


5 


XBF 


= Q*Z 2 


6 


XB2 


= Q*Z2X 



06/06/74 



FUNCTION XEF (T, D) 

XEF = PSI-PSISAT, PSI = (1-W*LN (1+1/W) ) /X, W = EPMT/TH-l). 

XEF = F (R, T) /X - FS (R) /XS 

F(R,T> = 1-W*P(R,T), P (R , T ) = LN(U), U = i+l/W(R,T), 

F S ( R) = 1-WS*PS(R>, PS ( R ) = L N < V/ ) , \J - l + i/WS(R). 

COMMON/l/AL ,BE,EP,GK, OCRT , TCRT , PCRT , 0 T RP , TT RP , PT R F 
COMMON/ 3/ D POT, D2PD T2 , DPSOT , DPMCT,DPDD,DTSOR,DTHDP 
COMMON/4/ XB1,XB2, XE1,XE2, OXBDR, DXEOR 
COMMON/ 6/ TSAT, THETA, PSAT 

1 E = EP 2 TC = T CRT $ TH = THET A $ TS = TS AT 2 W = EMT/TH-1> 2 IF(W) 30,30,2 

2 W W = W*W 2 H 1 X = E*TC/TH 2 W1P = -E # T*DTHDP/ TH/TH 

3 U=l+1/W 2 U1R=-W1R/WW 2 U1X=-W1X/WW 2 U2X = -2*U1X*H1X/H 

4 P=LOGF ( U) S P1R = U1 R/U $ P1X=U1X/U 2 P 2 X = U2X/U - P1X*F1X 

5 F = 1 - H*P * FIR = -W * P 1 R - W1P*P 

6 F IX = - W* P 1 X - W IX # F 2 F 2 X = -R*P2X - 2*W1X*F1X 

7 WS = E* ( T S/ T H— 1 ) 2 IF(WS) 8,8,9 

8 FS = 1 2 FS1 =0 2 GO TO 12 

9 WS1 = EMDTSOR - T S *D T HDR/ T H ) / T H $ U = 1+1/WS 

10 PS - LOGF(U) $ PSI = -WS1/U/WS/WS 

11 FS = 1-WS*PS 2 FS1 = -WS*PS1 - WS1*PS 

12 X = T / T C 2 X 2 = X* X S XS=TS/TC $ XSl = DTSOR/TC 

13 XEF - F/X - FS/XS 2 XEl = F1X/X - F/X2 

14 XE2 = F2X/X - 2*F1X/X2 + 2*F/X/X2 

16 OXEDR = F1R/X - FS1/XS + FS*XS1/XS/XS 2 RETURN 

3 C XFF = XEl = XE2 = DXEDP = 0 2 RETURN 2 ENO 



148 



o o o 



APPENDIX I. (Continued) 



06/06/7*4 



FUNCTION DENGASF (T ) 

C Y = A 1 + A2*Q2 ♦ A3*C3 + . . , NF = AL , YN = L N ( DCRT /D T RF) , 
C U = Z ♦ (7E-Z)*Y, DFN = DCRT*EXP (-YN*U ) . 

DIMENSION A (5) 

DATA (TTRP=89.899) , ( DTRP = 1 . 35 1 1 4 E -6 ) 

DATA (TCRT=305.37) , (DCRT =6. 74) , ( E = 0 . 39) 

OATACA = 0.21587515, - 0 . 0 8 5 2 2 3*4 2 , - 0 .61 5 23457 , 

1 0.25452490, 0.15177230) 

1 FORMAT (1H0 9X *DENGASF = 0, T EXCEEDS TCRT. * / ) 

2 IF(TCRT-T) 3,4,5 

3 PRINT 1 $ STOP 

4 DENGASF = DCRT $ RETURN 

5 ZN=TCRT/TTRP-1 $ Y N = LO GF ( OCR T / C TRP ) $ Z= ( TCP T / T - 1 ) / Z N 

6 Q = CUBERTF ( Z) S X = Z**E -2 3 Y = A(l) 3 DO 8 K=2,5 

8 Y = Y + A(K)*Q**K $ U = Z + X*Y 

9 DENGASF = DCRT* EXP F ( - Y N* U ) 3 RETURN 3 FNO 



06/06/74 

FUNCTION DENLIQF (T ) 

ETHANE SATO. LIQUID DENSITIES, NOL/L, VIA LAB. NOTE 73-5. 

Y = A 1 + A2*Q2 ♦ A3*C3 ♦ . . . , YN - DTFP-DCRT, 

DEN = OCRT + YN*(X + <XE-X)*Y). 

DATA (TTRP = 89.899) , (DTRP = 21.66) 

DATA (TCRT = 3 05. 37) ,(DCRT = 6.74) , (F = 0.33) 

DATA ( A = 0 . 72 190943 8), ( 6=0.2965778 99 ),(C = -0. 30 0365476) 

1 FORMAT (1H0 9X *DEN LIQF = 0, T EXCEEDS TCRT. ♦ / ) 

2 IF(TCRT-T) 3,4,5 

3 PRINT 1 3 STOP 

4 OENLIQF - DCRT S RETURN 

5 XN = TCRT-TTRP 3 YN = OTRP-DCRT 3 X = (TCRT-D/XN 

6 W = CUBERTF ( X ) 3 G = X**E - X 3 Y = A + ♦ C*X 

6 CENLIQF = DCRT + (X + C*Y)*YN 3 RETURN 3 END 



06/06/74 

FUNCTION PMELTF(T) 

C ETHANE MELT P TO 42 ATM., C L US I U S / WE I GA N D , 1940 . 

C SIMON EQN . , P = PTRF + A*(X**2 -1), X = T/TTRF. 

C0MM0N/3/DPDT, C2PDT2,DPSDT , DPMCT,CPDD,DTSDF,OTHDP 
OATA ( T T RP= 8 9 . 6 99) , ( PT PP = 9 . 96 7 E -6 ) , ( A=2 8 4 0 . 0 ) , ( Q = 1 . 0 1 3 25 ) 

1 X = T /T TRP S PMELTF = GMPTPF + AMX*X-1>) 

? CFMDT = 0*A*2*X/TTRF 3 RETURN 3 END 



149 



o o o o o o o 



APPENDIX I. (Continued) 



06/06/714 



C 

C 



FUNCTION PSATF(T) 

C ETHANE V.P., BAR, VIA LAB. NOTE 73-3. 

COMMON/3/DPDT,D2PDT2,DPSDT,DPMOT,OPOO,DTSDR,DTHDR 
DATA (TTRP = 89.899) , ( TCPT = 3 0 5 . 3 7 ) , <PTRP= 9 .967E-6) 

DATA <P1= 10. 795491 66 ), <P 2=8. 35899 001) , <P3=-3. 11498770 > , 
1 (P4 = -0. 64969799) , (F5 = 6. 07349549) 

1 FORMATdHQ 9X *PSATF = 0, T EXCEEDS TCPT. * / ) 

2 XN = 1-TTRP/TCRT $ DXDT = TTRP/XN/T/T 

3 X=(1-TTRP/T)/XN S X2=X 4 X f X3=X 4 X2 S X4=X2 4 X2 

47= 1-X $ IF (V ) 5,6,7 

5 PSATF = DPSDT =0 $ PRINT 1 S RETURN 

6 Z = Z 1 = 0 $ GO TO 9 

7 Q = SQRTF(V) % W = V 4 Q $ HI = -3 4 Q/2 

8 Z = X 4 W S Z1 = W + X 4 W1 

9 F = P1 4 X 4 P2 4 X2 4 P3 4 X3 + P4 4 X4 + P5 4 Z 

10 FI = PI 4- 2 4 P2 4 X 4 3 4 P3 4 X2 + 4 4 P4 4 X3 + P5 4 Z1 

11 FSATF = 1.01325 4 PTRF 4 EXPF(F) 

12 DPSDT = F 1 4 OXDT 4 PS AT F T RETURN * END 



06/06/74 



FUNCTION TSATF(DEN) 

C THIS NEW TSATF VIA TSATFIT, 4/19/74 AT 09.00. 

COMMON/3/ OP DT, 02PD T2 , DPS OT , DPM C T , DPD 0, 0 T S DR , 0 THO P 
DIMENSION A V ( 8 ) , AW(5) 

DATA (ALS=0.5),(BES=0.5),(E=0.25),(DTRP=21.68),(DGAT=1.35114E-6) 
DATA (TTRP = 89. 899) , ( TORT = 3 0 5 . 37 ) , (DCRT=6.74) 

D AT A ( AV = 0.868105174, 0 .015169784, -0.7 296 0432 2, 1.0096514932, 

1 -8.734027096, 21.107128228, -31.449940867, 17.863703965) 

OATACAW = 23.724518399, -14.886051613, 5.431774425, 

1 -1.071505659, 0.091351825) 

SATO. VAPOR TEMPS. CONSTRAINED AT T.P. 

DEFINE X = ABS(S-l), XT = ABS(ST-l), WHEN THF FQN . IS - 
IN(YY) = AL 4 ( 1/XT-i/X) + Al 4 LOG (LN (H-E/S) /LN (1 + E/ST) ) ♦ W(S), 

W(S) = A2MQ-QT) + A3 4 (Q2-QT2) + A4MS-ST) 4 A5 4 (S2-ST2) + . . . 

1 S = DEN/DCRT $ D SDR = DTRP/DCRT S OS = S-l ? IF(QS) 2,30 

2 X = ABSF(QS) $ XI = DSDR 4 QS/X $ YN = TCRT/TTRP - 1 

3 V = l/X t Vl = -OSOR/X/CS S ST = DG AT/C CRT $ IF(QS) 4,30,15 

4 XT = 1 - ST t V T = l/ XT $ U=ALS 4 (VT-V) $ U1=-ALS 4 V1 J EK=LOGF(l+ E/ST) 

5 P = 1 + E/S $ PI = -E 4 DSDP/S/S $ PG = LOGF(P)/EK 

6 G = LOGF(PG) J G1 = Pl/P/PG/EK 

7 Q = CU9ERTF (S) $ CT = CUBERTF (ST) $ Q1 = Q 4 DSOR/3/S 
e W = U 4 AV(1)*G 4 AV ( 2 ) 4 (O-CT) 4 AV ( 3) * ( C 4 C-QT 4 QT) 

9 W 1 = U1 4 AV(1)*G1 4 A V ( 2 ) * 0 1 4 AV(3) 4 2 4 G 4 Q1 

10 DO 11 <=4,8 $ N = K-3 $ W = W 4 AV(K) 4 (S 44 N-ST 44 N) 

11 W 1 = W1 4 N 4 DSDR 4 AV (K) 4 S 44 (N-l) t GO TO 18 
SATD. LIQUIO TEMPS. CONSTRAINED AT THE T.F. 

ECN., LN(YY) = W(S), WHERE X = APS(S-1), X T= APS (S T- 1 ) , ANO - 
W(S) = BE 4 ( 1 / XT - 1/X) 4 B1 4 ( S-S T ) 4 B2 4 (S2-ST2) 4 . . . 

15 ST = DSDR I XT = ST-1 T W = BESM1/XT-V) f W1 = -BES 4 V1 

16 CO 17 K = 1 , 5 $ W = W 4 AW ( K) 4 (S 44 K - ST 44 K) 

17 W1 = W1 4 A W ( K ) 4 K 4 DSDR 4 S 44 (K-l) 

18 F = EXPF(W) $ FI = W l 4 F I C = 1 4 Y N 4 F 

19 TSATF = TCRT/Q $ DT SDR = -YN 4 F1 4 TSATF/G $ RETURN 

30 TSATF = TORT $ DTSDP =0 « RETURN S END 

150 



APPENDIX I. (Continued) 



06/06/7A 



FUNCTION FINOTMF (P ) 

C GIVEN MELTING PRESSURE P, ITERATE T TO MINIMIZE (P-FC). 

COMMON/ 3/DPDT, 02PDT2, DPSOT , OPM C T , DP D 0 , D T S DR , DTHO P 

1 FORMAT ( 1H0 9X ♦FINOTMF = 0, FAILS TO CONVERGE) ♦ / ) 

2 T = 100 $ DO 6 J = 1 » 5 0 f DP = P-PMELTF(T) J A DP = AESF(DP) 

3 I F t ADP/P-1. OE-6) 7,7,4 

4 IF( ADP/DPMDT/T-1.0E-6) 7,7,5 

5 T = T DP/DPMDT 

6 CONTINUE $ FINOTMF =0 $ PRINT 1 $ RETURN 

7 FINOTMF = T $ RETURN $ END 



06/86/74 

FUNCTION FINDTSF(P) 

C GIVEN VAPOR PRESSURE P, ITERATE T TO MINIMIZE (P-PC). 

COMMON/l/AL , BE , EP, GK , DC RT , TOR T , F CRT , D T RP , TT RP , F TR F 
COMMON/ 3/ DPDT, D2POT2, DPSDT , OPMOT ,DPDO,DTSDP,DTHDR 

1 FORMA T ( 1H0 9X ♦FINDTSF = 0, FAILS TO CONVFRGE. ♦ / ) 

2 FORMAT ( 1H0 9X ♦FINDTSF =0, P EXCEEDS PCRT. ♦ / ) 

3 IF (P-PCRT ) 4,11,12 

4 T = 2 00 $ DO 9 J = 1 , 5 0 $ DP = P - PSATF(T) $ AOP = AeSF (DP) 

5 IF(ADP/p-1. 0E-6) 10,10,6 

6 IF ( ADP/OPSDT/T-l.O E-6) 10,10,7 



T = T + OP/DPSDT S 


IF(T-TCPT) 9,9, B 






T = TCRT 












CONTINUE $ 


FINDTSF 


= 0 $ 


PRINT 1 




RETURN 


FINDTSF = T 


$ RETUPN 








FINDTSF = TCRT * 


RETURN 








FINDTSF = 0 


$ PRINT 


2 $ 


RETURN 


$ 


ENO 



151 



APPENDIX I. (Continued) 



06/06/74 



FUNCTION F INDENF (T , P) 

C ON ISOTHERM T, FIND DEN, MOL/L, TO MINIMIZE (P-PC) VIA EQNSTATE. 
COMMON/l/AL,BE,EP,GK, DC RT , TCRT , F CRT , D TRP, TTRF , FTRP 
COMMON/3 /DPDT,D2PDT2,DPSDT,0PM0T,DPD0,DT SDR, D THOR 
DATA (DM=23. 0) , ( DG AT = 1 . 3 51 14E- 6 ) 

41 FORMA T ( 1H0 9X ♦FINOENF = 0, FAILS TO CONVERGE. * / ) 

42 FORMAT ( 1H0 9X ’FINDENF = DCRT, DP/DR ZERO OR NEG. * / ) 

43 FORMAT ( 1H0 9X ’FINOENF = 0, DOUBL E- VALUED AT P = PSAT. * / ) 

1 IF(T-TCRT) 2,5,8 

2 DG=FINDSATF (T,0) $ DL=FI NDSATF < T , 1) $ PS=PSATF(T>* IF(P-FS) 3,32,4 

30= DG/ 2 $ GO TO 11 

40= (DL+DM)/2 $ GO TO 11 

5 DG=DL=DCRT $ PS=PCRT $ IF(F-FS) 6,33,7 
60= DCRT/2 * GO TO 11 

7 0 = 2 ’DCRT $ GO TO 11 

6 IF(T.LT. 400.0) 9,10 

9 PC = PVTF ( T , OCRT , 0 ) $ IF(P-PC) 6,33,7 

10 0 = OCRT 

11 DO 30 J = 1 , 5 0 I DP=P-PVTF (T ,D,1) S IF ( ABSF ( DP/F) - 1 . OE-6) 31,31,12 

12 IF(OPDD) 34,34,13 

13 OD = DP/OPDD $ IF (ABSF (DO/D) -1. OE-6) 31,31,14 

14 C = 0 + DO $ IF (D.GT.OGAT) 16,15 

15 0 = OGAT $ GO TO 30 

16 IF(D.GT.OM) 17,18 

17 0 = D TRP S GO TO 30 

16 IF ( T-TCRT ) 19,24,30 

19 IF(P.LT.PS) 20,22 

20 IF(D.GT.DG) 21,30 

21 0 = D G $ GO TO 30 

22 IF(D.LT.DL) 23,30 

23 D = OL * GO TO 30 

24 IF (P.LT.PCRT) 25,27 

25 IF (D.LT .OCRT) 30,26 



26 


0 = OCRT - 0.02 


$ GO TO 


30 






27 


IF(D.GT.DCRT) 30 


,20 








28 


0 = OCRT ♦ 0.02 










30 


CONTINUE $ F INDENF = 0 


$ 


PRINT 41 


t RETURN 


31 


FINDENF = D $ 


RETURN 








32 


FINDENF = 0 t 


PRINT 43 


$ 


RETURN 




33 


FINDENF = DCRT 


$ RETURN 








34 


FINDENF = DCRT 


$ PRINT 


42 


$ RETURN 


l END 



SINGLE-BANK COMPILATION. 



152 



o o o o o 



APPENDIX I. (Continued) 



06 / 06/74 



*v> 



FUNCTION FINDSATFt T,M) 

C ITERATE OEN TO MINIMIZE (T-TS) VIA TSATF(OEN). 

C M = 0 FOR VAPOR, M = 1 FOR IIQIIC. 

COMMON/i/AL ,BE,EP,GK, DCRT , TCP T , P CRT , 0 TRP , TTRP , PTPP 
C0MM0N/3/DPDT,02PDT2,DPS0T, DPMDT, DPDD, DTSDR , DTHDR 
DATA (DM = 23.0» , < DG A T = 1 . 3 5 1 1 4E- 6 ) 

1 FORMA T ( 1H0 9X ♦FINDSATF = 0, FAILS TO CONVERGE.* / > 

2 FORMAT ( 1HG 9X *FIN OS A TF = 0, T EXCEEDS TCPT.* / ) 

3 IF(T-TCRT) 4,22,23 

4 IF(M.EQ.O) 5,6 

5 0 = DENGASF (T) S GO TO 7 
60= DENLIQF (T) 

7 CO 20 J = 1 , 5 0 $ D T =T-TS ATF (D ) S IF(ABSF (DT/T) -1.0E-6) 21,21,8 

8 OTDD = DTSDR/OTRP $ IF ( D T DO . EQ . 0 . 0 ) 22,9 

9 DD = OT/DTDD $ I F < ABSF ( DD/O > - 1 . OE-6) 21,21,10 

10 0 = D + DO $ IF(M.EQ.O) 11,15 

11 IF(D. GT.DGAT) 13,12 

12 0 = DGAT $ GO TO 20 

13 IF ( 0. LT. DCRT) 20,14 

14 0 = DCRT - 0.02 $ GO TO 20 

15 IF(D.GT.DM) 16,17 

16 0 = DM I GO TO 20 

17 IF (D.GT .DCRT) 20,18 

18 0 = DCRT «- 0.02 

20 CONTINUE S FINDSATF =0 $ PRINT 1 $ RETURN 

21 FINDSATF =0 J FETURN 

22 FINDSATF = OCRT $ RETURN 

23 FINDSATF = 0 J PRINT 2 $ RETURN * END 



06/06/74 



SUBROUTINE IDEAL 

ETHANE IDEAL GAS (1 ATM) TH ERMO F UN CT I ONS (CHAO, 1973). 

EQN., Y = ( EZ-EZZ) /FT = 3 + F(X), X = T/100, 0 = X**l/3, 

F ( X ) = A 1* Q4 + A2*Q5 + A3*Q6 + . . . + AN*Q**(N+3). 

(HZ-HZZ)/RT = 1 + Y, CVN = CVZ/R = 0(EZ/R)/DT, CPZ/F = 1 + CVZ/F, 
SZ/P = AZ + INTEGRAL (CVZ/R/X + 1/X)*DX. 

CCMM0N/99/TI , EZZ, EZ,SZ,CVZ, HZ,CPZ 
DIMENSION A (9) 

OATA (R = 8. 3143) ,<AZ=21. 705718) 

0 A T A ( A = 65.498641, -362.0 1 15914, 853. 3408616, - 1 123.601622 , 

1 °06. 2184427, -459.2302545, 143.0300226, -25.07495605,1.897540044) 

1 X = TI/100 S 0 = CUPERTF (X) $ DQDX = Q/3/X * F = FI = S = C 

2 DO 4 J=i,9 $ K = J + 3 $ L = J + 6 

3 Y = A ( J ) * 0 * * K $ F = F + Y $ F1 = F1+ K*Y/C 

4 S = S f L * Y/K $ S = AZ + S + 4*L0GE(X) 

5Y=3fF I CV = Y + X*E1*CQCX 

C CONVERT TO DIMENSIONED RESULTS, JOULES, MCLES, KELVINS. 

6 E 7 = R* T I * Y I HZ = R*TIMi + Y) f CPZ = R*(1+CV) 

9 SZ = R*S $ CVZ = P*C V ? RETURN * ENC 



153 



o o o o o o 



APPENDIX I . (Continued) 



06/06/74 



SUBROUTINE HOMOTHRM 

GIVEN P,T, GET DEN AND FUNCTIONS FCR HOMOGENEOUS DOMAIN. 
USE MEMORIZED IOEAL GAS FUNCTIONS EVERY 10 K. 

COMMON/l/AL , BE,EP, GK, DCRT , TCR T , PCRT , D T RP , TTRP , FTRP 
CCMM0N/3/DP0T,02PDT2,DPSDT , DPMD T , OPDO, D TSDR , D THOR 
C0MM0N/8/ P,T,DEN, E,H,S, CV,CP,CSAT, W , WK 
COMMON/9/ El (60) ,SI (60) ,CVI (60) 

COMMON/ 39/ TI ,EZZ, EZ,SZ,CVZ,HZ,CFZ 
DATA (DA=0. 0) , (Q=l. 01325) , ( G= 0 . 0 8 31 4 34) 

1 K = T/10 t EZ = EI(K) J SZ = SI ( K) J CV7 = CVI(K) 

2 OEN = OB = FINOENF (T , P) $ N = 5*(l+OB) 

3 E = EZZ + EZ ♦ ESUMF(N,T,DA,DB) $ H = E + 100*P/DB 

4 S = SZ + SSUMF(1,N,T,DA, OB) - 100*G*LOGF (G*T*DB/G) 

5 X = 1 0. 0* A 8SF (T /TCRT-1) J IF(X.LT.3.0) 6,7 

6 N = N + DB*DB*EXPF (-X) 

7 CV = CVZ «- CSUMF(N,T ,DA, DP) $ PX = PVTF(T,DB,1) 

6 CP = CV f 1 00*T/DPDD* (DPDT/DB ) **2 

9 W = SQRTF ( WK*CP*DPOD/CV) J RETURN $ END 



06/06/74 

SUBROUTINE LIQTHERM 

FOP DEN ABOVE DCRT, AND T UNDER TP = 340 K. 

GIVEN P , T , GET DEN ETC. FIRST USE CPSUMIT TO GET FUNCTIONS 
AT POINT (T , P B , 0 B ) , THEN INTEGRATE ALONG ISOTHERM T. 

USE MEMORIZED FUNCTIONS FROM CPSUMIT CN ISOBAR PB(FURTADO). 
COMMON/3/OPOT,D2PDT2,DPSDT,DPMOT, OPDO, D TSDR ,D THD R 
COMMON/8/ P , T , DEN, E,H,S, CV,CF,CSAT, W,KK 
COMMON/ 10/ DF(34),EF (34) ,SF(34),CVF(34) 

1 K = T/10 $ D8 = DF ( K) f DEN = DN = FINOENF (T ,P) 

2 E = EF ( <) $ S = S F ( K ) $ CV = CVF(K) 

C INTEGRATE ALONG ISOTHERM T FROM DE TO DN . 

3 CX = ABSF ( DN-D3 ) J N = 5M1+CX) 

4 E = E f ESUMF (N,T, OP, DN) t H = E ♦ 100*P/DN 

5 S = S + SSUMF ( 0 ,N, T ,DB,DN) * N = N ♦ DX*DX 

6 CV = CV f CSUMF (N, T ,DP,DN) t PX = PVTF(T,DN,1) 

7 CP = CV * 100*T/OPDD* (OPDT/DN ) **2 

9 W = SQRTF ( WK*CP*DPDO/CV) t RETURN S END 






154 



-g CT> vn .t- 



APPENDIX I. (Continued) 



06/06/74 



SUBROUTINE SATGSTRM 

C GIVEN P,T AT SATURATION, GET OEN ETC. - 

COMMON/l/AL , BE, EP,GK, DC RT , TC R T , F CRT , D TRP , TTRF , FTRP 
COMMON/ 3/ DP DT, D2P0 T2, DFSDT , DPMD T , DPDD, D T SDR , D THD R 
COMMON/8/ P,T,DEN, E,H,S, CV,CF,CSAT, W,V<K 
COMMON/99/ TI,EZZ, EZ,SZ,CVZ, HZ,CPZ 
CAT A (A = 0 . 0 ) , <Q = 1. 0132 5) , ( G = 0 . 0 8 31434) 

1 TI - T S CALL IDEAL 

2 DEN = OG = FINOSATF (T , 0) $ N = 5M1 + DG) 

3 E = EZZ f EZ + ESU MF ( N , T , A , DG ) S H = E + 100*P/DG 

4 S = SZ + SSUMF( 1,N ,T,A,OG) - 100*G*LOGF (G*T*OG/Q) 

5 IF(T.EQ.TCRT) 6,7 
6CF=CV=W=Q S RETURN 

7 N = N + DG * DG SC V = CVZ + C S UN F ( N ,T , A , DG ) 

8 PX = PVTF ( T , DG , 1) ? CP = CV + 1 00 * T/ D P CD* (DPD T / 0G ) * * 2 

9 W = SQRTF(WK*CP*DPDO/CV) $ RETURN S ENC 

06/06/74 

SUBROUTINE SATLQTRM 

C GIVEN P,T AT SATURATION, GET DEN ETC. - 

C AT TEMP. T, GET FUNCTIONS AT P = FP VIA CFSUMIT, 

C THEN INTEGRATE ON ISOTHERM T FROM CB OOWN TO DL OF THE SATLIC. 
COMMON/l/AL, BE, EP,GK, PC RT , TC R T , F CRT , D T RP , TT RF , F T R F 
COMM ON/ 3/ DP DT, 02PDT2, DFSCT ,DPMCT,DPDD,DTSDP,DTHDP 
COMMON/8/ P , T , DEN, F,H,S, CV,CP,CSAT, W , WK 

1 CALL CP SUM I T S D8 = DEN S CEN = DL = F I ND S A T F ( T , 1 ) 

2 DX = ARSF(DB-OL) S N = 5M1 + CX) 

3 S = S + SSUMF(0,N,T ,Oe,OL) S E = E + ESUMF ( N , T , OB , CL ) 

H = E + 100*P/DL S IF(T. EQ.TCRT) 5,6 
CSAT = CV = CP = W = 0 S FETl’RN 
N = N + D X* DX S CV = CV + CSL M F (N , T , D 8 , DL ) 

PX = PVTF(T , CL , 1 ) f CDLDT = C TF F/DTSOR 

8 CSAT = CV-1 00*T*OPDT*DDLDT/DL/CL S CP = C V 10 0* T / O P CD * ( D P C T / DL ) * * 2 

9 W = SQRTF ( WK*CP # DPDP/CV) S RETURN f END 



06/06/74 

SUBROUTINE MELTHERM 

C GIVEN P, GET T , DEN, ETC. FOR FREEZING LIQUID. 

COMMON/3/DPDT,02PDT2,DPSDT,DPMCT,CPDD,DTSDR,DTHDP 
COMMON/8/ P , T , DEN, E,H,S, CV,CF,CSAT, W , WK 

1 T = FINOTMF(F) S CALL CPSUMIT $ DB = DEN 

2 DEN = DM = FIN DENE (T , F ) 

C NON INTEGRATE ON ISOTHERM T FROM DB TO DM 

3 N = 5 + 5* A8SF COM- DE ) S E = E + ES UMF ( N , T , O P , D M ) 

4 H = E + 100*P/CM S S = S + SSUME(0,N,T,DB,DM) 

5 CV = CV + CSUMF (N, T , D E , DM ) S PX = PVTF(T,DM,1) 

6 CP = CV + 1 00*T/DPDD* (DPDT/CM) **2 

9 W = SQRTF (WK*CP*DPOP/CV) * RETURN S END 



155 



o o o 



APPENDIX I. (Continued) 



36/06/74 



SUBROUTINE CPSUMIT 

USE FURTAOO CP(T) ALONG ISOBAR FB = 137.895 BAR. 

START AT TB = 340 K WITH VALUES HB , SB, THEN - 

INTEGRATE DOWN TO ANY T, YIELDS DEN, E, H, S, CP, C V, AT (T,FE). 
C0MM0N/3/DPDT,D2PDT2, DPSDT , DPMO T , DP DO, 0 T SDR , D TH D R 
COMMON/7/ TB ,PB , H B , SB 

COMMON/8/ P , T , DEN, E,H,S, CV,CF,CSAT, W , WK 
DATA (TX = 250.0) 

1 H = H B t S = SB ? IF(T.LT.TX) 6,2 

2 TP = T-T3 I N = 2 +A BSF ( TR ) $ DT = TR/N 

3 CO 5 J=i,N J TJ = TB + (J-3.5)*DT I CP = CFXF(TJ) 

4 H = H + CP* OT $ S = S + C P* D T /T J 

5 CONTINUE « GO TO 15 

6 TP= TX-TB J N = 2 + ABSF ( TR ) $ OT = TP/N 

7 00 9 J=1,N I TJ = TB + (J-0.5)*DT S CP = CPXF(TJ) 

8 H = H + CP*DT $ S = S + CP* DT/T J 

9 CONTINUE 

10 TP = T-TX $ N = 2+ABSF (TR) /2 J DT = TR/N 

11 DC 13 J=1,N $ TJ = TX + ( J- 0 • 5 ) *DT S CP = CPXF(TJ) 

12 H = H + CP* DT * S = S + CP*DT/TJ 

13 CONTINUF 

15 DEN = FINDENF (T ,PB) $ CP = CPXF(T) 

16 E = H - 100*PB/DEN J PX = P VTF ( T, DEN , 1 ) 

20 CV = CP - 1 00*T/DPOD* (DPDT/OEN) **2 S RETURN $ END 



156 



<D Ui oj r\) .X) vn c*j no 



APPENDIX I. (Continued) 



06/06/74 



FUNCTION CSUMF<N,T ,CA ,08) 

C OELTA C V = -T*INTEGPAL ( ( 0 2P/ DT 2 ) / C** 2 > * D D . 

COMM ON/3/ DP DT,02PDT 2 , DPSDT , DPMCT,OPDD,OTSOP,DTHDF 
DX = (03-DA ) /N S CSUHF =0 t DO 5 J=1,N 
DN = DA ♦ (J-0.5)*DX $ P = PVTF(T,DN,0) 

CSUHF = CSUMF - D2PDT2*0X/ DN/DN 
CSUHF = 100*T*CSUMF $ RETURN $ END 



06/06/74 



FUNCTION ESUMF (N,T ,DA, DB) 

GET DELTA E OVER DENSITY RANGE FRCH DA TO DP. 

DELTA E - INTEGRAL (P-T* (DP/DT) ) * DX/ DN* * 2. 
C0MM0N/3/DPDT,D2PD T2, DPSDT, DPMO T , DPD D, D T SDR , OTHDR 
CX = (D3-DA ) /N $ ESUMF = 0.0 

DO 5 J=1,U % ON = DA + <J-0.5)*DX t P = PVTF(T,DN,0> 

ESUMF = ESUMF ♦ (P - T* DPD T ) * DX/ 0 N/ ON 
ESUMF = 10 0 *ESUMF $ RETURN J END 



06/06/74 



FUNCTION SSUMF (L,N , T , DA, DP ) 

C DENSITY- DEPENDENT CHANGE OF S FROM DA TO CB. 

C DELTA S = INTEGRAL (GK-(DP/DT)/DN)*DX/DN. 

CCMMON/3/OPDT , D2PDT2, DPSDT , DPMDT ,OPDO,OTSDR,DTHDF 
DATA (GC = 0.0831434) 

1 SSUMF = 0 ? DX = ( DB-D A ) / N J IF(L.EQ.O) 4,2 

2 00 3 J=1,N * DN = DA + (J-0.S)*DX t F = PVTF(T,DN,0) 

3 SSUMF = SSUMF + (GC-DPCT/DN)*DX/DN $ GC TO 9 

4 DO 5 J= 1 , N * DN = DA + (J-0.5)*OX * F = PVTF(T,DN,0> 

5 SSUMF = SSUMF - DP QT* OX/ ON/ DN 

9 SSUMF = 1 0 0 * SS UMF $ RETURN ? END 



157 






!i 

APPENDIX I. (Continued) 

06/86/74 

FUNCTION CPXF(T) 

C ETHANE CP, J/MOL/K, OF ANDRE FURTADO AT P = 137,895 BAR. 

C DEFINE X = (T-TTRP) /(TMAX-TTRP), WHEN THE EQN. IS - 
C LN(CM-CP) = Al ♦ A2*X2/(1-X) + A3*X2 ♦ A4*X3 + A5*X4. 

C NOTE THIS FORMULA VALID ONLY UP TO 345 K. 

C NOTE FACTOR 1.874 FOR ETHANE VS. METHANE CONVERSION. 

DIMENSION A (5) 

DATA (TTRP=89.899) , (TM=354. 0) , <CM=62.60 ) 

DAT A ( A = 3.2632884, -0.1544225, -0.1414889, -0.5064375, 0.2769915) 

1 X = (T-TTRP ) / (TM-TTRP) S X2 = X*X 

2 Y = A (1 ) ♦ A (2) *X2/ ( 1-X) + A(3)*X2 + A(4)*X*X2 ♦ A(5)*X2*X2 

3 CPXF = 1.87 4335* (CM - EXPF(Y)) $ RETURN S ENO 



10/15/74 



FUNCTION CSATXF(T) 

C F Q RM U L A T I QN-Q F ETH A NE DA T A O F AU TH O RS 

C WIEBE/HUBBARD/BREVOORT, AND WITT/KEMP, J/MOL/K. 

C VIA PROGRAM CSAT-2, 3/27/74. 

C FOR 59 POINTS, THE RMS IS 0.50 PCT. 

C CS = A t X = T/TCRT 

C REVISED FOR TCRT = 305.37, 10/7/74. 

DATA (E = 0 .5) , ( TC=3Q 5. 37 ) 

DATA ( A=67 .3153) , (B =-16. 5 87 6) , (C =16. 3526) 

1 X = T/TC $ U = 1-X $ IF ( U ) 2,2,3 

2 CSATXF =0 $ RETURN 

3 CSATXF = A + B*X *_CfX/U*»_E t- ..... RETURN $ END 



10/15/74 

FUNCTION QVAPXFCT) 

C VIA PROGRAN SWAB-2+ USING OATA OF^ 

C DOUSLIN, RIEDEL, FURTADO. FOR 49 POINTS, RMS = 0.56 PCT. 

£ DE FINE X = (TC-T) / ( TC-TT) , U = X»»l/3, WHFN EQN. IS - 

C QV = A1*U ♦ A2*U2 ♦ . . . ♦ A6*U6. 

C REVISED FOR TGRT = J 3G5-.37,- 10/7/74. 

DIMENSION A ( 6 ) 

DATA- lTX=aR.A9Rl , ( T C = 3Q5. 37 I 

DATA (A = 12.102730, 11.165588, 16.539265, 

1 - 7 1 ^ 8 54 6 95 . 82 ^166239, -3? . fil (151 1.1 

1 U = CUBERTF ( (TC-T)/ (TC-TT)) $ Q = 0 $ DO 2 K=l,6 

2 Q = Q ♦ ACK)*U**K S QVARXF = 1G0G*CI $ RETURN S__END 



158 



CD 

CD 

UD 



S 

o 




COUD-3-CVJ CDCOCOCj-CNI CD 

• — ! « — • . — I ■ — I 1 — I 

L/LOUJ 'AilSNBd 



159 



Figure 1. The locus of recent P-p-T data. 




Figure 2. Generalized locus of isochore inflection points. 




Figure 3. Generalized behavior of the critical isotherm. 



160 



DENSITY 




TEMPERATURE 



Figure 4. Gene ralized behavior of the locus 0(p). 



161 



$(p, T)— ■ $ (p, T) 




Figure 5. Generalized behavior of the function $(p,T). 




Figure 6. Generalized behavior of the function Y(p, T). 



162 




+ .5 
0 


~T~ 


1 1 1 

0 ©OOOOo o _ 


o ~ ^ O 




o 


o 




o 


o 




o 


© 


Q. ~’ 5 


- o 


O — 




o 


o 




o 


o 


-1.0 


— o 


© — 




o 


0 




o 


o 


-1.5 


1 1 


1 ^ 1 1 



0 12 3 

P/Pc * 



Figure 7. Behavior of coefficients B(p), C(/o) for methane. 



163 




P/Pz~~ 



Figure 8. Presumed behavior of C(p) for hydrogen. 



164 







TEMPERATURE 



Generalized density-temperature phase diagram. 



1 6 5 



Figure 9. 



o 

o 

ro 



• o 



• o 

-• o 

o« 



p 

o 



o 



o 

o 



o 



o • 



o 

o 



o 

o 



<_> 

TO 

u 

cr 

I 

+J 

CL 

X 

cr 



■M 

S- 

CJ 



TO 

O 



O 

O 

CM 

I 



LOUi/r ‘ 33N3U3J3K3 



o 

o 

co 

I 



Figure 10. Comparisons for saturated liquid ethane. Q is heat of vaporization, 
and H is enthalpy. Calculated values are via the Clapeyron equation. See 
section 4.3 of the text. 

166 



o 

LD 

CM 



+ 



o 

o 

CM 



O 

ID 



O 

O 



TEMPERATURE 



2400 




o 

o 

CO 



o 

CO 

CM 



o 

CM 

CM 



t 



o 

CO 



o 



o 

o 



s/uj a n n o s jo a 3 3 d s 



Figure 11. Speeds of sound for saturated liquid ethane 

167 



TEMPERATURE 



Table 1. Experimental and calculated vapor pressures 
ID: (4) Pal; (7) Ziegler; (9) Popej^lO) Douslin 



VAPOR PRESSURES, TTRP - 89.899, TCRT = 305.370 

10.79549166 8.35899001 -3.11490770 -0.64969799 6.07349549 



ID 


T,K 


P , BAR 


CALCD 


PGNT 


7 


90.010 


1.03991-005 


1.04012-005 


-0.120 


7 


100.010 


1.11231-004 


1.11214-004 


0.015 


7 


109.998 


7.46205-004 


7.460 84-004 


0.016 


7 


119.989 


3.53971-003 


3.54004-003 


-0.009 


7 


129.987 


1.28963-002 


1.29009-002 


-0.835 


7 


139.992 


3.82929-002 


3.83041-002 


-0.029 


7 


150.000 


9.67387-0U2 


9.67415-002 


-0.803 


7 


160.010 


2.14770-001 


2.14725-001 


0.821 


7 


170.019 


4.29490-0D1 


4.29303-001 


0.044 


7 


180.027 


7.88547-001 


7.88122-001 


0.054 


7 


184.550 


1.01 325 + 00 0 


1.01269+000 


0.055 


9 


198.216 


1 .99985 + 0 00 


2.00235+000 


-0.125 


4 


214.334 


3.97283+000 


3.96786+000 


0.125 


4 


224.130 


5. 71141+000 


5.71485+000 


-0.860 


4 


229.782 


6.94778+000 


6.95075+000 


-0.043 


4 


234.581 


8.13995+000 


8.14562+000 


-0.870 


9 


234.715 


8.18108+000 


8.18100+000 


0.801 


10 


238.150 


9.12908+000 


9.12702+000 


0.823 


9 


238.792 


9.30599+000 


9.31232+000 


-0.068 


4 


239.864 


9.62177+000 


9.62783+000 


-0.863 


4 


240.534 


9. 82448+000 


9.82894+000 


-0.845 


10 


243.150 


1.06455+001 


1.06436+001 


0.818 


4 


243.377 


1.07162+001 


1.07165+001 


-0.803 


4 


246.830 


1.18689+001 


1.18715+001 


-0.022 


4 


247.831 


1.22099+001 


1.22225+001 


-0.103 


10 


248.150 


1.23369+001 


1.23360+001 


0.007 


4 


249.755 


1.29310+001 


1.29184+001 


0.097 


4 


250.160 


1.30694+001 


1.30685+001 


0.007 


4 


251.600 


1.36207+001 


1.36124+001 


0.861 


4 


252.556 


1.39895+001 


1.39824+001 


0.851 


1 0 


253.150 


1.42169+001 


1.42160+001 


0.007 


4 


254.301 


1.46818+001 


1.46766+001 


0.036 


4 


257.552 


1.60349+001 


1.60 361+001 


-0.007 


10 


258.150 


1.62966+001 


1.62958+001 


0.005 


10 


263.150 


1. 85895+001 


1 .85882+001 


0.007 


4 


263.386 


1. 86989+ 0U1 


1.87019+001 


-0.816 


4 


267.539 


2.07916+001 


2.07864+001 


0.825 


1 0 


268.150 


2.11078+001 


2.11067+001 


0.805 


4 


271.750 


2.30678+001 


2.30680+001 


-0.001 


9 


272.949 


2.37622+001 


2.37499+001 


0.852 


10 


273.150 


2.38670+001 


2.38656+001 


0.006 


4 


275.921 


2.54917+001 


2.55038+001 


-0.047 


4 


276.362 


2.57931+001 


2. 57719+001 


0.082 


4 


276.384 


2.57863+001 


2.57854+001 


0.804 



168 



Table 1 



ID 

4 

4 

10 

4 

4 

10 

4 

9 

4 

10 

4 

4 

9 

4 

4 

10 

9 

4 

10 

4 

9 

4 

4 

1 0 

1 0 
4 
4 
9 
4 

1 0 
4 
4 
4 
4 
4 
4 
4 
4 
4 

10 

10 



. Experimental and calculated vapor pressures, (continued). 



T » K 
276.513 
277.811 

278.150 

280.038 
282.243 

283.150 
284.630 
284.840 
287.648 

288.150 
288.257 
290.034 
290.208 
292.229 
293.091 

293.150 
293.259 
296.339 

298.150 
299.657 
299.855 
300.196 
301.242 

302.150 

303.150 
303.462 
303.468 
304.002 

304.039 

304.150 
304.350 
304.435 
304.506 
304.723 
304.785 
304.913 
304.969 
305.110 
305.142 

305.150 
305.250 



P,8AR 
2.58857+001 
2.66672+001 
2.68824+001 
2. 80710 + QtJl 
2.95400+001 
3. 01708 + QU1 
3.11740+001 
3.13657+001 
3.33652+001 
3.37524+001 
3.38323+001 
3.51469+001 
3.53369+001 
3.69269+001 
3.75729+001 
3. 76506+001 
3.77610+001 
4.02866+001 
4.1897 3 + O’0 1 
4.32194+001 
4.34545+001 
4.37369+001 
4.46929+001 
4.55769+001 
4.65413+001 
4.68154+0D1 
4.68930+001 
4.73934+001 
4.73895+001 
4.75255+001 
4.77171+001 
4.78455+001 
4.78280+001 
4.80594+001 
4.81482+001 
4.83164+001 
4.83453+001 
4.84837+001 
4.85152+091 
4.05339+001 
4.86354+001 



CALCD 


PCNT 


2. 58642+001 


0.883 


2.66676+001 


-0.002 


2.68805+001 


0.807 


2.80 889+001 


“0.064 


2.95509+001 


-0.837 


3.01685+OQi 


0.008 


3.11970+001 


*0.074 


3.13450+001 


0.866 


3.33761+001 


-0.033 


3.37495+001 


0.009 


3.38295+001 


0.008 


3.51795+001 


-0.893 


3.53139+001 


0.865 


3.69041+001 


0.962 


3.75992+001 


-0.070 


3.76472+001 


0.8 09 


3.77359+001 


0.067 


4.03123+001 


-0.S64 


4.18927+001 


0.811 


4.32470+001 


-0.064 


4.34277+001 


0.0 62 


4.37404+001 


-0.808 


4.47120+001 


-0.043 


4.55712+001 


0.013 


4.65354+001 


0.013 


4.68403+001 


-0.053 


4.68462+001 


0.100 


4.73730+001 


0.043 


4.74097+001 


-0.043 


4.75201+001 


0.011 


4.77197+001 


-0. 105 


4.78048+001 


0.985 


4.78781+001 


-0.105 


4.80947+001 


-0.873 


4.81574+001 


-0.019 


4.82871+001 


0.061 


4.83440+001 


0.003 


4.84878+001 


-0.008 


4.85205+001 


-0. Oil 


4.85287+001 


0.011 


4.86313+001 


0.808 



NP = 85, RMSPCT = 0.050 



169 



Table 3. Experimental and calculated saturated liquid densities 



ID: (5) via isochores of Pal; (10) Douslin; (12) Chui; 

(13) Klosek; (14) Miller; (16) Tomlinson 

SATO. LIQUID DENSITIES » E = 0.330 

TTRP = 89.899, TCRT = 305.370, DCRT = 6.740, DTRP = 21.688 
0.721909438 0.296577899 -0.300365476 



ID 


T,K 


MOL/L 


CALCC 


PRC NT 


10 


304.150 


8.737 


8.740 


-0.03 


10 


303.150 


9.201 


9.200 


0.01 


10 


302.150 


9. 544 


9.544 


0.00 


10 


298.150 


10.499 


10.487 


0.12 


10 


293.150 


11. 297 


11.292 


0.05 


10 


283.150 


12.458 


12.454 


0.04 


10 


273.150 


13. 342 


13.344 


-0.02 


10 


263.150 


14. 089 


14.091 


-0.02 


5 


255.963 


14. 554 


14.570 


-0.11 


10 


253.150 


14.753 


14.747 


0.04 


5 


247.962 


15. 050 


15.060 


-0.07 


5 


240.700 


15. 455 


15.475 


-0.13 


5 


229.917 


16. 037 


16.048 


-0.07 


5 


222.618 


16. 423 


16.413 


0.06 


5 


214.942 


16.754 


16.781 


-0.16 


5 


207.941 


17. 125 


17.103 


0.13 


5 


197.888 


17.529 


17.548 


-0.11 


5 


188.451 


17. 941 


17.950 


-0.05 


5 


176.512 


18. 446 


18.440 


0.03 


5 


167.366 


18. 823 


18.805 


0.10 


12 


161.360 


19. 027 


19.040 


-0.06 


5 


156.875 


19.226 


19.213 


0.07 


13 


133.150 


20. 126 


20.107 


0.10 


13 


127.594 


20. 323 


20.312 


0.05 


13 


122.039 


20. 521 


20.516 


0.02 


13 


116.483 


20. 717 


20.719 


-0.01 


12 


115.770 


20. 747 


20.745 


0.01 


14 


115.050 


20. 771 


20.771 


0.00 


13 


110.928 


20.915 


20.921 


-0.03 


14 


1 08.110 


21. 025 


21.023 


0.01 


12 


108.150 


21. 027 


21.022 


0.02 


14 


100.020 


21. 313 


21.315 


-0.01 


14 


91.010 


21. 639 


21.640 


-0.00 



NP = 33, RMSPCT = 0.068 



170 



Table 4. Vapor densities via vapor-pressure and virial equations 



ETHANE SAID. VAPOR DENSITIES VIA V.P. AND VIRIAL EQNS * 



ID 


T,K 


P, ATM 


PLANK/ KAH0 


MOL/L 


PC T 


1 


69. 699 


9.9670-006 


1.3511-006 


1.3511-006 


0 .00 


i 


90.000 


1.0233-005 


1.3863-006 


1 .3863-006 


0.00 


1 


95.000 


3.5303-005 


4.5936-006 


4.5936-006 


0.00 


1 


100.000 


1.0952-004 


1.3347-005 


1.3347-005 


0.00 


1 


105.000 


2.9851-004 


3.4649-005 


3 .4648-005 


0.00 


1 


110.000 


7 .3654-004 


8.1615-005 


8.1612-005 


0.00 


1 


115.000 


1.6670-003 


1.7671-004 


1.7670-004 


0.01 


1 


120.000 


3.4991-003 


3.5556-004 


3.5552-004 


0.01 


1 


125. 000 


6.8762-003 


6.7110-004 


6.7093-004 


0 .02 


1 


130.000 


1.2752-002 


1.1974-003 


1 .197 0-003 


0 .04 


1 


135.000 


2.2468-002 


2.0336-003 


2.0323-003 


0 .06 


i 


140. 000 


3.7834-002 


3.3064-003 


3.3033-003 


0 .09 


1 


145.000 


6.1192-002 


5.1721-003 


5.1653-003 


0.13 


1 


150. 000 


9.5478-002 


7.8184-003 


7 .8043-003 


0.18 


1 


155. 000 


1.4426-001 


1 .1464-002 


1.1436-002 


0.24 


1 


160.000 


2.1176-001 


1.6358-002 


1.6308-002 


0.31 


1 


165.000 


3.0288-001 


2.2781-002 


2.2694-002 


0.38 


1 


170.000 


4.2317-001 


3.1042-002 


3.0899-002 


0.46 


1 


175.000 


5.7882-001 


4.1479-002 


4.1252-002 


0.55 


1 


130.000 


7.7662-001 


5.4457-002 


5 .411 1-002 


0.64 


1 


135.000 


1.0239+000 


7.0359-002 


6.9660-002 


0,73 


1 


190.000 


1.3287+000 


8.9635-002 


8.891 1-002 


0 .81 


1 


195. 000 


1.6991+000 


1.1271-001 


1 .1171-001 


0 .89 


1 


200.000 


2.1440+000 


1.4006-001 


1 .3872-001 


0.97 


1 


205.000 


2.6726+000 


1.7222-001 


1 .7047-001 


1.03 


1 


210.000 


3.2943+000 


2.0973-001 


2 .075 0- 001 


1.03 


1 


215.003 


4.0186+000 


2.5321-001 


2.5043-001 


1.11 


1 


220.000 


4.8561+000 


3.0331-001 


2.9993-001 


1 .13 


1 


225.000 


5.6165+000 


3.6077-001 


3.5674-001 


1.13 


1 


230.000 


6.9105+000 


4.2642-001 


4.2173-001 


1.11 


1 


235.000 


8.1487+000 


5.0120-001 


4.9585-001 


1 .08 


1 


240. 000 


9.5420+000 


5.3616-001 


5.6025-001 


1.02 


1 


245. 000 


1.1102+001 


6.8262-001 


6.7626-001 


0.94 


I 


250. 000 


1.2339+001 


7.9203-001 


7.8551-001 


0.83 


1 


255.000 


1.4766+001 


9.1613-001 


9.0997-001 


0.68 


1 


250.000 


1.6395+001 


1.0572+000 


1.0522+000 


0.43 


1 


265.000 


1.9238+001 


1.2179+000 


1.2154+000 


0.21 


1 


270.000 


2.1310+001 


1.4016+000 


1 .4041+000 


-0.18 


1 


275.000 


2.4624+001 


1.6125+000 


1 .6245+000 


-0.74 


i 


230.000 


2. 7697+ 001 


1.8563+000 


1 .886 1+ 00 0 


-1.58 


1 


285. 00 0 


3.1047+001 


2.1404+000 


' 2.2047+000 


-2.91 


1 


230.000 


3.4693+001 


2.4754+000 


2.6108+000 


-5.19 



171 



Table 5. Experimental and calculated saturated vapor densities 



ID: (1) from Table 4; (10) Douslin 



SATURATED VAPOR DENSITIES, E = 0.390 

TTRP = 89.899, TCRT = 305.370, DCRT - 6.740, DGAT = 

0.21587515 -0.08522342 -0.61523457 0.25452490 



ID 


T,K 


KOL/L 


CALCO 


PCNT 


1 


90.000 


1.3863-006 


1.3863-006 


0.00 


1 


100.000 


1.3347-005 


1.3356-005 


-0.06 


1 


110.000 


8.1612-005 


8.1689-005 


-0.09 


1 


120.000 


3.5552-004 


3.5564-004 


-0.03 


1 


130.000 


1.1970-003 


1.1962-003 


0.06 


1 


140.000 


3.3033-003 


3.2989-003 


0.13 


1 


150.000 


7.8043-003 


7.7922-003 


0.16 


1 


160.000 


1.6308-002 


1.6286-002 


0.13 


1 


170.000 


3.0899-002 


3.U875-002 


0.08 


1 


180.000 


5.4111-002 


5.4107-002 


0.01 


1 


190.000 


8.8911-002 


8.8968-002 


-0.06 


1 


200.000 


1.3872-001 


1.3888-001 


-0.12 


1 


210.000 


2.0750-001 


2.0781-001 


-0.15 


1 


220.000 


2.9992-001 


3.0040-001 


-0.16 


1 


230.000 


4.2172-001 


4.2231-001 


-0.14 


1 


240.000 


5.8025-001 


5.8083-001 


-0.10 


1 


245.000 


6.7626-001 


6.7677-001 


-0.07 


10 


248.150 


7.4490-001 


7.4384-001 


0.14 


1 


250.000 


7.8551-001 


7.8586-001 


-0.04 


10 


253.150 


8.6310-001 


8.6220-001 


0.10 


10 


263.150 


1. 1530+000 


1.1516+000 


0.12 


10 


273.150 


1.5370+000 


1.5357+000 


0.09 


10 


283.150 


2.0670+000 


2.0669+000 


0.00 


10 


293.150 


2.8800+000 


2.8748+000 


0.18 


10 


298.150 


3.5020+000 


3.5051+000 


-0.09 


10 


302.150 


4.3070+000 


4.3068+000 


0.01 


10 


303.150 


4.6040+000 


4.6122+000 


-0.18 


10 


304.150 


5.0350+000 


5.0298+000 


0.10 



NP = 28, RMSPCT = 0.107 



1.35114-006 

0.15177230 



172 



Table 6. Experimental and calculated liquid saturation temperatures 



d 

X! 

O 

<M 



w 

3 

0 

Q 



ri fi 
k =3 



m . — . 
<D 

Ll i-H 

O — 
X! •- 
U X 

o o 

tc CO 

•- 1 O 

.2 w 



Q 



7 

rt 

• 

tO 

H 



a 

o 

C_l 



<o 

<o 



M 

CL 

Cl 

h- 

o 



o> 

in 

tO 

m 

o 

in 

ft 

CD 



I 



in 

cm 

7 

7 

K 

rt 

ro 

7 

• 

in 



ft 

ro 



in 



& 

u 



PO 

'H 

tO 

tH 

in 

o 

tO 

to 

CO 

• 

7 

I 



O 

O' o m 

eo O' CM 

• n co 

O' CO »-l 

«o ^ in 

in ro 
M 7 -H 

CVJ cr 
Q. N- O 

QC • » 

*- WO 
►— CM 



a 


o 


o 


o 


© 


o 


4=4 


4*1 


H 








v-4 






4°4 


4-4 


4-4 




4*41 




▼=4 


4=4 






4-4 




<3=1 




<4-4 




<9=4 






a 


o 


o 


o 


© 


o 


O 


o 


O 


O 


© 


© 


O 


O 


© 


© 


© 


© 


© 


© 


o 


o 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


o 


© 


V 


o 


o 


© 


o 


o 


© 


O 


© 


© 


O 


© 


o 


© 


© 


O 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


i n 


♦ 


4* 


+ 


4- 








♦ 


♦ 


4- 


♦ 


4 


4- 


4» 


4- 


4- 


♦ 


4- 


4» 


4 


♦ 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


h- 


»-i fo 


CM 


j’ -h in 


po 


CM 


in 


tO CM 7 


in x> 


H 


PO 


© 


in 


PO 


PO 


® 


H 


PO 


CM 


to 


O' 


© 


wH 


in 


t© 


te 


w=* 


O' 


D 


CM O' 


CM 


CM 


PO 




in 


in 


p-. 


CM 


O 


o 


7 


PO 


t4 O' 


® 


■s 


® 


ro 


to 


© 


(VI 


J- 


in 


tO 


r- 


K 


N- 


ft. 


p*. 


n- 


J- 




CO 


in 


CM 


CM 


4=4 


© 


CM 


7 


in 


lO N CD 


O' 


o 


4-4 




CM 


PO 


J- 


in 


m 


OJ 


N- 


it 


p^ 


K 


p^. 




ft- 






pt. 


ft- 




































J> 


iM 


• 


. © 


, • 


ll* 


L» 


L* 


• 






±9 


J9 






,» 


• 




4-4 (VJ 


PO 


in 


ft 


4=4 


4-4 


4-4 


4-4 








4-4 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 




1 


1 


1 


i 


1 


i 


1 


i 


i 


i 


• 


i 


i 


1 


• 


1 


1 


S 


1 


1 


1 


1 


1 


• 


• 


1 


1 


1 


1 


1 


• 


1 


1 


1- 


o 


o 


o 


O 


CM 


CM 


^=4 


ro 


PO CM 


cm in 


4=4 


<30 


O' ® 


CM 


ft 


PO 


PO 


iD 


in 


t£> 


PO 


J- 


t© 


CM 


O 




® 


tO 




S' 


Z 


© 


o 


o 


o 


o 


o 


© 


o 


o 


4=4 


© 


O 


O 


4=4 


4-4 


CVJ 


CM 


4-4 


© 


4-4 


PO 


© 


CM 


4-4 


© 


© 


© 


© 




© 


▼H 


O 


© 


CL 


o 


o 


a 


o 


o 


a 


O 


© 


© 


O 


o 


© 


O 


O 


O 


o 


© 


© 


O 


© 


o 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 




1 








1 


• 


i 




1 






1 






i 




• 


i 


i 




1 










1 




1 


• 






i 


1 



C_> 


ft- 


it. 


*4 


to 


® 


ft. 


© 


PO 


PO 


® 


in 


j- 


▼H 


® 




O' 


CM 


PO 


O' o 


© 


j- 


CVJ 


© 


in 


© 


4H 


<7-4 


ro 


N- 


-7 


© 


•S 




in 


PO 


-3" 


PO 




o 


© 


© 


.T 


m 


«H 


▼H 


© 




m to 


PO 


to 


tu 


in 


-T 


© 


O 


CM 


© 


in 


J- 


in 


© 


CM 




ro 


4H 






v-4 


f4 




(VI 


CM 


•H 


© 


© 


® 


O' ® 


O' CM 


ro 


PO 


PO 


ft 


in 




O' « 


® 


-3- 


cr> in 


IN* 


o 


a 


© 


O' 


© 


© 




j- 


PO 


OJ 


© 


ro 


ro 


ro 


ro 


%D 


(VJ 




© 


O' 


CVJ 


IT* 


ft- 


© 


© 


to 


f- 


4“$ 


tD 


C\J 


r*- 


+4 


to 


in 


in 


4H 


© 


f- 


© 


4-» 




o 


O 


o 


O' O' 


© 


ft. 


tO 


in 


in 


j- j- 


CM 


CM 


^■1 


o 


O' 


® 


ft. 


tO to 


in 


PO 


CM 


CM 






*4 




© 


© 


e> 


O' 




r^5 


ro 


PO 


CM 


CM 


CM 


(VI 


(VJ 


CM 


(VI 


(VJ 


CM 


CM 


CM 


(VJ 


CM 




4—1 


•rH 


<»H 


*rH 


4-4 


H 


4-H 


V-) 


-8-1 




4-4 




4-1 


4-4 


w4 





SC 


© 


© 


© 


© 


o 


O 


© 


O 


ro 


© 


(VJ o 


n- ® 


CM 


^4 


© 


4-4 


CM 


to 


© 


in 


© 


7 


O' 


PO 


© 


© 


© 


© 


© 


© 


© 


- •> 


in 


in 


in 


in in 


in 


in 


in 


to 


in 


tO O 


(H 


-7 


7 


® in 


4-4 vO 


10 




in 


O' 


PO 


® 


Pt 


in 


CM 




in 


fVJ 


i H 




4-4 


4-4 


4-4 


4—4 


4H 


4-4 


4-4 


<r4 


O' 




O' ft 


CT UJ 


O' 


O' 


® 


7 


in 


PO 


PO 


© 


4H 


in 


O 


7 


ft 


o 


O' 


4-4 


4-4 


O 


© 




J- 


PO 


CM 


© 


PO 


ro 


PO 


PO 


in 


PO 


N- o 


O' CM 


-7 ft- 


ft 


® 


t0 ft. 


tH 


tO 


ro 


N. 


CM 


tO 


in 


m 


O 


® 


® 


o 


4-4 




O 


<3 


O 


O' O' 


® 


N. 


10 


in 


in 


J- J- 


CM CM 


w4 


© 


O' 


® 


ft- 


<0 


to 


m ro 


CM 


CM 








•H 


© 


© 


© 


O' 




ro 


PO 


PO 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM CM 


CM CM 


CM 


CM 


4-4 


4-4 


4-4 


4-4 


4-4 


4-4 


4-4 


4-4 


4-4 


4H 


4-1 


4-4 


4-4 


4-4 


4H 


4-4 





I- 


7 tO 


PO 


PO 


® 


in 


CM 


PO 


7 


CM 


CM 


7 


a 


CM 


cm in 


*-i ft 


^4 


in 


CM 


4-4 vO 


PO 


4-4 


4-4 


<H 


© 


ro 


4=4 


PO 


© 


© 


z 


© 


© 


© 


© 


© 


o 


O 


© 


© 


4-4 


© 


o 


© 


4-4 


4=4 


4-4 


4-4 


© 


© 


© 


<H 


© 


© 


o 


© 


© 


© 


© 


© 


© 


© 


o 


© 


o 

Q- 


© 


a 


o 


o 


o 


© 


© 


© 


o 


O 


© 


o 


o 


© 


© 


O 


© 


© 


© 


© 


© 


O 


© 


© 


O 


© 


O 


© 


© 


© 


o 


© 


© 




» 








1 


1 


1 




1 






1 






1 




1 


1 


i 




i 










1 




» 


l 






1 


» 



o 


© 


© 


O 


4-4 


4-4 


4-4 


4-4 


4"4 


4-4 


<?-4 


4-4 


•H 


4-4 


<H 


4-4 


4-4 




4-i 


4-4 


4-4 


4-4 


4-4 


4-4 


4=4 


4-4 


4-4 


4-4 


4-4 


4=4 


4-4 


4-4 


4-4 


4-4 




o 


a 


© 


o 


s= 




e 


O 


O 


© 


O 


a 


© 


© 


© 


o 


e 


© 


© 


© 


© 


© 


c 


S3 


© 


© 


© 


© 


© 


© 


e 


© 


© 




o 


© 


O 


O 


O 


© 


© 


© 


a 


© 


© 


o 


© 


© 


© 


© 


© 


© 


© 


o 


O 


© 


© 


© 


© 


© 


© 


O 


© 


o 


© 


O 


© 


o 


♦ 


* 


♦ 


♦ 


♦ 


4- 


♦ 


«► 


<*■ 


♦ 


4- 


■f 




♦ 


★ 


♦ 


♦ 


* 


♦ 


+ 


♦ 


+ 


+ 




♦ 


♦ 


■*> 


★ 


♦ 


♦ 




♦ 


* 




CM 


4-4 


PO 


PO 


to 


Pt 


O 


7 


▼h 


© 


CM 


PO 


CM 


PO 


in 


O' 


m 


CM 


PO 


in 


O' 


PO 


7 


® 


® 


e 


<0 


in 


(VJ 


ft 


PO 


PO 


m 




O' 


BO 


4-4 


tO 


tO 


PO 


in 


41 


O' 


in 


ft 


4-4 


10 


PO 


PO 


« 


« 


7 


® 


7 


O' 


PO 


PO 




® 


O' 


m 


4-4 


o 


*r4 


© 


PO 


O' 




© 


in 


<H 


O' 


O 


tO 


7 


® 


in 


ro 


7 


tO 


PO 


© 


ft 


O' 


7 


in 


7 




7 


CM 


4=4 


4-4 


■H 


4-4 


7 


ft 


CM 


CM 


CM 


<H 


ro 




7 


O' 


7 


7 


ro 


7 


PO 


© 


in 


ft 


© 


7 


O 


7 


ft 


© 


in 


O' 


7 


® 


© 


CM 


4-4 


PO 


m 


ft 


ft 


ft 


O' 


o 


© 


PO 


to 




ft 


4-4 


in 


o 


4-4 


CM 


PO 


7 


7 


7 


m 


in 


tO 


to 


tO 


ft 


pt 


it 


e 


® 


O' 


O' 


© 


O 


© 


© 


© 


O 


© 


4-4 


4-4 


4-4 


•7=1 




® 


O' 


O' 


4-4 


4H 


4-4 


4-4 


4-4 


4-4 


4-4 


4H 


4-4 


4-4 


4-4 


^4 


4-4 


4-4 


^4 


4-4 


4-4 


4-4 


4-4 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CVJ 


CVJ 


CM 


(VJ 



-1 


O 


© 


O 


*4 


4-4 


<w4 


4-4 


4-4 


^4 


4=4 


4>4 


^■4 


4-4 


4-4 


4-4 


4H 


tH 


4-4 


4-4 


4=5 


v*1 


r4 


4-4 


<4«4 


4-4 


4-4 


4-4 


4H 


4-4 


4-4 


4-4 


4-4 


<H 


V 


© 


© 


a 


o 


CJ 


© 


s 


C3 


© 


B 


© 


© 


o 


© 


© 


o 


B 


o 


© 


© 


o 


© 


© 


a 


o 


© 


© 


© 


© 


© 


© 


o 


© 




o 


© 


© 


e 


© 


© 


o 


o 


© 


© 


o 


© 


© 


© 


© 


© 


B 


O 


© 


© 


B 


© 


® 


G 


o 


© 


s 


© 


© 


© 


O 


© 


© 


o 


♦ 




<4* 


♦ 


♦ 


4* 


+ 


♦ 


♦ 


4> 






+ 


+ 


4> 


■f 


♦ 


♦ 




♦ 


♦ 




4* 


♦ 


♦ 


♦ 




4= 


♦ 




♦ 


♦ 


«♦= 


r 


© 


© 


© 


© 


© 


© 


© 


& 


o 


© 


© 


© 


© 


© 


& 


© 


© 


© 


© 


© 


ro 


© 


CM 


® 


ft 


^4 


« 


m 


to 


ft 


t© 


O 


7 




G 


© 




O' 


ft 




CM 


O' 


7 


PO 


© 


m 


ft 


PO 


7 


in 


O' 


<w-4 


to 


PO 


n. 


tO 


VJ0 


CM 


© 


it 


tO 


4-1 


7 


7 


tO 


CM 


O 




ft. 


4*4 


7 


O' 


O' 


in 


4- 


O 


in 


in 


in 


in 


n 


N 


in 


CM 


CM 


7 


7 


CM 


CM 


CM 


CM 


CM 


CM 


^4 


7 


It 


4-4 


CM 


CM 




PO 




PO 


© 


7 


7 


CM 


7 


PO 


© 


in 


ft 


® 


7 


O 


7 


ft 


4=4 


in 


O' 


7 


® 


e? 


CM 




PO 


in 


ft 


ft 


ft 


O' 


© 


© 


PO 


to 




ft 


CM 


in 


© 


4-4 


CM 


fO 


7 


7 


7 


in 


in 


to 


tO 


tO 


ft 


ft 


ft 


® 


« 


O' 


O' 


© 


© 


© 


© 


© 


© 


© 


H 


4^ 




<^>4 




® 


O' 


O' 


4-4 


v4 


4-4 


4-4 


4-4 


4-4 


4-5 


4-4 


4-4 


4-4 


«H 


4^ 


4-4 


4-4 


4-4 


^r4 


<H 


4-1 


4“1 


CM 


CM 


CM 


CM 


CM 


CM 


fM 


CM 


CM 


CM 


PM 



a 


© 


© 


o 


© 


o 


© 


© 


0 

5 


0 

5 

5 


5 

5 

5 

5 

5 

5 

5 

5 

2 


5 

3 


PO 


PO 


ro 


OJ 


tj- 


PO 


-3* 


(VI 






H4 




r4 


4-4 


H 


4-4 


4-3 


4-4 


4-H 


4-4 


4-4 


4=4 


4-4 


4=4 


4-4 


4-4 


H 


4-4 


4-4 


4^ 


4-4 


4-4 



rn 

fr> 

II 

IL 

Z 



173 



OlMRHSPCT = 0.062, TSRHSPCT = 0,127 



Table 7. Experimental and calculated vapor saturation temperatures 






4 CM 8 

ro a.) 
• cr cr» 

vo 4 ro 

8 a 

H (CK 

cr ro 

h- o 8 

cr o ® 

o • • 

O n. 



CD 

8 CM r«. 

• CM 8 

▼h ro «o 

cvi 4 CD 

B 4 

II 8 O' 

cr o' 

a cm 4 

O' N- 4 

►— • • 

Q O •r-l 

i ro 

► i 

CD 

N- 

ro 4 oo 

• co N 

in cm 

o cr oo 

ro 8 cm 

II U> N 

.-I O 
CD •*-( 

tt • • 

O CD -H 

V- CM 



o 


8 


in 


4 


4 


ro 


ro 


ro 


CM 


CM 


CM 


CM 


CM 


CM 


*4 


*4 




▼H 






▼H 






▼■< 


© 


o 


a 


© 


O 


a 


o 


O 


o 


o 


o 


O 


e 


IS 


o 


G 


8 


o 


O 


e 


o 


O 


e 


CD 


O 


O 


o 


o 


o 


o 


o 


o 


o 


O 


M 


o 


o 


s 


© 


o 


O 


o 


o 


o 


o 


o 


o 


o 


CD 


o 


o 


o 


CD 


o 


o 


CD 


© 


O 


© 


o 


© 


o 


O 


in 


4 


♦ 


4 


♦ 


4 


♦ 


4 


4 




4 


♦ 


4 


4 


♦ 


4- 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


K 


8 


in 


s. 


▼H 


in 


ro 


ro 


V© 


in 


ro 


4 


CO 




m 


CM 


4 




K 


m 


4 1 


8 


O' 


in 


CM 


ro 


K 


vO 


ro 


a 


ro 


CM 


4 




ro 


4 




8 


ro 


CM 


CD 


o 


in 


O' 


® 


in 


O' 


© 


O 


8 


CM 


ro 


8 


o 


in 


4 


CM 




CO 




in 


▼H 


in 


CM 


8 


O' 


4- 


in 


4 


fs. 


CM 


ro 


w4 


in 


CO 


in 


ro 


O' 


G 


CM 


in 


8 


in 


V© 


CD 


O' 














ro 
















































CVJ 


ro 


r^ 


2 

7 


▼H 


«o 


in 


ro 


CM 


▼H 


▼H 


9 

7 

5 


4 


4 4 


ro 


ro 


CM 




O' 8 


ro 


CM 


t-4 



1*- 


CD 


+4 


CM 


CM 


▼■3 


▼M 


CM 


CM 




a 


CM 


CM CM 


o 




CM 


CM 


«H CM 




CM 


*4 




CD 


o 




*4 


o 


z 


O 


© 


© 


CD 


O 


O 


o 


O 


O 


e 


o 


B 


CD 


o 


o 


O 


o 


o 


O 


CD 


CD 


© 


O 


o 


o 


o 


O 


o 


CL 


CD 


© 


O 


O 


O 


O 


CD 


© 


CD 


o 


o 


o 


o 


CD 


o 


o 


o 


O 


CD 


o 


o 


o 


o 


o 


o 


G 


o 


o 






i 


1 


i 


1 










1 


» 


1 


1 


• 








1 




1 


1 


1 




I 




» 




1 



o 


o 


O' 


4 


in 


BO 


4 


in 


CM 


® 


r» 


U' 


O' CD 


O' CM CD 


*4 


CM 


▼H 


V© 


j- 


O' 


CM 


V© 


V© 


ro 


-T CM 


-i 


o 


O 


CM 


CM O 


® 


V© 


V© 


IM. 


S3 


ro 


4 


4 


o 


n- in 


in 


n- 


V© 


V© 


O' 


t£> 


CM 


in 


ro r*. 


ro 


in 




€3 


o 


CD 


o 


CTJ 


O' 


O' 


O' 


O' 


CD 


o 


O 


o 


© 


O' O' 


O' 


O' 


fH 










fH 


iH 


*4 


*4 




© 


O 


O 


O 


© 


O' 


O' 


O' 


O' 


CD 


G 


CD 


o 


CD 


o' <r* 


4- 


2D 


w 


PO 


ro 


ro 


ro 


ro 


ou 


CM 


ro 


•T 




O' 


8 


*4 


CM ro 


ro 


4- 


m 


V© 


ao 


S' 


O 


*4 


CM cm ro 


4- 


4 


J- 


in 


V© 


K 


® O' O' 


8 


8 


8 






■*4 


▼H 




▼H 


▼H 


*4 


*-4 


*4 


*4 


▼H 


CM 


CM 


CM 


CM CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 





CD 


O 


O 


O 


o 


CD 


O 


O 


O 


CD 


CD 


O 


o 


CD 


CD 


CD 


CD 


CD 


G 


CD 


O 


o 


CD 


O CD 


CD 


CD 






CD 


o 


8 


a 


8 


B 


8 


8 


8 


8 


8 


8 


e 


8 


O 


8 


8 


in 


8 


in 


in in in 


in in 


in 


in 


in 


1- 


o 


CD 


o 


O 


o 


o 


o 


o 


o 


o 


o 


8 


o 


8 


o 


o 


8 


▼H 


o 






4H 


'C-* 


tH H 






*4 




o 


o 


o 


o 


o 


8 


o 


o 


8 


CD 


8 


o 


o 


CD 


8 


8 


m 




o 


ro 


ro 


ro 


ro 


ro co 


CM 


ro 






cr 


o 


•H 


cm ro 


J- 


in 


l© K 


to 


8 


o 


tH 


CM 


ro 


J- 




J” in 


m 


V© 




8 


8 8 


8 


e 


o 






▼H 


*4 




*4 






w4 




▼H 




CM 


CM 


CM 


CM 


CM 


CM 


CM CM 


CM 


CM 


CM 


CM 


CM CM 


ro 


ro 


ro 



K- 


o 


CO 


8 


ro 


8 


in 


« 


V© 


ro 




v© 


w4 


in 


ro 


8 v© 


in 




CM 


in 


ro 




8 


CM 


V© 


in 


CM 


CM 


z 


CD 


*4 


ro 


ro 


CD 




CM 


CM 


*4 


8 


*4 


CM 




o 


8 




*4 


8 


*4 


O 






o 


CD 


O 






8 


o 

a 


CD 


O 


CD 


CD 


CD 


O 


o 


CD 


CD 


o 


CD 


o 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


O 


o 


CD 














» 


1 


* 


» 












I 


l 


\ 




• 








I 




I 




t 





o 


VU 


in 


in 


-T 


ro 


ro 


ro 


CM 


CM 


CM 


CM 


rl 


▼H 


▼-4 










*4 


*4 


8 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


_j 


8 


a 


CD 


8 


e 


o 


8 


8 


8 


8 


8 


8 


O 


8 


e 


O 


8 


8 


8 


CD 


8 


CD 


o 


e 


8 


CD 


O 


8 


«x 


CD 


CD 


CD 


o 


CD 


o 


CD 


CD 


CD 


o 


CD 


o 


CD 


o 


o 


o 


CD 


8 


o 


CD 


o 


CD 


o 


CD 


a 


O 


CD 


CD 


o 


• 


i 


» 


1 


i 


1 


i 


i 


i 


I 


• 


1 


» 


1 


1 


1 


i 


1 


1 


i 


4 


4 


4 


4 


4 


4 


4 


4 




*4 


*4 


r- 


in 


8 


in 


V© 


j- 




CM 


H 


J- 


CM 


8 


•4- 


ro 


ro 


J- 


8 


® 


8 


8 


CM 


8 


8 


CM 


ro 


CM 




ro 


ro 




in 


CO 


ro 


iH 


8 


ao 




8 


ro 


® 


CM 




8 


n- 


8 




O 


8 


CM 


CO 


ro 


CM 


h- 


8 


8 




v© 


CM 


8 


ro 


in 


ao 


V© 


in 


ro 


8 


8 


J- 




ao 


r< 


H 


CM 


J- 


j- 


r^. 


▼H 


8 


ao 


8 


J- 


CD 


8 






oo 


ro 


CM 


J- 


8 


CD 


CM 


ro 


8 


CD 


N- 


CO 


r^ 


8 


CM 




K 




8 


CM 


8 


ro 


8 


N- 


CD 


CD 


CD 


ro 




ro 


CO 




m 


tH 


ro 


CD 


i© 


CD 


j- 


8 


ro 


o 


O' 


CM 


ao 


r- 


O’ 


ao 


8 


r4 


8 


O 


CO 


8 


ro 


8 


CD 




*4 


*4 


oo 


ro 


*4 


ro 


n- 


*4 


ro 


8 


ao 


*4 


CM 


CM 


J- 


8 


8 


n- 


r^ 


CO 


n4 


r4 


CM 


CM 


ro 




J- 


8 



* 




-i 


8 


8 


8 


•4- 


ro 


ro 


ro 


CM 


CM 


CM 


CM 


^■4 




H 


■H 




*4 


H 


▼H 




o 


o 


O 


CD 


O 


8 


CD 


CD 


8 






8 


CD 


O 


o 


o 


a 


O 


O 


8 


8 


8 


8 


8 


8 


8 


8 


o 


8 


o 


8 


8 


8 


8 


o 


8 


CD 


O 


8 


8 


8 


_i 


G 


o 


o 


o 


o 


o 


o 


8 


O 


8 


8 


O 


8 


8 


8 


a 


o 


8 


o 


8 


8 


O 


8 


8 


a 


CD 


o 


8 


® 


r- 8 


o 


i 


1 


1 


1 


| 


» 


i 


1 


1 


• 


1 


1 


1 


1 


1 


i 


1 


1 


» 


1 


4 


4 


4 


4 


4 


4 


4 


4 


t 


*H 8 


X 


CM 


ro 


N. 


4- 


8 


« 


a 


*4 


K 


8 


4- 


•H 


a 


8 


8 


8 


CM 


8 


8 


a 


8 


8 


8 


o 


a 


O 


8 


o 


8 


8 K 




ro 


N- 




CM 


8 


CM 


ro 


to 


® 


•H 




CM 


o 


CM 


CM 


4- 


8 


CD 


o 


o 


8 


o 


CD 


CD 


o 


8 


o 


CD 


® 


8 CM 




8 


J- 


wi 


8 


8 


ro 


4- 


8 


8 






N- 


8 


8 


r^ 


CM 


CM 


8 


8 


w4 


CO 


K- 


r^ 


o 


CM 


r- 


4 


8 




*-l 8 




« 


ro 


8 


8 


8 


CD 


8 


ro 


® 


^4 


8 


« 


N- 


8 




8 


8 


4- 


8 


ro 


8 


ro 


8 


® 


e 


8 


8 


ro 


II 


® J- 




ro 


ro 




8 




ro 


® 


8 


CD 


4 


® 


ro 


CD 


8 


CM 


to 




4- 


® 


8 




8 


CD 


CD 


8 


ro 


8 


O 




8 ro 




























































a 


® N- 




H 




® 


ro 




ro 


n. 


rH 


ro 


8 


® 


H 


CM 


CM 


4 


8 


8 




rw 


® 




▼HI 


CM 


CM 


ro 


4- 


4 


8 



cr • • 

I— CD ec 

*- I 



II 



CJ ▼H f— 4 4 



r<HHQTHOOOOCIDOOO 









174 



28, DNRMSPCT = 0.162, TSRMSPCT = 0.014 



Table 8. Experimental and calculated second virial coefficients 



ID: (3) Michels; (6) McGlashan; (10) Douslin 



0. 


552671 


- 1. 106244 


- 0.592947 


-O.i 


041944 


0.000000 


ID 


T »K 


T/TC 


9 4 


CALC 


DIFF 


PCNT 


6 


150.000 


0.4912 


- 5.183 


- 5.185 


0 . 002 


0.03 


6 


160.000 


0 . 5240 


-4 .48 9 


- 4.487 


- 0.001 


- 0.03 


6 


170.000 


0 . 5567 


- 3.935 


-3.933 


- 0.002 


-0.04 


o 


100.000 


0.5894 


- 3.485 


- 3.483 


- 0.001 


- 0 .04 


6 


i ao . ooo 


0 . 6222 


- 3.112 


- 3.112 


- 0.001 


- 0.02 


o 


20 G . 0 00 


G . 65 4 9 


- 2.600 


- 2.800 


0.000 


0.01 


6 


210.000 


0 . b 877 


- 2.535 


- 2.536 


0.001 


0.04 


b 


220 .000 


0.7204 


- 2.307 


-2.309 


0.002 


0.07 


6 


230.000 


0. 7532 


- 2.110 


- 2.111 


0.002 


0.09 


D 


2 4 C . 000 


0 . 7859 


- 1.937 


- 1.939 


0.002 


0.10 


b 


2 5 G . 0 0 G 


0-6187 


- 1.765 


- 1.766 


0.002 


0.10 


o 


260.000 


0 . 6514 


- 1.650 


- 1.651 


0 . 001 


0.08 


o 


270.000 


0.6842 


- 1.529 


- 1.530 


0.001 


0.05 


o 


260.300 


0.9169 


- 1.421 


- 1.421 


0.000 


0.0 0 


b 


200.000 


0 . 9497 


- 1.323 


- 1.323 


- 0.001 


- 0.06 


6 


300.000 


0.9824 


- 1. 235 


- 1.233 


- 0. 002 


- 0.14 


3 


273 . 150 


0 . 6943 


- 1.493 


- 1.494 


0.002 


0 .12 


10 


273.150 


C • 6945 


- 1.498 


- 1.494 


- 0.003 


- 0.21 


3 


296.133 


0 . 9763 


- 1 .251 


- 1.249 


- 0. 002 


- 0.14 


13 


2 96 . 15 0 


0 . 9764 


- 1.252 


- 1.249 


- 0.003 


- 0.26 


10 


303.150 


0 . 9927 


- 1.209 


- 1.207 


- 0. 002 


- 0.21 


5 


322 . 748 


1.0569 


- 1.058 


- 1.058 


- 0.000 


- 0.01 


10 . 


323 . 150 


1.0582 


- 1.056 


- 1.055 


- 0.001 


- 0.14 


3 


347. 652 


1 . 1365 


- 0 . 898 


- 0.900 


0 . 002 


0.18 


10 


346 . 150 


1 . 1401 


- 0 . 896 


- 0.897 


0.001 


0.07 


3 


372.522 


1.2199 


- 0.769 


- 0.770 


0.001 


0.13 


10 


373.150 


1 . 2220 


- 0 .766 


- 0 .767 


0.001 


0 .14 


3 


397 .644 


1.3023 


- 0.659 


- 0.659 


“ 0.000 


- 0.02 


10 


396 . 150 


1.3033 


- 0.656 


- 0.657 


0 . 001 


0.23 


3 


4 22 . 7 0 0 


1. 3642 


- 0.566 


- 0.566 


0.000 


0.02 


10 


423 . 1 5 C 


1. 3657 


- 0.563 


- 0.564 


0 . 001 


0.12 


10 


446. 150 


1 . 4676 


- 0.463 


- 0.484 


0 . 001 


0.13 


10 


473.150 


1 . 5494 


- 0.415 


-0.414 


- 0.000 


- 0.09 


1 0 


4 9 c . 15 0 


1.6313 


- 0.353 


- 0 . 353 


- 0.000 


- 0.07 


10 


523. 150 


1. 7132 


- 0.300 


- 0.299 


- 0.001 


- 0.37 


10 


546.150 


1.7950 


- 0.251 


- 0.251 


- 0.001 


- 0.30 


10 


573. 153 


1. 6769 


- 0 .208 


- 0.208 


- 0 . 001 


- 0.36 


10 


590.150 


1. 9563 


- 0 . 168 


- 0.169 


0 . 000 


0.10 


10 


623 .150 


2 . 0 4 0 o 


- 0 . 132 


- 0.134 


0.001 


1.06 



NP = 3 9. MEANPC T = 0.133 



175 



Table 8. Experimental and calculated second ririal coefficients (Continued) 



ID: 



(1) Eucken; (2) Lambert; (4) Hoover; (5) Pope; (8) Gunn* 
Dymond / Smith . 



(9) Ham ann via 



10 


T »K 


T/TC 


3 * 


CALC 


0 IFF 


PCNT 


1 


230.039 


0.6549 


- 3 .053 


- 2.800 


- 0.253 


- 9.03 


2 


2 013. 0 00 


0.6549 


— o . 060 


- 2.800 


- 0 . 260 


- 9.27 


5 


2 09. 5 3 ** 


0.6862 


- 2.465 


- 2.547 


0.063 


2.46 


1 


210.030 


0.6877 


- 2.763 


- 2.536 


- 0 . 227 


- 8.97 


2 


210.000 


0.6877 


- 2.763 


- 2.536 


- 0. 227 


- 8.97 


4 


215.030 


0.7041 


- 2.296 


- 2.418 


0.123 


5.07 


1 


220 .030 


0.7204 


- 2.494 


- 2.309 


- 0 . 185 


- 8.02 


2 


220 .000 


0 . 720 + 


- 2.528 


- 2.309 


- 0.219 


- 9.48 


1 


230.000 


0. 7532 


- 2.244 


- 2.111 


- 0 . 133 


- 6.30 


2 


230 . 00 G 


0.7532 


- 2.298 


- 2.111 


-0 . 187 


- 8.85 


5 


236.759 


0.7819 


- 1.935 


- 1.959 


0 . 024 


1.24 


1 


2 h 0 .000 


0.7859 


- 2.056 


- 1.939 


- 0.117 


- 6.03 


2 


240.000 


0 .785 9 


- 2.076 


- 1.939 


- 0.137 


-7 .07 


4 


240 . 0 30 


0.7859 


- 1.864 


- 1.939 


0 . 075 


3.88 


1 


250.030 


0.8187 


- 1.887 


- 1.786 


- 0.101 


- 5.64 


2 


250.000 


0,8187 


- 1.907 


- 1.786 


- 0.121 


- 6.77 


5 


254.307 


0.6344 


- 1.700 


- 1.719 


0 . 019 


1.11 


1 


260. 000 


0 . 6514 


- 1.725 


- 1.651 


- 0 . 074 


- 4.51 


2 


2 o C . 030 


0.8514 


- 1.752 


- 1.651 


- 0 . 101 


- 6.14 


1 


270 . 000 


0.6842 


- 1 .584 


- 1.530 


- 0.054 


- 3.53 


2 


270 .030 


0 . 6842 


- 1.618 


- 1.530 


- 0.088 


- 5.73 


4 


273. 150 


0. 6945 


- 1.506 


- 1.494 


- 0.011 


- 0.76 


h 


273.150 


0 . 6945 


- 1.479 


- 1.494 


0 .016 


1.06 


3 


273. 230 


0 . 6947 


- 1.498 


- 1.494 


- 0.004 


-0 .25 


i 


260 . 030 


0.9169 


- 1.442 


- 1.421 


- 0.021 


- 1.50 


2 


260 . 30 


0.9169 


- 1.483 


- 1.421 


- 0 . 062 


- 4.35 


2 


2 30 . .30 


, 0.9497 


- 1.382 


- 1.323 


- 0.059 


-4 •‘♦7 


6 


' 296.230 


0. 9765 


- 1.260 


- 1.249 


- 0.011 


- 0.89 


2 


300.000 


0 . 9824 


- 1.281 


- 1.233 


- 0 . 047 


- 3.85 


5 


306. 062 


1.0023 


- 1.181 


- 1.163 


0 . 002 


0.13 


0 


310 . 940 


1.0182 


- 1.111 


- 1.144 


0 . 033 


2.87 


3 


323.200 


1.0584 


- 1 .062 


- 1.054 


- 0.007 


-0 .68 


9 


344.270 


1.1274 


- 0.913 


- 0.920 


0.006 


0.68 


9 


377.630 


1.2365 


- 0.741 


- 0.746 


0 . 004 


0.60 


•3 


377.600 


1. 2365 


- 0.737 


- 0.746 


0.009 


1.14 


6 


410. 300 


1 . 3456 


- 0.604 


- 0.608 


0 .004 


0.67 


9 


410 . 9+0 


1.3457 


- 0 .609 


- 0.608 


- 0.001 


- 0.24 


9 


444.270 


1.4549 


- 0.500 


- 0.496 


- 0.004 


-G .91 


3 


444.300 


1.4553 


- 0.499 


- 0.496 


- 0 . 003 


- 0.65 


9 


477 . 63 G 


1. 5640 


- 0.404 


- 0.403 


- 0.001 


- 0.27 < 


3 


4 7 7 . 6 3 0 


1.5640 


- 0.415 


- 0.403 


- 0.013 


- 3.11 


0 


510 . 930 


1.6731 


- 0 . 344 


- 0.325 


- 0.019 


- 5.92 


9 


510 . 940 


1. 6732 


- 0.319 


- 0.324 


0 .005 


1.53 



176 



Table 9. Experimental and calculated third virial coefficients 



ID: (7) Chueh; (10) Bouslin; (4) Hoover; (5) Pope 



217 


. 8 0 0 0 


. 2 1 * 42 26 G . 


832S 29 


0.534875 


0.000000 


10 


r,K 


T/TC2T 


C* 


CALCD 


01 FF 


7 


2 1 G .000 


0 .6677 


-0 .241 


“0.237 


-0.004 


7 


220.000 


0 .7234 


G .053 


0.053 


0.000 


7 


230.000 


0 .7532 


C . 239 


0.233 


0.002 


7 


240.000 


0.7853 


C . 353 


0.352 


0 .001 


7 


250.000 


0.8137 


0.419 


0.421 


-0.002 


7 


260.030 


0 .8514 


C.454 


0.460 


“0.005 


10 


273 .130 


0.8945 


C . 471 


0.480 


"0.010 


10 


296.150 


0 . 9764 


C . 482 


0.471 


0.011 


10 


303 . 150 


0.3927 


0.472 


0.465 


0.007 


10 


323 .150 


1 . 0532 


0.43 8 


0.436 


0.0 03 


10 


3 h6 . 15 3 


1.1401 


0 . 393 


0.395 


“0.001 


10 


373.150 


1 .2220 


C . 351 


0.355 


-0.004 


10 


336.150 


1.3036 


0.316 


0.319 


“0.003 


10 


423 . 150 


1.3857 


C .284 


0.238 


-0.004 


1 0 


448 . 130 


1 .4676 


C . 258 


0.261 


-0.003 


10 


473. 150 


1.5494 


C . 24 0 


0.2 33 


0.002 


10 


4 96. 15 C 


1.6313 


0 . 220 


0.218 


0.002 


10 


523 . 150 


1.7132 


C .204 


0.201 


0.003 


10 


546. 150 


1 . 7950 


0 .188 


0.186 


0.002 


1 0 


573.150 


1 .67j9 


C. 175 


0.173 


0.002 


10 


536.150 


1.9536 


0 . 161 


0.162 


-0.001 


10 


623 . 150 


2.040c 


0 .149 


0.151 


-0.003 



NP = 22, HEANDIFF = 0.00 3 



Iu 


T , K 


T / T C^T 


C* 


CALCD 


DIFF 


5 


209.534 


0 .6862 


-2.667 


-0.254 


-2.412 


4 


215.000 


0 . 7041 


-3.230 


-0.076 


-3.154 


.> 


236.769 


0 .7ol9 


0.168 


0.341 


“0.173 


u 


240.030 


0 . 7659 


-0.117 


0.352 


-0.469 


5 


254 . 307 


0 .8344 


0 . 386 


0.443 


-0.056 


0 


273.150 


0.8945 


C . 471 


0.480 


-0.010 


4 


273 . 150 


0.6945 


C . 482 


0.480 


0.002 


4 


273. 150 


0 .8945 


0.517 


0 . 4 8 0 


0.036 


* 


296 .136 


0 .97o3 


G . 488 


0.471 


0.017 


5 


306 . 062 


1.0023 


C .456 


0.461 


-0.006 


4 


322. 746 


1 . 05o9 


0 . 439 


0.436 


0.003 


4 


347. 652 


1.1395 


0 . 390 


0.395 


-0.006 


*4 


372 . 522 


1.2199 


G . 350 


0.356 


“0.006 


4 


3 97 . 8 4** 


1 .3026 


0 . 318 


0.320 


-0.002 


4 


422 . 7 .30 


1 .3642 


0 . 290 


0.269 


0.001 



I 



177 



Table 11. Coefficients of the equation of state 



DTRP = 21.6800, TTRP = 89. 

OCRT = 6.7400, T CRT = 305. 

AL = 2.00, BE = 1.00, EP = 

1.848167996 1.569704511 

-1.042842462 0.224978299 



MOL/L 


TSAT 


THETA 


0.5 


235.219 


203.322 


1.0 


258.239 


230.548 


1.5 


272.349 


249.833 


2.0 


282.050 


264.599 


2.5 


289.067 


276.149 


3.0 


294.268 


285.179 


3.5 


298.122 


292.103 


4.0 


300.905 


297.215 


4.5 


302.825 


300.790 


5.0 


304.083 


303.124 


5.5 


304.868 


304.520 


6.0 


305.290 


305.215 


6.5 


305.370 


305.367 


7.0 


305.370 


305.367 


7.5 


305.339 


305.258 


8.0 


305.101 


304.735 


8.5 


304.546 


303.552 


9. 0 


303.623 


301.528 


9.5 


302.281 


298.493 


10.0 


300.467 


294.288 


10.5 


298.130 


288.775 


11. 0 


295.227 


281.851 


11.5 


291.719 


273.446 


12.0 


287.576 


263.540 


12.5 


282.779 


252.156 


13.0 


277.314 


239.372 


13.5 


271.175 


225.313 


14.0 


264.365 


210.151 


14.5 


256.890 


194.102 


15.0 


248.763 


177.416 


15.5 


240.000 


160.367 


16.0 


230.619 


143.243 


16.5 


220.643 


126.336 


17.0 


210.093 


109.923 


17.5 


198.992 


94.264 


18.0 


187.364 


79.584 


18.5 


175.236 


66.069 


19.0 


162.640 


53.856 


19.5 


149.619 


43.037 


20.0 


136.230 


33.650 


20.5 


122.556 


25.688 


21 . 0 


108.713 


19.098 


21.5 


94.854 


13.788 


22.0 


81.182 


9.635 


22.5 


67.940 


6.494 


23.0 


55.403 


4.205 



PTRP = 0.000010099 

PORT = 48.755014373 



5.560186452 



PSAT 


B 


C 


.315 


1.88 7 


-1.754 


.335 


1.932 


-1.540 


.40 7 


1.983 


-1.340 


.421 


2.040 


-1.152 


.440 


2.102 


-0.978 


.565 


2.170 


-0.817 


.868 


2.243 


-0.668 


.397 


2.321 


-0.532 


.220 


2.404 


-0.408 


.454 


2.491 


-0.296 


.242 


2.583 


-0.197 


.672 


2.678 


-0.109 


.755 


2.777 


-0.832 


.755 


2.880 


0.032 


.723 


2.985 


0.686 


.478 


3.094 


0.128 


.916 


3.204 


0.159 


.998 


3.317 


0.180 


• 696 


3.432 


0.190 


.990 


3.548 


0.189 


.875 


3.665 


0.178 


.366 


3.783 


0.157 


.497 


3.902 


0.126 


.323 


4.021 


0.886 


.915 


4.140 


0.8 35 


.358 


4.260 


-0.624 


.746 


4.379 


-0.093 


. 179 


4.498 


-0.171 


.752 


4.616 


-0.258 


.556 


4.734 


-0.354 


.668 


4. 851 


-0.458 


.149 


4.967 


-0.571 


. 038 


5.082 


-0.692 


. 351 


5.196 


-0.821 


. 075 


5.309 


-0.958 


.176 


5.420 


-1.102 


.595 


5.530 


-1.254 


.260 


5.639 


-1.414 


.094 


5.747 


-1.580 


. 026 


5.853 


-1.754 


.005 


5.957 


-1.935 


. 001 


6.060 


-2.122 


• 000 


6.162 


-2.316 


• 000 


6.262 


-2.516 


. 000 


6.361 


-2.722 


.000 


6.458 


-2.934 



899, 

370, 

0.50 

8 

16 

23 

29 

34 

36 

41 

44 

46 

47 

48 

48 

48 

48 

48 

48 

47 

46 

45 

43 

41 

39 

36 

33 

29 

26 

22 

19 

15 

12 

9 

7 

5 

3 

2 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 



178 



Table 12. Experimental and calculated P-p-T data 



The following pages compare experimental P-p-T (compressibility) 
data with densities and pressures computed by the equation of state (5). 
The first column identifies sources of the data (as in Table 10): 

ID Authors 

2 Virial equation (4). 

8 Reamer et al [57]. 

9 Michels et al [47]. 

10 Douslin and Harrison [14]. 

100 + A. K. Pal, via Pope [54]. 

The equation of state was adjusted only to data of ID = 2, 9, 10, 
and 1300 + . Remaining data validate our extrapolation to higher pres- 
sures. Density deviations should be ignored near the critical point, 
and pressure deviations should be ignored for compressed liquid at 
low temperatures for reasons given in the text. 



179 



Table 12. Experimental and calculated P-p-T data 



EQUATION OF STATE VS, PVT DATA 



ID 


T , K 


MOL/t 


CAICO 


C ,PCT 


P, BAR 


CAUCD 


P, PCT 


2 


230.000 


0.4000 


0.4003 


-0.07 


6.693 


6.689 


0.06 


2 


240.000 


0.4000 


0.4003 


-0. 07 


7.070 


7.066 


0.06 


2 


250.000 


0.4000 


0.4002 


-0.06 


7.442 


7.438 


0.05 


2 


260.000 


0.4000 


0.4002 


-0. 06 


7.811 


7.807 


0.05 


2 


270.000 


0.4000 


0.4002 


-0.06 


8.177 


8.173 


0.05 


2 


200.000 


0.4000 


0.4002 


-0. 05 


8.541 


8.537 


0.05 


2 


290.000 


0.4000 


0.4002 


-0.05 


8.902 


8.898 


0.05 


2 


300.000 


0.4000 


0.4002 


-0.05 


9. 262 


9.258 


0.04 


2 


310.000 


0.4000 


0.4002 


-0.04 


9.621 


9.617 


0.04 


2 


320.000 


0.4000 


0.4002 


-0, 04 


9.978 


9.974 


0.04 


2 


330.000 


0.4000 


0.4002 


-0. 04 


10.334 


10.330 


0.04 


2 


340.000 


0.4000 


0.4002 


-0.04 


10.689 


10.686 


0.04 


2 


350.000 


0.4000 


0.4001 


-0.04 


11.044 


11.140 


0.03 


2 


360.000 


0.4000 


0.4001 


-0.03 


11.397 


11.393 


0.0 3 


2 


370.000 


0.4000 


0.4001 


-0.03 


11.750 


11.746 


0.03 


2 


380.000 


0.4000 


0.4001 


-0.03 


12.102 


12.899 


0.03 


2 


390.000 


0.4000 


0.4001 


-0.03 


12.454 


12.451 


0.0 3 


2 


400.000 


0.4000 


0.4001 


-0.03 


12.805 


12.802 


0.03 


2 


410.000 


0.4000 


0.4001 


-0.02 


13.156 


13.153 


0.02 


2 


420.000 


0.4000 


0.4001 


-0.02 


13.506 


13.503 


0.02 


2 


430.000 


0.4000 


0.4001 


-0.02 


13.856 


13.853 


0.02 


2 


440.000 


0.4000 


0.4001 


-0.02 


14.205 


14.203 


0.02 


2 


450.000 


0.4000 


0.4001 


-0.02 


14.555 


14.552 


0.02 


2 


460. 00 0 


0.4000 


0.4001 


-0.02 


14.904 


14.901 


0.02 


2 


470.000 


0.4000 


0.4001 


-0.02 


15.252 


15.250 


0.02 


2 


400.000 


0.4000 


0.4001 


-0.02 


15.601 


15.598 


0.02 


2 


490.000 


0.4000 


0.4001 


-0. 01 


15.949 


15.947 


0.01 


2 


500. 00 0 


0.4000 


0.4001 


-0.01 


16.297 


16.295 


0.0 1 


2 


510.000 


0.4000 


0.4001 


-0.01 


16.645 


16.643 


0.0 1 


2 


520.000 


0.4000 


0.4001 


-0.01 


16.993 


16.990 


0.01 


2 


530.000 


0.4000 


0.4001 


-0.01 


17.340 


17.338 


0.01 


2 


540.000 


0.4000 


0.4001 


-0.01 


17.687 


17.685 


0.01 


2 


550.000 


0.4000 


0.4001 


-0.01 


18. 035 


18.032 


0.01 


2 


560.000 


0.4000 


0 .4001 


-0. 01 


18. 382 


18.379 


0.0 1 


2 


570.000 


0.4000 


0.4001 


-0.01 


18.729 


18.726 


0.01 


2 


580.000 


0.4000 


0.4001 


-0.01 


19.076 


19.073 


0.01 


2 


590.000 


0.4000 


0.4001 


-0.02 


19.423 


19.420 


0.02 


2 


600.000 


0.4000 


0.4001 


-0.02 


19.769 


19.766 


0.02 



NP = 38, ONRMSPCT = 0. 035, PMEANPC T = 0.028 



180 



Table 12. Experimental and calculated P-p-T data- - - (Continued) 

EQUATION OF STATE VS. PVT DATA 



ID 


T,K 


MOL/L 


CALCD 


C,PCT 


P,BAR 


CALCO 


P»PCT 


8 


310.928 


3.5245 


3.5650 


-1.15 


48.263 


48.071 


0.40 


8 


310.928 


4.5021 


4.5925 


-2.01 


51.711 


51.498 


0.41 


8 


310.928 


5.5178 


5.6358 


-2.14 


53.434 


53.287 


0.28 


8 


310.928 


7.2697 


7.2407 


0.40 


55. 158 


55.192 


-0.06 


8 


310.928 


8.3632 


8.1814 


2.17 


56.537 


56.923 


-0.68 


8 


310.928 


8.8480 


8.7333 


1.30 


57.916 


58.294 


-0 .65 


8 


310.928 


9.1894 


9.1054 


0.91 


59.295 


59.673 


-0.64 


8 


310.928 


9.4447 


9.3856 


0.63 


60.674 


61.110 


-0.55 


8 


310.928 


9.6593 


9.6110 


0.50 


62.053 


62.385 


-0.54 


8 


310.928 


9.8423 


9.8000 


0.43 


63.432 


63.771 


-0.54 


8 


310.928 


9.9921 


9.9633 


0.29 


64.811 


65.074 


-0.41 


8 


310.928 


10.1321 


10.1072 


0.25 


66.190 


66.444 


-0.38 


8 


310.928 


10.2579 


10.2362 


0. 21 


67.569 


67.815 


-0.36 


8 


344.261 


4.9251 


4.9626 


-0.76 


75.842 


75.550 


0.39 


8 


344.261 


5.8407 


5.8663 


-0.44 


82.737 


82.542 


0 .24 


8 


344.261 


6.7517 


6.7335 


0.27 


89.632 


89.785 


-0.17 


8 


344.261 


7.5579 


7.5011 


0.75 


96.527 


97.880 


-0.57 


8 


344.261 


8.2287 


8.1557 


0.89 


103.421 


104.275 


-0.82 


8 


344.261 


8.7434 


8.6969 


0.51 


110.316 


110.943 


-0.57 


8 


344.261 


9.1754 


9.1501 


0.28 


117.211 


117.636 


-0.36 


8 


344.261 


9.5504 


9.5302 


0.21 


124. 106 


124.503 


-0.32 


8 


344.261 


9.8679 


9.8559 


0.12 


131. 000 


131.275 


-0.21 


8 


310.928 


0.5889 


0.5911 


-0.36 


13.790 


13.745 


0.32 


8 


344.261 


0.5165 


0 .5173 


-0.16 


13.790 


13.769 


0.15 


8 


377.594 


0.4620 


0.4623 


-0.07 


13.790 


13.780 


0.07 


8 


410.928 


0.4189 


0.4190 


-0.04 


13.790 


13.785 


0.04 


8 


444.261 


0.3838 


0.3839 


-0.03 


13.790 


13.785 


0.02 


8 


477.594 


0.3544 


0.3546 


-0.04 


13.790 


13.784 


0.04 


8 


510.928 


0.3295 


0.3297 


-0.07 


13.790 


13.780 


0.07 


8 


310.928 


1.3468 


1.3519 


-0.38 


27.579 


27.500 


0.25 


8 


344.261 


1.1212 


1.1222 


-0. 09 


27.579 


27.558 


0.08 


8 


377.594 


0.9762 


0.9762 


-0.00 


27.579 


27.578 


0.00 


8 


410.928 


0.8711 


0.8708 


0.03 


27.579 


27.587 


-0.02 


8 


444.261 


0.7892 


0.7893 


-0.02 


27.579 


27.574 


0.02 


8 


477.594 


0.7233 


0.7238 


-0.06 


27.579 


27.563 


0.06 


8 


510.928 


0.6684 


0.6694 


-0.15 


27.579 


27.540 


0.14 


8 


310.928 


2.4961 


2.5158 


-0.79 


41.369 


41.196 


0.42 


8 


344.261 


1.8567 


1.8601 


-0.18 


41.369 


41. 312 


0.14 


8 


377.594 


1.5546 


1.5549 


-0.02 


41.369 


41.363 


0.01 


8 


410.928 


1.3605 


1.3589 


0.12 


41.369 


41.411 


-0.10 


8 


444.261 


1.2172 


1.2168 


0.03 


41.369 


41.382 


-0.0 3 


8 


477.594 


1.1066 


1.1068 


-0.01 


41.369 


41.364 


0.01 


8 


510.928 


1.0165 


1.0180 


-0.14 


41.369 


41.312 


0.14 


8 


310.928 


7.2697 


7.2407 


0.40 


55.158 


55.192 


-0.06 


8 


344.261 


2.8018 


2.8142 


-0.44 


55.158 


55.802 


0.28 


8 


377.594 


2.2130 


2.2174 


-0.20 


55.158 


55.074 


0.15 


8 


410.928 


1.8902 


1.8895 


0. 04 


55.158 


55.175 


-0.02 


8 


444. 261 


1.6685 


1.6684 


0.00 


55.158 


55.159 


-0.0 0 


8 


477.594 


1.5040 


1.5043 


-0.03 


55.158 


55.145 


0.02 


8 


510.928 


1.3733 


1.3755 


-0.16 


55.158 


55.073 


0.15 


8 


310.928 


10.3736 


10.3532 


0. 20 


68.948 


69.201 


-0.37 


8 


344.261 


4.0959 


4.1261 


-0.74 


68.948 


68.679 


0.39 



181 






(Continued) 



Table 12. Experimental and calculate P-p-T data- - - 

EQUATION OF STATE VS. ^VT DATA 



ID 


T,K 


MOL/L 


CALCO 


C » FCT 


P $ BAR 


CALCO 


P,PCT 


8 


377,594 


2.9702 


2.9796 


-0.32 


68.948 


68.789 


0.23 


8 


410.928 


2.4628 


2.4656 


-0.12 


68.948 


68.882 


0.09 


8 


444.261 


2.1426 


2.1447 


-0.10 


68.948 


68.887 


0.05 


8 


477.594 


1.9142 


1.5163 


- 0 . 11 


68.948 


68.876 


0.10 


8 


510.928 


1.7377 


1.7417 


-0.23 


68.948 


68.798 


0.22 


8 


310.928 


11.2820 


11.3103 


-0.25 


86.184 


85.486 


0.81 


8 


344.261 


6.3137 


6.3109 


0.05 


86.164 


86.a07 


-0.03 


8 


377.594 


4.0652 


4.0858 


-0.51 


86.184 


85.885 


0.35 


3 


410.928 


3.2373 


3.2474 


-0.31 


86.184 


85.970 


0.25 


8 


444.261 


2.7645 


2.7714 


-0. 25 


86.184 


86.801 


0.21 


8 


477.594 


2.4431 


2.4490 


-0.24 


86.184 


85.996 


0.22 


3 


510.928 


2.2028 


2.2099 


-0. 32 


86.184 


85.925 


0.30 


3 


310.928 


11.8116 


11.8807 


-0.59 


103.421 


100.977 


2.36 


8 


344.261 


8.2287 


8.1557 


0.89 


103.421 


104.275 


-0.8 3 


8 


377.594 


5.2776 


5.3106 


-0.63 


103.421 


102.959 


0.45 


8 


410.928 


4.0686 


4.0863 


-0.43 


103.421 


103.867 


0.34 


8 


444.261 


3.4145 


3.4256 


-0. 33 


103.421 


103.133 


o. 2 e 


8 


477.594 


2.9861 


2.9963 


-0. 34 


103.421 


103.105 


0.31 


8 


510.928 


2.6754 


2.6862 


-0.41 


103.421 


103.831 


0.36 


3 


310.928 


12.2182 


12.2988 


-0.66 


120.658 


116.984 


3.05 


8 


344.261 


9.3676 


9.3479 


0.21 


120.658 


121.018 


-0.3 0 


8 


377.594 


6.4713 


6.4858 


-0.22 


120.658 


120.431 


0.19 


8 


410.928 


4.9220 


4.9488 


-0.54 


120.658 


120.119 


0.45 


8 


444.261 


4.0781 


4.0962 


-0.44 


120.658 


120.194 


0.36 


8 


477.594 


3.5369 


3.5520 


-0.43 


120.658 


120.193 


0.39 


8 


510.928 


3.1538 


3.1664 


-0.40 


120.658 


120.207 


0.37 


8 


310.928 


12.5479 


12.6333 


-0.68 


137.895 


133.171 


3.43 


8 


344.261 


10.1360 


10.1396 


-0. 04 


137.895 


137.802 


0.07 


8 


377.594 


7.5147 


7.4975 


0.23 


137.895 


138.216 


-0.23 


8 


410.928 


5.7575 


5.7831 


-0.44 


137.895 


137.349 


0.40 


8 


444.261 


4.7394 


4.7654 


-0.55 


137.895 


137. ai7 


0.49 


8 


477.594 


4.0884 


4.1085 


-0.49 


137.895 


137.268 


0.45 


8 


510.928 


3.6322 


3.6462 


-0.39 


137.895 


137.389 


0.37 


8 


310.928 


12.8333 


12.9143 


-0.63 


155.132 


149.886 


3.38 


8 


344.261 


10.6669 


10.7182 


-0.48 


155.132 


153.407 


1.11 


8 


377.594 


8.3540 


8.3367 


0.21 


155.132 


155.527 


-0.25 


8 


410.928 


6.5294 


6.5505 


-0. 32 


155.132 


154.632 


0.32 


8 


44^.261 


5.3796 


5.4124 


-0.61 


155.132 


154.236 


o.5e 


8 


477.594 


4.6299 


4.6564 


-0.57 


155.132 


154.288 


0.54 


8 


510.928 


4.1041 


4.1210 


-0.41 


155.132 


154.516 


0.40 


8 


310.928 


13.0738 


13.1579 


-0.64 


172.369 


166.162 


3.60 


8 


344.261 


11.0985 


11.1720 


-0.66 


172.369 


169.320 


1.77 


8 


377.594 


9.0258 


9.0201 


0. 06 


172.369 


172.531 


-0.09 


8 


410.928 


7.2289 


7.2381 


-0.13 


172.369 


172.124 


0.14 


8 


444.261 


5.9919 


6.0219 


-0.50 


172.369 


171.493 


0.51 


8 


477.594 


5.1560 


5.1860 


-0.58 


172.369 


171.370 


0.56 


8 


510.928 


4.5658 


4.5853 


-0.43 


172.369 


171.633 


0.43 


8 


310.928 


13.2869 


13.3736 


-0.65 


189.606 


182.447 


3.7 e 


8 


344.261 


11.4646 


11.5453 


-0.70 


189. 606 


185.617 


2. 1C 


8 


377.594 


9.5652 


9.5810 


-0.17 


189.606 


189.074 


0.28 


8 


410.928 


7.8461 


7 .8502 


-0.05 


189.606 


189.482 


0.07 


8 


444.261 


6.5583 


6.5860 


-0.42 


189.606 


188.723 


0.47 


8 


477.594 


5.6568 


5.6902 


-0.59 


189. 606 


188.432 


0.62 



182 



Table 12. Experimental and calculated P-p-T data- - - (Continued) 

EQUATION OF STATE VS. PVT DATA 



10 


T > K 


MOL/L 


CALCD 


0,PCT 


P, BAR 


CAICO 


P, PCT 


8 


510.928 


5.0133 


5.0344 


**0.42 


189.606 


188.781 


0.43 


8 


310.928 


13.4768 


13.5679 


-0.68 


206.843 


198.548 


4.01 


8 


344.261 


11.7810 


11.8628 


-0.70 


206.843 


202.151 


2.27 


8 


377.594 


10.0144 


10.0500 


-0.35 


206.843 


205.433 


0.68 


8 


410.928 


8.3875 


8.3906 


-0.04 


206.843 


206.735 


0.05 


8 


444.261 


7.0812 


7.1044 


-0.33 


206.843 


206.939 


0.39 


8 


477.594 


6.1325 


6.1653 


-0.53 


206.843 


205.617 


0.59 


8 


510.928 


5.4446 


5.4646 


-0. 37 


206.843 


206.924 


0.40 


8 


310.928 


13.8169 


13.9077 


-0.66 


241.316 


231.536 


4.05 


8 


344.261 


12.3150 


12.3850 


-0,57 


241.316 


236.205 


2.12 


8 


377.594 


10.7385 


10.7972 


-0.55 


241. 316 


238.239 


1.28 


8 


410.928 


9.2546 


9.2879 


-0,36 


241.316 


239.874 


0.60 


8 


444.261 


8.0043 


8.0164 


-0.15 


241.316 


240.816 


0 .21 


8 


477.594 


6.9989 


7.0249 


-0.37 


241.316 


240.204 


0.46 


6 


510.928 


6.2432 


6.2616 


-0. 29 


241.316 


240.475 


0.35 


8 


310.928 


14.1021 


14.1998 


-0.69 


275.790 


263.723 


4.38 


8 


344.261 


12.7400 


12.8070 


-0.53 


275.790 


269.878 


2.14 


8 


377.594 


11.3044 


11.3770 


-0.64 


275.790 


271.638 


1.72 


8 


410.928 


9.9483 


9.9983 


-0.50 


275.790 


273.107 


0.97 


8 


444.261 


8.7521 


8.7793 


-0.31 


275.790 


274.453 


0 .49 


8 


477.594 


7.7541 


7.7753 


-0.27 


275.790 


274.748 


0.38 


8 


510.928 


6.9554 


6.9734 


-0.26 


275.790 


274.871 


0.33 


8 


310.928 


14.3527 


14.4571 


-0.73 


310.264 


295.792 


4.66 


8 


344.261 


13.0835 


13.1626 


-0.60 


310.264 


302.128 


2.62 


8 


377.594 


11.7680 


11.8495 


-0.69 


310.264 


303.853 


2.07 


8 


410.928 


10.5117 


10.5772 


-0.62 


310.264 


306.630 


1.36 


8 


444.261 


9.3799 


9.4201 


-0.43 


310. 264 


307.927 


0.75 


8 


477.594 


8.4052 


8.4289 


-0.28 


310.264 


308.925 


0.43 


8 


510.928 


7.5930 


7.6094 


-0.22 


310.264 


309.327 


0.30 


8 


310.928 


14.5677 


14.6877 


-0.82 


344.738 


326.363 


5.33 


8 


344.261 


13.3764 


13.4709 


-0.71 


344.738 


333.679 


3.21 


8 


377.594 


12.1604 


12.2483 


-0.72 


344.738 


336.676 


2.34 


8 


410.928 


10.9866 


11.0620 


-0.69 


344.738 


338.997 


1.67 


8 


444.261 


9.9098 


9.9651 


-0.56 


344.738 


340.967 


1.09 


8 


477.594 


8.9742 


8,9992 


-0.28 


344.738 


343.124 


0,47 


8 


510.928 


8.1552 


8.1777 


-0.28 


344.738 


343.297 


0,42 


8 


310.928 


14.9359 


15.0894 


-1.03 


413,685 


385.936 


6.71 


8 


344.261 


13.8663 


13.9892 


-0.89 


413.685 


395.994 


4.28 


8 


377.594 


12.3094 


12.8982 


-0.69 


413.685 


403.217 


2.53 


8 


410.928 


11.7577 


11.8412 


-0.71 


413.685 


405.383 


2.01 


8 


444.261 


10.7824 


10.8474 


-0.60 


413.685 


407.951 


1.39 


8 


477.594 


9.9049 


9.9429 


-0. 38 


413.685 


410,568 


0.75 


8 


510.928 


9.1371 


9.1425 


-0. 06 


413.685 


413.258 


0.10 


8 


310.928 


15.2790 


15.4333 


-1.01 


482.633 


450.484 


6.66 


8 


344.261 


14.2981 


14.4173 


-0.83 


482.633 


462.241 


4.23 


8 


377.594 


13.3124 


13.4189 


-0.80 


482.633 


467.419 


3.15 


8 


410.928 


12.3491 


12.4538 


-0.85 


482.633 


469.784 


2.66 


8 


444.261 


11.4576 


11.5401 


-0.72 


482.633 


473.608 


1.87 


8 


477.594 


10.6337 


10.6943 


-0.57 


482.633 


476.512 


1.27 


8 


510.928 


9.8992 


9.9277 


-0.29 


482.633 


479.885 


0.57 


8 


31C.928 


15.5877 


15.7353 


-0.95 


551.581 


516.844 


6.30 


6 


344. 261 


14.6722 


14.7839 


-0.76 


551.581 


529.535 


4.0 0 


8 


377.594 


13.7271 


13.8549 


-0.93 


551.581 


530.226 


3.87 



183 



Table 12. Experimental and calculated 

EQUATION OF STATE VS. PVT DATA 



10 


T,K 


MOL/L 


CALCD 


C,P 


8 


410.928 


12.8373 


12.9589 


-0. 


8 


444.261 


12.0126 


12.1079 


-0. 


8 


477.594 


11.2338 


11. 3126 


-0. 


8 


510.928 


10.5290 


10.5812 


-0. 


8 


310.928 


15.8659 


16.0055 


-0. 


8 


344.261 


14.9988 


15.1058 


-0. 


8 


377.594 


14.1021 


14.2311 


-0 . 


8 


410.928 


13.2590 


13.3892 


-0. 


8 


444.261 


12.4801 


12.5883 


-0. 


8 


477.594 


11.7416 


11.8356 


-0. 


8 


510.928 


11.0763 


11.1369 


-0. 


8 


310.928 


16.1346 


16.2505 


-0. 


8 


344.261 


15.2747 


15.3933 


-0. 


8 


377.594 


14.4380 


14.5628 


*0. 


8 


410.928 


13.6362 


13.7647 


-0. 


8 


444.261 


12.8838 


13.0047 


-0. 


8 


477.594 


12.1848 


12.2880 


-0. 


8 


510.928 


11.5520 


11.6184 


-0. 



NP = 176, DNRMSPCT = 0.605, PMEANPCT = 



p-T data- - - (Continued) 



P,BAR 


CALCO 


P, PC T 


551.581 


533.862 


3.21 


551.581 


539.119 


2.26 


551.581 


542.088 


1.72 


551,581 


545.625 


1.08 


620.528 


584.101 


5.89 


620.528 


596.696 


3.84 


620.528 


595.836 


3.98 


620.528 


598.584 


3.54 


620.528 


604.863 


2.65 


620.528 


607.339 


2.13 


620.528 


612.496 


1.29 


689.476 


656.075 


4.84 


689.476 


660.150 


4.25 


689.476 


662.597 


3.90 


689.476 


664.891 


3.57 


689.476 


668.504 


3.04 


689.476 


672.912 


2.40 


689.476 


679.400 


1.46 



.222 



P- 

CT 

95 

79 

70 

50 

88 

71 

91 

98 

87 

80 

55 

72 

78 

86 

94 

94 

85 

58 

1 . 



184 



Table 12. Experimental and calculated P-p-T data- - - (Continued) 

EQUATION OF STATE VS . PVT DATA 



ID 


T * K 


MOL/L 


CALCD 


C,PCT 


P > BAR 


calco 


P » PC T 


9 


273.150 


0.8538 


0.8552 


“ 0.16 


15.874 


15.854 


0.13 


9 


296.142 


0.8538 


0.8545 


- 0.08 


17.978 


17.967 


0.06 


9 


323.140 


0.8538 


0.8540 


- 0.02 


20.036 


20.032 


0.02 


9 


348.143 


0.8538 


0.8538 


0.00 


22.065 


22.065 


- 0.00 


9 


373. 150 


0.8538 


0.8535 


0. 04 


24.066 


24.875 


- 0.04 


9 


396.160 


0. 8538 


0.8533 


0 . 06 


26.053 


26.067 


- 0.06 


9 


423.170 


0.8538 


0.8533 


0.06 


28.031 


28.846 


- 0.06 


9 


273.159 


1.0672 


1.0686 


“ 0.13 


18.802 


18.784 


0.10 


9 


258.142 


1.0672 


1.0675 


- 0.03 


21.539 


21.534 


0.02 


9 


323.140 


1.0672 


1.0669 


0.03 


24.201 


24.206 


- 0.02 


9 


348.143 


1.0672 


1.0665 


0.06 


26.812 


26.826 


- 0.05 


9 


373.150 


1.0672 


1.0662 


0.10 


29.385 


29.410 


- 0.08 


9 


398.160 


1.0672 


1.0660 


0.12 


31.933 


31.967 


- 0.11 


9 


423.170 


1.0672 


1.0661 


0.11 


34.468 


34.502 


- 0.10 


9 


273. 150 


1.2812 


1.2828 


- 0.13 


21.349 


21.331 


0.08 


9 


296.142 


1.2812 


1.2815 


- 0.03 


24.769 


24.764 


0.02 


9 


323.140 


1.2812 


1.2805 


0.05 


28.067 


28.079 


- 0.04 


9 


348.143 


1.2812 


1.2800 


0.09 


31.294 


31.318 


- 0.08 


9 


373.150 


1.2812 


1.2794 


0.13 


34.465 


34.504 


- 0.12 


9 


398.160 


1.2812 


1.2791 


0.16 


37.599 


37.652 


- 0.14 


9 


423.170 


1.2812 


1,2792 


0.15 


40.713 


40.770 


- 0.14 


9 


273.150 


1.4870 


1.4888 


- 0.12 


23.441 


23.424 


0.07 


9 


298.142 


1.4870 


1.4876 


- 0.04 


27.563 


27.555 


0.03 


9 


323.140 


1.4870 


1.4862 


0.05 


31.508 


31.520 


- 0.04 


9 


348.143 


1.4870 


1.4856 


0.09 


35.354 


35.381 


- 0.08 


9 


373.150 


1.4870 


1.4848 


0.14 


39.125 


39.173 


- 0.12 


9 


398.160 


1.4870 


1.4844 


0.17 


42. 848 


42.912 


- 0.15 


9 


423.170 


1.4870 


1.4845 


0.17 


46.543 


46.612 


- 0.15 


9 


298.142 


1.6354 


1.6366 


- 0 . 07 


29.397 


29.384 


O 

• 

o 


9 


323.140 


1.6354 


1.6351 


0.02 


33.830 


33.836 


- 0.02 


9 


348.143 


1.6354 


1.6343 


0.07 


38.142 


38.163 


- 0 .06 


9 


373.150 


1.6354 


1.6333 


0.13 


42.360 


42.405 


- 0.11 


9 


398.160 


1.6354 


1.6328 


0.16 


46.520 


46.585 


- 0.14 


9 


423.170 


1.6354 


1.6328 


0.16 


50.647 


50.719 


- 0.14 


9 


296. 142 


1.7032 


1.7050 


- 0.11 


30.189 


30.169 


0.07 


9 


323. 140 


1.7032 


1.7031 


0.01 


34.846 


34.848 


- 0.01 


9 


348.143 


1.7032 


1.7021 


0.07 


39.371 


39.392 


- 0.05 


9 


373. 150 


1.7032 


1.7010 


0.13 


43. 798 


43.844 


- 0.10 


9 


398.16 0 


1.7032 


1.7004 


0 . 17 


48.161 


48.229 


- 0.14 


9 


423. 170 


1.7032 


1.7005 


0 . 16 


52.490 


52.564 


- 0.14 


9 


296.142 


1.9165 


1.9202 


- 0.19 


32.483 


32.446 


0.11 


9 


323.140 


1.9165 


1.9174 


- 0. 05 


37.873 


37.861 


0.0 2 


9 


348.143 


1.9165 


1.9159 


0.03 


43. 093 


43.104 


- 0.0 2 


9 


373. 150 


1.9165 


1.9145 


0. 10 


48.192 


48.232 


- 0.0 8 


r> 


396*160 


1.9165 


1.9137 


0.14 


53.214 


53.278 


- 0.12 


9 


423.170 


1.9165 


1.9138 


0.14 


58.192 


58.262 


- 0.12 


9 


298.142 


1.9754 


1.9793 


- 0. 20 


33.063 


33.025 


0.11 


9 


323. 140 


1.9754 


1.9767 


- 0 . 06 


38.665 


38.648 


0.04 


9 


348.143 


1.9754 


1.9751 


0.01 


44. 084 


44.888 


- 0.01 


9 


373. 150 


1.9754 


1.9739 


0 . 08 


49.378 


49.407 


- 0.06 


9 


398.160 


1.9754 


1.9729 


0.13 


54.581 


54.640 


- 0.11 


9 


423.170 


1.9754 


1,9728 


0.13 


59. 738 


59.807 


- 0.12 



185 



Table 12. Experimental and calculated 

EQUATION OF STATE VS. PVT DATA 



ID 


T , K 


MOL/L 


CALCD 


C,F 


9 


298.142 


2.1218 


2.1279 


-0. 


9 


323.140 


2.1218 


2.1243 


-0. 


9 


348.143 


2.1218 


2.1222 


-0. 


9 


373.150 


2.1218 


2.1204 


0. 


9 


398.160 


2.1218 


2.1194 


0. 


9 


423.170 


2.1218 


2.1195 


0. 


9 


296.142 


2.3339 


2.3428 


-0. 


9 


323.140 


2.3339 


2.3383 


-0. 


9 


348.143 


2.3339 


2.3356 


-0. 


9 


373.150 


2.3339 


2.3334 


0. 


9 


398.160 


2.3339 


2.3321 


0. 


9 


423.170 


2.3339 


2.3319 


0. 


9 


298.142 


2.4084 


2.4175 


-0. 


9 


323.140 


2.4084 


2.4130 


-0. 


9 


348.143 


2.4084 


2.4103 


-0. 


9 


373.150 


2.4084 


2.4081 


0. 


9 


398.160 


2.4084 


2.4066 


0. 


9 


423.170 


2.4084 


2.4063 


0. 


9 


298.142 


2.9393 


2.9535 


-0. 


9 


323.140 


2.9393 


2.9485 


-0. 


9 


348.143 


2.9393 


2.9443 


-0. 


9 


373.150 


2.9393 


2.9410 


-0. 


9 


398. 160 


2.9393 


2.9390 


0. 


9 


423.170 


2.9393 


2.9385 


0. 


9 


323.140 


3.5820 


3.5966 


-0. 


9 


348.143 


3.5820 


3.5907 


-0. 


9 


373.150 


3.5820 


3.5867 


-0. 


9 


398.160 


3.5820 


3.5841 


-0. 


9 


423.170 


3.5820 


3.5836 


-0. 


9 


323.140 


4.4288 


4.4544 


-0. 


9 


346.143 


4.4286 


4.4450 


-0. 


9 


373.150 


4.4288 


4.4392 


-0. 


9 


398. 160 


4.4288 


4.4367 


-0. 


9 


423. 170 


4.4288 


4.4361 


-0. 


9 


323.140 


5.4403 


5.4572 


-0. 


9 


348.143 


5.4403 


5.4494 


-0. 


9 


373.150 


5.4403 


5.4478 


-0. 


9 


398.160 


5.4403 


5.4476 


-0. 


9 


423. 170 


5.4403 


5.4492 


-0. 


9 


323. 140 


6.6818 


6.5878 


1. 


9 


348. 143 


6.6818 


6.6341 


0. 


9 


373.150 


6.6818 


6.6551 


0. 


9 


358.160 


6.6818 


6.6654 


0. 


9 


423.170 


6.6818 


6.6739 


0. 


9 


323.140 


8.2024 


8.0128 


2. 


9 


348.143 


8.2024 


8.1079 


1. 


9 


373.150 


8.2024 


8.1498 


0. 


9 


398.160 


8.2024 


8.1707 


0 . 


9 


423.170 


8.2024 


8.1813 


0. 



NP = 101, ONRMSPCT = 0. 353, P MEANPCT = 



T data - - (Continued) 



P , BAR 


CALCO 


P, PC T 


34.428 


34.374 


0.16 


40.556 


40.524 


o.oe 


46.470 


46.463 


0.02 


52.238 


52.264 


-0.05 


57.913 


57.967 


-0.05 


63.538 


63.596 


-0.0 9 


36.183 


36.115 


0.19 


43. 101 


43.052 


0.12 


49.758 


49.732 


0.05 


56.240 


56.251 


-0.02 


62.614 


62.655 


-0.06 


68.922 


68.972 


-0.07 


36.734 


36.668 


0.18 


43.938 


43.887 


0.12 


50.862 


50.834 


0.06 


57.603 


57.609 


-0.01 


64.224 


64.263 


-0.06 


70.776 


70.828 


-0.07 


39.901 


39.833 


0.17 


49.228 


49.148 


0.16 


58.126 


58.062 


0.11 


66.768 


66.742 


0.04 


75.253 


75.260 


-0.01 


83.640 


83.659 


-0.02 


54.204 


54.107 


0.18 


65.647 


65.553 


0.14 


76.769 


76.700 


0.09 


87.686 


87.646 


0.04 


98.481 


98.446 


0.04 


58.974 


58.854 


0.20 


74.001 


73.854 


0 . 2 C 


88.656 


88.516 


0.16 


103.099 


102.959 


0.14 


117.402 


117.240 


0.1<l 


62.995 


62.935 


0.10 


82.596 


82.521 


0.09 


101.932 


101.833 


0.10 


121.098 


120.966 


0.11 


140.168 


139.962 


0.15 


66.912 


67.250 


-0.51 


92.790 


93.230 


-0.47 


118.770 


119.173 


-0.34 


144.726 


145.073 


-0.24 


170.709 


170.924 


-0.13 


72.785 


73.780 


-1.37 


108.346 


109.548 


-1.11 


144.605 


145.681 


-0.74 


181. 105 


182.004 


-0.50 


217.659 


218.423 


-0.35 



135 



P-P 

CT 

29 

12 

02 

06 

11 

11 

38 

19 

07 

02 

08 

09 

38 

19 

08 

01 

08 

09 

48 

31 

17 

06 

01 

03 

41 

24 

13 

06 

04 

58 

37 

24 

18 

17 

31 

17 

14 

13 

16 

41 

71 

40 

25 

12 

31 

15 

64 

39 

26 

0 . 



186 



Table 12. Experimental and calculated P-p-T data- - - (Continued) 

EQUATION OF STATE VS. PVT OATA 



ID 


T f K 


MOL/L 


CALCD 


C,PCT 


P » BAR 


CALCO 


Ft PC T 


10 


248.150 


0.7000 


0.6999 


0.02 


11.763 


11.764 


-0.01 


10 


273.150 


0.7500 


0.7508 


-0.11 


14.298 


14.285 


0.09 


10 


298.150 


0.7500 


0.7506 


-0.08 


16.116 


16.105 


0.07 


10 


303.150 


0.7500 


0.7506 


-0.08 


16.475 


16.464 


0.07 


10 


323.150 


0.7500 


0.7504 


-0.06 


17.897 


17.888 


0.05 


10 


348.150 


0.7500 


0.7503 


-0.03 


19.652 


19.646 


0.03 


10 


373.150 


0.7500 


0.7502 


-0.02 


21.391 


21.386 


0,02 


10 


398.150 


0.7500 


0.7501 


-0.01 


23.116 


23.113 


0.01 


10 


423.150 


0.7500 


0.7500 


-0.00 


24.830 


24.829 


0.00 


10 


448.150 


0.7500 


0.7500 


-0.00 


26.538 


26.537 


0.0Q 


10 


473.150 


0.7500 


0 .7500 


-0.00 


28.239 


28.238 


0.0 0 


10 


498.150 


0.7500 


0.7500 


0.00 


29.934 


29.934 


-0.00 


10 


523.150 


0.7500 


0.7500 


-0.00 


31.627 


31.626 


0.00 


10 


548.150 


0.7500 


0 .7501 


-0.01 


33.315 


33.313 


0.01 


10 


573. 150 


0.7500 


0.7501 


-0.02 


35.003 


34.997 


0.02 


10 


598.150 


0.7500 


0.7502 


-0.03 


36.689 


36,678 


0.03 


10 


623.150 


0.7500 


0.7504 


-0.05 


38.375 


38.357 


0.05 


10 


273.150 


1.0000 


1.0003 


-0.03 


17.908 


17.903 


0.02 


10 


298.150 


1.0000 


1.0000 


-0.00 


20.450 


20.449 


0.0 0 


10 


303.150 


1.0000 


0.9999 


0.01 


20.948 


20.949 


- 0.01 


10 


323.150 


1.0000 


0.9996 


0.04 


22.919 


22.926 


- 0.03 


10 


348.150 


1.0000 


0.9994 


0.06 


25.344 


25.358 


- 0.05 


10 


373.150 


1.0000 


0.9992 


0.08 


27.738 


27.757 


- 0.07 


10 


398.150 


1.0000 


0.9991 


0.09 


30. 109 


30.133 


- 0.08 


10 


423.150 


1.0000 


0.9991 


0.09 


32.462 


32.499 


- 0.09 


10 


448.150 


1.0000 


0.9991 


0.09 


34.802 


34.832 


- 0.09 


10 


473.150 


1.0000 


0.9991 


0.09 


37. 130 


37.162 


-0.09 


10 


498.150 


1.0000 


0.9991 


0.09 


39,450 


39.483 


- 0.08 


10 


523. 150 


1.0000 


0.9992 


0.08 


41.763 


41.796 


- 0.08 


10 


548.150 


1.0000 


0.9993 


0.07 


44.071 


44.102 


- 0.07 


10 


573.150 


1.0000 


0.9994 


0.06 


46.375 


46.402 


-0.06 


10 


598.150 


1.0000 


0.9995 


0.05 


48.675 


48.697 


-0.05 


10 


623. 150 


1.0000 


0.9999 


0.01 


50.982 


50.988 


-Q.01 


10 


273.150 


1.5000 


1.4984 


0.11 


23.530 


23.545 


- 0.06 


10 


298.150 


1.5000 


1.4997 


0.02 


27.719 


27.723 


- 0,0 1 


10 


303.150 


1.5000 


1.4994 


0.04 


28.528 


28.535 


- 0.0 3 


10 


323.150 


1.5000 


1.4987 


0 . 09 


31.709 


31.730 


- 0.07 


10 


348.150 


1.5000 


1.4979 


0.14 


35.592 


35.632 


- 0.11 


10 


373.150 


1.5000 


1.4975 


0. 16 


39.407 


39.461 


-0.14 


10 


396.150 


1.5000 


1.4974 


0.17 


43.172 


43.237 


-0.15 


10 


423. 150 


1.5000 


1.4973 


0. 18 


46. 899 


46.973 


-0.16 


10 


448.150 


1.5000 


1.4975 


0.17 


50.600 


50.678 


-0.15 


10 


473. 150 


1.5000 


1.4975 


0. 16 


54.276 


54.358 


-0.15 


10 


498.150 


1.5000 


1.4977 


0.15 


57.934 


58.017 


-0.14 


10 


523. 150 


1.5000 


1.4979 


0.14 


61.578 


61.659 


-0.13 


10 


548.150 


1.5000 


1.4983 


0.11 


65.215 


65.287 


- 0.11 


10 


573.150 


1.5000 


1 .4983 


0. 11 


68.827 


68.902 


-0,11 


10 


598.150 


1.5000 


1.4987 


0.09 


72.443 


72.506 


- 0.09 


10 


623. 150 


1.5000 


1.4993 


0.05 


76.067 


76.101 


- 0.05 


10 


298.150 


2.0000 


2.0027 


-0.14 


33.289 


33.263 


o .o e 


10 


303.150 


2.0000 


2.0023 


-0.12 


34.448 


34.425 


0.07 


10 


323. 150 


2.0000 


2.0003 


-0.02 


38.978 


38.974 


0,0 1 



187 



(Continued) 



Table 12. Experimental and calculated P-p-T data- - - 

EQUATION OF STATE VS , PVT DATA 



ID 


T,K 


MOL/l 


CALCD 


0 ,PCT 


P 9 BAR 


CALCO 


P * PC T 


10 


348,150 


2.0000 


1.9986 


0.07 


44.474 


44.496 


- 0.05 


10 


373.150 


2.0000 


1.9978 


0.11 


49.850 


49.094 


- 0.09 


10 


398.150 


2.0000 


1.9972 


0.14 


55.139 


55.203 


- 0.12 


10 


423.150 


2.0000 


1.9969 


0.15 


60.365 


60.445 


- 0.13 


10 


448.150 


2.0000 


1.9971 


0.15 


65.550 


65.635 


- 0.13 


10 


473.150 


2.0000 


1.9973 


0.13 


70.697 


70.783 


- 0.12 


10 


498 . 150 


2,0000 


1.9975 


0.13 


75.809 


75.898 


- 0.12 


10 


523.150 


2.0000 


1.9977 


0.11 


80.898 


80.984 


- 0.11 


10 


548.150 


2.0000 


1.9979 


0.11 


85.959 


86.847 


- 0.10 


10 


573.150 


2.0000 


1.9982 


0.09 


91.008 


91.889 


- 0.09 


10 


598.150 


2.0000 


1.9987 


0.06 


96.054 


96.114 


- 0.06 


10 


623.150 


2.0000 


1.9997 


0.02 


101. 105 


101.123 


- 0.02 


10 


298.150 


2.5000 


2.5084 


- 0.33 


37. 369 


37.313 


0.15 


10 


303.150 


2.5000 


2.5077 


- 0.31 


38.918 


38.860 


0.15 


10 


323.150 


2.5000 


2.5042 


- 0.17 


44.928 


44.883 


0.10 


10 


348.150 


2.5000 


2.5007 


- 0.03 


52.169 


52.159 


0.02 


10 


373.150 


2.5000 


2.4989 


0.04 


59.233 


59.252 


- 0.02 


10 


398.150 


2.5000 


2.4981 


0.07 


66.177 


66.216 


- 0.06 


10 


423.150 


2.5000 


2.4977 


0.09 


73.029 


73.085 


- 0.08 


10 


448.150 


2.5000 


2.4978 


0.09 


79.818 


79.880 


- 0.0 8 


10 


473.150 


2.5000 


2.4977 


0 . 09 


86.544 


86.616 


- 0.08 


10 


498.150 


2.5000 


2.4979 


0.09 


93.231 


93.305 


- 0.08 


10 


523.150 


2.5000 


2.4984 


0 . 06 


99.892 


99.953 


- 0.06 


10 


548.150 


2.5000 


2.4989 


0.04 


106.522 


106.568 


- 0.04 


10 


573.150 


2.5000 


2.4993 


0.03 


113 . 120 


113.153 


- 0.02 


10 


598.150 


2.5000 


2.4998 


0.01 


119.704 


119.713 


- 0.01 


10 


623.150 


2.5000 


2.5013 


- 0.05 


126.314 


126.251 


0.05 


10 


298.150 


3.0000 


3.0121 


- 0.40 


40.172 


40.118 


0.12 


10 


303.150 


3.0000 


3.0125 


- 0.42 


42.149 


42.082 


0.16 


10 


323.150 


3.0000 


3.0080 


- 0.27 


49.750 


49.681 


0.14 


10 


348.150 


3.0000 


3.0029 


- 0.10 


58. 862 


58.826 


0.06 


10 


373.150 


3.0000 


3.0002 


- 0.01 


67.732 


67.729 


0.0 0 


10 


398.150 


3.0000 


2.9992 


0.03 


76.450 


76.465 


- 0.0 2 


10 


423.150 


3.0000 


2.9983 


0.06 


85.039 


85 . C 79 


- 0.05 


10 


448.150 


3.0000 


2.9986 


0 . 05 


93.560 


93.599 


- 0.04 


10 


473.150 


3.0000 


2.9988 


0.04 


102.007 


102.044 


- 0.0 4 


10 


498.150 


3.0000 


2.9990 


0.03 


110.392 


110.427 


- 0.0 2 


10 


523.150 


3.0000 


2.9995 


0 . 02 


118.741 


118.759 


- 0.02 


10 


548.150 


3.0000 


3.0002 


- 0 . 01 


127.056 


127.848 


0.01 


10 


573.150 


3.0000 


3.0007 


- 0.02 


135. 329 


135.299 


0.02 


10 


598.150 


3.0000 


3.0016 


- 0.05 


143.594 


143.517 


0.05 


10 


623.150 


3.0000 


3.0034 


- 0.11 


151.881 


151.705 


0.12 


10 


303.150 


3.5000 


3.5146 


- 0. 42 


44. 346 


44.294 


0.12 


10 


323.150 


3.5000 


3.5119 


- 0.34 


53.635 


53.553 


0.15 


10 


348.150 


3.5000 


3.5051 


- 0 . 15 


64.723 


64.667 


0.09 


10 


373. 150 


3.5000 


3.5017 


- 0.05 


75.512 


75.486 


0.03 


10 


398.150 


3.5000 


3.5007 


- 0.02 


86.122 


86.108 


0.02 


10 


423.150 


3.5000 


3.5000 


0.00 


96.586 


96.586 


- 0.00 


10 


448. 150 


3.5000 


3.5003 


- 0.01 


106.961 


106.953 


0.01 


10 


473.150 


3.5000 


3.5008 


- 0.02 


117.256 


117.232 


0.02 


10 


498.150 


3.5000 


3.5010 


- 0 . 03 


127.471 


127.438 


0.02 


10 


523.150 


3.5000 


3.5015 


- 0.04 


137.642 


137.583 


0.04 


10 


548.150 


3.5000 


3.5021 


- 0.06 


147.765 


147.676 


0.06 



188 



Table 12. Experimental and calculated P-p-T data- - - (Continued) 

EQUATION OF STATE VS. PVT DATA 



ID 


Tf K 


MOL/L 


CALCD 


C,PCT 


P,BAR 


CALCO 


P» PC T 


10 


573.150 


3.5000 


3.5029 


“0.08 


157.853 


157.724 


0.08 


10 


598.150 


3.5000 


3.5039 


“0.11 


167.924 


167.731 


0.11 


10 


623. 150 


3.5000 


3.5061 


-0.17 


178.025 


177.702 


0.18 


10 


303.150 


4.0000 


4.0149 


-0.37 


45.714 


45.684 


0.07 


10 


323.150 


4.0000 


4.0182 


-0.45 


56.768 


56.667 


0.18 


10 


348.150 


4.0000 


4.0086 


-0.21 


69.920 


69.836 


0.12 


10 


373.150 


4.0000 


4.0044 


-0.11 


82.737 


82.675 


0.07 


10 


398.150 


4.0000 


4.0030 


-0.07 


95.353 


95.299 


0.06 


10 


423.150 


4.0000 


4.0025 


-0.06 


107.820 


107.764 


0.05 


10 


448.150 


4.0000 


4.0031 


-0.08 


120.189 


120.108 


0.07 


10 


473.150 


4.0000 


4.0035 


-0.09 


132.460 


132.355 


0.06 


10 


498. 150 


4.0000 


4.0038 


-0.10 


144.652 


144.521 


0.05 


10 


523.150 


4.0000 


4.0046 


-0.11 


156.793 


156.618 


0.11 


10 


548.150 


4.0000 


4.0046 


-0. 12 


168.860 


168.656 


0.12 


10 


573.150 


4.0000 


4.0055 


-0.14 


180.897 


180.643 


0.14 


10 


598.150 


4.0000 


4.0067 


-0.17 


192.920 


192.583 


0.17 


10 


623.150 


4.0000 


4.0093 


-0.23 


204.991 


204.481 


0.25 


10 


303.150 


4.5000 


4.5112 


-0.25 


46.448 


46.437 


0.02 


10 


323.150 


4.5000 


4.5245 


-0.54 


59.302 


59.191 


0.19 


10 


348.150 


4.5000 


4.5115 


-0.25 


74.601 


74.498 


0.14 


10 


373.150 


4.5000 


4.5068 


-0.15 


89.556 


89.466 


0.10 


10 


398.150 


4.5000 


4.5058 


-0.13 


104.316 


104. ai3 


0.10 


10 


423.150 


4.5000 


4.5055 


-0.12 


118.922 


118.800 


0.1G 


10 


448.150 


4.5000 


4.5065 


-0.15 


133.434 


133. 261 


0.13 


10 


473.150 


4.500P 


4.5065 


-0. 15 


147.823 


147.621 


0.14 


10 


498.150 


4.5000 


4.5072 


-0.16 


162.148 


161.896 


0.16 


10 


523. 150 


4.5000 


4.5076 


-0.17 


176.399 


176.898 


0.17 


10 


548.150 


4.5000 


4.5076 


-0.17 


190.571 


190.336 


0.18 


10 


573.150 


4.5000 


4.5080 


-0.18 


204.706 


204.318 


0.15 


10 


598.150 


4.5000 


4.5093 


-0. 21 


218.837 


218.348 


0.22 


10 


623.150 


4.5000 


4.5123 


-0.27 


233.031 


232.331 


0.30 


10 


323.150 


5.0000 


5.0242 


-0.48 


61. 395 


61.300 


0.16 


10 


348.150 


5.0000 


5.0099 


-0.20 


78.919 


78.835 


0.11 


10 


373. 150 


5.0000 


5.0065 


-0.13 


96. 135 


96.850 


0.05 


10 


398.150 


5.0000 


5.0068 


-0.14 


113.178 


113.057 


0.11 


10 


423.150 


5.0000 


5.0073 


-0. 15 


130.076 


129.91? 


0.13 


10 


448.150 


5.0000 


5.0083 


-0.17 


146.871 


146. 646 


0.15 


10 


473.150 


5.0000 


5.0086 


-0.17 


163.555 


163.281 


0.17 


10 


498.150 


5.0000 


5.0089 


-0.18 


180.155 


179.830 


0.18 


10 


523.150 


5.0000 


5.0087 


“0 . 17 


196.667 


196.306 


0.18 


10 


548.150 


5.0000 


5.0088 


-0.18 


213.119 


212.715 


0 .19 


10 


573.150 


5.0000 


5.0094 


“0.19 


229.543 


229.063 


tH 

• 

CD 


10 


598.150 


5.0000 


5.0107 


-0.21 


245.951 


245.357 


0.24 


10 


623. 150 


5.0000 


5.0140 


-0.28 


262.444 


261.600 


0.32 


10 


323.150 


5.5000 


5.5078 


-0.14 


63.184 


63.156 


0.04 


10 


348.150 


5.5000 


5.4995 


0. 01 


83. 020 


83.024 


-0.01 


10 


373.150 


5.5000 


5.5009 


-0.02 


102.635 


102.623 


0.01 


1 0 


398.150 


5.5000 


5.5036 


-0. 06 


122.111 


122.046 


0.05 


10 


423.150 


5.5000 


5.5056 


-0. 10 


141.466 


141.335 


0.05 


10 


448.150 


5.5000 


5.5070 


-0.13 


160.716 


160.516 


0.12 


10 


473.150 


5.5000 


5.5075 


-0.14 


179.857 


179.604 


0.14 


10 


498.150 


5.5000 


5.5083 


-0.15 


198.931 


198.612 


0.16 


10 


523.150 


5.5000 


5.5081 


-0.15 


217.90 1 


217.547 


0.16 



189 



Table 12. Experimental and calculated P-P-T data- - - (Continued) 

EQUATION OF STATE VS . PVT DATA 



10 


T,K 


MOL/L 


CALCD 


0 ,PCT 


P » BAR 


CALCO 


Pf PC T 


10 


548.150 


5.5000 


5.5080 


- 0.15 


236.807 


236.415 


0.17 


10 


573.150 


5.5000 


5.5087 


- 0.16 


255.693 


255.221 


0.18 


10 


598.150 


5.5000 


5.5099 


- 0.18 


274.554 


273.970 


0.21 


10 


623.150 


5.5000 


5.5135 


- 0.25 


293.532 


292.665 


0.30 


10 


323.150 


6.0000 


5.9723 


0.46 


64.792 


64.887 


- 0.15 


10 


348.150 


6.0000 


5.9798 


0.34 


87.049 


87.221 


- 0.2 0 


10 


373.150 


6,0000 


5.9890 


0.18 


109.215 


109.367 


- 0.14 


10 


398.150 


6.0000 


5.9962 


0.06 


131.309 


131.383 


- 0.06 


10 


423.150 


6.0000 


5.9999 


0.00 


153.294 


153.295 


-o.oc 


10 


448.150 


6.0000 


6.0026 


- 0.04 


175.196 


175.118 


0.04 


10 


473.150 


6.0000 


6.0042 


- 0.07 


197.010 


196.861 


0.08 


10 


498.150 


6.0000 


6.0053 


- 0.09 


218.751 


218.531 


0.10 


10 


523.150 


6.0000 


6.0049 


- 0.08 


240.359 


240.132 


0.09 


10 


548.150 


6.0000 


6.0051 


- 0.09 


261.935 


261.668 


0.10 


10 


573.150 


6.0000 


6.0056 


- 0.09 


283.465 


283.143 


0.11 


10 


598.150 


6.0000 


6.0070 


- 0.12 


304.998 


304.557 


0.14 


10 


623.150 


6.0000 


6.0109 


- 0 . 18 


326.668 


325.914 


0.23 


10 


323.150 


6.5000 


6.4217 


1. 20 


66.335 


66.610 


- 0.41 


10 


348.150 


6.5000 


6.4533 


0.72 


91.161 


91.579 


- 0.46 


10 


373.150 


6.5000 


6.4720 


0.43 


116.055 


116.465 


- 0.35 


10 


398. 150 


6.5000 


6.4843 


0.24 


140.958 


141.281 


- 0.23 


10 


423.150 


6.5000 


6.4913 


0.13 


165.80 0 


166.031 


- 0.14 


10 


448.150 


6.5000 


6.4957 


0.07 


190.579 


190.717 


- 0.07 


10 


473.150 


6.5000 


6.4981 


0.03 


215.266 


215.340 


-0.03 


10 


498.150 


6.5000 


6.4997 


0.00 


239.886 


239.900 


- 0.01 


10 


523.150 


6.5000 


6.4995 


0 . 01 


264. 373 


264.398 


- 0.01 


10 


548.150 


6.5000 


6.5003 


- 0.00 


288.851 


288.833 


0.01 


10 


573.150 


6.5000 


6.5005 


- 0.01 


313.236 


313.207 


0.01 


10 


598.150 


6.5000 


6.5023 


- 0 . 04 


337.677 


337.520 


0.05 


10 


623.150 


6.5000 


6.5059 


- 0.09 


362.215 


361.772 


0.12 


10 


323.150 


7.0000 


6.8616 


1.98 


67.920 


68.441 


- 0.77 


10 


348.150 


7. 0000 


6.9238 


1.09 


95.515 


96.251 


- 0.77 


10 


373.150 


7.0000 


6.9537 


0.66 


123.367 


124.100 


- 0.59 


10 


398.150 


7.0000 


6.9727 


0. 39 


151.344 


151.950 


- 0.40 


10 


423.150 


7.0000 


6.9822 


0.25 


179.269 


179.778 


- 0.28 


10 


448.150 


7.0000 


6.9890 


0 . 16 


207. 185 


207.572 


- 0.15 


10 


473.150 


7.0000 


6.9918 


0.12 


234.982 


235.323 


- 0.15 


10 


498.150 


7.0000 


6.9933 


0 . 10 


262.698 


263.022 


- 0.12 


10 


523.150 


7.0000 


6.9939 


0.09 


290.334 


290.667 


- 0.11 


10 


548.150 


7.0000 


6.9943 


0.08 


317.906 


318.353 


- 0.11 


10 


573.150 


7.0000 


6.9948 


0 . 07 


345.424 


345.778 


- 0.10 


10 


598.150 


7.0000 


6.9967 


0 . 05 


372.994 


373.241 


- 0.07 


10 


623.150 


7.0000 


7.0011 


- 0.02 


400.729 


400.640 


0.02 


10 


323.150 


7.5000 


7.3181 


2.43 


69.687 


70.439 


- 1.08 


10 


348.150 


7.5000 


7.4020 


1.31 


100.302 


101.338 


- 1.03 


10 


373.150 


7.5000 


7.4407 


0.79 


131.381 


132.409 


- 0.78 


10 


398.150 


7.5000 


7.4644 


0.48 


162.693 


163.557 


- 0.53 


10 


423.150 


7.5000 


7.4762 


0 . 32 


193.990 


194.733 


- 0.38 


10 


448.150 


7.5000 


7.4843 


0.21 


225.305 


225.906 


- 0.27 


10 


473.150 


7.5000 


7.4879 


0.16 


256.509 


257.056 


- 0.21 


10 


498.150 


7.5000 


7.4900 


0.13 


287. 646 


288.170 


- 0.18 


10 


523.150 


7.5000 


7.4901 


0.13 


318.646 


319.235 


- 0.18 


10 


548.150 


7.5000 


7.4899 


0.14 


349.569 


350.246 


- 0.16 



190 



Table 12. Experimental and calculated P-p-T data- - - (Continued) 

EQUATION OF STATE VS. PVT DATA 



ID 


T* K 


MOL/L 


CALCD 


D,PCT 


P » BAR 


CALCD 


F,PCT 


10 


573.150 


7.5000 


7.4900 


0.13 


380.454 


381.196 


-0.20 


10 


323.150 


8.0000 


7.8017 


2.48 


71.775 


72.734 


-1.34 


10 


348.150 


8.0000 


7.8935 


1.33 


1 05.750 


107.024 


-1.2C 


1 0 


373.150 


8.0000 


7.9379 


0.78 


140.417 


141.621 


-0.86 


1 0 


398.150 


8.0000 


7.9617 


0.48 


175.341 


176.373 


-0 .59 


10 


423.150 


8,0000 


7.9749 


0.31 


210.334 


211.202 


-0.41 


10 


448.150 


8.0000 


7.9832 


0.21 


245.348 


246.061 


-0.29 


10 


473.150 


8.0000 


7.9884 


0.14 


280.338 


280.917 


-0.21 


10 


498.150 


8.0000 


7.9888 


0.14 


315.099 


315.748 


-0.21 


10 


523.150 


8.0000 


7.9884 


0 . 14 


349.779 


350.538 


-0.22 


10 


548.150 


8.0000 


7.9882 


0.15 


384.407 


385.276 


-0.23 


10 


323.150 


8.5000 


8.3116 


2.22 


74.407 


75.542 


-1.52 


10 


348.150 


8.5000 


8.3967 


1.22 


112.147 


113.592 


-1.29 


10 


373.150 


8.5000 


8.4411 


0.69 


150.763 


152.072 


-0.87 


10 


398.150 


8.5000 


8.4648 


0.41 


189. 705 


190.779 


-0.57 


10 


423.150 


8.5000 


8.4774 


0.27 


228.728 


229.609 


-0.39 


10 


448.150 


8.5000 


8.4858 


0.17 


267.823 


268.497 


-0.25 


10 


473.150 


8.5000 


8.4903 


0.11 


306.859 


307.399 


-0.18 


10 


498.150 


8.5000 


8.4898 


0.12 


345.630 


346.287 


-0.19 


10 


523.150 


8.5000 


8.4886 


0 . 13 


384. 306 


385.139 


-0.22 


10 


323.150 


9.0000 


8.8361 


1. 82 


77.856 


79.144 


-1.65 


10 


348,150 


9.0000 


8.9087 


1.01 


119.857 


121.393 


-1.28 


10 


373.150 


9.0000 


8.9493 


0.56 


162.857 


164.171 


-0.81 


10 


398.150 


9.0000 


8.9723 


0.31 


206.258 


207.234 


-0.47 


10 


423.150 


9.0000 


8.9836 


0.18 


249.728 


250.455 


-0.29 


10 


448.150 


9.0000 


8.9901 


0. 11 


293.226 


293.756 


-0.18 


10 


473.150 


9.0000 


8.9943 


0 . 06 


336.726 


337.085 


-0.11 


10 


498.150 


9.0000 


8.9924 


0.08 


379. 850 


380.403 


-0.15 


10 


323. 150 


9.5000 


9.3667 


1.40 


82.499 


83.907 


-1.71 


10 


348.150 


9.5000 


9.4253 


0.79 


129.325 


130.868 


-1.19 


10 


373. 150 


9.5000 


9.4606 


0.41 


177.203 


178.418 


-0.69 


10 


398.150 


9.5000 


9.4811 


0.20 


225.515 


226.290 


-0.34 


10 


423.150 


9.5000 


9.4913 


0.09 


273.897 


274. 343 


-0 .16 


10 


448. 150 


9.5000 


9.4975 


0 .03 


322.334 


322.486 


-0.05 


10 


473.150 


9.5000 


9.4993 


0 . 01 


370.609 


370.659 


-0.0 1 


10 


323. 150 


10.0000 


9.8976 


1.02 


88.838 


90.311 


-1.66 


1 0 


348.150 


10.0000 


9.9423 


0.58 


141.085 


142.568 


-1.05 


10 


373. 150 


10.0000 


9.9730 


0.27 


154.424 


195.427 


-0.5 2 


10 


398. 15 0 


10.0000 


9.9915 


0.08 


248.207 


248.618 


-0.17 


1 0 


423.150 


10.0000 


9.9996 


0. 00 


301.977 


301.991 


-0.0 0 


10 


448.150 


10.0000 


10.0037 


-0 . 04 


355.71 5 


355.450 


0.07 


10 


323. 150 


10.5000 


10.4239 


0 . 73 


57.478 


98.972 


-1.53 


10 


348.150 


10.5000 


10.4587 


0.39 


155.840 


157. 176 


-0,86 


1 0 


373.150 


10.5000 


10.4843 


0.15 


215.238 


215.943 


-0.33 


1 0 


398.150 


10.5000 


10 . 4999 


0.00 


275.014 


275.018 


-0,00 


10 


423. 150 


10.5000 


10 . 5069 


-0. 07 


334.734 


334,252 


0.14 


1 0 


448.150 


10.5000 


10.5097 


-0 . 09 


394.346 


393.551 


0 .20 


1 0 


296.150 


11.0000 


10.9727 


0 . 25 


46.397 


46.734 


-0.73 


10 


323.150 


1 1 .000 0 


10.9450 


0.50 


1 09. 20 1 


110.664 


-1.34 


10 


348.150 


11.0000 


10.9729 


0.25 


174.42 0 


175.525 


-0.6 3 


1 0 


373.150 


11.0000 


10.9952 


0 . 04 


240.596 


240.858 


-0.11 


10 


398.150 


11.0000 


11.0079 


-0.07 


306.980 


306.438 


0 . 18 


10 


423.150 


11.0000 


11.0133 


-0.12 


373.226 


372.128 


0.29 



191 



Table 12. Experimental and calculated P-P-T data- - - (Continued) 

EQUATION OF STATE VS. PVT DATA 



ID 


T » K 


MOL/L 


CALCD 


0,FCT 


P, BAR 


CALCD 


P,PCT 


10 


298.150 


11.5000 


11.4689 


0. 27 


54.120 


54.730 


-1.13 


10 


323.150 


11.5000 


11.4619 


0.33 


124.979 


126.340 


-1.0 9 


10 


348.150 


11.5000 


11.4841 


0.14 


197.803 


198.620 


-0.41 


10 


373.150 


11.5000 


11.5036 


-0.03 


271.474 


271.232 


0.09 


10 


398.150 


11.5000 


11.5151 


-0.13 


345.236 


343.992 


0.36 


10 


298.150 


12.0000 


11.9705 


0. 25 


66.139 


67.006 


-1.31 


10 


323.150 


12.0000 


11.9763 


0.20 


146.022 


147. 141 


-0.77 


10 


348.150 


12.0000 


11.9934 


0. 05 


227.224 


227.651 


-0.19 


10 


373.150 


12.0000 


12.0104 


-0.09 


309. 160 


308.307 


0.28 


10 


398.150 


12.0000 


12.0220 


-0. 18 


391.141 


388.973 


0.55 


10 


298.150 


12.5000 


12.4738 


0.21 


83.768 


84.868 


-1.31 


10 


323.150 


12.5000 


12.4854 


0.12 


173.516 


174.419 


-0.52 


10 


348.150 


12.5000 


12.5006 


-0.01 


264. 063 


264.011 


0.02 


10 


373.150 


12.5000 


12.5155 


-0.12 


355.074 


353.521 


0.44 


10 


298.150 


13.0000 


12.9782 


0.17 


108.587 


109.845 


-1.16 


10 


323.150 


13.0000 


12.9890 


0.08 


208.863 


209.738 


-0.42 


10 


348.150 


13.0000 


13.0057 


-0.04 


309.878 


309.305 


0.18 


10 


273.150 


13.5000 


13.4989 


0. 01 


31.583 


31.642 


-0.19 


10 


298.150 


13.5000 


13.4821 


0.13 


142.310 


143.698 


-o.9e 


10 


323.150 


13.5000 


13.4926 


0. 05 


254.146 


254.893 


-0.29 


10 


348.150 


13.5000 


13.5083 


-0. 06 


366.398 


365.364 


o.2e 


10 


273. 150 


14.0000 


13.9904 


0. 07 


62,783 


63.504 


-1.15 


10 


298.150 


14.0000 


13.9863 


0. 10 


187.036 


188.425 


-0.74 


10 


323.150 


14.0000 


13.9986 


0 . 01 


311.735 


311.915 


-0.06 


10 


273. 150 


14.5000 


14.4880 


0.08 


106.237 


107.449 


-1.14 


10 


298.150 


14.5000 


14.4911 


0.06 


245.114 


246.273 


-0.47 


10 


323.150 


14.5000 


14.5033 


-0.02 


383. 607 


383.080 


0.14 


10 


273.150 


15.0000 


14.9872 


0.09 


164.251 


165.958 


-1.04 


10 


298.150 


15.0000 


14.9928 


0. 05 


318.560 


319.750 


-0 .37 


10 


248.150 


15.5000 


15.4982 


0.01 


67.393 


67.644 


-0.37 


10 


273.150 


15.5000 


15.4916 


0. 05 


240.347 


241.786 


-0.60 


10 


298.150 


15.5000 


15.4932 


0.04 


410.257 


411.635 


-0.34 


10 


248.150 


16.0000 


15.9930 


0.04 


144. 656 


145.900 


-0.86 


10 


273.150 


16.0000 


15.9950 


0 . 03 


336.908 


337.977 


-0.32 



NP = 298 , DNRMSPCT = 0.401, PMEANPCT = 0.256 



192 



Table 12. Experimental and calculated P-p-T data- - - (Continued) 

EQUATION OF STATE VS. PVT DATA 



ID 


T » K 


MOL/L 


CALCD 


D,PCT 


P , BAR 


CALCQ 


P,PCT 


101 


2 63 . ft 4 7 


1.1061 


1. Q9Q1 


1.45 


1 7.993 


18.174 


- 1 - 01 


102 


267.267 


1. 1058 


1.0955 


0.92 


18.458 


1 8. 578 


-0.65 


103 


270.457 


1. 1054 


1.0970 


Q.76 


1 8 . 8 49 


18.951 


-0. 54 


104 


273.094 


1. 1054 


1.0977 


0.69 


19.165 


19.261 


-0.50 


105 


276.946 


1.1051 


1 .0987 


0.58 


19.623 


1 9.706 


-0. 42 


106 


261.362 


1. 1048 


1.0995 


0.48 


20.142 


20.213 


-0. 35 


107 


283.868 


1. 1044 


1.1000 


0.40 


21.006 


21.069 


-0. 30 


108 


293.954 


1. 1038 


1.0998 


0.36 


22.139 


22.202 


-0.28 


109 


306.232 


1.1034 


1.0999 


0.32 


22.953 


23.012 


-0.25 


110 


315.923 


1.102b 


1.0994 


0.31 


24.016 


24.077 


”0. 25 


1 1 1 


326.1 85 


1.1021 


1 .0990 


0 .28 


25.1 35 


25.192 


-0. 23 


1 112 


332.655 


1.1018 


1.0989 


0.26 


25.836 


25.892 


- 0. 22 



113 343.612 1. 1011 1. 0 96.4 0.25 27.010 27.067 -0.21 



211 29Q..3L3-5 2.5966 2. 5 S2.1 Q.56 3-5. .4 79 3 5,55 3 -Q.21 



202 


292.700 


2.5963 


2.5957 


0.02 


36.139 


36.142 


-0.01 


203 


294.967 


2.5959 


2.5983 


-0.09 


36.907 


36.894 


n. 04 


204 


297.293 


2.5956 


2.5988 


-0.12 


37.678 


37.658 


0.05 


205 


299.402 


2.5953 


2.6006 


-0.20 


38.380 


38.346 


0. 09 


206 


300.717 


2.5953 


2.5987 


-0.13 


38.797 


38.773 


0.06 


207 


306.169 


2.5943 


2.5983 


-0.16 


40.554 


40.524 


0.08 


i 208 


311.528 


2.5936 


2.5974 


-0.14 


42.255 


42.223 


0.07 


209 


317.621 


2.5926 


2.5557 


-0.12 


44.159 


44.130 


0. 07 


210 


325.244 


2. 5916 


2.5535 


-0.07 


46.507 


46.487 


0.04 


211 


333.158 


2.5903 


2.591 1 


-0.03 


48.909 


48.900 


Q. 02 


212 


343.446 


2.5890 


2.5883 


0 • C 3 


51.991 


52.000 


-0.02 


301 


305.270 


4.5943 


4.519 0 


1.64 


47.863 


47.962 


-0.21 


30 2 


306.575 


4.5939 


4.536B 


1 .24 


48.748 


43.836 


-0. 18 


303 


3C6.998 


4.5939 


4.5454 


1.06 


49.040 


49.118 


-0.16 


3Q4 


308.355 


4.5936 


4.5483 


0.99 


49.934 


50.018 


-0. 17 


305 


309.475 


4.5933 


4.5514 


0.91 


50.671 


50.757 


-0. 17 


306 


310.226 


4 .5929 


4.5 54 7 


0.83 


51.168 


51.251 


”0.16 


307 


311.461 


4.5926 


4.5562 


0.79 


51.973 


52.060 


-0.17 


3Q8_ 


314.528 


4.5920 


4.5585 


0.73 


53.959 


54.053 


-0. 16 ... 


309 


316.957 


4. 5913 


4.5537 


0.71 


55.518 


55.628 


-0. 20 


. 3J- CL 


326.208 


4. 5890 


4.5558 


0.72 


61.371 


61.537 


_ ~Ha_2J _ 


311 


329.514 


4.5880 


4.5471 


0.89 


63.647 


63. 878 


-0. 36 



112 3 33. 690 4.5670 4.5821 0.11 66.220 66 , 251 ... -G_^_Q5, 



401 


305.232 


5 .3595 


4.9727 


7.22 


48.302 


48.507 


-0,42 




402 


306.165 


5.3595 


5.1961 


3.05 


49.168 


49.266 


”0. 20 




.. 4Q3 


307.343 


5.3588 


5.2688 


1.68 


50.145 


50.216 


-Q.T4 




404 


308.378 


5.3585 


5.2844 


1.38 


50.973 


51.045 


-0. 14 




405 


310.753 


5.3576 


5.3268 


0.58 


52.892 


52.935 


-0. 08 




406 


315.523 


5.3565 


5.3429 


0.25 


56.662 


56.693 


-0.05 




407 


320.133 


5.3552 


5.3418 


0.25 


60.250 


60.291 


-0. 07 




406 


324.789 


5.3535 


5.3397 


0.26 


63.845 


63.90 0 


-0. 09 




. 489 


329.529 


5.3522 


5.3387 


0.25 


67.488 


67.553 


_ 




410 


334.774 


5 . 3505 


5.3379 


0.24 


71.501 


71.574 


-0.10 




411 


342.584 


5.3482 


5,3379 


0.19 


77.45Q 


77.525 







1 93 



Table 12. Experimental and calculated P-p-T data- - - (Continued) 
EQUATION OF STATE VS. PVT DATA 



ID 


T,K 


MOL/L 


CALCD 


D,PCT 


P,BAR 


CALCD 


P,PCT 


501 


304.721 


6. 1373 


5.2442 


14.55 


48.051 


48.166 


-0.24 


502 


305.360 


6.1370 


5.5227 


10.01 


48.682 


48.763 


-0.17 


503 


305.932 


6,1367 


5.6833 


7.39 


49.202 


49.289 


-0.18 


504 


306.528 


6.1367 


5.7928 


5.60 


49.760 


49.854 


-0.19 


505 


307.927 


6. 1360 


5.9612 


2.85 


51.087 


51.173 


-0.17 


506 


309.803 


6.1354 


6.0301 


1.71 


52.846 


52.933 


-0.16 


507 


314.618 


6.1337 


6.0789 


0.89 


57.330 


57.425 


-0. 17 


508 


320.295 


6. 1317 


6.0814 


0.82 


62.550 


62.692 


-0.23 


509 


325.427 


6.1300 


6.0801 


0.82 


67.241 


67.434 


-0.29 


510 


330.799 


6.1280 


6.0821 


0.75 


72.153 


72.381 


-0. 32 


511 


336.699 


6. 1260 


6.0860 


0.65 


77.549 


77.797 


-0.32 


512 


343.543 


6. 1237 


6.0873 


0.59 


83.782 


84.059 


-0. 33 


601 


305.423 


6.7892 


5.9149 


12.88 


48.790 


48.811 


-0. 04 


602 


305.743 


6.7888 


5.6716 


16.46 


49.034 


49.151 


-0.24 


603 


306.184 


6.7888 


5.8169 


14.32 


49.461 


49.619 


-0.32 


604 


306.693 


6.7885 


6.0142 


11.41 


49.978 


50.159 


-0.36 


605 


307.189 


6.7885 


6.2012 


8.65 


50.499 


50.685 


-0. 37 


606 


309.162 


6.7875 


6.4936 


4.33 


52.576 


52.781 


-0. 39 


607 


312.231 


6.7865 


6.5013 


4.20 


55.667 


56.040 


-0.67 


608 


317.552 


6.7845 


6.5778 


3.05 


61.188 


61.688 


-0.82 


609 


322.347 


6.7825 


6.6161 


2.45 


66.200 


66.775 


-0.87 


610 


327.148 


6.7805 


6.6398 


2.08 


71.229 


71.864 


-0.89 


611 


333.270 


6.7782 


6.6639 


1.69 


77.676 


78.349 


-0. 87 


612 


343.351 


6.7745 


6.6836 


1.34 


38.268 


89.013 


-0.84 


701 


305.633 


8.1021 


5.9810 


26.18 


48.991 


49.211 


-0.45 


702 


306.319 


8.1016 


7.1329 


11.96 


49.819 


50.129 


-0.62 


703 


307.031 


8.1014 


7.6433 


5.65 


50.808 


51.087 


-0.55 


704 


309.123 


8. 1008 


7.6411 


5.67 


52.160 


52.564 


-0.77 


705 


311.913 


8.0991 


7.6884 


5.07 


56.966 


57.728 


-1.34 


706 


316.998 


9. 0968 


7.7679 


4.06 


63.649 


64.713 


-1. 67 


707 


322.404 


8.0941 


7.8239 


3.34 


70.899 


72.181 


-1.81 


708 


327.708 


9.0918 


7.8583 


2.89 


78.080 


79.537 


-1.87 


709 


333.451 


8.0891 


7.8875 


2.49 


85.935 


87.525 


-1.85 


710 


339.014 


8. 0865 


7.9157 


2.11 


93.653 


95.278 


-1.73 


711 


343.093 


8 . 0845 


7.9315 


1.89 


99.332 


100.969 


-1.65 


801 


305.015 


6. 8104 


8.2090 


6.83 


48.426 


48.920 


-1.02 


802 


306.220 


8.8098 


8.2922 


5.87 


50.132 


50.785 


-1. 3C 


803 • 


307.783 


8.8088 


6.3015 


5.76 


52.332 


53.219 


-1.70 


804 


309.310 


8. 8081 


8.4607 


3.94 


54.784 


55.611 


-1.51 


805 


310 .839 


9 . 8 074 


P .4754 


3.77 


57. 061 


58.016 


-1. 67 


806 


314.681 


8.8055 


8.4776 


3.72 


62.751 


64.091 


-2. 14 


807 


319.840 


8. 8028 


8.5218 


3.19 


70.675 


72.302 


-2.30 


808 


325.591 


8.7998 


8.5685 


2.63 


79.720 


81.50 7 


-2. 24 


809 


331.302 


8.7971 


e .6010 


2.23 


8 8.7 9** 


90.690 


-2. 13 


810 


337.309 


6. 7938 


8.6277 


1.89 


98.429 


100.374 


-1.98 


811 


342.720 


8.7912 


8.6448 


1.67 


107.138 


109.122 


-1.85 


901 


303.430 


9.6887 


5.5875 


1.04 


48.035 


48.413 


-0. 79 


902 


303.752 


9.6887 


9.585 0 


1 . 07 


48.615 


49.016 


-o. e 2 


903 


303.962 


9.6887 


9.5803 


1.12 


48.982 


49.410 


-0.87 



194 _ 





Table 12. 


Experimental and calculated 


P-P-T 


data- - - (Continued) 




EQUATION OF STATE VS. PVT DATA 


ID 


T,K 


MOL/L 


CALCD 


D,PCT 


P» BAR 


CALCD 


P,PCT 


904 


3 0 4.336 


9.6884 


9.5310 


1 .62 


49.484 


5 0.110 


-1 . ?7 


905 


305.899 


9.6874 


9.5180 


1.75 


52.267 


53.046 


-1. 49 


906 


303-437 


9.6861 


9.5031 


1.89 


56.812 


57.339 


-1 .81 


907 


313.081 


9.6834 


9.5096 


1.80 


65.354 


66.663 


-2. 00 


908 


S') ft „ n u ft 


9. 6fl07 


9.531 8 


1.54 


74.730 


76.163 


-1 - 9? 


909 


322.924 


9. 6781 


9.5421 


1.40 


83.951 


85.534 


-1.89 


910 


S ? 7 . 9 9 1 


9 . 6751 


9.5515 


1.28 


93. 6ns 


95.306 


-1 .81 


* 911 


334.413 


9. 6714 


9.5540 


1.21 


105.611 


107.733 


-1.82 


912 


342.647 


9.6668 


9.5814 


0.88 


122.022 


123. 717 


-1.39 


1001 


293.336 


11 .3761 


11.3655 


0.09 


38.979 


39.135 


-0.40 


1002 


293.674 


11.3761 


11.3634 


0.11 


39.876 


40.064 


-0.47 


inns 


294.1 03 


11. 3758 


11 .3587 


0.15 


4 0.9R1 


41 .23 ft 


-fi.63 


1004 


294.883 


11.3751 


11.3534 


0.19 


43.036 


43.374 


-0.78 


ions 


295.416 


11 . 3748 


11. 3495 


0.22 


44.436 


44.835 


-n. 90 


1006 


295.792 


11.3745 


11.3470 


0.24 


45.424 


45.865 


-0.97 


i nn7 


296.034 


1 1 . 3745 


11.3452 


0.26 


46.058 


46.53? 


-1.03 


1006 


298.624 


11.3728 


11.3334 


0.35 


52.946 


53.646 


-1. 32 


1009 


301.993 


-11. 3705 


11 .3220 


0 .43 


61.951 


62.91 ? 


-1.55 


1010 


304.995 


11. 3685 


11.3180 


0.44 


70.089 


71.18 3 


-1. 56 


1011 


309.657 


11.3651 


11.3151 


0.44 


82.812 


84.041 


-1.40 


1012 


314.468 


11.3622 


11.3130 


0.43 


95.989 


97.341 


-1.41 


_ 1013 




11 . 3588 


11.3170 


0.37 


109.329 


110.604 


-1. 17 .. 


1014 


324.667 


11.3552 


11.3213 


0.30 


124.415 


125.561 


-0.92 


1015 


325.535 


11 . 3525 


11.3216 


0.27 


135.300 


136.420 


-0, 83 


1016 


335.200 


11. 3482 


11.3225 


0.23 


153.711 


154.743 


-0.67 


1017 


341.335 


11.3442 


11.3099 


0.30 


170.251 


171.747 


-0.88 


1101 


277.504 


12. 9867 


13.0057 


-0.13 


27.349 


26.677 


2.46 


1102 


277.925 


12. 9884 


13.0037 


-0.12 


28.958 


28.348 


2. 11 


1103 


273.136 


12.9884 


13.0006 


-0.09 


29.682 


29.192 


1. 65 


1104 


278.777 


12.9877 


12.9994 


-0.09 


32.203 


31.730 


1.47 


1105 


279.387 


12.9874 


12.9966 


-0.07 


34.536 


34.156 


1.10 


1106 


279.902 


12. 9670 


12.9955 


-0.07 


36.554 


36.202 


0.96 


1107 


282.317 


12.9850 


12.9836 


Q .01 


45.716 


45.770 


-0.12 


1103 


284.543 


12. 9834 


12.9823 


0.01 


54.539 


54.588 


-0. 09 


1109 


286.727 


12.9614 


12.9784 


0.02 


63.074 


63.214 


-0.22 


1110 


290.613 


12. 9784 


12.9727 


0.04 


78.298 


73.585 


-0. 37 


1111 


297.190 


12.9734 


12.9664 


0 . 05 


104.097 


104.490 


-0.38 


1112 


304.683 


12.9674 


12.9640 


0.03 


133.702 


133.914 


-0.16 


1113 


312*£Z5_ 


12.9614 


12.9601 


0.01 


164.925 


165.016 


-0.06 


1114 


320.632 


12.9548 


12 .9581 


-0.03 


197.261 


197.007 


0.13 


1115 


329.753 


12.9476 


12.9589 


-0.09 


232.594 


231.663 


. 0 * 4 C _ 


1116 


339.939 


12.9401 


12.9531 


-0.10 


272.480 


271.290 


0.44 


1201 


263.389 


13. 7157 


13.7212 


-0.04 


21.840 


21.525 


1. 44 


1202 


263.613 


13. 7153 


13.7206 


-0.04 


22.869 


22.567 


1. 32 


1203 


263.944 


13 . 7150 


13.7198 


-0.04 


24.394 


24.115 


I. 14 


1204 


269.313 


13. 7150 


13.7180 


-0.02 


26.037 


25.862 


0.67 


1205 


269.861 


13.7143 


13.7169 


-0.02 


28.565 


28.418 


0.52 


1206 


270.539 


13. 7137 


13.7146 


-0.01 


31.644 


31.586 


0, 18 


1207 


271.359 


13. 7130 


13.7128 


0.00 


35.412 


35.424 


-0.03 


12 08 


272.788 


13.7120 


13.7094 


0.02 


41.957 


42.115 


-3.38 



195 



Table 12. Experimental and calculated P-p-T data- - - (Continued) 

EQUATION OF STUE VST PVT OATA 



ID 


T * K 


MOL/L 


CALCD 


D,PCT 


P» BAR 


CALCO 


P» PCT 


1209 


277.605 


13. 7060 


13.7001 


0.06 


64.048 


64.572 


-0.82 


1210 


281.789 


13. 7044 


13.6957 


0.06 


83.378 


33.991 


-0.74 


1211 


266.317 


13.7007 


13.6911 


0.07 


104.232 


104.953 


-0.69 


1212 


290.328 


13.6974 


13.6879 


0.07 


122.712 


123.454 


-0.61 


1213 


296.212 


13.6924 


13.6851 


0 . 05 


149.868 


150.484 


-0. 41 


1214 


302.145 


13. 6874 


13.6819 


0.04 


177.132 


177.624 


-0.28 


1215 


310.715 


13.6604 


13.6790 


0.01 


216.504 


216.647 


-0. 07 


1216 


313.093 


13.6734 


13.6783 


-0.04 


255.083 


254.561 


0.20 


1217 


334.225 


13.6606 


13.6723 


-0.08 


323.892 


322.512 


0 • 43 


1301 


256.613 


14 . 5544 


1 4 .5 58 4 


-0.03 


19.044 


13.702 


1.80 


1,30 2 


257.326 


14.5537 


14.5556 


-0.01 


22.901 


22.743 


0. 69 


1303 


257.911 


14.5534 


14.5538 


-0.00 


26.113 


26.073 


0. 15 


1304 


259.065 


14.5524 


14.5519 


0.00 


32.560 


32.60 7 


-0.15 


1305 


263.450 


14 . 5484 


14.5440 


0.03 


56.915 


57.324 


-0.72 


1306 


266.631 


14.5437 


14.5353 


0 . 06 


85.525 


86.354 


-0. 97 


1307 


273.496 


14. 5391 


14.5321 


0.05 


112.695 


113.417 


• -0.64 


1306 


283.116 


14.5304 


14.5247 


0.04 


165.879 


166.542 


-0.40 


1309 


291.287 


14.5231 


14.5194 


0.03 


210.784 


211.238 


-0. 22 


1310 


298.372 


14.5168 


14.5160 


0.01 


249.591 


249.70 0 


-0. 04 


1311 


307.254 


14. 5088 


14.5117 


-0.02 


297.945 


297.542 


0.14 


1312 


319.529 


14.4978 


14.5045 


-0.05 


364.059 


363.039 


0.28 


1401 


248.290 


15 .0496 


15.0457 


0.03 


14.224 


14.625 


-2. 82 


1402 


249.192 


15. 0486 


15.0456 


0.02 


20.022 


20. 331 


-1.54 


1403 


250.248 


15. 0476 


15.0433 


0.03 


26.564 


27.018 


-1. 71 


1404 


253.374 


15 . 0446 


15.0378 


0.05 


45.992 


46.742 


-1. 63 


1405 


258.654 


15. 0396 


15. 0 30 0 


0.06 


78.728 


79.845 


-1. 42 


1*06 


265.858 


15. 0329 


15.0229 


0.07 


123.345 


124.612 


-1.03 


1407 


272.972 


15.0263 


15.0163 


0.07 


167. 038 


168.374 


-0. 80 


1403 


279.035 


15. 0206 


15.0116 


0.06 


204.080 


205.354 


-0.62 


1409 


285.189 


15. 0146 


15.0074 


0.05 


241.489 


242.571 


-0.45 


1410 


29*. 840 


15. 0057 


15 .0025 


0.02 


299.962 


300.461 


-0. 17 


1411 


30*. 470 


14. 9967 


14.9963 


0.00 


357.549 


357.617 


-0. 02 


1412 


316.744 


14.9850 


14.9999 


-0.10 


432.383 


429.618 


0. 64 


1501 


240.739 


15 . 4546 


15.4609 


-0.04 


10.100 


9.335 


7.57 


1502 


240.885 


15. 4546 


15.4603 


-0.04 


11.065 


10.369 


6.28 


1503 


241.249 


15.4543 


15.4602 


-0.04 


13.638 


12.90 5 


5. 37 


150 4 


241.891 


15. 4536 


15 . 4590 


-0.03 


18.027 


17.364 


3.68 


1505 


243.148 


15.4523 


15.4565 


-0.03 


26.600 


26.074 


i.9e 


1506 


246.601 


15.4490 


15.4481 


0.01 


49.622 


49.938 


-0.23 


1507 


251.930 


15.4436 


15.4423 


C. 01 


86.273 


86.453 


-0.21 


1508 


257.186 


15.4386 


15.4375 


0.01 


122.011 


122.182 


-0. 14 


1509 


261.7*5 


15. 4343 


15.4335 


0.01 


152.813 


152.930 


-0. 08 


1510 


267.242 


15.4287 


15.430 0 


-0.01 


189.660 


139.655 


0.11 


1511 


273.834 


15. 4223 


15.4245 


-0.01 


233.736 


233.380 


0.15 


1512 


282.799 


15 . 4137 


15.4187 


-0.03 


293.088 


292.212 


0. 30 


1513 


290.022 


15. 4067 


15.4131 


-0.04 


340.314 


339.120 


0.35 


1514 


296.219 


15.3987 


15.4081 


-0.06 


393.682 


391.85 0 


0.47 


1515 


309.559 


15. 3378 


15.4010 


-0.09 


466.789 


464.006 


0.60 


1601 


230.051 


16. 0366 


16.0361 


0.00 


8.0 60 


8.126 


-0.82 



196 



Table 12. Experimental and calculated P-p-T data- 



(Continued) 



EQUATION OF STATE VS. FVT DATA 



ID 


T t K 


MOL/L 


CALCD 


D,PCT 


P,BAR 


CALCD 


P,PCT 


1_qT2 




16. 0362 


16.0357 


n - nn 


9.965 


1 fl.043 


-0.78 


1603 


230.307 


16. 0359 


16.0348 


0.01 


13.973 


14.142 


-1.21 


1 604 


232.572 


16. 0339 


16.0324 


0.01 


27. 840 


28.078 


-0.85 


1605 


2 3h . 16 0 


16. 0323 


16.0286 


0.02 


40.005 


4 0.59 0 


-1.46 


1606 


9 7 u O C ~ 




16.0268 


0.03 


48.499 


49.21 7 


-1 . 48 


1607 


242.791 


16. 0236 


16.0158 


0.05 


106.582 


107.928 


-1. 26 


1 608 


249.107 


16. 0170 


16.0093 


0.05 


155.042 


156.422 


-0.89 


T 1609 


254.888 


16. 0110 


16.0029 


0.05 


198.800 


200.331 


-0.77 


1610 


262.164 


16. 0037 


15.9976 


0 . 04 


253.808 


255.01 7 


-0. 46 


1611 


271.236 


15.9943 


15.9880 


0.04 


320.920 


322.271 


-0. 42 


1612 


279.282 


15.9860 


15.9829 


0.02 


3 B 0.442 


381.144 


-0.18 


1613 


286.940 


15.9781 


15.9779 


0.00 


436.516 


436.544 


-0.01 


1 614 


2 94 . 5 1+3 


15.9704 


15.9734 


-0.02 


491.788 


491.055 


0.15 


1615 


301.025 


15.9638 


15.5651 


-0.01 


537.420 


537.087 


0.06 


1701 


222.875 


15.4230 


16.4030 


0.12 


7.625 


11.158 


-46. 34 


1702 


223.264 


16. 4227 


16.4017 


0.13 


10.831 


14.539 


-34. 24 


1703 


223.573 


16.4223 


16.4012 


0.13 


13.464 


17.210 


-27. 83 


170 4 


225.014 


16. 421 0 


16.3994 


0.13 


25.785 


29.680 


-15. 10 


1705 


230.291 


16 . 4154 


16.3902 


0.15 


70.101 


74.832 


-6. 75 


1736 


237.396 


16. 4077 


16.3812 


Q.16 


129.495 


134.758 


-4.06 


1707 


252.785 


16. 3911 


16.5647 


0.16 


255.712 


261.545 


-2. 28 


1708 


253.848 


16. 3838 


16 .3580 


0.16 


312.610 


318.592 


-1. 91 


1709 


2b7.6Q2 


16. 3755 


16.3512 


0.15 


374.481 


380.373 


-1. 57 


1710 


275.649 


16.3668 


16.3460 


0.11 


438.898 


443.679 


-1. 09 


1711 


282.466 


16. 3598 


16.3429 


0.10 


492.335 


496.803 


-0.91 


■■ 17 . 1.2 


293.185 


16 . 3485 


16.3360 


0®08 


575.740 


579.231 


-0. 61 



.14 Hi. 215 .247 16.7539 16.7727 -0.11 6.823 3 .Q84 54. 8Q 



1802 


215.504 


16.7536 


16.7728 


-0.11 


9.325 


5.477 


41.27 


1 3 Q 3 


215.892 


16.7532 


16.7715 


-0.11 


12.777 


9.119 


28.62 . 


1804 


216.369 


16.7526 


16.7710 


-0.11 


17.256 


13.541 


21.53 


1805 


216.832 


16.7522 


16.7702 


-0.11 


21.511 


17.890 


16.83 


1306 


217.058 


16.7519 


16.7692 


-0.10 


23.470 


19.977 


14. 88 


1807 


220.809 


16. 7476 


16.7629 


-0.09 


57.842 


54.663 


5. 50 


1808 


22o.802 


16.7409 


16.7551 


-0.08 


112.523 


109.436 


2. 74 


1809 


2 3 -f . 9 1 7 


16. 7323 


16.7456 


-0.08 


185.542 


132.440 


1_. 67 


1810 


243.045 


16 .7233 


16.7365 


-0 .08 


257.383 


254.185 


1. 24 


18UL 


250.885 


16.7147 


16.7300 


-0.09 


326.185 


322.276 


1 . 20 


1812 


260.378 


16 .7044 


16.7226 


-0.11 


408.366 


403.433 


1.21 


1313 


2.oJ±3lZ7 


16. 6937 


16.7176 


-0.14 


490.451 


433.674 


1. 38 


1314 


273. 13 0 


16 . 6847 


16.7118 


-0.16 


559.695 


551.671 


1. 43 


1315 


2 8-4.744 


16.6778 


16.7078 


-0.18 


615.144 


605.967 


1. 49 


1816 


293.608 


16.6681 


16.7025 


-0.21 


686.810 


677.857 


1.59 


1901 


206.953 


17. 1250 


17. 0977 


0.16 


8.116 


14.30 0 


-76. 19 


1902 


209.053 


17. 1244 


17.0967 


0 .16 


14.067 


20.385 


-44. 71 


1903 


213.403 


17. 1194 


17.0891 


0.18 


57. 037 


64.142 


-12.46 


1904 


213.5_6Sl 






0.19 


107.538 


115.363 


-7,. 2.8 


1905 


227. 034 


17. 1038 


17.0713 


0.19 


189.571 


197.916 


-4, 40 


1906 


233.700 


17. 0961 


17.0636 


0.19 


252.998 


261.697 


-i. 44 _ 


1907 


241.770 


17. 0871 


17.0560 


0.18 


328.989 


337.725 


-2.66 


1908 


251.549 


17.0762 


17.0496 _ 


0.16 


4.2 0.2 78 


428.155 


-1.87 



197 



( 





Table 12. Experimental and calculated P-p-T data- - - (Continued) 

EQUATION OF STATE VS. PVT OATA 



ID 


T,K 


MOL/L 


CALC D 


D,PCT 


P, BAR 


CALCO 


P,PCT 


1909 


260.957 


17.0655 


17.0446 


0.12 


507.048 


513.568 


-1. 29 


1910 


268.486 


17.0569 


17.0368 


0.12 


574.398 


580.876 


-1.13 


1911 


280.494 


17. 0436 


17.0328 


0.06 


683.038 


686.701 


-0.54 


2001 


193.356 


17.5291 


17.5476 


-0.11 


7.130 


2.315 


67.53 


2002 


199.230 


17.5281 


17.5454 


-0.10 


16.592 


12.067 


27.27 


2003 


200.946 


17.5261 


17.5424 


-0.09 


35.439 


31.123 


12.18 


2004 


2 0 h . 75 6 


17.5214 


17.5355 


-0.08 


76.814 


72.991 


4.98 


2005 


210.931 


17, 5141 


17.5267 


-0.07 


143.419 


139.863 


2.48 


2006 


220.998 


17.5022 


17.5152 


-0.07 


250.280 


246.369 


1.56 


2007 


227.537 


17. 4945 


17.5071 


-0.07 


318.013 


314.102 


1. 23 


2008 


235.067 


17.4859 


17.5015 


-0.09 


395.918 


390.856 


1.28 


2009 


242.758 


17.4769 


17.4948 


-0.10 


473.940 


467.90 1 


1.27 


2010 


249.071 


17.4692 


17.4903 


-0.12 


537.459 


530.140 


1. 36 


2011 


256.389 


17.4609 


17.4875 


-0.15 


611.081 


601.535 


1.56 


2012 


263.603 


17. 4523 


17.4829 


-0.18 


682.214 


670.834 


1.67 


2101 


183.907 


17.9415 


17.9532 


-0.07 


6.728 


3.226 


52.05 


2102 


189.331 


17.9411 


17.9521 


-0.06 


11.762 


8.484 


27. 87 


2103 


169.746 


17.9405 


17.9515 


-0.06 


16.843 


13.521 


19.72 


210^ 


192.590 


17.9368 


17.9459 


-0.05 


50.874 


48.097 


5.46 


2105 


198.660 


17.9295 


17.9362 


-0.04 


123.000 


120.883 


1.72 


2106 


205.509 


17.9209 


17.5254 


-0.03 


202.640 


201.149 


0.74 


2107 


213.217 


17. 9115 


17.9159 


-0.02 


291.132 


289.643 


0.51 


2108 


220.733 


17.9022 


17.9096 


-0.04 


376.667 


374.052 


0.69 


2109 


228.543 


17.8929 


17.9040 


-0.06 


464.311 


460.202 


0.89 


2110 


233.949 


17.3799 


17.9001 


-0.11 


580.193 


572.381 


1.35 


2201 


176.719 


18 . 4456 


18.4480 


-0.01 


3.471 


2.652 


23. 59 


2202 


177.382 


18. 4450 


18.4462 


-0.01 


12.310 


11.869 


3. 58 


2203 


173.429 


18.4433 


ie .4445 


-0.01 


26.585 


26.156 


1. 61 


2204 


179.691 


18 . 4416 


ie .4416 


-0.00 


43.417 


43.41 3 


0.01 


2205 


182.793 


18. 4376 


18.4358 


0.01 


84.808 


35.485 


-0.60 


2206 


188.263 


18.4307 


18.4260 


0.03 


156.732 


158.461 


-1.10 


2207 


195*143 


18 . 4217 


18.4155 


0 .03 


245.802 


248.198 


-0.97 


2208 


201.949 


18. 4130 


18.4077 


0.03 


332.786 


334.917 


-0.64 


2209 


203.686 


16. 4044 


16.4024 


0.01 


418.212 


419.023 


-0.19 


2210 


215.452 


18.3957 


18 . 3979 


-0.01 


502.825 


501.907 


0.18 


2211 


222.008 


18. 3871 


18.3956 


-0.05 


584.427 


580.711 


0.64 


2212 


2 2 7 . 0 3 0 


18. 3808 


ie.3942 


-0.07 


646.312 


640.353 


0.92 


2213 


229.121 


18. 3781 


18.3946 


-0.09 


672.368 


664.967 


1. 10 


2301 


163. C32 


18.8234 


18.8126 


0.06 


10.003 


14.303 


-42.99 


2302 


163.479 


18 .6227 


18.8117 


0.06 


16.593 


21.008 


-26.61 


2303 


169.437 


16. 8214 


16.6093 


0 .06 


30.514 


35.366 


-15.90 


2304 


171.067 


18. 8194 


16.8057 


0.07 


54.233 


59.759 


-10.19 


2305 


1 73.679 


16. 8158 


18.8008 


0.08 


92. 210 


98.292 


-6.60 


2306 


177.673 


18.8104 


18.7931 


0.09 


149.285 


156.488 


-4. 83 


2307 


183.136 


18.8031 


18.7831 


0.11 


226.036 


234.559 


-3. 77 


2308 


163.344 


18. 7955 


18.7749 


0.11 


305.443 


314.423 


-2.94 


2309 


195.448 


18 . 7665 


18.763 8 


0.09 


396.636 


404.799 


-2. 01 


2310 


201.251 


18.7788 


18.7661 


0.07 


476.851 


482.746 


-1.24 


2311 


206.784 


18.7715 


18.7606 


0.06 


55 0.626 


555.305 


-0.94 



198 



Table 12 » Experimental and calculated P-p-T data- - - (Continued 
EQUATION OF STATE VS. PVT DATA 



ID T,K MOL/L CALC D D,PCT P , BAR CALC D P,PCT 

2 31 2 212.460 , 16 .7-613 16.7616 T.J11 628.513 629.515 

2313 217.337 18.7576 16.7591 -0.01 692.835 692.094 0.11 



2401 


157.201 


19.2261 


19.222 0 


0.02 


5.219 


7. 098 


-36. 01 


240? 


1 6 4 - 4 9 F, 


19. 224 1 


19.2189 


0.03 


26. 1 62 


28.51 6 


-9. on . . 


2403 


159.577 


19.2225 


19.2149 


0.04 


42.627 


46.284 


-8. 07 


2404 




1 9 . 2208 


19.2138 


0.04 


62.930 


66.128 


-5. 08 


2405 


163.656 


19. 2168 


19.2080 


0.05 


108.664 


112.741 


-3.75 


2406 


167.103 


19. 2122 


19.1981 


0.07 


161.353 


167.949 


-4. Q9 


2407 


172.270 


19 . 2049 


19.1897 


0.08 


241.688 


248.95 8 


-3. 01 


2J±M 


1 77. 321 


19.1 970 


1 9.1 81 5 


0.09 


31 8.533 


326.541 


.. -2. 51 


2409 


183.160 


19. 1896 


19.1764 


0.07 


407.622 


414.225 


-1. 62 


2410 


1 88 .69? 


19.1819 


1 9 . 1 72 6 


0 . 05 


490.353 


495.107 


- -0.97 


2411 


194.552 


19.1739 


19. 1703 


0.02 


578.543 


580.48 0 


-0. 33 


241 2 


199.115 


19.1673 


19.1720 


-0.02 


647.704 


645.181 


fl. 39 


2413 


202.417 


19. 1630 


19.1682 


-0.03 


694.537 


691.718 


0.41 


2501 


134.069 


20.4330 


20.1037 


1.60 


14.291 


221.481 


-1449.79 


25 02 




20.4293 


20.1019 


1.60 


25.882 


234.170 


-308. 77 


2503 


1 36.071 


20. 4270 


20.0975 


1.61 


53.739 


264.078 


-391.41 


2504 


1 37.536 


20 . 4247 


20. 0931 


1.62 


82.345 


294,824 


-258. 04 


2505 


140.791 


20 . 4194 


20.0642 


1.64 


145.396 


362.087 


-149. 04 


25Q6 


144.763 


20 ^ 41,3 4 


2G.H76 3 


1 . 66 


221.796 


442.862 


-99.67 


2507 


149.679 


20 . 4054 


20.0673 


1.66 


315.714 


540.141 


-71.09 


2508 


154.382 


20 . 3981 


2C. 0628 


1.64 


405.313 


631.278 


-55. 75 


2509 


159.399 


20. 3904 


20.0607 


1.62 


500.568 


726.521 


-45. 14 


2510 


164.174 


20 . 3828 


20.059b 


1.58 


590.104 


815.074 


-38. 12 


2511 


168.954 


20 .3755 


20.0614 


1.54 


679.933 


902.343 


-32. 71 



NP = 321, DNRMSPCT = 2.853, PMEANPCT =14.092 



199 





CD 


•4- 


X 


CD 


tH 


tH 


x 


CD 


cvi 


CM 


tH 


CM 


'X) 


tH 


z 


CP 


CM 


CD 


CD 


CD 


O 




CD 


CD 


CD 


CD 


CD 


CD 


ro 


(_> 






























LL 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD! 


CD 


CD 


CD 


CD 


CD 



till III 



c_> 


cn 


ro 


jj 


UJ 


ro 


r^ 


o> 


a) 


CJ 


m 


c n 


tH 


CD 


r- 


_i 


O 


fN 


X' 


CM 


LA 


j- 


X 


j- 


CD 


CM 


"H 


O 


IN 


cn 


<X 






























CJ 


ro 


m 


CO 


C\J 


o' 


(VJ 


CM 


in 


ar 


cp 


rp 


OL 


Lf> 


CM 




ro 


ro 


ro 


X 




LA 


un 


X 


n-, 


cu 


O' 


O 


tH 


CM 








i 












l 

[ 






tH 


tH 


tH 


INI 


cn 


x 


id 


X 


-T 


IN 


CM 


ao 


1 

f 

a> 


x 


CD 


CT' 


fN 


O' 


a 


ro 


x 


x 


CM 


X 


X 


N 


x cn 


CNJ 


CM 


O’ 


rN 


in 


<_> 
































ro 


IA 


cc 


CM 


(T* 


CM 


CM 


LA 




O' 


cr> 




X 


CM 




ro 


ro 


ro 


X 




LTi 


IT, 


x 


N- 


ao 


o> 


CD 


tH 


CM 


























tH 


tH 


tH 



I 





x 


CM 


CM 


CD 


CD 


tH 


tH 


CD 


O 


CD 


CD 


tH 


tH 


tH 


z 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 




CD 


O 


CD 


CD 


CD 


<_> 






























Cl. 


CD 


CD 


CD 


CD 


C~> 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 





1/5 


































Z 


































hH 


































D» 


































X 


o 


ao 


ro 


tH 


CD 


CP 


LA 




r- 


j- 


CO 


o 


ro 


CD 


IN 




IL. 


-J 


■H 


ao 


o - 


b ' 


OJ 


tH 


nT 


ro 


ro 


a < 


tH 


0 


tH 


UJ 






«SC 


































CJ 


CD 


ro 


cc 


CD 


X 


o 


O' 


OJ 


CM 


(N 


CM 


b \ 


CP 


tH 








UJ 


CO 


O' 


tH 


CM 


CM 


CM 


x 


X 


f' 


a> 


CD 


tH 


x 


£ 


X 




tH 


tH 


X 


CM 


CM- 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


o 


Lxl 
































• i—i 


-J 
































-4-> 


o 
































CJ 


2. 


M 


(M 


n 


fN 


CD 


CO 


CM 


LA 


in 


J" 


IN 


cr 


X 


IN 


Cs j 


CH 




01 


tH 


CO 


X 


in 


UL> 


tH 


j- 


ro 


ro 


X 


CD 


X 


CD 


UJ 


m 

a) 

CuO 


01 

Lu 




CD 


ro 


or • 


CD 


J- 


O' 


CT> 


X 


CM 


IN 


CM 


X 


X 


tH 


_l 




X 


CO 


tn 


tH 


CM 


CM 


CM 


J- 


X r — 


cn 


CJ 


tH 


ro 


3 




tH 


H 


H 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


r— H 


O 
































aj 


3 
































ai 


































T3 

• I—* 


z 
































T3 


KH 


y- 


CD 


CD 


CD 


CJ 


CJ 


CD 


tH 


CD 


CD 


CD 


CJ 


CD 


CD 


CD 




z 


CD 


CD 


CD 


CD 


CD 


CJ 


CJ 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 

4-> 

ctf 


iLi 


o 

a 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


i-H 








i 




l 


i 


i 




i 






i 








3 


<X 
































CJ 


X 


































h— 
































o 


LU 
































T) 


U 


CJ 




CD 


lx ' 


ri 


T'- 


j- 


tH 


t-t 


CD 


b ' 


ro 


IN 


tH 


X 


fl 


to 


-J 


r^- 


LA 


CM 




LP 


O 


U> 


tH 


-T 


in 


CM 


'JU 


CD 


cn 


cti 


x 


<3 






























i — i 




O 


r^ 


tH 


O' 


(N 


CD 


in 


CM 


in 


X 


tH 


CM 


tH 


kO 


X 


(3 


o> 




X 


CO 


ro 


la 


CD 


r^. 






u\ 


ro 


OD 


ro 


CM 


b> 


4-i 

£ 

(D 


; y 




cD 


ro 


CM 


eg 


W 


'XJ 


O' 


CL 


O 


X 


•DJ 


CM 


X 


ro 


o 




tH 


r^ 


in 


N* 


O 


tH 


tH 




X 


ro 


CM 


ro 


X 


X 


HH 












tH 


tH 


tH 


H 


CM' 


ro 




in 


a> 


fN 


a 


h— 
































• i—i 


O 
































u 

<u 

Ph 

X 

W 


z 


INI 


IN 


tH 


CD 


IN 




CM 


CD 


CM 


X 


CD 


O' 


CM 


X 


CM 


3 


X 


|N 


b> 


CM 


LO 


tH 


cc 


tH 


fN 


CP 


o 


X 


X 


X 


ao 


Ll. 




no 




C' 




tH 


u> 


CM 


LA 


N- 


▼H 


CM 


CD 


UN 


ro 


00 




X 


co 


ro 


in 


CD 


IN 


N» 


fN 


X 


ro 


X 


ro 


CM 


X 


• 


<a 




Vi) 


ro 


CM 


CM 


vD 


o 


CP 


co 


CD 


X 


ao 


CM 


cr 


ro 


CO 


LD 




tH 


ro 


in 


1^- 


CD 


tH 


tH 


r^- 


in 


ro 


i\j 


ro 


~x 


NkJ 


i— i 














tH 


tH 


tH 


tH 


CM 


ro 


X 


in 


X 


IN 


CD 


_J 
































<T 
































XI 


UJ 




CJ 


CD 


o 


CD 


LA 


in 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CJ 


cd 


(3 




O 


CD 


a 


O 


t-4 


tH 


CD 


CD 


CJ 


CJ 


O 


CD 


O 


CJ 


H 


hH 


i- 


CD 


CD 


CD 


CD 


ro 


ao 


CD 


CD 


CD 


CJ 


CD 


CD 


CD 


CJ 








in 


CD 


in 


CD 


r>- 


O' 


CJ 


CD 


O 


o 


CD 


CD 


CD 


CD 










tH 


tH 


<M 


CM 


CM 


ro 


j- 


X 


X 


IN 


CO 


X 


CD 



200 



Table 14. Interpolated ideal gas functions 



ETHA 


N F IHEflL 


GAS FUNCTIONS 


;. JOULES 


.MOLES. 1 


KFl VT KS 


T ,K 




H7 


- S7 


O \I7 


r p 7 


9 C 


2 2 7 3.7 


3027.0 


If 0.150 


26.66 


35.17 


_ i an 


2550.1 


-3381.5 


IP 3.8,84 


27.42 


35 .73 


lie 


2827. 0 


3741.6 . 


187.316 


27.98 


36.29 


i ?n 


31 03. h 


4 1 07.4 


190.458 


28.54 


3 6 .66 


.150 


3 3 3 7. E 


4478.3 


193.471 


29.12 


3 7.43 


140 


345?. 0 


4856.0 


19 6 .2 66 


29.71 


3 8.0? 


15 0 


3 <392. 1 


5239.3 


198.910 


3 0 . 32 


38.64 


16 J 


4 2 9 b . fa 


5628.9 \ 


20 1.424 


3 0.97 


39.28 


170 


4 611. t 


6025.1 


2C 3. 826 


31.65 


39.96 


1 3t 


4931.7 


b 4 2 8 . 3 


206.131 


32.37 


4 0.69 


190 


5 259. 2 


6338.9 


208.351 


33.14 


41.45 


2 0 0 


5594.6 


7257.4 


210. 467 


33.95 


42.26 


2 10 


5 9 3 3.2 


7684.3 


21 2 .579 


34.80 


43.12 


22 4 


6 2 9 0. 7 


8116.9 


21 4.6 06 


35.70 


4 4.92 


2 30 


o 65 2. 5 


6564.3 


216.583 


36.65 


44.97 


2 4 U 


7 0 23. 9 


C Q1°.4 


213.513 


37.64 


45.96 


2 5 C 


7 4 0 5.5 


5484.1 


22 0 . 415 


3 6.66 


46.99 


2 EC- 


7 79 ?. c 


9959. 3 


222 . 279 


3 9.75 


46.07 


2 70 


6 2 0 0.6 


1 li 44 c . 5 


224.113 


4 0 .86 


49.18 


2 50 


3614.5 


10943.0 


226.9?? 


42.01 


30.32 


2 5 C 


9 040. « 


11452.0 


227.708 


43.18 


51.49 


3 0 0 


9 h 75. 6 


1 1 972.9 


229.474 


44.38 


52.69 


3 1C 


9 92 8. 5 


12506.0 


231.222 


4 5.61 


53 . 92 


3 2 0 


1 0 39 0. £ 


13051.4 


232.654 


48.65 


55.17 


3 50 


1 0 8 6 5.6 


13609. 3 


234.670 


46.11 


56.43 


3 hO 


1 1 353. 1 


14160.0 


236.374 


49.39 


57.70 


3 50 


1 1853. 4 


14763.4 


23 8 . C65 


5 G .68 


5 6.99 


3 o0 


12 3 6 6.6 


15359.3 


239.745 


51.97 


6 0 . 2 3 . . 


3 70 


12 392. c 


15 96 c .l 


24 1 . 4 14 


53.27 


61.58 


.3 . n 


1 3 43?. n 


16691.4 


24 7 . 074 


5^.57 


62.83 


3 50 


1 3 934. 2 


17226.3 


244.724 


55 .67 


6 4.13 


4 : g 


1 4 5 49. 4 


17875.1 


246.366 


57.17 


6 6.48 


4 10 


15 127. 5 


18536.4 


247.993 


5 0.46 


66.78 


•+ 7 0 


15 718.6- 


192in.o 


246 . 6 ?3 


59.75 


6 8 . 07 


4 3 0 


16 322. = 


16867.7 


251.240 


61.03 


6 9.35 


u ^ n 


1 6 936. ? 


2 0 ^ Cj 7 . 5 


252.849 


62.30 


70.6? 


4 50 


1 7 5bo. 6 


21310.0 


254.450 


.6 3.56 


7.1 .88 


4 AH 


1.-21 0. 5 


? 2 0 3 e- . n 


26 fi . 0 43 


6 4.81 


73.13 


4 7 0 


1 6 6 b 4 . tr 


22772.5 


257.629 


6 6.05 


74.37 


4 a.-s 


1 « 6 ?, ; . - 


? 5 6 ? 2 . .3 


269.208 


67 .26 


75.59 - . 


-+ 5 0 


2 0 210. 3 


29284.4 


260 . 773 


6 8.49 


76 .31 


u n n 


20401. 3 


?9n5P.4 


26 2.343 


6 9 .69 


. 7 8 . 0 0 . . ... 


5 1 0 


2 1 6 0 4. 1 


2 6 8 9 4 . 4 


263. 699 


70.67 


7 9.19 


5 2 n 


2 2 31 


26642.1 


265.443 


7?.05 


8 0.36 


5 3 r 


2 3 0 4 5. 0 


27451.5 


266.660 


7 3.20 


81.5? 


5 40 


2 3 76 2.7 


28 272.4 


266.524 


74.35 


3 2.66 


1 w - 3 
! «\ 


2 4 5 31. 


2 C 104.7 


27 0 . 051 


76.47 


6 3.29 


5 c 0 


25 262. 2 


? c 448.2 


27 1 .571 


76.59 


6 4.90 


5 70 


2 6 3 6 3.6 


3 C 6 0 2 . 7 


273 . C 84 


77.69 


66.01 


5 30 


2 6 8-. 5. 9 


31666.2 


274.569 


78 .78 


p 7 . 0 9 


5 5 0 


27639. 1 


32544.5 


276. 0 87 


79.65 


68.17 


o 00 


2 8 44 3. 0 


33431.5 


277.578 


60 .92 


89.23 



201 



Table 15. Experimental and calculated heats of vaporization 



ID; (10) Douslin; (11) Wiebe; (13) Riedel via Furtado; (20) Furtado 



“ 17 


21027302+001 


1.11655879+001 1 


.65392652+9(9 


-7 . 


L 6546945 +0 01 


6.21662337+001 -3 


.26105136+001 


10 


T * K 


K J/ MOL 


Cf LCD 


PCNT 


nr 


246 . 15 


11.299 


11.235 


0.57 


10 


253.15 


10.925 


10 . 862 


0.53 


nr 


ZbTTXT 


10. 072 


10.039 


0*33 


10 


273.15 


9.073 


9.072 


0.01 


10 


269. T5 


7. 8 + 4 


7 .878 


-0.44 


10 


293.15 


6.17 0 


6.253 


-1.34 


nr 


293.15 


5.034 


5.090 


-1.09 


10 


302.15 


3.677 


3.708 


-0.85 


nr 


303 .13 


— 37337 


37238 


-0732 


10 


304.15 


2.546 


2.547 


0.04 


13 


10 J . 00 


17.154 


17.312 


-T.9X 


13 


111.11 


16.926 


17.068 


-0.82 


TT 


1 5 5 • 53 


16.455 


16.492 


-3722 


13 


155.56 


15.853 


15.797 


0.35 


l3~ 


lfc o . O 7 


'15 .433 


15.403 


0.50 


13 


160 . 00 


14.957 


It- .886 


0.48 


I Z 


164.10 


1 4 .“73c 


93 . 7X7 


-T.T7 


13 


164 . 11 


14.802 


lc .716 


0.58 


IT 


190.00 


14.526 


in • 4bb 


07773 


13 


200.00 


14.049 


14.012 


0.26 


13 


21 u .xnr 


1 5 • b 5 0 


13.525 


9737 


13 


220 . 00 


12.999 


12.998 


0.01 


1 3 


2td . od 


T2.338 


127725 


-0*30 


13 


240.00 


11.743 


11 . 797 


-0.46 


13" 


2X77X3 


11.044 


11.099 


-0.50 


13 


260.00 


10.237 


10.311 


-0.24 


13 


““2T7 . TO 


9.416 


? • 3 9 6 


“0722 


13 


260.00 


8.353 


8.287 


0.80 


13 


293 . rr 


6 . 8o 3 


67 83 6 


0.70 


13 


300.00 


4.557 


4.531 


0.57 


2X 


1 0 U . 03 


1/ .54 4 


17.312 


1794 


20 


111.11 


17.117 


17.068 


0.28 


23 


133. 3r 


XT'. 4 37 


IF. 492 


0.03 


20 


155 • 5o 


15.761 


15.797 


-0.23 


20 


1 c b • 6 ( 


15.351 


9577439 


-0.34 


20 


160.00 


14.832 


14.886 


-0.36 


nr 


184.11 


14.677 


14.716 


-0."27 


20 


190.00 


14.422 


14 .465 


-0.30 


20 


23F. 00 


X 3 .3c 3 


17 . TXT 


-0.42 


20 


210.00 


13.438 


13.525 


-0.27 


20 


225. TO 


12.939 


127 998 


0.01 


20 


230.00 


12.434 


12.425 


0.07 


nr 


240 . 00 


11.314 


11.797 


0.15 


20 


250.00 


11.065 


11.099 


-0.31 


20 


2cT0 . m 


13723 7 


1379X1 


-0.24 


20 


27 0 . 00 


9.416 


9.396 


0.22 


20 


26 0 . TT 


3 . 279 


F. 287" 


-0.46 


20 


290.00 


6*663 


6.836 


0.40 


nr 


333733 


4 • b 1 2 


4.531 


1.78 


li 


190 .00 


13.777 


14 ,465 


-4.75 


li 


135.30“ 


13. 639 


17.24 n 


-4.27 


n 


200.00 


13.501 


14 .012 


-3.65 


n 


205.30 ' 


13.338 


17.773 


-3.16 


n 


210.00 


13.179 


13.525 


-2.56 


li 


215 . 30 


12.939 


13.266 


-2.02 


li 


220.00 


12.806 


12.998 


-1.47 


n 


225. 03 


12.334 


127718 


-1.03 


n 


230.00 


12.362 


12.425 


-0.50 


n 


'“233.33 


12.11 X 


12.119 


-0.06 


n 


240.00 


11.844 


11.797 


0.40 


rr 


235733 


11. 55 1' ' 


11.458 


078X 


ii 


250.00 


11.233 


11.099 


1.20 


xn 


“255730 


13789X7“ 


X0759 0 


1.52 


n 


260.00 


10.492 


10.311 


1.75 


“m 


265. 00 


13. 0Tb 


97372 


1 . 63 


n 


270.00 


9.534 


9.396 


2.00 


rr 


275733 


973X2 


5 .872 " 


1.4/ 


n 


260.00 


6.429 


8 . 287 


1.71 


n 


“'265733 


7.70 0 


77329 


r. T3 


n 


290.00 


6.834 


6.836 


-0.03 


n 


23:7.03 


57 779 


3.865 


-1 • 4o 


n 


300.00 


4.294 


4.531 


-5.24 


NP 


= 49, R9SPCT 


= 0.56 






202 



Table 16. Experimental and calculated specific heats for saturated liquid 





ID: 


(11) Wiebe; 


(12) Witt 


T c 


- 3 ^. 3 7 




6.73153+001 


-1.65876+001 1. 


63526+001 r c 

t - 0-5 




ID 


T.K 


J/ f'OL/K 


CflLCD 


PCNT 




-jg 


Q fl - 0 0 


6ft- ?? 


6 a r 17 


0,07 




11 


96.77 


68. 42 


68.33 


0 . 14 




it 


96.82 


68.22 


68.33 


0*57 




11 


98.06 


68.51 


68.36 


0.21 




12 


1 o o „00 


68. 55 


68 „ 4-1 


0*-20 




ii 


101.54 


68. 68 


68.46 


0.32 







i n 7 . n ft 


6 ft. 69 


6 ft .. 6 1 


-0,03 




ii 


108.65 


68.51 


68.66 


-0.22 




12 


1 1 Q-fll) 


6ft. 93 


6ft .7f) 


8*32 




u 


115.74 


68. 63 


68.89 


-0 .38 


- 


ii 


116.19 


68.42 


68.91 


^8.70 




12 


120.00 


69. 26 


69.04 


0.31 




1 1 


1 ?? . 7 Q 


69.5 1 


A 9 _ \ 9 


0,6? 




ii 


123.60 


69. 14 


69.18 


-0 .06 


- 


11 


128.08 


69.51 


69.36 


( U 22 




11 


128.49 


69. 47 


69.38 


0 .14 


- 


12 


130.00 


69.-51 


6 9.44 


0-10 




11 


132.65 


69. 81 


69.55 


0 . 36 






1 3 ft . 0 5 


A Q, AA 


6 9 . * 0 


0,06 




11 


138.18 


69. 97 


69.81 


0 .23 


_ 


11 


138.31 


69. 81 


69.82 


-0.01 




12 


140.00 


69. 85 


69.90 


-0.07 


- 


11 


16 2 .63 


70.06 


—70,02 


8.05- 




11 


143.36 


70.02 


70.07 


-0.08 




1 2 


15 0 .00 


7 0.27 


7 0 i 4 3 


-0,23 




ii 


151.75 


69. 93 


70.53 


-0 . 85 




ii 


152.60 


7 0.10 


70.58 


-8,68 




ii 


154.99 


70. 22 


70.72 


-0 .71 


- 


ii 


156.98 


- 70.22 


70.8-5 


0 .88 




ii 


157.42 


70. 06 


70.88 


-1.15 




12 


160-00 


7 0.86 


71.04 


-0,27 
















ii 


160.10 


71.06 


71.05 


0.02 


- 


ii 


162.65 


71. 14 


71.22 


-0.11 




ii 


164.49 


71. 69 


71.35 


0.48 




ii 




71- 56 


7 1 . A1 


- q , 06 














12 


170.00 


71.48 


71.75 


-0 .38 




1 1 


17 0 - 1 9 


7ii 73 


71-77 


-0,05 
















11 


172.05 


71.73 


71.91 


-0 .25 


- 


11 


172.69 


72.11 


71.96 


0.2-0 




11 


178.17 


72. 78 


72.42 


0 .49 




12 


1 ft 0*0 0 


7?, 23 


72 -+ 5 A 


- a * 48 




ii 


181.50 


73. 03 


72.72 


0.43 






1 8 2 i 0 3 


7 3.28 


72-77 


0 , 7 1 




ii 


190.00 


73. 49 


73.55 


-0 .08 




11 


1 99 ,ft 6 


* 3 \ 


7-4 -67 


~ Q ,46 




ii 


208.88 


75.62 


75.87 


-0 . 32 




11 


?12* ft Q 


7 5* 92 


76*45 


-0*70 




ii 


220.48 


77. 76 


77.73 


0.03 






77 ft . 7F, 


an. rf, 


7Q. 75 


1 .53 




ii 


236.21 


82.2 8 


81.06 


1 .50 




11 


244*6 1 


a 3. 9i 


83.19 


0.62 




ii 


252.53 


87. 09 


86.11 


1.14 




11 


25 A „?2 


ft B. 39 


aa ,4ft 


-0*10 




ii 


265.25 


92. 28 


92.09 


0 .20 




ii 


273.06 


98.05 


97.44 


0.63 




ii 


278.07 


1 01.28 


102.01 


-0 .72 




1 1 


284, o 7 


10 Q T Q A 


1 QQ T UR 


-0*39 
















ii 


291.27 


122. 62 


124.08 


-1.18 




11 


294.85 


13 a, 72 


1 36*37 


-o *47 




NP- ~ 


59. KHSPCT 


= 0,-54 — 







203 



T able 1 7 



• Experimental and calculated specific heats C„(T) 

ir 



on isobar P, 
b 



TM * 


354.0, CM 


= 117.333 




89154 -0 


.15442 -0. 


14149 -0. 


50644 


T,K 


J/MOL/K 


CALC 


PCT 


110. 928 


68.19 


68.45 


-0.39 


118.372 


68.45 


68.55 


-0.15 


122. 039 


68.56 


68.62 


-0.08 


133. 150 


68.94 


68.87 


0.10 


144. 261 


69.44 


69.23 


0.31 


155. 372 


70. 08 


69.70 


0.55 


166. 483 


70.59 


70.29 


0.42 


177.594 


71. 09 


71.03 


0.09 


186. 872 


71.58 


71.75 


-0.24 


188. 706 


71.71 


71.91 


-0.27 


199. 817 


72. 72 


72.94 


-0.30 


210.928 


73. 98 


74.15 


-0.23 


222. 039 


75. 37 


75.54 


-0.23 


233. 150 


77.13 


77.14 


-0.01 


241. 761 


78.63 


78.53 


0.13 


244. 261 


79. 0 0 


78.96 


0.06 


255. 372 


81.14 


81.03 


0.13 


266.483 


83. 41 


83.42 


-0.01 


277.594 


86.31 


86.17 


0.17 


282. 706 


87.70 


87.58 


0.13 


288. 706 


89.71 


89.39 


0.36 


299. 817 


92.97 


93.22 


-0.27 


305. 261 


94.86 


95.38 


-0.55 


310.928 


97. 8 8 


97.88 


0.00 


322. 039 


103.80 


103.63 


0.17 


324. 817 


105. 43 


105.26 


0 .16 


333. 150 


110.45 


110.54 


-0.08 


344.261 


116.62 


116.62 


0.00 



NP = 28, RMS = 0.25 



204 



Table 18. Calculated P(p) critical isotherm 



The following page gives a high-resolution examination of the 
critical isotherm of ethane as computed by equation of state (5). Column 
headings have the following interpretations - - 

D/DC = d/d c , density reduced at the critical point. 

P/PC = P/P c , pressure reduced at the critical point. 

DP/DD = c'P/cid, slope of the critical isotherm, bar/(mol/X). 



The last five columns give the density-dependence of functions 
used in the equation of state, where R = p = d/d^ is density reduced at 
the liquid triple point- - 

DTS/DR = dT a (p)/dp, K. 

DTH/DR = d0(p)/dp, K. 

DPS/DR = dP r7 (p)/dp, bar. 

DXB/DR = B$(p, T)/9p. 

DXC/DR h 3Y( P , T) /Bp. 



205 



Table 18. Calculated P(p) critical isotherm 



TC = 


305 . 370 , DC = 


6 . 740 , PC = 


48.7550 




0 /DC 


P/PC 


OP/DD 


CTS/OR 




0.75 


0 .993995341 


0 . 658819307 


40.90712 




0 . 76 


0.994858823 


0. 591217592 


38.34226 




0.77 


0.995632133 


0. 528321099 


35.89818 




0 . 78 


0.996321595 


0. 469866251 


33.56442 




0.79 


0.996933166 


0. 415589108 


31.32866 




0 .80 


0.997472439 


0. 365229997 


29.17651 




0.81 


0 . 997944660 


0. 318539129 


27.09132 




0.82 


0 . 998354733 


0. 275283463 


25.05409 




0 . 83 


0 . 998707261 


0. 235255248 


23.04356 




0 . 84 


0. 999006584 


0. 198282488 


21.03666 




0.85 


0 . 999256832 


0. 164241474 


19 . 0 0951 




0.86 


0 . 999462008 


0. 133071105 


16.93942 




0 .87 


0.999626082 


0. 104787529 


14 . e 0834 




0.88 


0. 999753105 


0. 079495860 


12.60834 




0.89 


0 . 999847343 


0. 057392249 


10.34968 




0.90 


0.999913379 


0 . 038744754 


8 .07130 




0.91 


0 . 999956191 


0. 0238 36 181 


5.65191 




0.92 


0.999981094 


0. 012651315 


3.61596 




0.93 


0 . 999993499 


0. 005707396 


2.12263 




0 . 94 


0 . 999998411 


0. 001681248 


0.92089 




0 . 95 


0. 999999775 


0 . 0 C 0380 131 


0.26456 




0.96 


0 . 999999987 


0. 000031585 


0.03611 




0 . 97 


0 . 999999999 


0 . 0 0 0 0 00 362 


0.00107 




0.98 


1.000000000 


0.000000001 


0.00000 




0.99 


1. 000000000 


0. 000000000 


0.00000 




1.00 


1. 000000000 


0. 000000001 


0.00000 




1.01 


1 . 000000000 


0. 000000001 


- 0.00000 




1.02 


1. 000000000 


0.000000000 


- 0.00000 




1.03 


0 . 999999999 


0. 000000307 


- 0.00017 




1 . 04 


1. 000000006 


0. 000015499 


- 0 .0 0658 




1.05 


1 . 00 00 0 0 099 


0 . C 00163143 


- 0.05510 




1 .06 


1 . 000000673 


0. 000790788 


- 0.21774 




1.07 


1. 000002769 


0. 002471622 


-0 .566 0 1 




1.08 


1. 000008306 


0 . 0 0 5884 665 


- 1.1 3956 




1.09 


1.000020147 


0 . Cl 1698 168 


- 1.9430 3 




1.10 


1 . 000042032 


0 . 0 20506538 


- 2.95766 




1.11 


l . 000078458 


0. 032614787 


- 4 . 15409 


- 


1 . 12 


1 . 0001 34569 


0. 049048904 


-5 .5 0116 


- 


1.13 


1 . 000216050 


0 . 069575 997 


- 6.97053 


- 


1 . 14 


1 . 000329066 


0. 054724915 


- 8 .53860 


- 


1.15 


1. 000480221 


0 . 124803633 


- 10.1 8679 


- 


1 . 16 


1 . 000676539 


0 . 1601 12464 


- 11.90101 


- 


1.17 


1 . 000925457 


0.200953526 


- 13.67097 


- 


1.18 


1 . 001234836 


0. 247637223 


- 15 .48936 


- 


1.19 


1 . 00 1612976 


0. 300486478 


- 17.35121 


- 


1 .20 


1 . 002068631 


0. 359839428 


- 19.25328 


- 


1.21 


l . 002611035 


0. 426051033 


-21 . 1 9357 


- 


1.22 


1 . 00 3249928 


0. 499493948 


- 23.17105 


- 


1.23 


1 . 00 3995570 


0. 560558929 


- 25 . 1 8528 


- 


1 . 24 


1. 004858783 


0. 669654959 


- 27.23630 


- 


1 .25 


1. 005850959 


0. 767209159 


- 29.32441 


- 



DTH/OR 


OPS/DR 


DXB/DR 


CXC/CR , 


.38357 


40.77208 


- 0.13448 


0.40412 


.22775 


38.32854 


- 0.12600 


0 .38616 


.29211 


35.98713 


- 0. 11792 


0.36888 ( 


.56723 


33.73933 


- 0. 11021 


0.35219 


.04173 


31.57456 


- 0.10284 


0.33599 


.70206 


29.47982 


- 0.09575 


0.32014 


.53235 


27.43963 


- 0.08888 


0.30447 


.51428 


25.43582 


- 0.08217 


0.28875 


.62722 


23.44768 


- 0 . 07556 


0.27271 


.84865 


21.45237 


- 0 . 06896 


0.25603 


.15516 


19.42597 


- 0. 06230 


0.23833 


.52453 


17.34554 


- 0.05551 


0.21919 


.93907 


15.19272 


- 0 . 04 e 52 


0.19819 


. 39122 


12.95942 


- 0. 04130 


0.17498 


.89154 


10.65629 


- 0.03390 


0.14936 


.47924 


8.32377 


- 0. 02644 


0.12153 


.23329 


6.04377 


- 0.01517 


0.09228 


.27835 


3.94613 


- 0.0125 0 


0.06328 


.77383 


2.19740 


- 0.00695 


0.03716 


.86884 


0 .95413 


- 0.00202 


0.01707 


,61736 


0.27427 


- 0.00087 


0.00521 


.90191 


0.03745 


- 0. 00 Cl 2 


0.00076 


.48808 


0.00111 


- 0.00000 


0.00002 


.21645 


0.08000 


- 0.00000 


O.OOOCO 


.05411 


0.00000 


- 0.00000 


0.00000 


.00000 


0.00000 


0.00000 


0.00000 


.05411 


- 0.00000 


0.00000 


- 0.00000 


.21645 


- 0.00000 


0.00000 


- 0.00000 


.48719 


- 0.00018 


0.00000 


- 0.00000 


.87239 


- 0.00683 


0 . 0 0 0 0 2 


- 0.00014 


.40790 


- 0.05714 


0.00018 


- 0.00109 


.16574 


- 0.22573 


0 . 00 C 71 


- 0.00408 


.21735 


- 0.58651 


C . 00 185 


- 0.01010 


.60234 


- 1.18018 


0 . 00 37 3 


- 0.01943 


.32524 


- 2.01086 


0 . 00 6 35 


- 0.03171 


.36717 


- 3.05834 


0.00669 


- 0.04633 


.69861 


- 4.29137 


0 . 01 36 0 


- 0.06259 


.28819 


- 5.6768 2 


0.01602 


- 0 . 079 c l 


.10734 


- 7.18454 


0 . 02 28 3 


- 0.09782 


.13220 


- 8.78935 


0.02797 


- 0 . 115 c 8 


.34387 


- 10.47126 


0.03337 


- 0.13414 „ 


.72791 


- 12.21500 


0.03699 


- 0.15216 


.27363 


- 14.00923 


0 . 0448 0 


- 0 . 169°5 


.97332 


- 15.84571 


0 . 05 076 


- 0.18744 


.82149 


- 17.71 862 


0.05687 


- 0 . 20463 ' 


.81437 


- 19.62388 


0.06212 


-C .22150 


.94941 


- 21.55873 


0 . 0695 0 


- 0.23807 


.22492 


- 23.52133 


0 . 0 7 6 0 0 


- 0.25436 


.63980 


- 25.51048 


0.08262 


- 0 .270 39 


.19332 


- 27.52539 


C . 0 8 9 3 8 


- 0.26618 


.88500 


- 29.56554 


0.09626 


- 0.30175 



74 

69 

64 

59 

55 

50 

4 6 

42 

38 

34 

31 

27 

23 

20 

16 

1 3 

10 

7 

4 

2 

1 

0 

0 

0 

0 

0 

-0 

-0 

-0 

-0 

-1 

-2 

-3 

-4 

-6 

-e 

1 o 

13 

16 

19 

22 

2 5 

29 

32 

36 

40 

44 . 

49 

5 3 

58 

62 . 



206 



Table 


19. Loop closure computations for 


saturated liquid. 




FNTHALPY, H, \/IA 


FURTADC 


CP(T). HC 


\/IA ClAPEYPCN FQN. 




T,K 


H 


HC 


PC T 


S 


SC 


PCI 


9 Q 


5306 


5 38 ? 


1.45 


76.57 


77.16 


0.77 


95 


5648 


5677 


0.51 


80 . 28 


80.44 


0.21 


1 00 


5991 


5 978 


- 0.22 


83.8 0 


83.55 


- 0.29 


105 


6335 


6296 


- 0.61 


87. 15 


66.65 


- 0.57 


110 


6678 


6633 


- 0.68 


90 . 35 


69.79 


- 0.62 


1 15 


7023 


6987 


- 0.52 


93.41 


92.93 


- 0 . 51 


120 


7368 


7352 


- 0.21 


96. 3 5 


° 6 .05 


- 0.31 


125 


7714 


7724 


0.13 


99.17 


99.09 


- 0 . c s 


130 


8061 


8058 


0.46 


101.89 


102.04 


0,14 


135 


8409 


8470 


0.73 


104. 52 


104.86 


0.32 


140 


8758 


8837 


0.90 


107. 06 


107.54 


0.45 


1 45 


31 C 8 


915 7 


0.98 


109.51 


110.03 


0.52 


1 5 C 


9460 


9552 


0.97 


111.90 


112.50 


0.54 


155 


9814 


9901 


0.89 


1 14. 22 


114.80 


0.51 


1 6 0 


10169 


10 246 


0.76 


116. 47 


117.00 


0.45 


165 


10527 


10 589 


0.60 


1 18. 67 


119.11 


0 . 36 


170 


10886 


10 532 


0.42 


120. 81 


121 .16 


0 . 29 


175 


11248 


11277 


0.26 


122. 91 


123.16 


0.20 


1 3 0 


11513 


11626 


0.11 


124. 96 


125.11 


0.13 


185 


11981 


11579 


- 0.02 


126.96 


127.04 


0 . C 6 


190 


1 2 352 


12 340 


- 0.10 


128.93 


128.95 


0 . 02 


195 


12727 


12707 


- 0.15 


130 . 87 


130.35 


- 0.01 


200 


13106 


13 0 8 3 


- 0.17 


132. 77 


132.73 


- 0.03 


205 


1 3468 


13466 


-0 . 16 


134.65 


134.61 


-0.03 


2 1 C 


1 38 76 


1385 7 


- 0.14 


136. 5 0 


136.47 


-0.02 


215 


14268 


14255 


- 0.09 


138. 32 


138.32 


-0.00 


220 


14666 


14 66 0 


- 0.04 


140 . 1 3 


140.15 


0»0? 


225 


15070 


15 071 


C. 00 


141. 92 


141.97 


C , 04 


233 


15480 


15486 


0.04 


143. 69 


143.77 


0 . 05 


2 35 


15898 


15 90 8 


0.06 


145. 45 


145.54 


0.06 


240 


16323 


16 336 


0.06 


147. 21 


147.30 


0 , 06 


245 


16758 


1676 8 


0. 07 


148. 96 


149.04 


C . 06 


250 


1720 2 


17210 


0.05 


150.70 


150.77 


0.05 


2 55 


17657 


17660 


0.02 


152. 45 


152.50 


0.03 


260 


16125 


18 123 


- 0.01 


154 . 2 1 


154.24 


0.02 


265 


18607 


186 C 1 


- 0.03 


155. 99 


156 .00 


0.01 


270 


1910 7 


19 0 98 


- 0.05 


157,78 


157.78 


0.00 


2 75 


19628 


19619 


- 0.04 


159. 62 


159.62 


0.0 0 


2 30 


2 017 5 


20 169 


-0.03 


161 . 50 


161.51 


0.01 


265 


20756 


20 784 


- 0.01 


163.46 


163.46 


0 . 0 1 


29 3 


213 8 6 


21 36 3 


- 0.02 


165.55 


165 .56 


0.01 


2 9 5 


22093 


22 06 0 


- 0.06 


167. 84 


167.82 


-0.01 


3 00 


2295 0 


2293 5 


- 0.16 


170. 58 


170.49 


-0.06 



207 



Table 20. 



Experimental and calculated specific heats, Cp(p,T). 





THE CP ISOBAR AT P = 


0.000 BAR 




T *K 


MOL/L 


J/MOL/K 


CA LCD 


PCNT 


99.817 


0.000 


35.86 


35.72 


0.37 


110.928 


0 . 000 


36.49 


36.34 


0.41 


118.372 


0 . 000 


36. 98 


36.76 


0.59 


122.039 


0.000 


37.24 


36.97 


0.73 


133.150 


0.000 


37.99 


37.61 


1.00 


144.261 


0.000 


38.74 


33.28 


1.19 


155.372 


0.000 


39. 25 


38 . 98 


0.69 


166.483 


0 . 000 


40.02 


39.72 


0.74 


177.594 


0.000 


40.77 


40.51 


0.64 


186.872 


0.000 


41.39 


41.21 


0.43 


188.706 


0.000 


41.65 


41.35 


0.72 


199.617 


0.000 


42.53 


42.24 


0.67 


210.928 


0.000 


43.52 


43.20 


0.74 


222.039 


0 . 000 


4 4.53 


44.21 


0.73 


233.150 


0.000 


45.55 


45.27 


0.60 


241.761 


0 . 000 


46. 43 


46.14 


0.62 


244.261 


0.000 


46.67 


46.39 


0.59 


255.372 


0.000 


47.93 


47.56 


0.76 


266.483 


0 . 000 


49. 20 


48 . 78 


0.85 


277.594 


0.000 


5 0.46 


50.04 


0.82 


282.706 


0.000 


50.96 


50 .63 


0.65 


288.706 


0.000 


51.71 


51.34 


0.72 


299.817 


0.000 


52.84 


52 .67 


0.31 


305.261 


0.000 


53. 21 


53.34 


-0.23 


310.928 


0 . 000 


53. 85 


54.03 


-0.34 


322 .039 


0.000 


55.24 


55.42 


-0.33 


324.817 


0.000 


55.61 


55.77 


-0.29 


333.150 


0.000 


56.62 


56.83 


-0.36 


344.261 


0.000 


58.12 


58.25 


-0.22 


355.372 


0.000 


60.15 


59.68 


0.77 


366.483 


0.000 


61.65 


61.12 


0.85 


366.817 


0.000 


61.78 


61.17 


0.99 


377.594 


0.000 


63.17 


62 . 57 


0.94 


388.706 


0.000 


64.53 


64 . 02 


0.80 


399.817 


0.000 


. 65.81 


65.46 


0.53 


410.928 


0.000 


66.56 


66.90 


-0.51 


422 .039 


0.000 


67.81 


68.33 


-0.76 



THE CP ISOBAR AT 'P = 17.237 BAR 



T * K 


MOL/L 


J/MOL/K 


CALCD 


PCNT 


99.817 


21 .340 


6 8. 45 


68.59 


-0.21 


110.928 


20.943 


66.69 


63.80 


-0.15 


118.372 


20.676 


68.83 


63.98 


-0.23 


122.039 


20.544 


6 8.94 


69 .09 


-0.22 


133.150 — 


20 . 1*2 


6 9. 20 


6 9' .'50 


-0.43 


144.261 


19.734 


69. 82 


70.03 


-0.30 


155 . 372 


19.318 


70.70 


70.70 


-0.00 


166.483 


18.891 


71.47 


71 .55 


-0.11 


177T594 — 


18.452 


72.46 


72.59 


-0.18 


186.872 


18 . 073 


73. 34 


73.63 


-0.39 


188.706 


17.996 


73. t*7 


73.86 


-0.53 


199.817 


17.522 


74.99 


75.41 


-0.55 


210.928 


17.025 


76.75 


77.31 


-0.72 


222.039 


16.498 


78. 89 


7 9.66 


-0.98 


233.150 


15.933 


82.02 


82.67 


-0.80 


’241 . 761 


15.460 


8 5 • 3to 


85.68 


-0.44 


244.261 


15.315 


85.94 


86.70 


-0.89 


249.817 


14.980 


8 9.33 


8 9.31 


0.02 


252.594 


14.804 


91. 34 


90 .84 


0.55 


255 . 372 


14'. 621 


94.11 


92.54 


1.67 


258.150 


14.431 


98.76 


94.48 


4.33 


260.928 


1. 05 3 


7 4.35 


71.68 


3. 59 


262.594 


1 . 037 


72.72 


70.51 


3. 04 


265.372 


1.012 


70.21 


68.68 


1.90 


266.483 


1.002 


69.44 


68.32 


1.62 


277.594 


0.921 


6 5.17 


64.56 


0.94 


282.706 


0.890 


64. 05 


63.57 


0.75 


288.706 


0.558 


6 3.28 


62.77 


0*80 


299.817 


0.605 


62.40 


62.01 


0.62 


305.261 


0.783 


" ' 62715 


61 . 87 


0.45 


310.928 


0.761 


62. 02 


61.86 


0.27 


3 22.039 — 


0.723 


62.28 


62.10 


OTTO 


324.817 


0.714 


62.40 


62.20 


0.31 


333.150 


0.689 


62.77 


62 • 6i 


0.26 


344.261 


0.659 


63.65 


63.31 


0.53 


355.372 


0.632 


64.53 


64 . 17 


0.57 


366.463 


0.608 


65. 30 


65.12 


0.27 


TF5T8T7 


O'." 607 


65.41 


65.15 


0T4TJ 


377.594 


0.536 


66.16 


66.17 


0.03 






Table 20. 



Experimental and calculated specific heats, C (P,T), (continued). 





THE CP ISOBAR AT P = 


28.269 


BAR 


T7K~ 


MOL/L 


J/MOL/K 


CA LCD 


punt 


277 .594 


13.020 


115.37 


113.73 


1.42 


278 . 706 


12 #90 6 


116.13 


116.21 




279.017 


12.788 


118.65 


119.01 


-0.31 




THE CP ISOBAR AT P = 


34.474 


BAR 


T » K 


MOL/L 


J/MOL/K 


CALCO 


PUNT 


233.150 


16.045 


81.78 


81.55 


0.28 


241.761 


15 '.'594 


84.42 


84.13 


07T5 


244.261 


15.457 


85. 30 


84.99 


0.37 


255.372 


14.807 


89. 20 


89.67 


-0.53 


266.483 


14.066 


96.86 


96.69 


0.20 


277 .594 


13.165 


109.70 


109.28 


07T5 


282.706 


12.652 


119. 26 


119.93 


-0.56 


285.928 


12.27? 


128.8? 


““130 i 62 


-1.40 ~ 


287.594 


12.049 


136.68 


138.50 


-1.18 


288.706 


11.886 


142.81 


145,26 


-1.72 


290.372 


2.432 


131.60 


132.60 


-0.77 


291.483 


? . i 7 7 


122.28 


124.59 


-1.89 


292.594 


2.327 


115.63 


118.25 


\ -2.27 


294.261 


2 . 261 


107.19 


1 111 . 84 


-3~.4 0 


297.039 


2.166 


98.52 


101.99 


-3.53 


299.817 


2 • U 6 7 


98.38 


y 5 .// 


2.66 


305.261 


1.359 


87.06 


37.69 


-0.72 


310.928 


1.853 


82. 28 


82.43 


-0.18 


322.039 


1.691 


76.25 


76.54 


-0.39 


324.817 


1 .658 


75.61 


75.60 


0.02 


333 . 150 


1 . 569 


73.72 


73.53 


0.26 


344.261 


1.47 0 


72. 22 


71.96 


0.36 


355.372 


1.338 


71.47 


71.23 


0.33 


366 .483 


1.318 


71.47 


71.04 


0.60 


366.817 


1.316 


71.47 


71 . 04 


0.60 




THE CP ISOBAR AT P = 


41.369 


BAR 


T.k 


MOL/L 


J/MOL/K 


C A LCD 


PCNT 


282.706 


12.642 


111.60 


113.45 


-1.66 


288.706 


12.131 


129.59 


129.39 


0.16 


294.261 


11 . 356 


161.66 


163.98 


-1.43 


295 .928 


11.021 


179. 26 


187.10 


-4.36 


297.039 


10.752 


195.01 


212.72 


-9.08 


298.706 


3.25 2 


220.60 


203,18 


5.71 


299 . 817 


3 . 131 


189.98 


179.61 


5.46 


299.817 


3 . 131 


189. e5 


179.61 


5.39 


300.650 


3.055 


168.60 


165.17 


2.03 


301.206 


3 . 009 


157.76 


157.51 


0.16 


302.594 


2.909 


137.89 


142.85 


-3.59 


305.261 


2.754 


122.41 


124.78 


-1.94 


310.928 


2.516 


104.66 


104.74 


-0.06 


322.039 


2.214 


89.20 


83 . 19 


1.13 


324.817 


2.157 


86. 93 


85 . 89 


1.20 




THE CP ISOBAR AT P = 


46.678 


BAR 


T,K 


MOL/L 


J/MOL/K 


CALCD 


PCNT 


298.428 


10 . 938 


174.88 


180.66 


-3.31 


299.817 


10 1 619 


198.79 


206.55 


-3.90 


300 .650 


10.392 


221.43 


230 . 76 


-4.21 


301.206 


10.219 


240. 31 


253.87 


-5.64 


302.039 


9.906 


279.31 


310 . 02 


-10.99 


302.594 


9.639 


320.83 


381.40 


-18.88 


302 . 872 


9.47 4 


352.28 


443 . 36 


-25.85 


303.150 


9.270 


401.35 


549.78 


-36.98 


303.983 


4.273 


425.25 


457.03 


-7.47 


304.261 


4.176 


352. 28 ■ 


394.11 


-11.87 


305.261 


3.922 


299. 44 


281.47 


6.00 


305.372 


3.900 


293.15 


274.01 


6.53 


305.928 


3.799 


261.69 


243.90 


6.80 


306.761 


3.673 


223.95 


213.18 


4.81 


308.150 


3.505 


184. 94 


181.23 


2.00 


309.539 


3.371 


162. 30 


161.11 


0.73 


310.928 


3.259 


146.47 


147.11 


0.92 


310 . 926 


3.25 9 


148.84 


147.11 


1.17 


313.706 


3.073 


130.05 


128.66 


1.67 


316.483 


2.934 


120.28 


116.93 


27T3 


322.039 


2.712 


119.02 


102.71 


13.71 


324 .817 


2.623 


97.88 


93 . 06 


-0.18 



209 



Table 20. Experimental and calculated specific heats, C (P,T), (continued). 

P 





' THE CP ISOBAR A T'P = 


49. 160 


TO 


T * K 


MOL/l 


J/MOL/K 


CALCD 


PC NT 


232.706 


13.026 


106.07 


108.18 


-1.99 


283.150 


12.986 


106.69 


103.82 


-2.0 0 


288.706 


12.443 


119. 15 


119.03 


0.10 


294.261 


11.778 


135.50 ' 


136.93 


-1.06 


297.039 


11.366 


149. 08 


152.75 


-2.46 


298.261 


11 . 158 


156.64 


162.78 


-3.92 


299.817 


10 . 858 


177.89 


180.52 


-1.47 


300.928 


10,610 


193. 13 


199.02 


-3.05 


302.039 


10 . 320 


217.40 


226.77 


-4.31 


302.594 


10.152 


231.24 


246.82 


-6.74 


3 0 3 .150 


9.963 


246.48 


274.21 


-11.25 


303.706 


9.743 


274.40 


314.24 


-14.52 


304.261 


9.476 


566.16 


379.44 


32.98 


304.817 


9.125 


691.97 


510.24 


26.26 


305.261 


8.70 7 


1006.50 


795.16 


21.00 


305.261 


8 . 707 


1132. 32 


795 .16 


29.73 


306.483 


4.904 


553.58 


709.02 


-28.08 


307.039 


4.60 3 


488. 15 


474.72 


2.75 


307.594 


4.401 


375.56 


“371778 


1.01 


308.150 


4.247 


332.39 


312.59 


5.96 


309.261 


4.016 


261. 83 


246.21 


5797 


310.928 


3.769 


200.05 


196.12 


1.96 


313.706 


3.435 


158.14 


155.87 


1.44 


316.483 


3.281 


135.50 


134.78 


0.53 


T~2'2“.''d39 


2.937 


108.82 


112.55 


-3.42 


324.817 


2.375 


101.91 


105.91 


-3.92 


327.594 


2.777 


102.54 


100.83 


i .6? 


333.150 


2.613 


95.37 


93.61 


1.84 




THE CP ISOBAR AT P = 


51.711 


BAR 


T7TT“ 


MOL/L 


J/MOL/K 


CALCD 


PCT7 


322.039 


3.310 


125.81 


126.12 


-0.25 


324.817 


3.164 


116.88 


116.22 


0.57 


333.150 


2.841 


99.26 


99.23 


0.04 


344 . 2bl 


2.549 


88. 82 


88.60 


0.26 


355.372 


2.339 


83.03 


83.19 


-0.19 


366.483 


2.17 6 


79.27 


80.19 


-1.16 


366.817 


2.171 


79. 13 


80.12 


-1.25 


377.594 


2.043 


76.75 


78.50 


-2.28 



THE CP ISOBAR AT P = b fc . 4 fc 8 BAR 



T,K 


MOL/L 


J/MOL/K 


CALCD 


PCNT 


3 107 372 


8 .'515 


406.89 — 


442.02 


-8.10 


310 .650 


8 . 338 


444. 12 


479.25 


-7.91 


310.928 


8.146 


467712 — 


— 519.80 


-7.59 


311.206 


7.938 


530.92 


560.87 


-5.64 


3 1 1 .483 


7.718 


577.48 


596.74 


•3 • 3 3 


311.761 


7.438 


626.55 


619.71 


1.09 


3T2V0 39 


7.256 


666TF1 


623 # 91 


6.43 


312.150 


7.165 


680. 65 


620.86 


8.78 


312.261 


7.076 


689.46 


616.16 


10 • 63 


312 .428 


6.944 


693. 22 


607.65 


12.34 


312.594 


6.817 


694746 — 


— 598.49 


1 3 • 8 2 


312.706 


6.733 


693.22 


598.20 


13.71 


317.817 


6.632“ 


ET9T797 


591.75 


14.48 


312.928 


6.572 


679. 39 


585.18 


13.87 


313.150“ 


6.413 


644.15 


— 571.49 


11.28 


313.428 


6.235 


595.10 


549.95 


7.59 


313.706 


6.064 


552.21 — 


520.95 


5.68 


313.983 


5.90 9 


514.58 


489.20 


4.93 


314.261 


5.766 


485.64 


438.85 


5.61 



210 



1 



Table 20. Experimental and calculated specific heats, C (p,T), (continued). 

P 





THE- CP ISOBAR AT P = 


63.948 


TAR 




T,K 


MOL/L 


J/MOL/K 


C A LCD 


PC NT 




110 .928 


21. 009 


b 8 • 5 b 


b 3 . 64 


-O'. 11 




118.37? 


20 .748 


68.69 


63.79 


-0.13 




12?; 03? 


20 .61? 


6 6.83 


68*67 


-0.07 




133.150 


20.227 


69.07 


69.21 


-0.20 




144 . 2bl 


19.830 


69.71 


69 • 66 


0TTT7 




155 . 372 


19.426 


70.46 


70.23 


0.32 




166.483 


19.015 


71.21 


70 .96 


0.35 




177 .594 


16.593 


71.84 


71.84 


-0.00 




186.872 


18 . 232 


72.46 


72.73 


-0.36 




188.705 


16 . 159 


73. 23 


72 . 92 


0.43 




199.817 


17.711 


73.98 


74.20 


-0.29 




210.928 


17 .24 6 


75.37 


75.72 


-0.47 




222.039 


16.760 


77.00 


77. 54 


-0.70 




233.150 


16 .25 0 


79.27 


79.71 


-0.57 




241.761 


15.633 


81.14 


81.72 


-0.72 




244.261 


15 . 708 


82.41 


82.37 


0.06 




255.372 


15.126 


8 5.68 


85.68 


-0.01 




266.483 


14.439 


89. 46 


90.00 


-0.60 




277.594 


13. 773 


95.74 


95 .01 


-0.23 




282.706 


13.407 


98. 89 


99.72 


-0.83 




238.706 


12.937 


104.93 


105.30 


-0.36 




299.817 


11 . 886 


111.84 


122.47 


-9.50 




305.261 


11.228 


137.15 


133.02 


-0.64 




310 . 928 


10.35 3 


156.53 


165.91 


-5.2 9 




314.261 


9.68 7 


176.39 


196.21 


-11.23 




316.483 


9. 14 8 


200.16 


223.37 


-11.59 




317.594 


8.644 


222.69 


238 . 79 


-7.23 




319.261 


8. 349 


254. 27 


260 . 98 


-2.64 




320.372 


7.998 


270.62 


271.62 


-0.37 




320.928 


7.320 


277.80 


27*+ .61 


1.15 




322.039 


7 . 46 8 


284.97 


274.66 


3.62 




322.706 


7 .264 


285.59 


271 .01 


5.11 




323.706 


6 . 972 


265.22 


262.63 


7.92 




324.817 


6.670 


281.83 


256.13 


9.12 




324.817 


6.670 


282.20 


256.13 


9.24 




325 .372 


6.528 


277.16 


251 .11 


9.40 




326.433 


6.261 


258.30 


240.78 


6.73 




327.594 


b . 01 7 


240.93 


223.87 


5.01 




330.372 


5.503 


200.55 


199.26 


0.64 




333.150 


5.103 


176.51 


175.40 


0.62 




335.928 


4.784 


158. 91 


157 .02 


1.19 




338.706 


4.525 


143.69 


142.97 


0.50 




344 . 261 


4.126 


123.29 


123.74 


-0.36 




355.372 


3.594 


104.42 


103.65 


0.73 




366.483 


3.241 


94.49 


93.94 


0.58 




366 .317 


3.232 


94. 24 


93.73 


0.55 






THE CP ISOBAR AT P = 


36.184 


BAR 




T t K 


MOL/L 


J/MOL/K 


CALCD 


PCNT 




282 .706 


13.675 


94. 86 


95.17 


-0.33 




283.706 


13.260 


98. 89 


93.94 


-0.05 




299.817 


12.389 


106.21 


108.67 


-0.42 




305.261 


11 . 694 


114.62 


115 .53 


-0.80 




310 .923 


11.310 


123. 42 


125.07 


-1.33 




316.483 


10.647 


134.61 


137.82 


-2.33 




322. Q39 


9.867 


149.97 


154.63 


-3.11 




324.817 


9.428 


160.16 


164.03 


-2.41 




327.594 


6.957 


168.20 


172.82 


-2.75 




330 .372 


6.467 


176.13 


179.23 


-1.76 




333.150 


7.973 


180.54 


181.35 


-0.45 




334.817 


“ 7.634 ' 


181.17 


180.18 


0.55 




337.039 


7.317 


180.29 


176.04 


2.36 




338*706 


7.060 


177.65 


171.68 


3.3b 




341.483 


6.665 


170.23 


165.13 


2.99 




344.261 


6.311 


1 6 1 


157 . 81 


2.46 




349.817 


5. 713 


146.47 


142.89 


3.75 




355.372 


5 . 24 1 


134.00 


130.08 


27T2 




366.483 


4.557 


114. 24 


112.09 


1.88 




T66'.'B'i 7 


4.540 


113.96 


111.68 


27TH 




377.594 


4.036 


101.66 


101.36 


0.30 





211 



Table 20. Experimental and calculated specific heats, C (p,T), (continued). 





THE CP TSOBAR AT P = 


103.421 BAR 




T »K 


MOL/t 


J/MOL/K 


CALCD 


PCNT 




241.761 


16.045 


79.64 


79.93 


-0.36 




244.261 


15.929 


80. 15 


80 .44 


-0. 37 




255.372 


15.394 


82.79 


82.99 


-0.25 




266.433 


14.824 


85.94 


86 . 07 


-0.15 




277 .594 


14.207 


89. 84 


89.86 


-0.03 




282.706 


13.903 


91.84 


91.94 


-0.11 




283.706 


13.528 


94.73 


94.74 


-0.01 




299.817 


12.765 


101.66 


101.29 


D7T7 




305.261 


12.349 


105.68 


105 .41 


0.25 




310 .928 


11.881 


110.34 


110.57 


-0.21 




316.483 


11.378 


115.63 


116.70 


-0.92 




322.039 


10 .625 


122.17 


124.00 


-1.50 




324.817 


10.528 


126.44 


128.06 


-1.28 




327.594 


10 . 217 


129.97 


132.29 


-1.79 




333.150 


9.555 


137. 89 


140.60 


-1.96 




3 3 8 • 7 0 6 


8.855 


144.81 


146.68 


-1.29 




344.261 


8.156 


150.85 


148.60 


1.49 




344.928 


8 . 074 


151.73 


148 • 33 


2724 




345.928 


7.953 


151.48 


147.78 


2.44 




348 .150 


7.691 


151.11 


146 • 01 


3# 3? 




349.817 


7.501 


149.22 


144.25 


3.33 




352.594 


7.202 


144.81 


140.73 


2.82 




355.372 


6.923 


140. 91 


136.97 


2.80 


A* 


360.928 


6.425 


132. 35 


130 .00 


1777 




366.483 


5 . 396 


126.82 


123.53 


2.60 




366 *817 


5 .972 


126. 44 


123.14 


2 • 6 1 




377.594 


5.311 


116.75 


112.23 


3.87 






THE CP ISOBAR AT P = 


120.658 BAR 




T7K 


MOL/L 


J/MOL/K 


CALCD 


PUNT 




324.817 


11.192 


113.73 


113.36 


0.33 




33 3 . 15 0 


10 . 439 


120.28 


120.95 


-0.56 




338.706 


9. 903 


124.68 


125.75 


-0.86 




344.261 


9.348 


129.70 


13 0 • 0 3 


-0.25 




347.039 


9.06 8 


131.60 


130.98 


0.47 




349 . 81 7 


8.790 


132.74 


131.44 


0793 




351.761 


6.598 


133.12 


131.44 


1.26 




352.317 


6.543 


13 3* £3 


131 • 39 


1*38 




355.372 


6 . 2*+ 8 


132.35 


130.74 


1.21 




358.150 


7.938 


130.34 


129.64 


0.54 




360.928 


7.738 


128.34 


128.13 


0.16 




3bb . 483 


7.274 


124. 04 


124.21 


• 0 • 1 3 




366.817 


7.247 


123.80 


123.95 


-0.12 





377.594 67936 IT7726 115.09 TT99 



THE CP ISOBAR AT P = 137. 895 9'AR 



T,K 


MOL/L 


J/MOL/K 


CALCO 


PCNT 


110 .928 


21.095 


6 8.19 


68.45 


-0*39 


118.372 


20.341 


68.45 


68.55 


-0.15 


122.039 — 


— 20.716 


68.56 


6 8 .62 


-3738 


133 . 150 


20.335 


68.94 


68.87 


0.10 


144.261 


19.952 


69.44 


69 .23 


0731 


155.372 


19.564 


70.08 


69.70 


0.55 


lbb .483 


197773 


73759 — 


79729 


U .41 


177.594 


18.768 


71. 09 


71.03 


0.09 


1367872 


18.427 — 


71158 


71.75 


-9". 24 


188.706 


18.358 


71.71 


71.91 


-0.27 


T99T3T7 


177978 


7 2.72 


72 .94 


• 0 • 3 13 


210 . 928 


17.507 


73.98 


74.15 


-0.23 


7727979 — 


177967 — 


f 5 . 3 ( 


75759 


• DT73 


233.150 


16.603 


77.13 


77.14 


-0.01 


241 .761 


lb • <?35 


fS.bJ 


f 3 • 53 


0*13 


244.261 


16.126 


79. 00 


79.96 


0.06 


255.372 


15.628 — 


81.14 


8 1 • O 3 


0*13 


266.483 


15.105 


83.41 


83.42 


-0.01 


277.594 


14.552 


86.31 


86.17 


• 0.17 


282.706 


14.285 


87. 70 


87.58 


0.13 


288.706 


13.961 


89.71 


89.39 


0.36 


299.817 


13.325 


92.97 


93.22 


-0.27 


305.261 


12.994 


94. 86 


95 .38 


-0.55 


310.928 


12.633 


97.88 


97.88 


0.00 


322.039 


iTTeT? 


— nnrreo 


103.63 


5717 


324.817 


11.673 


105. 43 


105.26 


0.16 


333.150 


11 . 041 


110.45 


110.54 


-0.08 


344.261 


10.140 


116.62 


117.70 


-0.93 


355.372 


9.204 


120.28 


120 . 81 


-0.44 


366.483 


6.302 


120.65 


120.01 


0.53 


366.817 


8 .276 


118. 38 


119.93 


-1.30 


377 .594 


7.497 


112.61 


115 . 84 


-2.87 



212 



Table 21. Comparison of Enthalpies for Saturated Liquid, J/mol 



T, K Tester [70] This Report Difference 



100 


6 075 


5 991 


84 


120 


7 447 


7 368 


79 


140 


8 833 


8 758 


75 


160 


10 243 


10 169 


74 


180 


11 682 


11 613 


69 


200 


13 156 


13 106 


50 


220 


14 678 


14 666 


12 


240 


16 281 


16 32 3 


-42 


260 


18 006 


18 125 


-119 


280 


19 940 


20 175 


-235 


300 


22 720 


22 950 


-230 



213 



Table 22. Comparison of Enthalpies, J/mol 



P = 20 atm P = 100 atm 



T, K 


H° 


HT 


TE 


RG" 


HT 


TE 


RG 


280 


31 228 


29 493 


29 457 


29 535 






-- 




3 20 


33 348 


32 169 


32 169 


32 137 


24 122 


23 774 


24 


019 


360 


35 666 


34 781 


34 799 


34 708 


29 715 


29 733 


29 


72 0 


400 


38 188 


37 493 


37 515 


37 391 


34 185 


34 270 


34 


134 


460 


42 353 


41 837 


41 862 


41 718 


39 680 


39 771 


39 


564 



HT = Tester [70], TE = Eubank et al. [18], RG = This Report, 
Pressure of 20 bar; ** Pressure of 100 bar. 



214 



Table 23. Calculated P(T) isochores 



The following pages give P(T) along isochores, as computed by 

the equation of state. The third column DP/DD is the isotherm slope 

(ciP/Bp) in units of the bar and mol/X. The last two columns give the 

2 2 

isochore slopes and curvatures cP /BT, S P/dT , in units of the 
bar and K. 

These tables show that the isochore curvatures are qualitatively 
consistent with a maximum in the specific heat C v (p, T) at the critical 
point. 



215 



Table 23. Calculated P(T) isochores. 

THE ISOCHORE AT 1.00 MOL/L 



T * K 


P»BAR 


DP/DO 


DP/OT 


02P/DT2 


266.0 


17.157 


12.481 


0.1051 


-0.00021 


274. 0 


17.992 


13.495 


0.1035 


-0.00017 


282.0 


18.815 


14.482 


0.1023 


-0.00015 


29 0.0 


19.628 


15.448 


0.1012 


-0.00012 


298.0 


20.434 


16.395 


0.1003 


-0.00011 


306.0 


21.233 


17.328 


0.0995 


-0.00009 


314.0 


22.026 


18.248 


0.0988 


-0.00008 


322.0 


22.814 


19.156 


0.0982 


-0.00007 


330.0 


23.597 


20.055 


0.0976 


-0.00007 


338 , 0 


24.375 


20.946 


0.0971 


-0.00006 


346. 0 


25.150 


21.828 


0.0967 


-0.00005 


354.0 


25.922 


22.704 


0.0963 


-0.00005 


362.0 


26.691 


23.574 


0.0959 


-0.00004 


370.0 


27.457 


24.438 


0.0956 


-0.000 04 


378.0 


28.220 


25.298 


0.0953 


-0.00004 


386.0 


28.981 


26.152 


0.0950 


-0.00003 


394.0 


29.740 


27.003 


0.0947 


-0.00003 


402.0 


30.497 


27.849 


0.0945 


-0.00003 


410.0 


31.252 


28.692 


0.0943 


-0.00003 


418.0 


32.005 


29.532 


0.0941 


-0.00002 


426.0 


32.757 


30.369 


0.0939 


-0.00002 


434. 0 


33.508 


31.203 


0.0937 


-0.00002 


442.0 


34.257 


32.034 


0.0936 


-0.00002 


450.0 


35.004 


32.863 


0.0934 


-0.00002 


458.0 


35.751 


33.690 


0.0933 


-0.00002 


466. 0 


36.497 


34.514 


0.0931 


-0.00002 


474.0 


37.241 


35.337 


0.0930 


-0.00002 


482.0 


37.985 


36.157 


0.0929 


-0.00001 


490.0 


38.727 


36.976 


0.0928 


-0.00001 


498.0 


39.469 


37.793 


0.0927 


-0.00001 


506.0 


40.210 


38.609 


0.0926 


-0.00001 


514.0 


40.950 


39.423 


0.0925 


-0.00001 


522.0 


41.690 


40.235 


0.0924 


-0.00001 


530.0 


42.428 


41.047 


0.0923 


-0.00001 


538.0 


43.166 


41.857 


0.0922 


-0.00001 


546.0 


43.904 


42.666 


0.0921 


-0.00001 


554. 0 


44.641 


43.473 


0.0921 


-0.00001 


562.0 


45.377 


44.280 


0.0920 


-0.00001 


570.0 


46.113 


45.085 


0.0919 


-0.00001 


578.0 


46.848 


45.890 


0.0919 


-0.00001 


586.0 


47.583 


46.694 


0.0918 


-0.00001 


594.0 


48.317 


47.496 


0.0917 


-0.00001 



216 



Table 23. Calculated P(T) isochores- 

THE ISOCHORE AT 2.00 HOL/L 



- (Continued) 



T * K 


P,BAR 


DP/DD 


OP/DT 


D2P/DT2 


290.0 


31.339 


8.269 


0.2384 


-0. 00066 


298.0 


33.227 


9.482 


0.2338 


-0.00051 


306. 0 


35.082 


10.654 


0.2301 


-0.00042 


314.0 


36.910 


11.796 


0.2270 


-0.00035 


322.0 


38.716 


12.915 


0.2244 


-0.00030 


330.0 


40.502 


14.015 


0.2222 


-0.00026 


330. 0 


42.272 


15.099 


0.2202 


-0.00023 


346.0 


44.027 


16.169 


0.2185 


-0.00020 


354. 0 


45.769 


17.228 


0.2170 


-0.00018 


362.0 


47.499 


18.276 


0.2156 


-0.00016 


370 . 0 


49.219 


19.315 


0.2144 


-0.00015 


378.0 


50.930 


20.346 


0.2133 


-0.00013 


386. 0 


52.632 


21.370 


0.2123 


-0.00012 


394.0 


54.327 


22.387 


0.2113 


-0.00011 


402.0 


56.014 


23.399 


0.2105 


-0.00010 


410.0 


57.695 


24.404 


0.2097 


- 0.0 00 09 


418 . 0 


59.369 


25.405 


0.2090 


-0.00009 


426. 0 


61.039 


26.401 


0.2083 


-0.00008 


434. 0 


62.703 


27.393 


0.2077 


-0.00007 


44 2.0 


64.362 


28.380 


0.2071 


-0.00007 


450.0 


66.017 


29.365 


0.2066 


-0.00006 


458.0 


67.668 


30.345 


0.2061 


-0.00006 


466. 0 


69.314 


31.323 


0.2056 


-0.00006 


474.0 


70.958 


32.297 


0.2052 


-0.00005 


482.0 


72.597 


33.269 


0.2048 


-0.00005 


49 0.0 


74.234 


34.238 


0.2044 


-0.00005 


498 . 0 


75.867 


35.204 


0.2040 


-0.00004 


506.0 


77.498 


36.168 


0.2036 


-0. 00004 


514.0 


79.126 


37.130 


0.2033 


-0.00004 


522. 0 


80.751 


38.090 


0.2030 


-0.00004 


530. 0 


82.374 


39.047 


0.2027 


-0.00004 


538. 0 


83.994 


40.003 


0.2024 


-0.00003 


546.0 


85.613 


40.957 


0.2021 


-0.00003 


554. 0 


87.229 


41.909 


0.2019 


-0.00003 


562.0 


88.843 


42.860 


0.2016 


-0.00003 


570.0 


90. 455 


43.808 


0.2014 


-0.00003 


578 . 0 


92.065 


44.756 


0.2012 


-0.00003 


586. 0 


93.674 


45.701 


0.2010 


-0.00003 


594.0 


95.281 


46.646 


0.2008 


-0.00003 



217 



Table 23. Calculated P(T) isochores- - - 

THE ISOCHORE AT 3.00 MOL/l 



T * K 


P,BAR 


DP/ DO 


DP/OT 


298.0 


40.058 


4.460 


0.3967 


306.0 


43.187 


5.8 49 


0.3862 


314.0 


46.246 


7.159 


0.3788 


322. 0 


49.252 


8.432 


0.3731 


330.0 


52.218 


9.682 


0.3684 


338.0 


55.149 


10.913 


0.3645 


346. 0 


58.051 


12.131 


0.3611 


354. 0 


60.928 


13.336 


0.3582 


362.0 


63.782 


14.532 


0.3556 


370.0 


66.617 


15.719 


0.3532 


378.0 


69.435 


16.898 


0.3512 


386.0 


72.237 


18.071 


0.3493 


394. 0 


75.024 


19.239 


0.3476 


402.0 


77.799 


20.401 


0.3460 


410.0 


80.561 


21.558 


0.3446 


418.0 


83.313 


22.710 


0.3433 


426.0 


86.054 


23.859 


0.3421 


434.0 


88.787 


25.004 


0.3410 


442. 0 


91.510 


26.146 


0.3399 


450.0 


94.226 


27.284 


0.3390 


458.0 


96.934 


28.419 


0.3381 


466.0 


99.635 


29.552 


0.3372 


474. 0 


102.330 


30.681 


0.3364 


482.0 


105.018 


31.808 


0.3357 


490.0 


107.700 


32.933 


0.3349 


498.0 


110.377 


34.056 


0.3343 


506.0 


113.049 


35.176 


0.3336 


514. 0 


115.715 


36.294 


0.3330 


522. 0 


118.377 


37.410 


0.3325 


530. 0 


121.034 


38.524 


0.3319 


538.0 


123.688 


39.637 


0.3314 


546.0 


126.337 


40.748 


0.3309 


554.0 


128.982 


41.856 


0.3304 


562.0 


131.623 


42.964 


0.3300 


570.0 


134.261 


44.070 


0.3295 


578.0 


136.895 


45.174 


0.3291 


586.0 


139.527 


46.276 


0.3287 


594. 0 


142.155 


47.378 


0.3283 



(Continued) 



02P/DT2 
-0.00163 
-0.00107 
-0.00080 
-0.00064 
-0.00053 
-0.00045 
-0.00039 
-0.00034 
-0.00031 
-0.00027 
-0. 00025 
- 0.00022 
- 0.00020 
-0.00019 
-0.00017 
-0.00016 
-0.00015 
-0.00014 
-0. 00013 
- 0.00012 
- 0.00011 
- 0.00010 
- 0.00010 
-0.00009 
-0.00009 
-0.00008 
-0.00008 
-0.00007 
-0.00007 
-0.00007 
-0.00006 
-0.00006 
-0.00006 
-0.00006 
-0.00005 
-0.00005 

-0.00005 Tj 

-0.00005 



218 



Table 23. Calculated P(T) isochores- - - (Continued) 

THE ISOCHORE AT 4.00 MOL/L 



T » K 


P > BAR 


DP/DD 


DP/OT 


D2P/0T2 


306.0 


47.293 


2.606 


0.5608 


-0.00241 


314.0 


51.716 


4.014 


0.5465 


-0.00137 


322. 0 


56.049 


5.384 


0.5373 


-0.00098 


330.0 


60.319 


6.736 


0.5304 


-0.00076 


338.0 


64.539 


8.079 


0.5248 


-0.00063 


346.0 


68.719 


9.415 


0.5202 


-0.00053 


354.0 


72.864 


10.746 


0.5163 


-0.00046 


362. 0 


76.981 


12.074 


0.5129 


-0.00040 


370.0 


81.071 


13.398 


0.5098 


-0.00036 


378. 0 


85.139 


14.720 


0.5072 


-0.00032 


386. 0 


89.186 


16.040 


0.5047 


-0.00029 


394. 0 


93.215 


17.358 


0.5025 


-0.00026 


402.0 


97.228 


18.674 


0.5005 


-0.00024 


410. 0 


101.224 


19.988 


0.4987 


-0.00022 


418. 0 


105.207 


21.301 


0.4970 


-0.00020 


426. 0 


109.177 


22.612 


0.4955 


-0.00019 


434.0 


113.135 


23.922 


0.4940 


-0.00017 


442. 0 


117.082 


25.230 


0.4927 


-0.00016 


450.0 


121.018 


26.537 


0.4914 


-0.00015 


458.0 


124.944 


27.843 


C . 4902 


-0.00014 


466.0 


128.861 


29.147 


0.4891 


-0.00014 


474. 0 


132.770 


30.450 


0.4880 


-0. 000 13 


482.0 


136.670 


31.752 


0.4870 


-0.00012 


490.0 


140.563 


33.052 


0.4861 


-0.00011 


498.0 


144.448 


34.351 


0.4852 


-0.00011 


506.0 


148.326 


35.649 


0.4844 


-0.00010 


514. 0 


152.198 


36.946 


0.4835 


-0.00010 


522. 0 


156.063 


38.242 


0.4828 


-0.00009 


530.0 


159.922 


39.536 


0.4820 


-0.00009 


538.0 


163.775 


40.829 


0.4813 


-0.00009 


546. 0 


167.623 


42.121 


0.4806 


-0.00008 


554.0 


171.466 


43.412 


0.4800 


-0.00008 


562. 0 


175.303 


44.702 


0.4793 


-0.00008 


570.0 


179.135 


45.990 


0.4787 


-0.00007 


578.0 


182.962 


47.278 


0.4781 


-0.00007 


586.0 


186.785 


46.564 


0.4776 


-0.00007 


594. 0 


190.604 


49.849 


0.4770 


-0.00007 



219 



(Continued) 



Table 23. Calculated P(T) isochores- - - 

THE ISOCHORE AT 5,00 MOL/L 



T * K 


P,BAR 


DP/DD 


DF/DT 


D2P/DT2 


306* 0 


48.895 


0.835 


0.7449 


-0.00551 


314. 0 


54.747 


2.274 


0.7225 


-0.00167 


322. 0 


60.482 


3.709 


0.7120 


-0.00104 


330.0 


66.148 


5.155 


0 .7049 


-0.00077 


338.0 


71.765 


6.610 


0.6994 


-0.00061 


346. 0 


77.342 


8.074 


0.6950 


-0.00051 


354. 0 


82.886 


9.546 


0.6912 


-0.00044 


362.0 


88.402 


11.024 


0.6879 


-0.00038 


370.0 


93.894 


12.508 


0.6850 


-0.00034 


378.0 


99.363 


13.996 


0.6824 


-0.00031 


386.0 


104.813 


15.489 


0.6801 


-0.00028 


394. 0 


110.246 


16.985 


0.6780 


-0.00025 


402. 0 


115.662 


18.484 


0.6761 


-0.00023 


410.0 


121.063 


19.985 


0 .6743 


-0.00022 


418.0 


126.451 


21.489 


0.6726 


-0.00020 


426.0 


131.826 


22.994 


0.6711 


-0.00019 


434. 0 


137.188 


24.502 


0.6696 


-0. 00018 


442.0 


142.540 


26.010 


0.6683 


-0.00017 


450.0 


147.881 


27.520 


0.6670 


-0.00016 


458.0 


153.211 


29.030 


0.6657 


-0.00015 


466.0 


158.533 


30.542 


0.6646 


-0. 00014 


474.0 


163.845 


32.053 


0.6635 


-0.00013 


482. 0 


169.149 


33.565 


0.6624 


-0.00013 


490.0 


174.444 


35.078 


0.6614 


-0.00012 


498.0 


179.731 


36.590 


0 .6605 


-0.00012 


506.0 


185.011 


38.103 


0.6595 


-0. 00011 


514.0 


190.284 


39.615 


0.6586 


-0.00011 


522.0 


195.549 


41.128 


0.6578 


-0.00011 


530.0 


200.808 


42.640 


0.6569 


-0.00010 


538.0 


206.060 


44.151 


0.6561 


-0.00010 


546.0 


211.306 


45.663 


0.6553 


-0.00010 


554.0 


216.545 


47.173 


0.6546 


-0.00009 


562.0 


221.779 


48.684 


0.6538 


-0.00009 


570.0 


227.007 


50.193 


0.6531 


-0.00009 


578.0 


232.229 


51.702 


0.6524 


-0.00009 


586.0 


237.445 


53.211 


0.6517 


-0.00008 


594.0 


242.656 


54.718 


0.6510 


-0.00008 



1 



Table 23. Calculated P(T) isochores- - - (Continued) 

THE ISOCHORE AT 6.00 MQl/L 



T,K 


P»8AR 


DP/DD 


OP/DT 


D2P/DT2 


306.0 


49.334 


0.167 


0.9259 


-0.00990 


314.0 


56.633 


1.634 


0.9058 


-0.00105 


322. 0 


63.853 


3.183 


0.8995 


- 0. 00061 


330.0 


71.031 


4.777 


0 .8954 


-0.00044 


338.0 


78.182 


6.402 


0.8922 


-0.00036 


346.0 


©5.309 


8.052 


0.8896 


-0.00030 


354. 0 


92.417 


9.720 


0.8874 


-0.00026 


36 2. 0 


99.508 


11.404 


0.8854 


-0.00023 


370.0 


106.584 


13.102 


0.8837 


-0.00021 


378.0 


113.647 


14.811 


0.8820 


-0.00019 


386. 0 


120.697 


16.530 


0.8805 


-0.00018 


394.0 


127.736 


18.257 


0.8791 


-0.00017 


402. 0 


134.763 


19.992 


0.8778 


-0.00016 


410.0 


141.781 


21.734 


0.8766 


-0.00015 


418.0 


148.789 


23.481 


0.6754 


-0.000 15 


426.0 


155.787 


25.233 


0.8742 


-0.00014 


434.0 


162.776 


26.989 


0.8731 


-0.00013 


442.0 


169.757 


28.750 


Q.8721 


-0.00013 


450.0 


176.729 


30.513 


0.8710 


-0.00013 


458.0 


183.694 


32.280 


0.8700 


-0. 00012 


466.0 


190.650 


34.048 


0.8691 


-0.00012 


474.0 


197.599 


35.819 


0.8681 


-0.00012 


482.0 


204.540 


37.592 


0.8672 


-0.00011 


490. 0 


211.474 


39.367 


0.8663 


-0. 00011 


498.0 


218.401 


41.142 


0.8654 


-0.00011 


506.0 


225.321 


42.919 


0.6645 


-0.00011 


514. Q 


232.234 


44.697 


0.8637 


-0.00011 


522.0 


239.140 


46.475 


0.8628 


-0.00010 


53 Q . 0 


246.039 


48.254 


0.8620 


-0.00010 


538. 0 


252.932 


50.033 


0.8612 


-0.00010 


546 . 0 


259.819 


51.812 


0.6604 


-0.00010 


554.0 


266.699 


53.591 


0.8596 


-0.00010 


562.0 


273.573 


55.371 


0.8588 


-0.00010 


570.0 


280.440 


57.150 


0.8581 


-0.00010 


578. 0 


287.302 


58.928 


0.8573 


- 0. 000 09 


586. 0 


294.157 


60.707 


0.8565 


-0,00009 


594.0 


3Q1.006 


62.485 


0.8558 


-0.00009 



221 



Table 23. Calculated P(T) isochores- - - (Continued) 

THE ISOCHORE AT 6.74 MOL/L 



T,K 


P,BAR 


DP/DD 


DP/DT 


D2P/DT2 


306.0 


49.418 


0.104 


1.0528 


-0.00000 


314. 0 


57.840 


1.691 


1.0527 


-0.00001 


322.0 


66.261 


3.401 


1.0526 


-0.00002 


330.0 


74.681 


5.171 


1.0524 


-0.00003 


338. 0 


83.100 


6.981 


1.0521 


-0.00004 


346.0 


91.515 


8.823 


1.0518 


-0.00004 


354.0 


99.929 


10.690 


1.0515 


-0.00005 


362.0 


108.339 


12.578 


1.0511 


-0.00005 


370.0 


116.746 


14.483 


1.0506 


-0.00006 


378.0 


125.149 


16.403 


1.0501 


-0. 00006 


386.0 


133.548 


18.336 


1.0496 


-0.00007 


394.0 


141.943 


20.279 


1.0491 


-0.00007 


402.0 


150.333 


22.233 


1.0485 


-0.00007 


410.0 


158.719 


24.195 


1.0479 


-0.00008 


418.0 


167.100 


26.165 


1.0473 


-0.00008 


426. 0 


175.476 


28.141 


1.0466 


-0.00008 


434.0 


183.846 


30.122 


1.0460 


-0.00008 


442.0 


192.211 


32.109 


1.0453 


-0.000 09 


450.0 


200.571 


34.100 


1.0446 


-0.00009 


458.0 


208.925 


36.095 


1.0439 


-0.00009 


466.0 


217.273 


38.093 


1.0432 


-0.00009 


474.0 


225.616 


40.094 


1.0425 


-0.0 00 09 


48 2.0 


233.953 


42.098 


1.0417 


-0.00009 


490.0 


242.284 


44.103 


1.0410 


-0.00009 


498.0 


250.609 


46.111 


1.0402 


-0.00009 


506.0 


258.927 


48.119 


1.0395 


-0.00010 


514.0 


267.240 


50.130 


1.0387 


-0.00010 


522.0 


275.547 


52.141 


1.0379 


-0.00010 


530. 0 


283.847 


54.152 


1 .0372 


-0.00010 


538. 0 


292.141 


56.165 


1.0364 


-0.00010 


546. 0 


300.429 


58.178 


1.0356 


-0.00010 


554. 0 


308.710 


60.191 


1.0348 


-0. 00010 


562.0 


316.986 


62.204 


1.0340 


-0.00010 


570.0 


325.255 


64.216 


1.0332 


-0.00010 


578.0 


333.517 


66.229 


1.0324 


-0.00010 


586.0 


341.774 


68.241 


1.0317 


-0.00010 


594.0 


350.024 


70.253 


1.0309 


-0.00010 



222 



Table 23. Calculated P(T) isochores- - - (Continued) 

THE ISOCHORE AT 8.00 HOL/L 



T,K 


P,BAR 


DP/DD 


DF/OT 


C2P/DT2 


306.0 


49.651 


0.447 


1.3126 


0.01309 


314.0 


60.333 


2.529 


1.3477 


0.00208 


322.0 


71.169 


4.704 


1.3601 


0.00119 


330.0 


82.083 


6.937 


1.3680 


0.00083 


338. 0 


93.051 


9.214 


1.3738 


0.00063 


346.0 


104.060 


11.524 


1.3782 


0.00049 


354.0 


115.100 


13.861 


1.3817 


0.00039 


362.0 


126.165 


16.221 


1.3846 


0.00032 


370.0 


137.251 


18.600 


1.3869 


0.00026 


378.0 


148.354 


20.994 


1.3887 


0.00021 


386.0 


159.470 


23.403 


1.3903 


0.00017 


394.0 


170.597 


25.824 


1.3915 


0.00014 


402.0 


181.733 


28.255 


1.3924 


0.00011 


410.0 


192.876 


30.696 


1.3932 


0.00008 


418.0 


204.024 


33.144 


1.3937 


0.00006 


426.0 


215.175 


35.599 


1.3941 


0.00004 


434.0 


226.329 


36.060 


1.3944 


0.00002 


442.0 


237.485 


40.526 


1.3945 


0. 00001 


450.0 


248.640 


42.997 


1.3945 


-0.00001 


458.0 


259.796 


45.471 


1.3943 


-0.00002 


466.0 


270.950 


47.949 


1.3941 


-0.00003 


474. 0 


282.101 


50.429 


1.3938 


-0.00004 


482. 0 


293.251 


52.911 


1.3935 


-0,00005 


49 0.0 


304.397 


55.396 


1.3930 


-0.00006 


493.0 


315.539 


57.882 


1.3925 


-0.00007 


506.0 


326.677 


60.369 


1.3920 


-0.00007 


514. 0 


337.811 


62.857 


1.3914 


-0.00008 


522.0 


348.939 


65.345 


1.3907 


-0.00008 


530.0 


360.062 


67.834 


1.3900 


-0.00009 


538.0 


371.180 


70.323 


1.3893 


-0.00009 


546.0 


382.291 


72.812 


1.3886 


-0.00010 


554. 0 


393.397 


75.301 


1.3878 


-0.00010 


562.0 


404.495 


77.789 


1.3869 


-0.00010 


570.0 


415.588 


80.276 


1 .3 861 


-0.00011 


578.0 


426.673 


82.763 


1.3852 


-0.00011 


586 . 0 


437.751 


85.249 


1.3843 


-0.00011 


594.0 


448.823 


87.733 


1.3834 


-0.00011 



223 



Table 23. Calculated P(T) isochores- - - (Continued) 

THE ISOCHORE AT 9.00 MOL/L 



T,K 


P,8AR 


DP/00 


OF/DT 


C2P/OT2 


306.0 


50.818 


2.236 


1.6175 


0.00728 


314.0 


63.920 


5.028 


1.6527 


0.00291 


322.0 


77.221 


7.822 


1.6712 


0.00186 


330.0 


90.644 


10.640 


1.6839 


0.00136 


338.0 


104.155 


13.480 


1.6935 


0.00106 


346. 0 


117.734 


16.341 


1.7011 


0.00085 


354.0 


131.368 


19.218 


1.7072 


0.00069 


362. 0 


145.046 


22.110 


1.7123 


0.00057 


370 . 0 


158.762 


25.014 


1.7164 


0.00048 


378. 0 


172.508 


27.929 


1.7199 


0.00040 


386.0 


186.279 


30.853 


1.7228 


0.00033 


394.0 


200.072 


33.784 


1.7252 


0.00027 


402. 0 


213.882 


36.723 


1.7272 


0. 00023 


410.0 


227.707 


39.666 


1.7289 


0.00018 


418.0 


241.543 


42.614 


1.7302 


0.00015 


426.0 


255.389 


45.566 


1.7312 


0.00011 


434. 0 


269,242 


48.522 


1 .7320 


0.00008 


442.0 


283.100 


51.479 


1.7326 


0.00006 


450.0 


296.962 


54.439 


1.7330 


0.00004 


458.0 


310.827 


57.400 


1,7332 


0.00002 


466.0 


324.692 


60.363 


1.7332 


-0.00000 


474.0 


338.558 


63.326 


1.7331 


-0. 00002 


4e2. 0 


352.422 


66.289 


1.7329 


- 0. 0 00 03 


490.0 


366.284 


69.252 


1 .7326 


-0.00005 


498.0 


380.143 


72.215 


1.7322 


-0.00006 


506.0 


393.998 


75.178 


1 .7316 


-0.00007 


514. 0 


407.849 


78.139 


1.7310 


-0.00008 


522.0 


421.695 


81.100 


1.7304 


-0.00009 


530.0 


435.535 


84.059 


1.7296 


-0.00010 


538.0 


449.369 


87.017 


1.7288 


-0.00010 


546.0 


463.196 


89.973 


1.7279 


-0.00011 


554. 0 


477.015 


92.928 


1.7270 


-0. 00012 


562.0 


490.828 


95.880 


1 .7261 


-0.00012 


570.0 


504.632 


98.831 


1.7250 


-0.00013 


578.0 


518.428 


101.779 


1.7240 


-0.00013 


586.0 


532.216 


104.725 


1.7229 


-0. 00014 


594.0 


545.995 


107.669 


1.7218 


-0.00014 



224 



Table 23. Calculated P(T) isochores- - - (Continued) 

THE ISOCHORE AT 10.00 MOL/L 



T,K 


Pf BAR 


DP/ CD 


DF/DT 


D2P/DT2 


306. 0 


55.121 


7.041 


2 . C 254 


0. 00422 


314.0 


71.438 


10.701 


2.0519 


0.00265 


322.0 


87.929 


14.316 


2.0699 


0.00192 


330.0 


104.545 


17.915 


2.0834 


0.00149 


338.0 


121.257 


21.505 


2.0941 


0.00119 


346.0 


138.045 


25.092 


2.1027 


0.00097 


354. 0 


154.896 


28.677 


2.1098 


0.00080 


362.0 


171.799 


32.261 


2.1157 


0.00067 


370.0 


188.745 


35.843 


2.1206 


0.00056 


378.0 


205.726 


39.424 


2.1246 


0.00046 


386. 0 


222.737 


43.004 


2.1280 


0.00038 


394.0 


239.772 


46.582 


2.1308 


0.00032 


402. 0 


256.828 


50.158 


2.1331 


0.00026 


410.0 


273.901 


53.732 


2.1349 


0.00021 


418.0 


290.986 


57.304 


2.1364 


0.00016 


426. 0 


308.082 


60.873 


2.1375 


0. 00012 


434.0 


325.186 


64.440 


2.1383 


0.00009 


442.0 


342.295 


68.004 


2.1389 


0.00005 


450.0 


359.407 


71.564 


2.1392 


0.00003 


45 8. 0 


376.522 


75.122 


2. 139 3 


0.00000 


466 • 0 


393.636 


78.676 


2.1392 


-0.00002 


474.0 


410.749 


82.226 


2.1390 


-0. 00004 


482.0 


427.859 


85.773 


2.1386 


-0.00006 


49 0.0 


444.966 


89.316 


2.1380 


-0.00008 


498.0 


462.067 


92.856 


2.1373 


-0.00009 


506.0 


479.162 


96.391 


2.1365 


-0.00011 


514.0 


496.251 


99.922 


2.1356 


-0.00012 


522.0 


513.332 


103.449 


2.1346 


-0.00013 


530. 0 


530.405 


106.972 


2.1335 


-0.00014 


538. 0 


547.469 


110.491 


2.1324 


-0.00015 


546. 0 


564.523 


114.005 


2.1312 


-0.00016 


554.0 


581.567 


117.515 


2.1299 


-0.00017 


562.0 


598.600 


121.021 


2.1285 


-0.00017 


570.0 


615.623 


124.522 


2.1271 


-0.00018 


578.0 


632.634 


128.018 


2.1256 


-0.00018 


586.0 


649.633 


131.510 


2.1241 


-0.00019 


594.0 


666.620 


134.998 


2.1226 


-0. 00020 



225 









Table 23. Calculated P(T) isochores- - - (Continued) 

THE ISOCHORE AT 11.00 MOL/L 



T,K 


P ,8 AR 


DP/DD 


DF/DT 


C 2 P /0 T 2 


298.0 


46.355 


12.389 


2.5254 


0.00353 


306 . 0 


66.658 


17.137 


2.5488 


0.00244 


314.0 


87.118 


21.783 


2.5657 


0.00184 


322 . 0 


107.698 


26.365 


2.5787 


0.00144 


330. 0 


128.370 


30.903 


2,5890 


0.00116 


338 . 0 


149.117 


35.406 


2.5974 


0.00094 


346. 0 


169.924 


39.881 


2.6042 


0.00077 


354 . 0 


190.781 


44.332 


2.6098 


0.00063 


362.0 


211.678 


48.763 


2.6144 


0.00052 


370. 0 


232.609 


53.175 


2.6181 


0.00042 


378. 0 


253.567 


57.570 


2.6211 


0.00033 


386.0 


274.546 


61.950 


2.6235 


0.00026 


394.0 


295.541 


66.316 


2.6254 


0. 00020 


402.0 


316.550 


70.668 


2.6267 


0.00014 


410. 0 


337.568 


75.007 


2.6277 


0.00010 


418.0 


358.592 


79.334 


2.6283 


0.00005 


426. 0 


379.620 


83.650 


2.6286 


0. 00002 


434.0 


400.648 


87.954 


2.6285 


- 0.00002 


442. 0 


421.675 


92.248 


2.6283 


- 0.00005 


45 0.0 


442.700 


96.531 


2.6278 


- 0.00008 


458. 0 


463.719 


100.804 


2.6270 


- 0.00010 


466 . 0 


484.732 


105.067 


2 .6261 


- 0.00012 


474. 0 


505.737 


109.320 


2.6251 


- 0.00014 


482 . 0 


526.733 


113.564 


2.6239 


- 0.00016 


49 0.0 


547.718 


117.798 


2.6225 


- 0.00018 


498 . 0 


568.693 


122.024 


2.6210 


- 0.00019 


506.0 


589.655 


126.240 


2.6194 


- 0.00020 


514. 0 


610.603 


130 . 44 e 


2.6178 


- 0. 00022 


522.0 


631.538 


134.647 


2.6160 


- 0.00023 


530.0 


652.459 


138.838 


2.6141 


- 0.00024 


538.0 


673.364 


143.020 


2.6 122 


- 0.00025 


546 . 0 


694.254 


147.194 


2.6102 


- 0.00025 




226 



Table 23. Calculated P(T) isochores- - - (Continued) 

THE ISOCHORE AT 12.00 MOL/L 



T,K 


P , BAR 


DP/DD 


OP/DT 


02P/DT2 


290 . 0 


41.028 


23.606 


3.1812 


0.00170 


294. 0 


53.766 


26.598 


3.1875 


0. 00146 


298.0 


66.527 


29.555 


3.1929 


0.00127 


302. 0 


79.308 


32.483 


3.1977 


0.00112 


306.0 


92.108 


35.385 


3.2019 


0.00098 


310.0 


104.923 


36.264 


3.2056 


0.00087 


314. 0 


117.751 


41.123 


3.2068 


0.00076 


318.0 


130.593 


43.963 


3.2117 


0.00067 


322.0 


143.445 


46.785 


3.2142 


0.00059 


326. 0 


156.306 


49.592 


3.2165 


0.00052 


330.0 


169.176 


52.384 


3.2184 


0.00046 


334.0 


182.053 


55.162 


3.2201 


0.00040 


338.0 


194.937 


57.928 


3.2216 


0.00034 


342. 0 


207.826 


60.681 


3.2229 


0.00029 


346. 0 


220.719 


63.423 


3.2239 


0.00025 


350.0 


233.617 


66.154 


3.2248 


0.00020 


354. 0 


246.518 


68.875 


3.2256 


0.00016 


358.0 


259.421 


71.587 


3.2261 


0.00013 


362.0 


272.327 


74.289 


3.2266 


0.00009 


366.0 


285.234 


76.982 


3.2269 


0.00006 


370.0 


298.142 


79.666 


3.2271 


0.00003 


374.0 


311.050 


82.342 


3.2271 


0. 0 00 0 0 


378. 0 


323.959 


85.011 


3.2271 


-0.00002 


382.0 


336.867 


87.672 


3.2270 


-0.00005 


38 6. 0 


349.774 


90.325 


3.2267 


-0.00007 


390 . 0 


362.681 


92.972 


3.2264 


-0.00009 


394.0 


375.586 


95.612 


3.2260 


-0.00011 


398. 0 


388.489 


98.245 


3.2255 


-0.00013 


402. 0 


401.390 


100.872 


3.2250 


-0.00015 


406.0 


414.288 


103.492 


3.2243 


-0.00017 


410. 0 


427.184 


106.107 


3.2237 


-0.00018 


414.0 


440.077 


106.715 


3.2229 


-0.00020 


418. 0 


452.967 


111.318 


3.2221 


-0.00021 


422.0 


465.854 


113.915 


3.2212 


-0. 00022 


426.0 


478.737 


116.507 


3.2203 


-0.00024 


430.0 


491.616 


119.094 


3.2193 


-0.00025 


434.0 


504.492 


121 .676 


3.2183 


-0.00026 


438.0 


517.363 


124.252 


3.2172 


-0.00027 


442. 0 


530.229 


126.823 


3.2161 


-0.00028 


446.0 


543.092 


129.390 


3.2150 


-0.00029 


450. 0 


555.949 


131.952 


3.2138 


-0.00030 


454.0 


568.802 


134.509 


3.2126 


-0.00031 


458. 0 


581.650 


137.062 


3.2113 


-0.00032 


462. 0 


594.493 


139.610 


3.2101 


-0.00032 


466.0 


607.331 


142.154 


3.2087 


-0.00033 


470.0 


620.163 


144.694 


3.2074 


-0.00034 


474.0 


632.990 


147.229 


3.2060 


-0.00035 


478.0 


645.811 


149.761 


3.2046 


- 0. 0 00 35 


482. 0 


658.627 


152.288 


3.2032 


-0.00036 


486. 0 


671.437 


154.811 


3.2018 


-0.00036 


490.0 


684.241 


157.330 


3.2003 


-0.00037 


494 . 0 


697.039 


159.846 


3.1988 


-0.00037 



227 



Table 23. Calculated P(T) isochores- - - (Continued) 

THE ISOCHORE AT 13.00 MOL/L 



T,K 


P r BAR 


DP/DD 


DP/DT 


D2P/OT2 


278.0 


29.111 


39.986 


4.0115 


-0.00049 


282.0 


45.153 


43.672 


4.0095 


-0.00048 


286.0 


61.188 


47.321 


4.0076 


-0.00048 


290. 0 


77.215 


50.936 


4.0057 


-0.00048 


294.0 


93.234 


54.518 


4.0038 


-0.00048 


298.0 


109.245 


58.072 


4.0019 


-0.00048 


302. 0 


125.249 


61.597 


4.0000 


-0.00048 


306.0 


141.245 


65.096 


3.9980 


-0.00049 


310.0 


157.233 


68.571 


3.9961 


-0.00050 


314. 0 


173.213 


72.022 


3.9941 


-0.00050 


318.0 


189.186 


75.452 


3.9920 


-0.00051 


322.0 


205.150 


78.861 


3.9900 


-0.00052 


326. 0 


221.105 


82.251 


3.9879 


-0.00052 


330.0 


237.053 


85.621 


3.9858 


-0.00053 


334.0 


252.992 


86.974 


3.9836 


-0.00054 


338. 0 


268.922 


92.310 


3.9815 


-0.00055 


342.0 


284.843 


95.630 


3.9793 


-0.00055 


346. 0 


300.756 


98.935 


3.9771 


-0,00056 


350.0 


316.660 


102.224 


3.9748 


-0.00057 


354. 0 


332.554 


105.499 


3.9725 


-0.00057 


358. 0 


348.440 


108.761 


3.9702 


-0.00058 


362.0 


364.316 


112.009 


3.9679 


-0.00058 


366.0 


38 0.183 


115.245 


3.9655 


-0.00059 


370.0 


396.041 


118.468 


3.9632 


-0.00060 


374.0 


411.889 


121.680 


3.9608 


-0. 00060 


378.0 


427.727 


124.880 


3.9584 


-0.00061 


382.0 


443.556 


128.070 


3.9559 


-0.00061 


386.0 


459.374 


131.248 


3.9535 


-0.00061 


390. 0 


475.183 


134.417 


3.9510 


-0.00062 


394.0 


490.983 


137.575 


3.9486 


-0.00062 


398.0 


506.772 


140 .724 


3.9461 


-0. 00063 


402.0 


522.551 


143.863 


3.9435 


-0.00063 


406.0 


538.320 


146.993 


3.9410 


-0. 00063 


410 . 0 


554.079 


150.114 


3.9385 


-0. 00064 


414.0 


569.828 


153.227 


3.9359 


-0.00064 


418.0 


585.567 


156.331 


3.9334 


-0.00064 


422.0 


601.295 


159.427 


3.9308 


-0.00064 


426.0 


617.013 


162.514 


3.9282 


-0.00065 


430.0 


632.721 


165.594 


3.9256 


-0.00065 


434.0 


648.418 


168.667 


3.9230 


-0.00065 


438 . 0 


664.105 


171.732 


3.9204 


-0.00065 


442.0 


679.781 


174.790 


3.9178 


-0.00065 


446.0 


695.447 


177.840 


3.9152 


-0.00066 



228 



Table 23. Calculated P(T) isochores- 

THE ISOCHORE AT 14.00 HOL/L 



(Continued) 



T,K 


P,OAR 


266.0 


27.449 


270.0 


47.640 


274.0 


67.779 


278.0 


87.870 


282.0 


107.915 


286. 0 


127.916 


290 . 0 


147.876 


294. 0 


167.797 


298.0 


187.680 


302. 0 


207.526 


306. 0 


227.338 


310.0 


247.116 


314.0 


266.862 


318.0 


286.577 


322. 0 


306.261 


326. 0 


325.916 


330.0 


345.541 


334.0 


365.139 


338.0 


384.710 


342.0 


404.254 


346.0 


423.772 


35 0. 0 


443.265 


354.0 


462.733 


358.0 


482.176 


362.0 


501.595 


366. 0 


520.990 


370.0 


540.362 


374.0 


559.712 


378.0 


579.039 


382.0 


598.343 


386.0 


617.626 


39 0.0 


636.888 


394.0 


656.128 


398. 0 


675.347 


402. 0 


694.545 



DP/DD 

67.107 5 

71.553 5 

75.957 5 

80.323 5 

84.651 5 

88.944 4 

93.204 4 

97.431 4 

101.627 4 

105.794 4 

109.932 4 

114.044 4 

118.130 4 

122.191 4 

126.229 4 

130.244 4 

134.238 4 

138.210 4 

142.162 4 

146.095 4 

150.009 4 

153.905 4 

157.783 4 

161.645 4 

165.491 4 

169.320 4 

173.135 4 

176.935 4 

180.720 4 

184.492 4 

188.250 4 

191.995 4 

195.727 4 

199.448 4 

203.156 4 



DF/DT 


D2P/0T2 


.0 545 


“0.00345 


.0412 


“0.00323 


. 0286 


“0.00304 


.0168 


-0.00287 


. 0 057 


-0.00272 


.9951 


-0.00258 


.9850 


-0.00246 


.9754 


-0.00236 


.9661 


-0.00226 


.9572 


-0.00217 


.9487 


-0.00210 


.9405 


-0.00202 


.9325 


-0.00196 


.9248 


-0.00190 


.9173 


-0.00184 


.9100 


-0.00179 


.9030 


-0.00175 


.8961 


-0.00170 


.8893 


-0.00166 


.8827 


-0.00163 


.8763 


-0.00159 


. 8700 


-0.00156 


.8638 


-0.00153 


.8578 


-0.00150 


.8518 


-0.00148 


.8460 


-0.00145 


.8402 


-0.00143 


.8345 


-0.00141 


.8289 


-0.00139 


. 8234 


-0.00137 


.8180 


-0.00135 


.8126 


-0.00133 


.8074 


-0.00131 


.8 021 


-0.00130 


.7970 


-0.00128 



229 



Table 23. Calculated P(T) isochores- - - (Continued) 



THE ISOCHORE AT 15,00 MOl/L 



T,K 


P,BAR 


250.0 


20.439 


254.0 


45.843 


258.0 


71.129 


262.0 


96.306 


266.0 


121.379 


270.0 


146.355 


274.0 


171.238 


278.0 


196.034 


282.0 


220.746 


286. 0 


245.379 


290.0 


269.936 


294.0 


294.421 


298.0 


318.836 


302.0 


343.185 


306.0 


367.471 


310.0 


391.694 


314.0 


415.839 


318.0 


439.967 


322. 0 


464.020 


32 6. 0 


488.019 


330. 0 


511.967 


334. 0 


535.865 


338.0 


559.714 


342. 0 


583.516 


346. 0 


607.272 


35 0.0 


630.983 


354. 0 


654.651 


358. 0 


678.276 



OP/OD D 
103.276 6. 
108.584 6. 

113.846 6. 
119.061 6. 
124.232 6. 
129.361 6. 
134.449 6. 
139.498 6. 
144.509 6. 
149.484 6. 
154.425 6. 
159.331 6. 
164.206 6. 
169.050 6. 
173.865 6. 
178.650 6. 
183.408 6. 
188.140 6. 

192.846 6. 
197.528 5. 

202.185 5. 
206.820 5. 
211.432 5. 
216.023 5. 
220.593 5. 
225.143 5. 
229.674 5. 

234.185 5. 



P/DT 02P/0T2 
3663 -0.00782 
3360 -0.00732 
3077 -0.00687 
2810 -0.00647 
2559 -0.00610 
2321 -0.00578 
2096 -0.00548 
1883 -0.00520 
1680 -0.00496 
1486 -0.00473 
1301 -0.00452 
1124 -0.00433 
0955 -0.00415 
0792 -0.00399 
0636 -0.00384 
0485 -0.00369 
0340 -0.00356 
0200 -0.00344 
0064 -0.00333 
9933 -0.00323 
9806 -0.00313 
9683 -0.00304 
9563 -0.00295 
9447 -0.00287 
9334 -0.00279 
9224 -0.00272 
9116 -0.00265 
9011 -0.00259 



230 



Table 23. Calculated P(T) isochores- - - (Continued) 

THE ISOCHORE AT 16.00 WQL/L 



T* K 


P,8AR 


232.0 


18.224 


234.0 


34.221 


236.0 


50.161 


238.0 


66,04® 


24 0.0 


81.882 


242. 0 


97.666 


244. 0 


113,400 


246. 0 


129.087 


248.0 


144.728 


25 0.0 


160.325 


252.0 


175.877 


254.0 


191.388 


256. 0 


206.858 


258. 0 


222.287 


26 0.0 


237.678 


262.0 


253.031 


264.0 


268.348 


266.0 


283.628 


268.0 


298.874 


270.0 


314.085 


272. 0 


329.264 


274.0 


344.410 


276.0 


359.524 


278. 0 


374.608 


280. 0 


389.661 


282.0 


404.665 


284. 0 


419.680 


286.0 


434.647 


288.0 


449.586 


290 . 0 


464 .499 


292.0 


479.385 


294. 0 


494.245 


296.0 


509.080 


298. 0 


523.890 


30 0. 0 


538.675 


302.0 


553.437 


304.0 


568.175 


306.0 


582.891 


308. 0 


597.584 


310.0 


612.255 


312. 0 


626.904 


314.0 


641.532 


316.0 


656.139 


318.0 


670.725 


320.0 


685.291 


322.0 


699.837 



DP/OD D 
153.066 8. 
156.194 7. 
159.307 7. 
162.407 7. 

165.494 7. 
160.568 7. 
171.629 7. 
174.677 7. 
177.713 7. 
180.737 7. 

183.750 7. 

186.750 7. 
189.739 7. 
192.717 7. 
195.683 7. 
198.639 7. 
201.585 7. 
204.519 7. 
207.444 7. 
210.359 7. 
213.263 7. 
216.158 7. 
219.044 7. 
221.920 7. 
224.787 7. 
227.645 7. 

230.494 7. 
233.335 7. 
236.167 7. 
238.991 7. 
241.806 7. 
244.614 7. 
247.413 7. 
250.205 7. 
252.989 7. 
255.766 7. 
258.535 7. 
261.298 7. 
264.052 7. 
266.800 7. 
269.541 7. 
272.276 7. 
275.003 7. 
277.724 7. 
280.439 7. 
283.147 7. 



P/DT D2P/0T2 
0124 -0.01443 
9840 -0.01395 
9566 -0.01349 
9301 -0.01306 
9043 -0.01265 
8794 -0.01226 
8553 -0.01188 
8319 -0.01153 
8092 -0.01119 
7872 -0.01086 
7657 -0.01055 
7449 -0.01025 
7247 -0.00997 
7050 -0.00970 
6859 -0.00944 
6673 -0.00919 
6491 -0.00895 
6315 -0.00873 
6142 -0.00851 
5974 -0.00830 
5810 -0.00810 
5650 -0.00790 
5494 -0.00772 
5342 -0.00754 
5193 -0.00737 
5047 -0.00720 
4904 -0.00704 
4765 -0.00689 
4629 -0.00674 
4495 -0.00660 
4365 -0.00646 
4237 -0.00633 
4112 -0.00620 
3989 -0.00608 
3868 -0.00596 
3750 -0.00585 
3634 -0.00574 
3521 -0.00563 
3409 -0.00553 
3300 -0.00543 
3192 -0.00533 
3086 -0.00524 
2983 -0.00515 
2880 -0.00506 
2780 -0.00498 
2681 -0.00489 



231 



Table 23. Calculated P(T) isochores- - - 

THE ISOCHORE AT 17.00 HOL/L 



T * K 


P , BAR 


212. 0 


22.625 


214. 0 


42.745 


216.0 


62.771 


210.0 


82.704 


220. 0 


102.548 


222.0 


122.307 


224. 0 


141.982 


226.0 


161.577 


228.0 


181.094 


230.0 


200.535 


232.0 


219.904 


234. 0 


239.202 


236.0 


258.431 


238.0 


277.593 


240.0 


296.691 


242. 0 


315.726 


244.0 


334.699 


246.0 


353.614 


248.0 


372.471 


250.0 


391.271 


252. 0 


410.017 


254.0 


428.710 


256. 0 


447.351 


258.0 


465.942 


260.0 


484.483 


262.0 


502.977 


264. 0 


521.423 


266. 0 


539.824 


268.0 


558.181 


27 0. 0 


576.493 


272.0 


594.764 


274. 0 


612.992 


276.0 


631.181 


278. 0 


649.329 


28 0. 0 


667.438 


282.0 


605.510 



DP/DD 


CP/OT 


219.957 


10.0847 


223.563 


10.0362 


227.155 


9.9893 


230.735 


9.9441 


234.300 


9.9004 


237.853 


9.8582 


241.393 


9.8173 


244.920 


9.7777 


248.434 


9.7394 


251.936 


9.7023 


255.426 


9.6664 


258.904 


9.6315 


262.370 


9.5977 


265.825 


9.5649 


269.268 


9.5330 


272.700 


9.5020 


276.121 


9.4719 


279.532 


9.4427 


282.931 


9.4142 


286.321 


9.3866 


289.700 


9.3596 


293.069 


9.3334 


296.428 


9.3070 


299.77 7 


9.2029 


303.117 


9.2586 


306.448 


9.2349 


309.769 


9.2110 


313.081 


9.1892 


316.384 


9.1672 


319.679 


9.1457 


322.964 


9.1247 


326.242 


9.1041 


329.510 


9.0841 


332.771 


9.0644 


336.024 


9.0452 


339.268 


9.0264 



(Continued) 



02P/DT2 

-0.02469 

-0.02303 

-0.02301 

-0.02223 

-0.02140 

-0.02077 

- 0.02010 

-0.01946 

-0.01004 

-0.01026 

-0.01770 

-0.01717 

-0.01666 

-0.01617 

-0.01571 

-0.01526 

-0.01403 

-0.01442 

-0.01403 

-0.01366 

-0.01330 

-0.01295 

-0.01262 

-0.01230 

-0.01199 

-0.01170 

-0.01142 

-0.01114 

-0.0108e 

-0. 01063 
-0.01039 
-0.01015 
-0.00993 
-0.00971 
-0.00950 
-0.00930 



232 



Table 23. Calculated P(T) isochores- - - (Continued) 

THE ISOCHORE AT 18.00 HOL/L 



T ♦ K 


P , BAR 


DP/DD 


OP/DT 


D2P/0T2 


188.0 


9.323 


304.719 


12,8014 


- 0.04276 


190.0 


34.841 


308.783 


12.7175 


- 0. 04110 


192.0 


60.195 


312.839 


12.6369 


- 0.03953 


194 . 0 


85.391 


316.885 


12.5594 


- 0.03804 


196 . 0 


110.435 


320.923 


12.4847 


- 0.03662 


198.0 


135.332 


324.952 


12.4128 


- 0.03528 


200.0 


160.088 


328.972 


12.3436 


- 0.03401 


202 . 0 


184.708 


332.983 


12.2768 


- 0.03280 


204.0 


209.196 


336.985 


12.2123 


- 0.03165 


206 . 0 


233.558 


340.977 


12.1501 


- 0.03056 


208.0 


257.798 


344.961 


12.0900 


- 0.02952 


210. 0 


281.920 


348.936 


12.0320 


- 0.02853 


212 . 0 


305.928 


352.903 


11.9759 


- 0.02759 


214.0 


329.825 


356.860 


11.9216 


- 0.02669 


216.0 


353.615 


360.809 


11.8691 


- 0.02584 


218.0 


377.302 


364.749 


11.8182 


- 0.02502 


220.0 


40 o.eag 


368.680 


11.7690 


- 0.02424 


222.0 


424.379 


372.603 


11.7213 


- 0.02349 


224 . 0 


447.775 


376.517 


11.6750 


- 0 . 0227 e 


226.0 


471.080 


380.423 


11.6301 


- 0.02210 


228.0 


494.297 


384.321 


11.5866 


- 0.02145 


230.0 


517.427 


388.211 


11.5443 


- 0. 02083 


232.0 


540.474 


392.092 


11.5032 


- 0.02024 


234 . 0 


563.441 


395.965 


11.4633 


- 0.01967 


236 . 0 


586.328 


399.831 


11.4245 


- 0.01912 


238.0 


609.140 


403.688 


11.3868 


- 0.01860 


240.0 


631.876 


407.537 


11.3501 


- 0.01810 


242.0 


654.541 


411.379 


11.3144 


- 0.01762 


244.0 


677.135 


415.213 


11.2797 


-0.01715 


246 . 0 


699.660 


419.040 


11.2458 


- 0.01671 



233 



Table 23. Calculated P(T) isochores- - - (Continued) 

THE ISOCHORE AT 19.00 MQt/L 



T » K 


P ,BAR 


OP/CD 


DF/DT 


D2P/DT2 


163. 0 


6.143 


419.883 


16.3415 


-0.07340 


164. 0 


22.448 


422.072 


16.2689 


-0.07174 


165.0 


38.681 


424.264 


16.1980 


-0.07014 


166.0 


54.844 


426.458 


16.1286 


-0.06858 


167.0 


70.939 


428.655 


16.0608 


-0.06707 


168. 0 


86.966 


430.854 


15.9945 


-0.06560 


169.0 


102.928 


433.056 


15.9296 


-0.06418 


170.0 


118.826 


435.259 


15.8661 


-0.06280 


171.0 


134.661 


437.465 


15.8040 


-0.06146 


172.0 


150.434 


439.672 


15.7432 


-0.06016 


173.0 


166.148 


441.881 


15.6836 


-0.05889 


174.0 


181.802 


444.092 


15 .6254 


-0.05767 


175.0 


197.399 


446.304 


15.5683 


-0.05647 


176.0 


212.939 


448.517 


15.5124 


-0.05531 


177.0 


228.424 


450.732 


15.4576 


-0.05419 


178.0 


243.855 


452.949 


15.4040 


-0.05309 


179.0 


259.232 


455.166 


15.3515 


-0.05203 


180.0 


274.558 


457.385 


15.2999 


-0.05099 


181.0 


289.833 


459.604 


15.2495 


-0.04999 


182. 0 


305.057 


461.825 


15.2000 


-0.04901 


183.0 


320.233 


464.046 


15.1514 


-0.04806 


184. 0 


335.360 


466.268 


15.1038 


-0.04713 


185.0 


350.441 


466.491 


15.0572 


-0.04623 


186.0 


365.475 


470.715 


15.0114 


-0.04535 


187. 0 


380.464 


472.939 


14.9665 


-0.04450 


188.0 


395.408 


475.164 


14.9224 


-0.04367 


189.0 


410.309 


477.389 


14.8791 


-0.04286 


190 . 0 


425.167 


479.615 


14.8367 


-0.04207 


191.0 


439.982 


481.840 


14.7950 


-0.04130 


192.0 


454.757 


484.067 


14.7541 


-0.04055 


193.0 


469.491 


486.293 


14.7139 


-0.03982 


194.0 


484.185 


488.520 


14.6744 


-0.03911 


195.0 


498.840 


490.747 


14.6356 


-0.03842 


196. 0 


513.456 


492.974 


14.5976 


-0.03774 


197.0 


528.035 


495.201 


14.5602 


-0.03708 


198.0 


542.577 


497.428 


14.5234 


-0.03644 


199.0 


557.082 


499.655 


14.4873 


-0.03582 


20 0. 0 


571.552 


501.882 


14.4518 


-0.03521 


201. 0 


585.986 


504.109 


14.4168 


-0.03461 


202. 0 


600.385 


506.336 


14.3825 


-0.03403 


203.0 


614.751 


508.562 


14.3488 


-0.03346 


204.0 


629.083 


510.789 


14.3156 


-0.03291 


205.0 


643.382 


513.015 


14.2830 


- 0. 03237 


206. 0 


657.649 


515.241 


14.2508 


-0.03184 


207.0 


671.884 


517.466 


14.2193 


-0.03133 


208 . 0 


686.088 


519.692 


14.1882 


-0.03083 



234 



Table 23. Calculated P(T) isochores- - - (Continued) 

THE ISOCHORE AT 20.00 MOL/L 



T,K 


P,BAR 


OP/DD 


DP/OT 


D2P/OT2 


137.0 


16.308 


575.795 


21.0926 


-0.12851 


138. 0 


37.337 


577.966 


20.9658 


-0.12506 


139.0 


58.241 


580.153 


20.8424 


-0.12174 


140.0 


79.023 


582.356 


20.7223 


-0.11853 


141.0 


99.687 


584.579 


20.6053 


-0.11543 


142. 0 


120.235 


586.816 


20.4914 


-0.11245 


143.0 


140.670 


589.068 


20.3804 


-0.10956 


144. 0 


160.997 


591.335 


20.2722 


-0.10678 


145.0 


181.216 


593.616 


20.1668 


-0.10408 


146. 0 


201.331 


595.911 


20.0640 


-0.10148 


147.0 


221.345 


598.219 


19.9638 


-0.09897 


148.0 


241.260 


600.540 


19.8661 


-0.09654 


149.0 


261.078 


602.873 


19.7707 


-0.09419 


150.0 


280.802 


605.219 


19.6777 


-0.09192 


151.0 


300.434 


607.575 


19.5869 


-0.08972 


152. 0 


319.976 


609.943 


19.4982 


-0.08760 


153. 0 


339.431 


612.322 


19.4116 


-0.08554 


154.0 


358.800 


614.711 


19.3271 


-0.08354 


155. 0 


378.086 


617.110 


19.2445 


-0.08162 


156.0 


397.290 


619.519 


19.1639 


-0.07975 


157. 0 


416.414 


621.937 


19.0850 


-0.07794 


158.0 


435.460 


624.364 


19.0080 


-0.07618 


159. 0 


454.431 


626.800 


18.9326 


-0.07448 


160.0 


473.326 


629.245 


18.8590 


-0.07284 


161.0 


492.149 


631.697 


18.7869 


-0.07124 


162.0 


510.901 


634.158 


18.7165 


-0.06969 


163.0 


529.583 


636.626 


18.6475 


-0.06819 


164. 0 


548.196 


639.101 


18.5801 


-0.06673 


165.0 


566.743 


641.584 


18.5141 


-0.06532 


166.0 


585.225 


644.073 


18.4494 


-0.06395 


167. 0 


603.643 


646.569 


18.3862 


-0.06262 


168.0 


621.998 


649.072 


18.3242 


-C. 06132 


169.0 


640.291 


651.581 


18.2635 


-0.06007 


170.0 


658.525 


654.095 


18.2040 


-0.05885 


171.0 


676.700 


656.615 


18.1458 


-0.05767 


172.0 


694.817 


659.141 


18.0887 


-0.05652 



235 



Table 23. Calculated P(T) isochores- - - (Continued) 

THE ISOCHORE AT 21.00 HOL/L 



T » K 


P,BAR 


DP/DD 


DP/OT 


02P/0T2 


109.0 


8.092 


782.786 


28.1089 


*0.24813 


110.0 


36.078 


784.450 


27.6650 


-0.23973 


111.0 


63.825 


786.177 


27.6294 


*0.23170 


112.0 


91.340 


787.964 


27.4015 


*0.22402 


113. 0 


118.631 


789.810 


27.1812 


-0.21668 


114. 0 


145.705 


791.713 


26.9681 


-0.20965 


115.0 


172.569 


793.669 


26.7618 


-0.20292 


116.0 


199.230 


795.677 


26.5621 


*0.19647 


117.0 


225.695 


797.735 


26.3688 


-0.19030 


118.0 


251.970 


799.841 


26.1814 


-0.18438 


119.0 


278.060 


601.994 


25.9999 


-0.17871 


120.0 


303.972 


604.191 


25.8240 


-0.17326 


121.0 


329.710 


606.431 


25.6533 


-C.168C4 


122.0 


355.280 


808.712 


25.4878 


-0.16303 


123. 0 


380.687 


611.034 


25.3272 


-0.15822 


124. 0 


405.936 


613.394 


25.1713 


-0.15359 


125.0 


431.031 


615.790 


25.0200 


-0.14915 


126.0 


455.977 


618.223 


24.8730 


*0.14488 


127.0 


480.779 


620.690 


24.7301 


-0.14078 


128.0 


505.439 


623.190 


24.5913 


-0.13683 


129.0 


529.962 


825.722 


24.4564 


-0.13303 


130. 0 


554.353 


628.285 


2 A . 3 252 


-0.12938 


131.0 


578.614 


830.878 


24.1976 


-0.12586 


132.0 


602.749 


833.500 


24.0735 


-0.12247 


133.0 


626.762 


836.149 


23.9526 


-0.11921 


134. 0 


650.656 


838.825 


23.8350 


-0.11606 


135.0 


674.433 


641.526 


23.7205 


-0.11303 


136.0 


698.098 


844.253 


23.6089 


-0.11011 



THE 


ISOCHORE AT 


22.00 HOL/L 




T t K 


P,BAR 


DP/OD 


OP/DT 


C2P/0T2 


96.0 


533.498 


1074.777 


33.3642 


-0.28865 


97.0 


566.720 


1076.862 


33.0810 


-0.27785 


98 . 0 


599.663 


1079.053 


32.8083 


-0.26758 


99.0 


632.339 


1081.344 


32.5456 


-0.25782 


100.0 


664.750 


1083.732 


32.2925 


-0.24854 


101.0 


696.927 


1086.211 


32.0484 


-0.23971 



236 



Table 24. Calculated P(o) isotherms 



The following pages give P(p) isotherms, as computed by 

the equation of state (5). The third column DP/DD is the isotherm slope 

(3P/Bp) in units of the bar and mol/j£. The last two columns give the 

isochore slopes and curvatures, DP/DT = (3P/3T), D2P/DT2 = 

2 . 2 

(B P/BT ) in units of the bar and Kelvins. 

These tables show that 3P/Bp is non-negative, and that it increases 
monotonically with density to pressures about twice those for adjusting 
the equation of state. 



237 



Table 24. Calculated P 

THE ISOTHERM AT 



MOL/L 


P> BAR 


DP 


21.50 


4.806 


911. 


21.55 


50.760 


926. 


21.60 


97.480 


942. 


21.65 


144.974 


957. 


21.70 


193.253 


973. 


21.75 


242.326 


989. 


21.80 


292.204 


1005. 


21.85 


342.897 


1022. 


21.90 


394.418 


1038. 


21.95 


446.777 


1055. 





THE ISOTHERM 


AT 1 


MOL/L 


P , BAR 


DP 


21.35 


31.210 


871. 


21.40 


75.180 


886. 


21.45 


119.908 


902. 


21.50 


165.402 


917. 


21.55 


211.671 


933. 


21.60 


258.726 


949. 


21.65 


306.577 


965. 


21.70 


355.234 


981. 


21.75 


404.708 


997. 


21.80 


455.011 


1014. 


21.85 


506.155 


1031. 


21.90 


558.152 


1048. 


21.95 


611.015 


1066. 


22.00 


664.758 


1083. 


22.05 


719.393 


1101. 





THE ISOTHERM 


AT 1 


MOL/L 


P,BAR 


DP 


21.00 


36.078 


784. 


21.05 


75.660 


798. 


21.10 


115.964 


813. 


21.15 


157.000 


828. 


21.20 


198.777 


843. 


21.25 


241.305 


858. 


21.30 


284.592 


873. 


21.35 


328.649 


888. 


21.40 


373.486 


904. 


21.45 


419.114 


920. 


21.50 


465.543 


936. 


21.55 


512.785 


953. 


21.60 


560.851 


969. 


21.65 


609.754 


986. 


21.70 


659.506 


10 03. 


21.75 


710.120 


1020. 



isotherms. 

00 CEG • K 



DP/DT 


D2P/DT2 


32.9615 


-0.359363 


33.0105 


-0.353331 


33. 0636 


-0.347309 


33.1208 


-0.341302 


33.1826 


-0.335313 


33.2489 


-0.329348 


33.3202 


-0.323411 


33.3966 


-0.317505 


33.4782 


-0.311636 


33.5655 


-0.305809 



DEG. K 




DP/OT 


D2P/DT2 


31.1230 


-0.310639 


31.1884 


-0.305784 


31.2572 


-0.300928 


31.3296 


-0.296076 


31.4057 


-0.291231 


31.4858 


-0.286396 


31.5700 


-0.281575 


31.6586 


-0.276773 


31.7517 


-0.271991 


31.8495 


-0.267236 


31.9523 


-0.262509 


32.0603 


-0.257815 


32.1736 


-0.253157 


32.2925 


-0.248540 


32.4171 


-0.243968 



DEG. K 




OP/DT 


D2P/CT2 


27.8650 


-0.239728 


27.9509 


-0.236564 


28.0391 


-0.233386 


28.1297 


-0.230198 


28.2230 


-0.227000 


28.3189 


-0.223795 


28.4177 


-0.220586 


28.5196 


-0.217375 


28.6247 


-0.214164 


28.7332 


-0.210957 


28.8451 


-0.207755 


28.9608 


-0.204561 


29. 0803 


-0.201377 


29.2038 


-0 .198208 


29. 3315 


-0.195054 


29.4635 


-0.191920 



(P) 

95. 

'/DO 

484 

705 

107 

697 

484 

475 

6 79 

104 

760 

656 

00 . 

VCD 

909 

956 

184 

599 

208 

019 

038 

274 

736 

432 

370 

559 

010 

732 

735 

10 . 

/CD 

450 

827 

376 

104 

014 

114 

409 

906 

610 

530 

672 

043 

652 

506 

613 

982 



238 



Table 24. Calculated P(P) isotherms (Continued) 

THE ISOTHERM AT 120.00 OEG • K 



MOL/L 


P*8AR 


DP/DD 


DP/DT 


02P/DT2 


20.60 


5.090 


692. 070 


24. 9991 


-0.190010 


20.65 


40.029 


705. 492 


25.0963 


-0.187977 


20.70 


75.642 


719. 075 


25.1949 


-0.185923 


20.75 


111.939 


732. 823 


25.2952 


-0.183852 


20.80 


148.927 


746.739 


25.3971 


-0.181763 


20.85 


186.616 


760.830 


25.5008 


-0.179658 


20.90 


225.013 


775. 099 


25.6065 


-0.177539 


20.95 


264.129 


789. 550 


25.7141 


-0.175407 


21.00 


303.972 


804. 191 


25.8240 


-0.173264 


21.05 


344.551 


819. 025 


25.9361 


-0.171111 


21.10 


385.877 


834. C58 


26.0506 


-0 .168951 


21.15 


427.960 


849. 296 


26.1676 


-0.166784 


21.20 


470.811 


864. 746 


26.2873 


-0.164612 


21.25 


514.439 


880. 413 


26.4097 


-0.162438 


21.30 


558.856 


896. 303 


26.5351 


-0.160263 


21.35 


604.073 


912. 424 


26.6636 


-0.158089 


21.40 


650.102 


928. 783 


26.7952 


-0.155918 


21.45 


696.955 


945. 386 


26.9301 


-0.153751 


21.50 


744.645 


962. 241 


27.0685 


-0.151592 


THE 


ISOTHERM 


AT 140.00 


OEG. K 





MOL/L 


P f BAR 


OP/OD 


DP/DT 


D2P/DT2 


19.90 


21.970 


558. 809 


20.5026 


-0.120130 


19.95 


50.202 


570. 510 


20.6121 


-0 .119339 


20.00 


79.023 


582. 358 


20.7223 


-0 .118529 


20.05 


108.440 


594. 355 


20.8334 


-0.117703 


20.10 


138.461 


606. 504 


20.9453 


-0.116859 


20.15 


169.093 


618. 808 


21.0582 


-0.115998 


20.20 


200.345 


631. 271 


21 . 1721 


-0.115121 


20.25 


232.223 


643. 894 


21.2870 


-0.114229 


20.30 


264.737 


656. 683 


21.4031 


-0.113321 


20.35 


297.894 


669. 641 


21.5204 


-0.112399 


20.40 


331.704 


682. 771 


21.6390 


-0.111463 


20.45 


366.174 


696. 078 


21.7589 


-0.110514 


20.50 


401.315 


709. 565 


21.8802 


-0.109552 


20.55 


437.134 


723. 237 


22.0031 


-0.108579 


20.60 


473.641 


737. 098 


22.1275 


-0.107594 


20.65 


510.847 


751. 153 


22.2536 


-0.106600 


20.70 


548.760 


765. 407 


22. 3815 


-0.105595 


20.75 


587.391 


779. 864 


22.5112 


-0.104583 


20.80 


626.750 


794. 530 


22.6428 


-0.103563 


20.85 


666.848 


809. 410 


22.7764 


-0.102536 


20.90 


707.695 


824.510 


22.9122 


-0.101504 


20.95 


749.302 


839. 835 


23.0501 


-0.10 0 466 



239 



Table 24. Calculated P(p) isotherms (Continued) 

THE ISOTHERM AT 160.00 DEG. K 



MOL/L 


P * BAR 


OP/DD 


DP/DT 


D2P/0T2 


19.15 


20.934 


442. 231 


16.8979 


-0.078123 


19.20 


43.292 


452.114 


17.0083 


*‘0 .077910 


19.25 


66.148 


462. 126 


17.1191 


-0.077685 


19.30 


89.507 


472. 268 


17.2304 


-0.077447 


19.35 


113. 377 


482. 543 


17.3422 


-0 .077196 


19.40 


137.763 


492. 952 


17.4545 


-0.076933 


19.45 


162.674 


503. 498 


17.5675 


-0.076657 


19.50 


188.115 


514. 182 


17.6810 


-0 .076369 


19.55 


214.095 


525. 008 


17.7953 


-0 .076068 


19.60 


240.619 


535. 978 


17.9102 


-0.075755 


19.65 


267.695 


547. 094 


18.0258 


-0.075431 


19.70 


295.331 


558. 359 


18.1422 


-0.075094 


19.75 


323.533 


569. 776 


18.2594 


-0.074746 


19.80 


352.311 


581. 348 


18.3774 


-0.074386 


19.85 


381.671 


593. 078 


18.4963 


-0.074015 


19.90 


411.621 


604. 568 


18.6162 


-0.073633 


19.95 


442.170 


617. 023 


18.7371 


-0.073240 


20.00 


473.326 


629. 245 


18.8590 


-0.072837 


20.05 


505.098 


641. 638 


18.9820 


-0.072424 


20. 10 


537.493 


654. 205 


19.1061 


-0.072001 


20.15 


570.521 


666. 952 


19.2314 


-0.071568 


20.20 


604.191 


679. 880 


19.3579 


-0.071127 


20.25 


638.512 


692. 995 


19.4858 


-0 .070677 


20.30 


673.494 


706. 301 


19.6150 


-0.070219 


20.35 


709.146 


719. 8C1 


19.7456 


-0 .069753 


20.40 


745.477 


733. 501 


19.8778 


-0.069281 



* 



240 



Table 24. Calculated P(p) isotherms (Continued) 

THE ISOTHERM AT 100.00 OEG • K 



MOL/L 


P > BAR 


DP/DD 


DP/OT 


D2P/DT2 


0.05 


0.729 


14. 231 


0.0043 


-0.000002 


10.35 


15.706 


342. 424 


13.8992 


-0.050964 


18.40 


33.031 


350. 573 


14.0043 


-0.051014 


10.45 


50.765 


358. 831 


14.1099 


-0.051056 


18.50 


68.916 


367. 202 


14.2158 


-0.051090 


10.55 


87.487 


375. 685 


14. 3222 


-0.051117 


18.60 


106.486 


384. 263 


14.4290 


-0.051136 


18.65 


125.918 


392.998 


14.5362 


-0.051147 


18.70 


145.788 


401. 829 


14.6438 


-0.051149 


18.75 


166.103 


410. 760 


14.7519 


-0.051144 


18.80 


186.868 


419. 852 


14.8605 


-0.051131 


18.85 


208.090 


429. C 47 


14.9696 


-0.051109 


18.90 


229.775 


438. 366 


15.0792 


-0.051079 


18.95 


251.929 


447. 811 


15.1893 


-0.051041 


19.00 


274.558 


457. 365 


15.2999 


-0.050994 


19.05 


297.669 


467. 069 


15.4112 


-0.050939 


19. 10 


321.269 


476.925 


15.5230 


-0.050876 


19. 15 


345.364 


486. 896 


15.6355 


-0.050804 


19.20 


369.961 


497. 003 


15.7486 


-0.050724 


19.25 


395.067 


507. 250 


15.8624 


-0.050636 


19. 30 


420.688 


517. 638 


15.9768 


-0.050539 


19.35 


446.833 


528. 170 


16.0920 


-0.050435 


19.40 


473.508 


538. 849 


16.2080 


-0.050322 


19.45 


500.720 


549. 678 


16.3247 


-0.050202 


19.50 


528.478 


560.658 


16.4422 


-0.050074 


19.55 


556.789 


571. 794 


16.5606 


-0.049938 


19.60 


585.660 


563. 088 


16.6799 


-0.049795 


19.65 


615.100 


594. 542 


16.8001 


-0.049644 


19.70 


645.117 


606. 162 


16.9212 


-0.049486 


19.75 


675.719 


617. 949 


17 .0434 


-0 .049321 


19.80 


706.915 


629. 907 


17.1665 


-0.049149 


19.85 


738.713 


642. 041 


17.2908 


-0.048971 



241 



Table 24. Calculated P(P) isotherms (Continued) 

THE ISOTHERM AT 200.00 DEG. K 



MOL/L 


P,9AR 


DP 


0.05 


0.814 


15. 


0.10 


1.596 


15. 


17.50 


13.541 


258. 


17.55 


26.647 


265, 


17.60 


40.085 


272. 


17.65 


53.859 


278. 


17.70 


67.973 


285. 


17.75 


82.433 


292. 


17.80 


97.243 


299. 


17.85 


112.409 


306. 


17.90 


127.935 


314. 


17.95 


143.826 


321. 


18.00 


160.088 


328. 


18.05 


176.725 


336. 


18.10 


193.743 


344. 


18.15 


211.147 


351. 


18.20 


228.943 


359. 


18.25 


247.135 


367. 


18.30 


265.729 


375. 


18.35 


284.732 


384. 


18.40 


304.147 


392. 


18.45 


323.982 


400. 


18.50 


344.242 


409. 


18.55 


364.933 


418. 


18.60 


386.061 


426. 


18.65 


407.631 


435. 


18.70 


429.650 


444. 


18.75 


452.125 


454. 


18.80 


475.061 


463. 


18.85 


498.465 


472. 


18.90 


522.344 


482. 


18.95 


546.704 


492. 


19.00 


571.552 


501. 


19.05 


596.894 


511. 


19.10 


622.739 


521. 


19.15 


649.092 


532. 


19.20 


675.962 


542. 


19.25 


703.356 


553. 


19. 30 


731.280 


563. 



DP/OT 


D2P/DT2 


0.0042 


-0.000001 


0.0087 


-0.000005 


11.3605 


-0.032662 


11.4570 


-0.032ei5 


11.5539 


-0.032964 


11.6512 


-0.033110 


11.7489 


-0.033251 


11.8469 


-0.033389 


11.9454 


-0.033522 


12.0443 


-0.033651 


12.1437 


-0.033775 


12.2434 


-0.033895 


12.3436 


-0.034009 


12.4442 


-0.034120 


12.5452 


-0.034225 


12.6467 


-0.034325 


12.7486 


-0.034420 


12.8511 


-0.034510 


12.9540 


-0.034595 


13.0573 


-0.034674 


13.1612 


-0.034748 


13.2656 


-0.034817 


13.3705 


-0.034880 


13.4760 


-0.034938 


13.5820 


-0.034990 


13.6886 


-0.035036 


13.7957 


-0.035077 


13.9035 


-0.035113 


14.0118 


-0.035143 


14.1208 


-0.035167 


14. 2304 


-0.035186 


14.3408 


-0.035199 


14.4518 


-0.035207 


14.5635 


-0.035209 


14.6759 


-0.035205 


14.7091 


-0.035197 


14.9031 


-0.035183 


15.0178 


-0.035163 


15.1334 


-0 .035139 



'/DO 

975 

285 

847 

425 

097 

864 

727 

686 

743 

899 

155 

512 

972 

535 

203 

977 

859 

849 

950 

163 

489 

930 

487 

163 

959 

877 

919 

086 

381 

806 

363 

054 

882 

849 

957 

209 

608 

156 

856 



242 



Table 24. Calculated P(p) isotherms (Continued) 

THE ISOTHERM AT 220. 00 DEG. K 



MOL/L 


P* BAR 


DP/DD 


OP/DT 


D2P/DT2 


0.10 


1.768 


17. 082 


0.0086 


-0.000003 


0.20 


3.411 


15. 770 


0.0178 


-0.000014 


16.60 


17.768 


190.467 


9.2021 


-0.020109 


16.70 


37.336 


200. 940 


9.3742 


-0.020462 


16.80 


57.967 


211. 733 


9.5479 


-0.020809 


16. SO 


7S.693 


222. 851 


9.7233 


-0.021149 


17.00 


102.548 


234. 300 


9.9004 


-0.021482 


17.10 


126.565 


246. C88 


10.0792 


-0.021806 


17.20 


151.777 


258. 222 


10.2598 


-0.022121 


17.30 


178.221 


270. 708 


10.4420 


-0.022427 


17.40 


205.931 


283. 554 


10.6260 


-0.022722 


17.50 


234.944 


296. 769 


10.8119 


-0.023005 


17.60 


265.297 


310. 360 


10.9995 


-0.023278 


17.70 


2S7.029 


324. 337 


11.1890 


-0.023537 


17.80 


330.178 


338. 710 


11.3803 


-0.023785 


17. SO 


364.784 


353. 487 


11.5737 


-0.024018 


18.00 


400.889 


368.680 


11.7690 


-0.024239 


18.10 


438.535 


384. 300 


11.9664 


-0.024445 


18.20 


477.764 


400. 359 


12.1659 


-0.024637 


18.30 


518.621 


416. 870 


12.3677 


-0.024814 


18.40 


561.153 


433. 846 


12.5718 


-0 .024976 


18.50 


605.407 


451. 302 


12.7783 


-0.025124 


18.60 


651.430 


469. 253 


12.9873 


-0.025256 


18.70 


699.274 


487. 716 


13.1989 


-0.025373 


18.80 


748.991 


506. 709 


13.4133 


-0.025475 



243 



Table 24. Calculated P(p) isotherms (Continued) 

THE ISOTHERM AT 240.00 OEG. K 



MOL/L 


P t BAR 


OP/DD 


DP/DT 


02P/CT2 


0.10 


1.940 


18. 652 


0.0085 


-0.000002 


0.20 


3.766 


17. 661 


0.0176 


-0.000009 


0.30 


5.473 


16. 494 


0.0272 


-0.000022 


0.40 


7.066 


15. 364 


0.0374 


-0.000044 


0.50 


8.547 


14. 263 


0.0483 


-0.000076 


15.50 


9.671 


124. 461 


7.1561 


-0.011002 


15.60 


22.499 


132. 140 


7.3023 


-0.011333 


15.70 


36.108 


140. 077 


7.4502 


-0.011664 


15.80 


50.523 


148. 278 


7.5998 


-0.011994 


15.90 


65.772 


156.749 


7.7512 


-0.012322 


16.00 


81.882 


165. 494 


7.9043 


-0.012648 


16.10 


98.880 


174.519 


8.0592 


-0.012972 


16.20 


116.795 


183. 828 


8.2159 


-0.013293 


16.30 


135.656 


193. 428 


8.3743 


-0.01 3611 


16.40 


155.491 


203. 325 


8.5345 


-0.013925 


16.50 


176.331 


213. 524 


8.6964 


-0.014235 


16.60 


198.206 


224. 030 


8.8601 


-0 .014540 


16.70 


221.147 


234. 852 


9.0256 


-0.014840 


16.60 


245.187 


245.994 


9.1929 


-0.015135 


16.90 


270.357 


257. 463 


9.3620 


-0.015423 


17.00 


296.691 


269. 268 


9.5330 


-0.015706 


17.10 


324.222 


281. 414 


9.7058 


J 0 .015981 


17.20 


352.985 


293. 910 


9.8805 


-0.016250 


17.30 


383.016 


306. 764 


10.0571 


-0.016511 


17,40 


414.350 


319. 985 


10.2357 


-0.016764 


17.50 


447.025 


333. 5e0 


10.4162 


-0.017008 


17.60 


481.079 


347.560 


10.5987 


-0.017244 


17.70 


516.551 


361. 935 


10.7834 


-0 .017471 


17.80 


553.480 


376. 715 


10.9701 


-0 .01 7689 


17.90 


591.908 


391.912 


11.1590 


-0.017897 


18.00 


631.876 


407.537 


11.3501 


-0.018096 


18.10 


673.430 


423. 604 


11.5436 


-0.018285 


18.20 


716.612 


440. 125 


11.7394 


-0.018464 



244 



Table 24. Calculated P( p ) isotherms (Continued) 

THE ISOTHERM AT 260.00 DEG. K 



MOL/L 


P,BAR 


DP/DD 


DP/DT 


D2P/CT2 


0.10 


2.110 


20.604 


0.0085 


-0.000001 


0.20 


4.116 


19.511 


0.0175 


-0.000006 


0.30 


6.014 


18. 446 


0.0269 


-0.000015 


0.40 


7.807 


17. 423 


0.0367 


-0.000028 


0.50 


9.499 


16. 433 


0.0471 


-0.000047 


0.60 


11.094 


15. 465 


0.0579 


-0.000071 


0.70 


12.593 


14.511 


0.0693 


-0.000103 


0.80 


13.997 


13. 566 


0 . 0811 


-0.000143 


0.90 


15.306 


12. 629 


0.0935 


-0.000193 


1.00 


16.523 


11.698 


0. 1065 


-0.000255 


14.30 


17.323 


75. 033 


5.4238 


-0.004694 


14.40 


25.089 


80. 318 


5.5430 


-0.004975 


14.50 


33.393 


85. 806 


5.6639 


-0.005257 


14.60 


42.257 


91. 502 


5.7865 


-0.005538 


14.70 


51.701 


97. 411 


5.9108 


-0.005819 


14.80 


61.747 


103. 537 


6.0368 


-0,006101 


14.90 


72.416 


109. 885 


6.1646 


-0.006382 


15.00 


83.731 


116. 459 


6.2941 


-0.006663 


15.10 


95.715 


123.264 


6.4254 


-0.006944 


15.20 


108. 392 


130. 304 


6.5584 


-0.007225 


15.30 


121.784 


137.585 


6.6932 


-0.007506 


15.40 


135.917 


145. 110 


6.8297 


-0.007786 


15.50 


150.814 


152. 885 


6.9679 


-0.008065 


15.60 


166.502 


160. 915 


7.1080 


-0.008343 


15.70 


183.006 


169. 205 


7.2498 


-0.008620 


15.80 


200.352 


177. 759 


7.3934 


-0.008895 


15.90 


218.567 


186.584 


7.5387 


-0.009169 


16.00 


237.678 


195. 663 


7.6859 


-0 .009441 


16.10 


257.713 


205. 064 


7.8349 


-0.009710 


16.20 


278.700 


214. 731 


7.9856 


-0.009978 


16.30 


300.669 


224. 690 


8.1382 


-0.010242 


16.40 


323.648 


234. 947 


8.2927 


-0 .010 504 


16.50 


347.669 


245. 509 


8.4489 


-0.010762 


16.60 


372.761 


256. 381 


8.6071 


-0.011016 


16.70 


398.956 


267. 571 


6.7671 


-0.011267 


16.80 


426.286 


279. 086 


8.9290 


-0.011514 


16.90 


454.784 


290. 932 


9.0928 


-0.011756 


17.00 


484.483 


303. 117 


9.2586 


-0.011993 


17. 10 


515.419 


315. 650 


9.4263 


-0.012226 


17.20 


547.625 


328. 538 


9.5961 


-0.012453 


17.30 


581.139 


341. 791 


9.7679 


-0.012675 


17.40 


615.996 


355. 418 


9.9418 


-0.012891 


17.50 


652.235 


369. 428 


10.1177 


-0.013101 


17.60 


689.895 


383. 833 


10.2959 


-0.013305 


17.70 


729.015 


398, 642 


10.4763 


-0.013503 



245 



Table 24. Calculated P(P) isotherms (Continued) 

THE ISOTHERM AT 280.00 DEG. K 



MOL/L 


P» 8 AR 


OP/DO 


DP/DT 


D2P/0T2 


0.20 


4.464 


21. 334 


0.0174 


-0.000004 


0.40 


8.537 


19. 416 


0.0363 


-0.000020 


0.60 


12.240 


17. €35 


0.0568 


-0.000048 


0.80 


15.595 


15. 518 


0.0789 


-0.000091 


1.00 


18.610 


14.238 


0.1026 


-0.000152 


1.20 


21.292 


12.596 


0.1279 


-0.000235 


1.40 


23.651 


11. 005 


0.1549 


-0.00 0346 


1.60 


25.699 


9. 482 


0.1836 


-0.000496 


1.80 


27.449 


8. 034 


0.2141 


-0.000706 


12.80 


29.399 


35.601 


3.8292 


0.000011 


13.00 


37.133 


41. 834 


4.0105 


-0.000486 


13.20 


46.172 


48.656 


4.1979 


-0.000961 


13.40 


56.637 


56. 100 


4.3915 


-0.001425 


13.60 


68.656 


64.199 


4.5916 


-0.001882 


13.80 


82.363 


72. 985 


4.7981 


-0.002336 


14.00 


97.898 


82. 492 


5.0112 


-0.002789 


14.20 


115.410 


92. 751 


5.2310 


-0.003244 


14.40 


135.051 


103. 798 


5.4575 


-0.0C3700 


14.60 


156.984 


115.667 


5.6908 


-0.004157 


14.80 


181.375 


128. 392 


5.9309 


-0.004617 


15.00 


208.400 


142. 008 


6.1780 


-0 .005 078 


15.20 


238.240 


156. 553 


6.4320 


-0.005539 


15.40 


271.085 


172. 064 


6.6931 


-0.006000 


15.60 


307.133 


188. 579 


6.9613 


-0.006459 


15.80 


346.587 


206. 139 


7.2367 


-0.006915 


16.00 


389.661 


224. 787 


7.5193 


-0.007366 


16.20 


436.577 


244. 567 


7.8092 


-0.007812 


16.40 


487.566 


265.527 


8.1066 


-0.008250 


16.60 


542.870 


287. 718 


8.4116 


-0.008679 


16.80 


602.739 


311. 197 


8.7244 


-0.009097 


17.00 


667.438 


336.024 


9.0452 


-0.009502 


17.20 


737.243 


362. 265 


9.3742 


-0.009894 



246 



Table 24. Calculated P(P) isotherms (Continued) 

THE ISOTHERM AT 290.00 DEG. K 



MOL/L 


P » 8 AR 


DP/DO 


OP/DT 


D2P/DT2 


0.20 


4.638 


22. 237 


0.0173 


-0.000004 


0.40 


8.898 


20. 396 


0 . 0361 


-0.000017 


0.60 


12.805 


18. 691 


0.0563 


-0.000040 


0.80 


16.379 


17. 052 


0 . 0780 


-0.000076 


1.00 


19.628 


15. 448 


0.1012 


-0.000124 


1.20 


22.561 


13.862 


0 . 1258 


-0.000187 


1.40 


25.185 


12. 368 


0.1519 


-0.000268 


1.60 


27.512 


10.922 


0.1793 


-0.000369 


1.80 


29.559 


9. 554 


0.2082 


-0.000496 


2.00 


31.339 


8. 269 


0.2384 


-0.000659 


2.20 


32.872 


7. 068 


0.2701 


-0.000872 


2.40 


34.172 


5. 945 


0.3033 


-0.001165 


11.80 


36.715 


19. 597 


3.0333 


0.002241 


12.00 


41.028 


23.606 


3. 1812 


0.001695 


12.20 


46.187 


28. 061 


3.3345 


0.001209 


12.40 


52.284 


32. 991 


3.4934 


0.000760 


12.60 


59.417 


38. 427 


3.6582 


0.000336 


12.80 


67.691 


44. 398 


3.8289 


-0.000074 


13.00 


77.215 


50.936 


4.0057 


-0 .00 0 476 


13.20 


88.105 


58. 070 


4.1888 


-0.000873 


13.40 


100.484 


65. 832 


4.3781 


-0 .00 1268 


13.60 


114.482 


74. 253 


4.5739 


-0.001665 


13.80 


130.232 


83. 366 


4.7762 


-0.002063 


14.00 


147.876 


93. 204 


4.9850 


-0.002465 


14.20 


167.564 


103. 798 


5.2005 


-0.002869 


14.40 


189.448 


115. 183 


5.4227 


-0.00 3278 


14.60 


213.692 


127. 392 


5.6516 


-0 .003689 


14.80 


240.462 


140. 461 


5.8874 


-0.004103 


15.00 


269.936 


154. 425 


6 . 1 30 1 


-0.004520 


15.20 


302.294 


169. 319 


6.3798 


-0.004937 


15.40 


337. 728 


185. 183 


6.6365 


-0.005355 


15.60 


376.435 


202. 056 


6.9003 


-0.005772 


15. 8Q 


418.620 


219. 977 


7.1713 


-0.006187 


16.00 


464.499 


238. 991 


7.4495 


-0 .006599 


16.20 


514.293 


259. 142 


7.7352 


-0.007007 


16.40 


568.235 


280 . 4ei 


8.0285 


-0.007408 


16.60 


626.567 


303. 059 


8.3294 


-0.007802 


16.80 


689.545 


326. 934 


8.6381 


-0.008187 



247 



Table 24. Calculated P(p) isotherms (Continued) 

THE ISOTHERM AT 300.00 DEG. K 



MOL/L 


P,BAR 


DP/CD 


CP/DT 


02P/CT2 


0.20 


4.811 


23. 137 


0.0173 


-0.000003 


0.40 


9.258 


21. 366 


0.0355 


-0.000014 


0.60 


13.367 


19. 733 


0.0559 


-0.000034 


0.00 


17.156 


18. 164 


0.0773 


-0.000064 


1.00 


20.634 


16.630 


0 . 1001 


-0.000103 


1.20 


23.810 


15. 132 


0.1241 


-0.000154 


1.40 


26.691 


13. 685 


0.1495 


-0.000216 


1.60 


29.289 


12. 304 


0.1760 


-0.000 291 


1.80 


31.618 


11. 000 


0.2038 


-0.000380 


2.00 


33.694 


9. 778 


0.2328 


-0.000486 


2.20 


35.534 


8. 6 39 


0.2628 


-0.000611 


2.40 


37.155 


7. 580 


0.2940 


-0.000760 


2.60 


38.572 


6. 596 


0 . 3262 


-0.000940 


2.80 


39.798 


5.681 


0.3594 


-0.001160 


3.00 


40.848 


4. 630 


0.3936 


-0.001439 


3.20 


41.734 


4. 040 


0.4289 


-0.001803 


3.40 


42.468 


3. 308 


0.4653 


-0.002303 


3.60 


43.062 


2.633 


0. 5028 


-0.003045 


3.80 


43.525 


2. 015 


0.5420 


-0.004278 


18.20 


44.034 


5.581 


2.0913 


0.006320 


10.40 


45.307 


7.188 


2.1950 


0.005196 


10.60 


46.926 


9. 043 


2.3028 


0.004369 


10.80 


48.942 


11.169 


2.4150 


0.003717 


11.00 


51.413 


13. 590 


2.5321 


0.003176 


11.20 


54.399 


16. 331 


2.6541 


0.00 2708 


11.40 


57.968 


19. 419 


2.7813 


0.002289 


11.60 


62.192 


22. 879 


2.9139 


0.001903 


11. 80 


67.147 


26.737 


3.0518 


0.001540 


12.00 


72.915 


31. 022 


3.1954 


0.001191 


12.20 


79.586 


35. 762 


3.3446 


0.000852 


12.40 


87.252 


40. 963 


3.4997 


0.000517 


12.60 


96.013 


46. 717 


3.6607 


0.000185 


12.80 


105.975 


52. 992 


3.8278 


-0.000148 


13.00 


117.248 


59. 838 


4.0010 


-0.000482 


13.20 


129.950 


67. 285 


4.1803 


-0.000820 


13.40 


144.204 


75. 365 


4.3660 


-0.001162 


13.60 


160.140 


84. 108 


4.5581 


-0.001509 


13.80 


177.894 


93. 547 


4.7566 


-0.001860 


14.00 


197.607 


103. 714 


4.9616 


-0.002217 


14.20 


219.430 


114. 641 


5.1733 


-0.002579 


14.40 


243.517 


126. 362 


5.3916 


-0.002945 


14.60 


270.030 


138. 911 


5.6167 


-0.00 3316 


14.80 


299.139 


152. 322 


5.8485 


-0.003690 


15.00 


331.019 


166. 632 


6.0873 


-0.004067 


15.20 


365.854 


181. 877 


6.3329 


-0.004446 


15.40 


403.834 


198. 094 


6.5856 


-0 .00 4826 


15.60 


445.159 


215. 324 


6.8455 


-0.005206 


15.80 


490.034 


233. 608 


7.1125 


-0.005585 


16.00 


538.675 


252. 589 


7.3868 


-0.005962 


16.20 


591.306 


273.515 


7.6686 


-0.006335 


16.40 


648.161 


295. 236 


7.9580 


-0 .006704 


16.60 


709.484 


318. 205 


8.2551 


-0.007067 



248 



Table 24. Calculated P(p) isotherms (Continued) 

THE ISOTHERM AT 305.37 DEG. K 



MOL/l 


P,BAR 


DP/DD 


DP/DT 


02P/DT2 


0.40 


9.451 


21. 864 


0.0358 


-0.000013 


0.80 


17.570 


18. 754 


0.0770 


-0.000059 


1.20 


24.474 


15. 792 


0.1233 


-0.000140 


1.60 


30.230 


13. 029 


0.1746 


-0.000260 


2.00 


34.937 


10. 563 


0.2303 


-0.000424 


2.40 


38.723 


8. 420 


0.2902 


-0.000641 


2.80 


41.713 


6. 571 


0.3539 


-0.000925 


3.20 


44.014 


4. 977 


0.4207 


-0 .00 1304 


3.60 


45.725 


3.616 


0.4904 


-0.001823 


4.00 


46.939 


2. 491 


0.5623 


-0.00 2567 


4.40 


47.751 


1.609 


0.6361 


-0.00 3696 


4.80 


48.257 


0.962 


0.7110 


-0 .005536 


5.20 


48.547 


0.519 


0.7866 


-0.008912 


5.60 


48.693 


0.232 


0.8625 


-0.016770 


6.00 


48.748 


0. 057 


0.9383 


-0.049009 


6.40 


48.755 


0.000 


1.0104 


-0.480413 


6.80 


48.755 


-0. 000 


1.0567 


17.287460 


7.20 


48.755 


0. 002 


1.1174 


0.285379 


7.60 


48.764 


0. 064 


1.2016 


0.061370 


8.00 


48.828 


0. 264 


1.3013 


0.025533 


8.40 


49.022 


0. 730 


1.4149 


0.014647 


8.80 


49.453 


1. 486 


1.5429 


0.009849 


9.20 


50.265 


2. 655 


1.6862 


0.007230 


9.60 


51.649 


4. 362 


1.8458 


0.005584 


10.00 


53.846 


6. 749 


2.0227 


0.004434 


10.40 


57.159 


9.974 


2.2179 


0.00 3554 


10.80 


61.960 


14. 212 


2.4324 


0.002828 


11.20 


68.688 


19. 649 


2.6672 


0.002185 


11.60 


77.865 


26.485 


2.9232 


0.001586 


12.00 


90.091 


34.930 


3.2012 


0.001002 


12.40 


106.052 


45. 204 


3.5022 


0.000416 


12.80 


126.528 


57. 535 


3.8269 


-0.000183 


13.20 


152.387 


72. 162 


4.1760 


-0.000801 


13.60 


184.596 


89. 327 


4.5502 


-0.001443 


14.00 


224.220 


109. 262 


4.9500 


-0.002108 


14.40 


272.428 


132.288 


5.3762 


-0.002795 


14.80 


330.493 


158. 613 


5.8292 


-0.003500 


15.20 


399.799 


188. 540 


6.3097 


-0.004219 


15.60 


481.845 


222. 370 


6.8182 


-0 .004942 


16.00 


578.258 


260. 428 


7.3556 


-0 .00 5664 


16.40 


690.800 


3 0 3. 0 83 


7.9229 


-3.006373 



249 



Table 24. Calculated P(d) isotherms (Continued) 

THE ISOTHERM AT 310.00 DEG. K 



MOL/L 


P » BAR 


DP/OD 


OP/DT 


02P/DT2 


0.40 


9.617 


22. 329 


0.0358 


-0.000013 


0.80 


17.926 


19. 259 


0.0767 


-0.000055 


1.20 


25.044 


16. 354 


0.1227 


-0.000129 


1.60 


31.035 


13. 645 


0.1734 


-0.000237 


2.00 


35.999 


11. 228 


0.2285 


-0.000382 


2.40 


40.061 


9. 130 


0.2875 


-0.000564 


2.80 


43.342 


7. 320 


0 . 3499 


-0.000789 


3.20 


45.949 


5. 758 


0.4153 


-0.001059 


3.60 


47.978 


4. 424 


0.4831 


-0.001378 


4.00 


49.519 


3. 318 


0.5526 


-0.001736 


4.40 


50.664 


2. 447 


0.6234 


-0 .00 2101 


4. 80 


51.507 


1. 804 


0.6948 


-0.002402 


5.20 


52.133 


1. 359 


0.7664 


-0.002528 


5.60 


52.614 


1. 066 


0.8384 


-0.002353 


6.00 


53. COO 


0.885 


0.9112 


-0.001801 


6.40 


53.339 


0. 837 


0.9862 


-0.000910 


6.80 


53.682 


0. 879 


1.0648 


0.000162 


7.20 


54.045 


0. 945 


1.1483 


0.001334 


7.60 


54.451 


1. 113 


1.2383 


0.002503 


8.00 


54.961 


1. 474 


1.3372 


0.003449 


8.40 


55.664 


2. 084 


1.4474 


0.004001 


8.80 


56.672 


3. 018 


1.5713 


0.004148 


9. 20 


58.134 


4. 377 


1.7106 


0.003995 


9.60 


60.246 


6. 283 


1.8665 


0.00 3667 


10.00 


63.253 


8. 880 


2.0402 


0.003253 


10.40 


67.463 


12. 326 


2.2325 


0.002803 


10.80 


73.250 


16. 794 


2.4443 


0.002337 


11.20 


81.060 


22. 472 


2.6765 


0.001860 


11.60 


91.416 


29.559 


2.9300 


0.001371 


12.00 


104.923 


38. 264 


3.2056 


0.000866 


12.40 


122.272 


48. 808 


3.5040 


0.000340 


12.80 


144.244 


61.417 


3.8260 


-0.000211 


13.20 


171.713 


76. 330 


4.1723 


-0.000789 


13.60 


205.647 


93. 788 


4.5436 


-0.001393 


14.00 


247.116 


114. 044 


4.9405 


-0.002024 


14.40 


297.290 


137. 357 


5.3635 


-0,002679 


14.80 


357.445 


163.996 


5.8134 


-0.00 3352 


15.20 


428.968 


194.244 


6.2906 


-0 .004040 


15.60 


513.361 


228. 402 


6.7958 


-0.004734 


16.00 


612.255 


266. 800 


7.3300 


-0.005427 


16.40 


727.416 


309. 808 


7.8940 


-0.006111 



250 



Table 24. Calculated P(p) isotherms (Continued) 

THE ISOTHERM AT 320.00 DEG. K 



MOL/L 


P j BAR 


DP/DD 


DP/DT 


02P/DT2 


0.40 


9.974 


23. 285 


0.0357 


*0.000011 


0.80 


18.691 


20. 340 


0 . 0762 


-0.000047 


1.20 


26.265 


17. 554 


0.1215 


-0.000110 


1.60 


32.758 


14. 954 


0.1712 


-0.000198 


2.00 


38.266 


12.637 


0.2250 


-0.000311 


2.40 


42.909 


10. 627 


0.2825 


-0.000445 


2.80 


46.805 


8. 893 


0. 3431 


-0.000597 


3.20 


50.055 


7. 395 


0.4064 


-0.000758 


3.60 


52.749 


6. Ill 


0.4719 


-0.000916 


4.00 


54.973 


5. 043 


0.5393 


-0.001054 


4.40 


56.814 


4.201 


0.6082 


-0.001 146 


4.80 


58.363 


3. 581 


0.6785 


-0.001168 


5.20 


59.706 


3. 164 


0.7504 


-0.001100 


5,60 


60.916 


2. 911 


0.8243 


-0.000934 


6.00 


62.052 


2. 791 


0.90D8 


-0.000677 


6.40 


63.171 


2. 834 


0.9810 


-0.000343 


6.80 


64.335 


2.994 


1.0657 


0.000043 


7.20 


65.572 


3. 205 


1.1558 


0.000466 


7.60 


66.918 


3. 557 


1.2526 


0.000906 


8.00 


68.451 


4. 153 


1.3576 


0.001327 


8.40 


70.281 


5. 050 


1.4725 


0.001689 


8.80 


72.541 


6. 319 


1.5990 


0.001956 


9.20 


75.398 


8. 055 


1.7391 


0.002108 


9.60 


79.062 


10. 374 


1.8942 


0 .00 2142 


10. 00 


83.793 


13.415 


2.0659 


0.002069 


10.40 


89.910 


17. 330 


2.2555 


0.001906 


10.80 


97.797 


22. 293 


2.4640 


0.001669 


11.20 


107.909 


28. 488 


2.6925 


0.001372 


11.60 


120.778 


36. 112 


2.9419 


Q. 00 1 025 


12.00 


137,017 


45. 376 


3.2130 


0.000633 


12.4 0 


157.326 


56. 497 


3.5067 


0.000202 


12.80 


182.493 


69. 702 


3.8236 


-0.000266 


13.20 


213.397 


85. 226 


4.1645 


-0 .00 0770 


13.60 


251.015 


103. 313 


4.5301 


-0.001305 


14.00 


296.423 


124.213 


4.9210 


-0.001871 


14.40 


350.795 


148. 185 


5.3379 


-0.002462 


14.80 


415.416 


175. 499 


5.7813 


-0.003074 


15.20 


491.678 


206. 438 


6.2519 


-0.003701 


15.60 


581.090 


241. 306 


6.7505 


-0.004338 


16.00 


685.291 


280. 439 


7.2780 


-0.004976 



251 



Table 24. Calculated P(o) isotherms (Continued) 

THE ISOTHERM AT 330,00 OEG • K 



MOL/L 


P f B AR 


DP/DD 


DP/DT 


02P/0T2 


0.40 


10.330 


24.236 


0.0356 


-0.000010 


0.80 


19.451 


21. 408 


0.0758 


-0.000041 


1.20 


27.475 


18. 734 


0.1205 


-0.000094 


1.60 


34.461 


16. 238 


0.1694 


-0.000168 


2. 00 


40.502 


14. 015 


0.2222 


-0.000260 


2.40 


45.713 


12. 088 


0.2784 


-0.00 0365 


2.60 


50.208 


10. 426 


0.3377 


-0.000477 


3.20 


54.084 


8. 990 


0.3997 


-0.000589 


3.60 


57.427 


7. 759 


0.4640 


-0.000689 


4.00 


60.319 


6. 736 


0.5304 


-0.000765 


4.40 


62.846 


5. 936 


0.5987 


-0.000804 


4.60 


65.097 


5. 361 


0.6690 


-0.00 0794 


5.20 


67.163 


4.997 


0.7415 


-0.000731 


5.60 


69.119 


4. 811 


0.8168 


-0.000612 


6.00 


71.031 


4. 777 


0.8954 


-0.000444 


6.40 


72.966 


4. 929 


0.9782 


-0.000232 


6.80 


74.993 


5.218 


1.0659 


0.000010 


7.20 


77.150 


5. 583 


1.1594 


0.000276 


7.60 


79.482 


6. 119 


1.2597 


0.000555 


6.00 


82.083 


6. 937 


1.3680 


0.000829 


8.40 


85.077 


8. 096 


1.4859 


0.001078 


8.80 


88.615 


9.669 


1.6148 


0.001283 


9.20 


92.880 


11. 751 


1.7563 


0.001426 


9.60 


98.099 


14. 455 


1.9121 


0.001496 


10.00 


104.545 


17.915 


2.0834 


0.001489 


10.40 


112.551 


22.281 


2.2719 


0 .00 1408 


10.80 


122.513 


27. 722 


2.4785 


0.001258 


11.20 


134.897 


34. 421 


2.7045 


0.001045 


11.60 


150.244 


42. 572 


2.9508 


0.000776 


12.00 


169.176 


52. 364 


3.2184 


0.000456 


12.40 


192.401 


64. 073 


3.5081 


0.000092 


12.80 


220.714 


77. 864 


3.8207 


-0.000314 


13.20 


255.004 


93. 993 


4.1569 


-0.000758 


13.60 


296.252 


112. 701 


4.5174 


-0.001237 


14.00 


345.541 


134.238 


4. 9030 


-0.001747 


14.40 


404.054 


158. 863 


5.3142 


-0.002283 


14.80 


473.079 


186. 846 


5.7517 


-0 .002841 


15.20 


554.017 


218. 473 


6.2164 


-0.003416 


15.60 


648.384 


254. 051 


6.7089 


-0.004002 



252 



> 



Table 24. Calculated P (P ) isotherms (Continued) 

THE ISOTHERM AT 3^0.00 DEG, K 



MOL/L 


P * BAR 


OP/OD 


OP/OT 


02P/CT2 


0.40 


10.686 


25. 181 


0.0355 


-0.000009 


0.80 


20.207 


22. 465 


0 . 0754 


-0.000036 


1.20 


28.675 


19. 898 


0 .1196 


-0.000082 


1.60 


36.148 


17. 501 


0.1679 


-0.000145 


2.00 


42.712 


15. 368 


0.2198 


-0.000221 


2.40 


48.480 


13. 521 


0.2751 


-0.00 0 306 


2.80 


53.563 


11. 931 


0.3334 


-0.000394 


3? 20 


58.054 


10. 558 


0.3944 


-0.000478 


3.60 


62.035 


9. 383 


0.4579 


-0.000550 


4.00 


65.587 


8. 413 


0.5236 


-0.000600 


4.40 


S8.795 


7. 666 


0.5916 


-0.000621 


4.80 


71.751 


7. 150 


0,6620 


-0.000606 


5.20 


74.545 


6. 853 


0.7352 


-0.000553 


5.60 


77.259 


6. 748 


0.8115 


-0.000463 


6.00 


79.965 


6. 813 


0.8915 


-0.000339 


6.40 


82.737 


7. 083 


0.9761 


-0.000 185 


6.80 


85.652 


7. 508 


1.0659 


-0.000009 


7.20 


88.756 


8. 030 


1.1616 


0.000134 


7.60 


92.103 


8. 752 


1.2643 


0.000386 


8.00 


95.800 


9. 788 


1.3750 


0.000588 


8.40 


99.984 


11. 201 


1.4950 


0.000775 


8.80 


104.820 


13. 064 


1.6257 


0.000934 


9.20 


110.508 


15. 473 


1.7686 


0.0G1053 


9.60 


117.287 


18. 543 


1.9250 


0.001121 


10.00 


125.447 


22. 402 


2.0964 


0.001132 


10.40 


135.334 


27. 2C2 


2.2842 


0.001082 


10.80 


147.356 


33. 105 


2.4896 


0.000973 


11.20 


161.990 


40. 293 


2.7137 


0.000806 


11.60 


179.787 


48. 958 


2.9576 


0.000586 


12.00 


201.380 


59. 306 


3.2223 


0.000317 


12.40 


227.485 


71. 552 


3.5086 


0.000001 


12.80 


258.905 


85.920 


3.8173 


-0.000356 


13.20 


296.535 


102. 643 


4.1493 


-0.000752 


13,60 


341.366 


121. 964 


4.5053 


-0.001183 


14.00 


394.485 


144. 131 


4.8860 


-0 .00 1645 


14.40 


457,084 


169. 403 


5.2921 


-0.002134 


14.80 


530.458 


198. 051 


5.7243 


-0.002645 


15.20 


616.014 


230. 363 


6.1834 


-0.003174 


15.60 


715.278 


266. 648 


6.6703 


-0.003715 



253 



Table 24. Calculated P(d) isotherms (Continued) 

THE ISOTHERM AT 360.00 OEG . K 



MOL/L 


P » BAR 


OP/DD 


DP/DT 


D2P/0T2 


0.40 


11.393 


27. 058 


0 .0353 


-0.000007 


0.80 


21.708 


24. 554 


0.0748 


-0.000028 


1.20 


31.053 


22. 187 


0.1182 


-0.000064 


1.60 


39.478 


19.977 


0.1653 


-0.000111 


2.00 


47.068 


18. 015 


0.2160 


-0.000166 


2.40 


53.927 


16. 325 


0.2698 


-0.000226 


2.80 


60.160 


14. 878 


0.3267 


-0.000286 


3.20 


65.857 


13. 637 


0 . 3863 


-0.000341 


3.6-0 


71.095 


12. 588 


0.4487 


-0.00 0 385 


4.00 


75.954 


11. 742 


0.5137 


-0.000414 


4.40 


80.519 


11. 124 


0.5814 


-0.000423 


4. 60 


84.866 


10. 750 


0.6521 


-0.000410 


5.20 


89.152 


10. 616 


0.7261 


-0.000375 


5.60 


93.408 


10. 698 


0.8039 


-0.000317 


6.00 


97.737 


10.982 


0.8859 


-0.000239 


6.40 


102.226 


11. 507 


0.9729 


-0.000144 


6.80 


106.966 


12. 219 


1.0654 


-0.000035 


7.20 


112.018 


13. 065 


1.1642 


0.000085 


7.60 


117.452 


14. 162 


1.2700 


0.000211 


8.00 


123.397 


15.629 


1.3839 


0.000336 


8.40 


130.013 


17.533 


1.5069 


0.000455 


8.80 


137.492 


19.953 


1.6402 


0.000558 


9.20 


146.057 


22. 986 


1.7850 


0.000638 


9.60 


155.978 


26. 747 


1.9426 


0.000687 


10.00 


167.569 


31. 365 


2.1143 


0.000699 


10.40 


181.203 


36. 987 


2.3013 


0.000670 


10.80 


197.314 


43. 773 


2.5050 


0.000597 


11.20 


216.400 


51. 899 


2.7263 


0.000479 


11.60 


239.036 


61. 554 


2.9664 


0.000316 


12.00 


265.874 


72. 939 


3.2264 


0.000110 


12.40 


297.646 


86. 266 


3.5071 


-0.000138 


12.80 


335.175 


101. 758 


3.8095 


-0.000424 


13.20 


379.372 


119. 644 


4.1344 


-0.000747 


13.60 


431.242 


140. 165 


4.4825 


-0.001103 


14.00 


491.888 


163. 570 


4.8548 


-0.001489 


14.40 


562.516 


190. 118 


5.2519 


-0.001901 


14.80 


644.438 


220. 081 


5.6747 


-0.002336 


15.20 


739.075 


253. 751 


6.1240 


-0.002788 



254 



Table 24. Calculated P(P) isotherms (Continued) 

THE ISOTHERM AT 360.00 DEG. K 



MOL/L 


P t BAR 


DP/DD 


DP/OT 


D2P/CT2 


0.40 


12.099 


28. 922 


0 .0352 


-0.000006 


0.80 


23.198 


26. 613 


0.0743 


-0.000023 


1.20 


33.404 


24. 434 


0.1170 


-0.000051 


1.60 


42.764 


22. 400 


0.1634 


-0.00 0 087 


2. 00 


51.356 


20. 603 


0.2130 


-0.000130 


2.40 


59.282 


19. 068 


0.2659 


-0.000175 


2.60 


66.642 


17. 766 


0 . 3217 


-0.000219 


3.20 


73.522 


16. 665 


0.3804 


-0.000259 


3.60 


79.999 


15. 754 


0.4420 


-0.000290 


4.00 


86.153 


15. 0 51 


0.5065 


-0.000310 


4.40 


92.071 


14. 584 


0.5741 


-0.000317 


4.80 


97.854 


14. 375 


0.6450 


-0.000308 


5.20 


103.606 


14. 426 


0.7196 


-0.000283 


5.60 


109.427 


14. 718 


0.7983 


-0 .00 0244 


6.00 


115.411 


15. 240 


0.8817 


-0.000 191 


6.40 


121.656 


16. 035 


0.9702 


-0.000126 


6.80 


128.267 


17. 046 


1.0646 


-0.000052 


7.20 


135.315 


18.227 


1 . 1653 


0.000030 


7.60 


142.888 


19. 701 


1.2732 


0.00 0 115 


8.00 


151.132 


21. 595 


1.3692 


0.000200 


8.40 


160.229 


23. 980 


1.5141 


0.000280 


8.80 


170.392 


26. 936 


1.6491 


0.000350 


9.20 


181.868 


30. 565 


1.7952 


0.000404 


9.60 


194.949 


34.982 


1.9537 


0.000436 


10.00 


209.976 


40. 319 


2.1255 


0.000442 


10.40 


227.346 


46. 719 


2.3120 


0.000417 


10.80 


247.515 


54. 343 


2.5144 


0 .00 0 359 


11.20 


271.006 


63. 362 


2.7336 


0.000264 


11.60 


298.415 


73.962 


2.9708 


0.000133 


12.00 


330.413 


86. 342 


3.2271 


-0.000035 


12.40 


367.754 


100. 711 


3.5033 


-0.000238 


12.80 


411.276 


117.289 


3.8005 


-0.00 0 476 


13.20 


461.909 


136. 303 


4.1194 


-0.000747 


13.60 


520.675 


157. 993 


4,4610 


-0 .00 1048 


14.00 


588.694 


182. 608 


4.8262 


-0.001376 


14.40 


667.186 


210. 407 


5.2157 


-0.001730 



255 



Table 24. Calculated P (p ) isotherms (Continued) 

THE ISOTHERM AT 400.00 DEG. K 



MOL/L 


P,BAR 


DP /DO 


DP/DT 


02P/DT2 


0.40 


12.802 


30. 774 


0.0351 


-0.000005 


0.80 


24.679 


28. 650 


0.0738 


-0.000019 


1.20 


35.736 


26. 648 


0.1161 


-0.000041 


1.60 


46.015 


24. 783 


0.1618 


-0.000070 


2.00 


55.593 


23. 146 


0.2107 


-0.000104 


2.40 


64.567 


21. 764 


0.2627 


-0.000139 


2.80 


73.035 


20.611 


0.3176 


-0.000174 


3.20 


81.082 


19.657 


0.3758 


-0.000204 


3.60 


88.786 


18. 894 


0.4369 


-0.000229 


4.00 


96.226 


18. 345 


0.5010 


-0,000244 


4.40 


103.495 


18. 044 


0.5685 


-0.000250 


4.80 


110.698 


18. 017 


0.6396 


-0.000244 


5.20 


117.946 


18. 269 


0.7146 


-0.000228 


5.60 


125.348 


18. 784 


0.7939 


-0.000200 


6.00 


133.008 


19. 558 


0.8781 


-0.000163 


6.40 


141.036 


20. 635 


0.9678 


-0.000117 


6.80 


149.547 


21. 954 


1.0634 


-0.000064 


7.20 


158.625 


23. 473 


1.1655 


-0.000007 


7.60 


168.370 


25. 327 


1.2749 


0.000053 


8.00 


178.948 


27. 647 


1.3922 


0.000113 


8.40 


190.559 


30. 503 


1.5185 


0.000169 


8.80 


203.434 


33. 983 


1.6547 


0 .00 0217 


9.20 


217.842 


38. 188 


1.8017 


0.000253 


9.60 


234. 097 


43.238 


1.9606 


0.000272 


10.00 


252.563 


49. 264 


2.1326 


0.000271 


10.40 


273.658 


56. 410 


2.3186 


0.000246 


10.80 


297.861 


64. 836 


2.5198 


0.000194 


11.20 


325.719 


74. 711 


2.7373 


0.000114 


11.60 


357.848 


86. 220 


2.9721 


0.000003 


12.00 


394.939 


99. 559 


3.2253 


-0.000140 


12.40 


437.767 


114. 934 


3.4978 


-0.000312 


12.80 


487.187 


132. 564 


3.7905 


-0.000515 


13.20 


544.149 


152. 675 


4.1045 


-0.000747 


13.60 


609.690 


175. 505 


4.4405 


-0.001007 


14.00 


684.948 


201. 303 


4.7995 


-0.001291 



256 



Table 24. Calculated P(P) isotherms (Continued) 

THE ISOTHERM AT 420.00 DEG. K 



MOL/L 


P* BAR 


DP/DD 


DP/DT 


D2P/DT2 


0.40 


13.503 


32. 616 


0.0350 


-0.000004 


0.60 


26.153 


30. 668 


0.0735 


-0.000015 


1.20 


38.051 


28. 835 


0.1154 


-0.000034 


1.60 


49.238 


27. 133 


0.1605 


-0.000058 


2.00 


59.787 


25. 654 


0.2088 


-0.00 0 085 


2.40 


69.795 


24. 425 


0.2602 


-0.000114 


2.80 


79.358 


23. 423 


0.3146 


-0.000141 


3.20 


83.560 


22. 621 


0.3721 


-0.000 166 


3.60 


97.480 


22. 014 


0.4327 


-0.000186 


4.00 


106.201 


21. 629 


0.4966 


-0.000199 


4.40 


114.818 


21. 505 


0.5640 


-0.000204 


4.80 


123.443 


21. 670 


0.6351 


-0.000201 


5.20 


132.194 


22. 134 


0.7104 


-0.000190 


5.60 


141.189 


22. 884 


0.7902 


-0.000171 


6.00 


150.539 


23. 919 


0.8751 


-0.00 0 144 


6.40 


160.368 


25. 285 


0.9655 


-0.000111 


6.80 


170.801 


26.917 


1.0620 


-0.000074 


7.20 


181.932 


28. 780 


1.1651 


-0.000032 


7.60 


193.875 


31. 014 


1.2755 


0.000011 


8.00 


206.811 


33. 757 


1.3939 


0.000053 


8.40 


220.958 


37. 060 


1.5211 


0.000092 


8.80 


236.564 


41. 072 


1.6580 


0.000124 


9.20 


253.919 


45. 840 


1.8057 


0.000 147 


9.60 


273.356 


51. 504 


1.9649 


0 .00 0 157 


10.00 


295.259 


58. 196 


2.1367 


0.000150 


10.40 


320.070 


66.063 


2.3222 


0.000 124 


10.80 


343.287 


75. 262 


2.5224 


0.000076 


11.20 


380.480 


85. 964 


2.7384 


0.000004 


11.60 


417.283 


98. 351 


2.9711 


-0.000093 


12.00 


459.411 


112. 6 18 


3.2217 


-0.000217 


12.40 


507.655 


128.969 


3.4909 


-0 .00 0 368 


12.80 


562.893 


147. 620 


3.7799 


-0.000545 


13.20 


626.089 


168. 800 


4.0895 


-0.000747 


13.60 


698.301 


192. 744 


4.4207 


-0.000975 



257 



Table 24. Calculated P(p) isotherms (Continued) 

THE ISOTHERM AT 450.00 DEG. K 



MOL/L 


P,BAR 


DP/DD 


DP/DT 


02P/CT2 


0.40 


14.552 


35. 366 


0.0345 


-0.000003 


0.80 


28.352 


33.667 


0. 0731 


-0.000012 


1.20 


41.498 


32. 077 


0.1145 


-0.000026 


1.60 


54.030 


30. 612 


0. 1590 


-0.00 0 044 


2.00 


66.017 


29. 365 


0.2066 


-0.000065 


2.40 


77.555 


28. 365 


0.2572 


-0.000087 


2.80 


88.739 


27. 593 


0.3109 


-0.000108 


3.20 


99.656 


27. 025 


0.3678 


-0.000127 


3.60 


110. 3e6 


26. 663 


0.4279 


-0.000142 


4.00 


121.018 


26. 537 


0.4914 


-0.000153 


4.40 


131.654 


26. 692 


0.5586 


-0.000159 


4.60 


142.414 


27. 162 


0.6298 


-0.000159 


5.20 


153.427 


27. 959 


0.7053 


-0.000153 


5.60 


164.823 


29. 075 


0.7856 


-0.000142 


6.00 


176.729 


30. 513 


0.8710 


-0.000126 


6.40 


189.284 


32.323 


0.9622 


-0.000107 


6.80 


202.627 


34. 433 


1.0596 


-0.000084 


7.20 


216.866 


36. 816 


1.1637 


-0.00 0 059 


7.60 


232.136 


39. 623 


1.2751 


-0.000033 


8.00 


248.640 


42. 997 


1.3945 


-0.000008 


8.40 


266.619 


47. 010 


1.5226 


0.000014 


8.80 


286.346 


51. 757 


1.6603 


0.000030 


9.20 


308.137 


57. 347 


1.8083 


0.00 0 040 


9.60 


332.353 


63. 9C4 


1 . 9677 


0.000039 


10.00 


359.407 


71. 564 


2.1392 


0.000026 


10.40 


389.771 


80. 474 


2.3239 


-0.000002 


10.80 


423.974 


90.791 


2.5227 


-0.000047 


11.20 


462.614 


102. 687 


2.7367 


-0.000111 


11.60 


506.359 


116. 343 


2.9667 


-0.000195 


12.00 


555.949 


131. 952 


3.2138 


-0.000300 


12.40 


612.208 


149. 718 


3.4789 


-0.000427 


12.80 


676.040 


169. 855 


3.7631 


-0.000575 


13.20 


748.439 


192. 591 


4.0671 


-0.000745 



258 



Table 24. Calculated P(p) isotherms (Continued) 

THE ISOTHERM AT 5C0.00 DEG, K 



MOL/L 


P» BAR 


DP/DO 


DF/DT 


D2P/CT2 


0,40 


16.295 


39. 920 


0 . 0348 


-0.000002 


0.80 


31.994 


38. 610 


0.0726 


-0,000008 


1.20 


47.194 


37. 402 


0.1134 


-0.000018 


1.60 


61.931 


36. 315 


0.1572 


-0.000030 


2.00 


76.275 


35. 445 


0.2039 


-0.000044 


2.40 


90.321 


34. 827 


0.2537 


-0.000059 


2.80 


104.168 


34. 445 


0.3065 


-0.000074 


3.20 


117.906 


34. 281 


0. 3625 


-0.00 0 087 


3.60 


131.623 


34. 346 


0.4220 


-0.000099 


4.00 


145.418 


34. 676 


0.4850 


-0.000108 


4.40 


159.407 


35. 323 


0.5519 


-0.000114 


4.60 


173.724 


36. 327 


0.6230 


-0.000117 


5.20 


188.518 


37. 704 


0.6986 


-0.000117 


5.60 


203.937 


39. 454 


0 .7792 


-0.000114 


6.00 


220.132 


41. 586 


0 . 8652 


-0.000109 


6.40 


237.265 


44. 153 


0.9570 


-0.000102 


6.80 


255.499 


47. 071 


1.0552 


-0.000094 


7.20 


274.966 


50. 327 


1.1601 


-0.000084 


7.60 


295.829 


54. 088 


1.2723 


-0.000075 


6.00 


318.324 


58. 503 


1.3924 


-0.000067 


8.40 


342.729 


63. 649 


1.5212 


-0.000062 


8.60 


369.354 


69. 623 


1.6593 


-0.000061 


9.20 


398.553 


76. 541 


1.8074 


-0.000065 


9.60 


430.730 


84. 534 


1.9664 


-0.000076 


10.00 


466.341 


93. 740 


2.1371 


-0.000096 


10.40 


505.903 


104. 310 


2.3204 


-0.000127 


10.80 


549.993 


116. 406 


2.5170 


-0.00 0 169 


11.20 


599.254 


130. 198 


2.7280 


-0.000225 


11.60 


654.402 


145. ee9 


2.9542 


-0.000295 


12.00 


716.226 


163. 612 


3.1966 


-0 .00 0 380 



259 



Table 24. Calculated P (P ) isotherms (Continued) 

THE ISOTHERM AT 550.00 DEG. K 



MOL/L 


P,9AR 


DP/DD 


DP/OT 


02P/0T2 


0.40 


18.032 


44. 448 


0 . 0347 


-0.00 Q002 


0.80 


35.616 


43. 5C1 


0 . 0723 


-0.000006 


1.20 


52.844 


42. 655 


0.1127 


-0.000013 


1.60 


69.756 


41. 933 


0 . 1559 


-0.00 0 022 


2.00 


86.421 


41. 433 


0.2020 


-0.000032 


2.40 


102.938 


41. 194 


0.2511 


-0.000043 


2.80 


119.410 


41. 207 


0.3033 


-0.00 0 054 


3.20 


135.935 


41. 458 


0 . 3588 


-0.000065 


3.60 


152.610 


41. 963 


0.4177 


-0.000074 


4.00 


169.545 


42. 767 


0.4803 


-0.000082 


4.40 


186.871 


43. 925 


0.5469 


-0.000089 


4.80 


204.738 


45. 482 


0.6178 


-0.000093 


5.20 


223.312 


47. 460 


0.6933 


-0.00 0 097 


5.60 


242.763 


49. 861 


0.7739 


-0.00 0 098 


6.00 


263.260 


52. 702 


0.6600 


-0.000099 


6.40 


284.991 


56. 035 


0.9520 


-0.000099 


6.80 


308.139 


59. 768 


1.0504 


-0.00 0 098 


7.20 


332.858 


63. 900 


1.1555 


-0.00 0 097 


7.60 


359.337 


68. 611 


1.2679 


-0.000097 


8.00 


387.845 


74. 057 


1.3882 


-0.000099 


8.40 


418.690 


80. 313 


1.5169 


-0.000103 


8.80 


452.217 


87. 485 


1.6549 


-0.000110 


9. 20 


488.816 


95. 692 


1.8026 


-0.000121 


9.60 


528.927 


105, 069 


1.9609 


-0.000138 


10. 00 


573.046 


115. 761 


2.1305 


-0.000 162 


10 . 40 


621.731 


127. 921 


2.3122 


-0.000 194 


10.80 


675.601 


141. 715 


2. 5C68 


-0.000234 


11.20 


735. 343 


157. 315 


2.7151 


-0.000285 



260 



^able 24. Calculated P(0) isotherms (Continued) 

THE ISOTHERM AT 600.00 DEG. K 



MOL/L 


P BAR 


DP/DD 


DP/DT 


D2P/DT2 


0.40 


19.766 


48.957 


0.0346 


-0.000001 


0.80 


39.222 


48.356 


0.0720 


-0.000005 


1.20 


58.462 


47. 858 


0.1121 


-0.000010 


1.60 


77.525 


47. 469 


0.1549 


-0.000017 


2.00 


96.485 


47. 353 


0.2006 


-0.000025 


2.40 


115.445 


47. 492 


0.2492 


-0.000033 


2.00 


134.514 


47. 900 


0 . 3009 


-0.000042 


3.20 


153. 800 


48. 572 


0.3559 


-0.000051 


3.60 


173.409 


49. 526 


0.4144 


-0 .0 0 0 059 


4.00 


193.465 


50. 812 


0.4766 


-0.00 0 066 


4.40 


214.111 


52. 491 


0.5429 


-0.000073 


4.80 


235.517 


54. 613 


0.6135 


-0.000079 


5.20 


257.864 


57. 202 


0.6888 


-0.000084 


5.60 


281.341 


60. 262 


0.7693 


-0.000088 


6. 00 


306.139 


63. 818 


0.8552 


-0.000092 


6.40 


332.470 


67. 922 


Q .9472 


-0.000096 


6.80 


360.534 


72. 472 


1.0454 


-0.000099 


7.20 


390.507 


77. 477 


1.1504 


-0.000104 


7.60 


422.604 


83. 132 


1.2627 


-0.000109 


8.00 


457.121 


09. 596 


1 . 3827 


-0.000116 


8.40 


494.398 


96. 947 


1.5112 


-0.000125 


8.80 


534.811 


105. 291 


1.6486 


-0.000137 


9. 20 


578.781 


114. 756 


1.7957 


-0.000153 


9.60 


626.783 


125. 479 


1.9531 


-0.000173 


10.00 


679.352 


137. €10 


2.1214 


-0.000198 


10.40 


737.081 


151, 308 


2.3015 


-0.000230 



261 



I 

I 



Table 


25. The 


Joule-Thomson inversion locus. 




T » K 


P,BAR 


MCl/L 


TfK 


P,BAR 


MOL/L 








425 


467. 3 


11.93 


25 0 


26.3 


15.06 


430 


474.2 


11 .85 


255 


47.2 


14.95 


435 


481.0 


11.77 


260 


67.3 


14.85 


440 


487.6 


11.70 


265 


86.7 


14.75 


445 


493.9 


11.62 


2 7 0 


105.3 


14.65 


450 


50 0.1 


11.55 


275 


123.4 


14.55 


455 


506.0 


11.47 


28 0 


140.6 


14.45 


460 


511. 7 


11.40 


285 


157.6 


14.36 


465 


517. 3 


11.32 


29 0 


173.8 


14.26 


470 


522.6 


11.25 


295 


189.5 


14.16 


475 


527.8 


11.17 


300 


204.7 


14. 07 


480 


532.7 


11.10 


30 5 


219.5 


13.97 


48 5 


537.5 


11.03 


310 


233.7 


13 .ee 


49 0 


542. 1 


10.95 


315 


247.5 


13. 7 C 


495 


546.5 


10 . 88 


320 


260.9 


1 3. 69 


500 


550. 7 


10.81 


325 


273.9 


13.60 


505 


554.8 


10.73 


33 0 


296.5 


13.51 


510 


558.6 


10.66 


335 


296.7 


13.42 


515 


562.3 


10.59 


340 


310 . 6 


13.33 


520 


565. 8 


10.52 


345 


322.1 


13.24 


525 


569.1 


10.44 


35 0 


333.3 


13.16 


530 


572.3 


10.37 


355 


344.1 


13.07 


535 


575.2 


10.30 


36 0 


354.7 


12.96 


540 


578. 0 


10.23 


365 


364.9 


12.90 


545 


58 0.7 


10.16 


370 


374.9 


12.81 


550 


563.2 


10.09 


375 


384.6 


12.73 


555 


585.5 


10.01 


330 


393.9 


12.65 


560 


587.6 


9.94 


38 5 


403.1 


12.57 


565 


569.6 


9.87 


390 


411.9 


12.48 


570 


591.4 


9.80 


395 


420.6 


12.40 


575 


593.0 


9.73 


40 0 


428.9 


12.32 


580 


594. 5 


9.66 


40 5 


4 37.1 


12.24 


585 


595.9 


9.59 


4 10 


445.0 


12.16 


590 


597. 1 


9.52 


4 15 


452.6 


12.08 


595 


596. 1 


Q. 44 


42 0 


4 6 0.0 


12.01 


600 


599. 0 


9.37 



262 






Table 26. Thermophysical properties of the saturated liquid 

This table was computed by integrating first along isotherm 
of Figure 9> then along isobar P^, and finally along each iso- 
therm down to the saturated liquid boundary <> 

Column headings have the following interpretations -- 



DPS/DT 


= 


dP^ /dT, vapor pressure, 


DDL/DT 


= 


dp^/dT, saturated liquid, 


DP/DT 


= 


(dP/ST), single phase, 


DP/DD 


= 


(dP/6p), single phase, 


Q, VAP 


= 


AH , heat of vaporization 

vap 


CV 




C (P , T) 






V 


CS 


= 


C (T) 






cr 


CP 


= 


C (P , T) 
P 


W 


= 


speed of sound 



263 



PROPERTIES OF SATURATED LICJIO ETHANE 



d 

cr 



r a 
<v 

4-> 

d 




X 


vO 


J’ 


vO 


CM CV 


v£) 


n 


-* 


cO 


in 


M3 


cr 


in 


CVJ 


CM 


fO IT 


M> 


CO 


go in 


cr rs 


ao 


cr 


aO 


H 


CM iC 


eg 


X® 


o 


M> 


in 


X 


<o 




cr ^ co 




■* 


M> 


N- 


GO 


03 


x» 


M3 


4iHNN 


vO 


cr 


4 cvi 


-h oi 


in 


cr 


4 


4 


r- cr 


K 


oo 


CM 


ro 


M> 


K. U> 4- <M i* cr 


<30 


M3 




X 


o 


ad 


m> 


j’ 


CM 


O KIT 


CV) 


O' IM ■# 


^ x« 


j- 


o 


N- 


ro 


ao tr 


GO 


eg 


M3 


S3 


GO 


lC 


vO 


v£) 


tO 


M3 U> 


in 


in 


in 


in 


in 






4- 


4 




ro ro 


ro 


CVJ 


CVJ CVJ 


CM t- 


4 


4 


o 


a 


O' o 


00 


GO 


N. 


M) 


in 


H 




4 


H 


4 ^> 


4 




4 


4 


▼■4 


*H 








▼g 


4 i- 


4 


4 


4 4 


*■» ^ 


4 


H 


4 


4 














4 


a 


O 


LT\ 


vO PO 


M> 


CM 


<5 


N. 


rl 


0^ 


cn 


cn x- 


ro 


in -4 


CO 


03 


in n* 


in co 


ro 


cr 


4 


in 


4 C 


ro 


o 




co 


in 


cr 


a 


4 


CNJ 


^ X* 


O 


■f 


ao 


H 


in 


N. 


cn 


a 


o 


cr 


M3 cv 


vO 


cr 


4 4 


O N 


ro 


M> 


GO 


03 


CN 


X* 


M3 


vO 


in 


ao 


X. 


M3 




X 


O GQ 


N* 


m 


ro 


CVJ 


o 


GO 


M) 


in 


ro 


o 


S3 v£ 


ro 


ca 


oo in 


CM OC 


in 


4 


X» 


ro 


O' 4 


CO 


eg 


in 


X. 


n. 


vjD 


vO 


M> 


M3 


m> in 


in 


in 


in 


in 


in 




«* 


** 




-* 


io rr 


ro 


ro cvj eg 


CM -T- 


4 


4 


o 


a 


O' o 


00 


S3 


N. 


vO 


in 


4 


4 


4 


4 


4 -H 


4 




4 


*■4 


4 




■»-* 


4 




4 


4 T- 


4 


4 


4 4 


4 ▼- 


4 


H 


4 


4 















a 


-i 


eg eg 


eg 


eg 


CM 


CM 


eg cvi 


eg 


CM CM 


CM 


CM 




1 CM 


CM 


CM 


eg 


CM 


CM 


CM 


CM 


CM 


CM 


eg 


CM 


1 CM 


CM CM 


CM 


CM 


rj 


CM 






▼H 




1 ^4 


▼4 


4 


41 


a 


o 


o a 


o 


o 


o 


a 


o a 


o 


o 


o 


a 


CD 




a 


a 


Q 


a 


o 


ca 


o 


a 


O 


ci 


o 


q 


1 o 


o 


a 


a 


o 


a 


o 


a 


a 


a 


o a 


i a 


o 


O 


o 


N> 


s; 


o o 


o 


a 


o 


a 


o a 


o 


a 


a 


a 


O 




, o 


a 


O 


a 


a 


o 


o 


a 


o 


o 


a 


a 


o 


o 


a 


o 


G5 


a 


o 


o 


a 


o 


o a 


> ca 


o 


o 


ca 


a 


X 


+ 4- 


4 


4 


4 


4 


4 4 


4 


4 


4 


4 


4 






4 


4 


4 


4 


4. 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 4 


4 


4 


4 


4 


o 


_J 


in 4 


cr 


eg 


O 


ro 


X ▼-) 


J- 


in 


ro 


X 


in 




CM 


O 


O 


a 


CM 


ro 


in 


in 


4 


T-) 


v£) 


co 


» co 


in 


ao 


X 


ro 


in 


CM 




4 


O' 


*4 H 


1 O' 


GO 


eg 


vO 




1 


CM -H 


cr 


■H 


m 


▼4 


O' a 


eg 


& 


CM 


cr 


CO 


> o 


ro 


r^. 


CM 


GO 


in 


ro 


Cvj 


eg 


ro a 


M3 


cr ro 


X 


CM 


<c 


4 


’ T-l 


in 


4 


GO 


o' in 


> M> 


4 


O' 


o 




a: 


M3 Ml 


o 


M3 






CM O' 


m 


■H 


X) 


4 


T-) CO 


M3 


ro 


o 


ao 


in 


ro 


tH 


cr r- 


in 


« rH 


i cr 


co 


03 


in 


ro 


<N 


l •* 


ao 


M3 


4 


ro ro 


» ro 


4 


in 


QO 



cDrrcn<TcoaoN-x.LOM)M:ininin^.3'-±.^rofororoxxxxc\j4.H44444(T«3x*M)in^rox44-*x 

►-^4«rg4444«HT-j44444Tg444*H4-*-|44444*-|OCaOOOaCDOCDOOCDOCacaOOOOO 
D\oooooooaocDoaoc5oaaaoaoaoooaoaaaoaac30ooaoooooooo 
N^G^ooooaooaooaaoaoCToaoaoaooaaaaoaooaooooooooooooo 
a.<+4 + 444-4^ + 4*f + 4+ 44444+]+ + 44 + 4-4-4 + 4+ +4++ + + 4l4 + +4444 + 

DCDsro^co^a^rocoro^ir>N4-^foa>on^H4-crs®o^^in<Hfvjcovflsc?cDHaoHooi^CT'ro^vDroro 

Lfi^N.o(VJinflH^®(\jNHo® { no>^movO^ , Noqa'n'®Kf , n^'(VJii> 



UMT\(NJH(T‘Nv04 , fON'Haa' 



K vD vD in ^MWfgHHoa\Oa^OvDHNNflO^OvOHNW(rifiOI») 



ro 


ro 


ro 


ro 


CM 


CM 


eg 


(M 


eg 


eg eg 


X 


4 


■H 


4 


4 


4 


4 


4 


▼g 


4 


4 


4 


4 


4 




cr 


cr 


S3 


S3 


X* 


x~ 


M3 


M3 


in 


in 


in 


4 


4. 

3. 


ro 


X 


X 


<M 


4 


4 




4 


CM 


4 


O 


a 


■H CM 


4 


43 


ao 


4 


in 


cr 


ro 


h- 


ro 


CO 


j- 


a 


N» 


in 


ro 


X 


4 


fM 


ro 


in 


cr 


4 


cm -4 ro 


cr 


OO 


ro 


M) cfl 


> 


X 


in 


CD 


X 


CD 


X 


CD 


vO 


vO 


m0 




vD 


n 


mQ 


M3 


v£> 


43 


M3 


X- 


X- N*. 


S3 


CO 


cn 


O' 


CD 


4 


4 


X 


ro 


j- 


in 


MJ 




03 


cr 


4 


ro 


in 


N. 


cr 


X 


M3 


CD 


in 


i X 


4 


ro 


X 


J- 


O' 


r^ 


CD 


TO 


ro 


ro 


ro 


ro 


ro 


ro 


rH 


ro 


ro 


o 


»0 


ro 


ro 


ro 


ro 


ro 


ro 


4 


4 


4 


4 


4 


4 


f 


4 


4 


4 


4 


in 


in 


in 


in 


in 


M3 


M3 


X- 


N 


. S3 


IT 


o 


CM 


in 


CM 


r^ 


ca 


o 


o 


o 


a 


o 


a 


ca 


a 


a 


o 


o 


a 


o 


a 


o 


a 


CD 


CD 


o 


ca 


a 


CD 


CD 


a 


CD 


a 


a 


a 


CD 


CD 


CD 


a 


o 


CD 


o 


o 


CD 


a 


1 CD 


CD 


4 


4 


-• CM 


CD 


o 


CD 

1 


CD 

1 


a 

1 


o 

l 


CD 

1 


CD 

1 


CD 

1 


a 

i 


a 

i 


CD 

1 


a 

1 


a 

l 


CD 

1 


a 

l 


CD 

1 


a 

1 


CD 

• 


CD 

1 


CD 

1 


a 

t 


CD 

l 


CD 


CD 

1 


a 

1 


CD 

1 


a 

i 


o 

i 


CD 

1 


CD 

1 


a 

1 


CD 

t 


a 

i 


0 

1 


CD 

1 


CD 

1 


0 

1 


CD 

1 


G 

1 


1 CD 

• 


CD 

1 


CD 

1 


CD 

1 


ca 

1 


CD 

1 


4 

1 


CD 


\D 


M3 


<D 


in 


in 


4 


4 


4 


4- 


ro 


ro 


ro 


ro 


ro 


X 


X 


X 


X 


X 


CM 


eg 


CM 


X 


X 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


T" 


1 4 


4 


4 


4 


4 


4 


CD 


CD 


o 


CD 


CD 


a 


CD 


CD 


o 


a 


a 


CD 


a 


a 


CD 


CD 


a 


o 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


O 


a 


O 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


a 


1 CD 


a 


CD 


CD 


CD 


a 


CD 


CD 


o 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


o 


a 


a 


a 


a 


a 


O 


a 


CD 


CD 


a 


a 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


a 


a 


a 


CD 


CD 


CD 


CD 


O 


a 


1 CD 


o 


a 


CD 


CD 


a 


CD 


CD 


vO 


eg in 


X 


CD 


4 


M> 


4* 


ro 


X 


X 


in 


4 


in 


ro 


CD 


X 


4 


X 


4 


M3 


X 


X 


ro 


X 


■H 


<r 


ao 


ao 


cr 


ro 


S3 


X- 


O' LT> 


X- 


in 


X o 


4 


^-4 


X- 


ro 




S3 


r ^ 


S3 


in 


X 


J- 


in 


S3 


XJ 


4 


cr 


XJ 


X 


ro 


ro 


S3 


m0 


a> 


X 


Xw 


in 


S3 


M3 


4 


ro 


ro 


M3 


,0 


X. 


4 


is. 


in 




aO 


ro 


CD 


CD 


X 


X- 


in ‘0 


a 


S3 


o 


rr 


<n 


4 


ro 


<o 


X 


in 


ro 


x 


eg 


& 


a 


cr 


in 


4 


ao 


X- 


X 


4 


in 


4 


X 


in 


4 


in 


ao 


X 


co 


4 


ro 


in 


CO 


CD 


ro 


M3 


cr 


ro 


X* 


4 


in 


r 


4 


• O' 


in 


CD 


r^ 


ro 


4 


CD 


ca 


eg 


eg 


oo 


CM 


in 


4 


CM 


in 


S3 


4 


X 


ro 


in 


CO 


4 


4 


X 


X 


ro 


4 


in 


M3 


ao 


cr 


4 


4 


4 


4 


X 


X 


X 


X 


ro 


ro 


4 


4 


4 


5. 

5. 


M3 




x. 


S3 


cr 


4 


4 


in 


in 


in 




4 


-X 


ro 


ro 


ro 


CM 


X 


X 


X X 




4 


4 


4 


4 


4 


4 


4 


CD 


o 


CD 


a 


O 


CD 


CD 


a 


a 


a 


CD 


CD 


CD 


H 


4 


4 


1 4 


4 


4 


4 


4 


4 


tH 


4 


CD 


a 


CD 


o 


CD 


a 


CD 


a 


CD 


a 


CD 


a 


CD 


a 


CD 


a 


a 


CD 


CD 


a 


CD 


CD 


CD 


CD 


CD 


a 


CD 


CD 


CD 


a 


o 


a 


CD 


CD 


CD 


CD 


O 


a 


1 CD 


CD 


CD 


CD 


ca 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CD 


a 


a 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


a 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


a 


CD 


CD 


CD 


CD 


O 


a 


1 CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


4 


4 


4 


4 


4 


4 


4 


4 


4- 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


-4- 


4 


4 


4 


4 


4 


4 


+ 


4 


4 


4 


4 


4 


4 


4 


4 


1 


1 


i 


1 


1 


1 


1 


1 


1 


1 


1 


4 


ro 


S3 


kD 


in 


CD 


CM 


CM 


4 


CM 


X> 


ro 


4 


S3 


cr 


43 


X- 


X 


ro 


cr 


ro 


X- 


CD 


4 


X- 


N. 




in 


X 


cr 


4 


H 


r^ 


X 


S3 


M3 


<0 


in x 


4 


X 




ro 


O' 


CD 


.* 


O 


4 


X 


o 


o> 


ro 


X) 


X 


cr 


4 ) 


4 


X 


ro 




4 


4 


cr 


ro 


X 


4 


ro 


X 


X. 


X 


X- 


CM 


cr 


ro 


CD 


M3 


4 


<M 


r^ 




cr 


CD 


ro 


ro x» 


X 


M3 


X- 


j- 


4 


S3 


S3 




CM 


4 


in 


CO 


CM 


m0 


co 


4- 


ro 


cr 


a 


cr 


X 




4 


ro 


eg 


4 


S3 


4 


4 


O' 


X 


au 


ao 


cr 


ro 


CO 


ro 


CD 


r^. 


4 


X 


CD 


in 


X 


4 


1 4 


ro 


in 


ao 


X 


M3 


r- 








CM 


x 


CM 


4 


m 


CM 


4 


X) 


4 


ro 


- 


4 


ao 


43 


4 


ro 


X 


4 


4 


4 


ao 


X- 


in 


4 


ro 


ro 


X 


X 


X 


4 


4 


4 


4 


cr 


no 


X- 


. M3 


in 


4 


ro 


ro 


X 


4 


4 


ro 


ro 


CM 


CM 


CM 


CM 




MJ 


cr 


ro 


cr 


in 


ro 


X 


ro 


in 


cr 


in 


ro 


ro 


in 


CD 


co 


cr 


ro 


4 


ro 


cr 


4 


ao 


4 


CM 


4 


CD 


CD 


4 


M3 


ao cr 


M3 


n 


in 


X 


4 


03 




4 




\c\ 


,-T\ 


•o 


N. 


^—4 


m 


cr 


4 


S3 


o 


m 


*o 


S3 


ro 


ao 


4 


CD 


JD 


X 


,T» 


in 


X 


CD 


S3 


vO 


4 


4 


ro 


4 


in 


X- 


CD 


* 


cr 


o 


in x- 


o 


3 - 


ro 


'•-0 


rr 


4 


ro 


ML, 


lU 


w 


aJ 


r - 


N. 


u_. 


-u 


cc 


O' 


rr< 


CD 


CJ 






eg 


X 


ND 




jf 


Li t 


lit 


aJ 


X- 


OJ 


■ao 


at 


CD 


4 


eg 


ro 


4 


in 


X- 


co 


O'* 


4 


ro u» 


U.J 




u3 


CD 


<xi 


ro 


u_ 


-r 


M’ 


r 




M- 


4- 


r 


4- 


4 


4 


4 


in 


in 


in 


n 


in 


in 


in 


in 


in 


m 


in 


in 


m 


in 


m 


m 


M3 


O 


l0 


M3 


M3 


.O 


M> 


MJ 


M3 


X- 


X, 


X- 


X- 


S3 


S3 


cr 


O' 


X 


cr 


C“ ) 


r~3 


ra 


CD 


fD 


CD 


CD 


CD 


CD 


<"D 


CD 


CD 


D 


CD 


CD 


CD 


CD 


<"D 


4) 


CD 


CD 


CD 


o 




CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


r~) 


CD 


CD 


CD 


r 


1 CD 


CD 


CD 


CD 




CD 


4 


*— 4 


CD 


a 


a 


CD 


CD 


CD 


O 


a 


CD 


CD 


CD 


a 


CD 


CD 


CD 


a 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


a 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


a 


a 


CD 


• CD 


CD 


CD 


CD 


CD 


CD 


CD 


ca 


o 


m0 


in 




-X 


-4 


ro 


ro 


4 


cr 


in 


CD 


4 


43 


in 


ro 


aO 


CD 


CD 


SD 


cr 


cr 


4 


M) 


X 


4 


4 


4 


in 


X 




CD 


cr 


M3 


CD 


X- 


in 


CD 


i in 


X 


r^ 


X. 


in 


CD 


S3 


ca 


no 


N. 


rn 


4 


ro 


in 


K. 




4 


X 


4 


0 


N. 


S3 


rr 


CD 


CD 


4 


■4 


CD 


O' 


TO 


X- 


in 


ro 


CD 


X- 


ro 


rO 


»o 


X- 


CD 


4 


X 


X 


rr 


in 


r r 


M3 


x. 


4 


ro 


4 


4 




■JJ 


vO 


vr 


ro 


4 


cr 


N-. 


in 


4 


X 


CD 


ao 


43 


4 


X 


4 


cr 


X 


in 


ro 


CD 


aO 


M3 


4 


X 


CD 


X- 


in 


X 


O 


X- 


in 


X 


cr 


M3 


X 


cr 


in 


i 4 


X- 


X 


IS. 


CD 


▼“4 


▼H 




tH 


4 




4 




CD 


O 


CD 


CD 


CD 


CD 


cr 


er 


m 


(T 


cr 


S3 


ao 


j_ 


aa 


cO 


X- 


X- 


X- 


x^ 


X. 


vO 


M) 


M3 


M> 


n 


m 


in 


4 


4 


4 


ro 


O 


i o 


X 


X 


4 


4 


ca 


MU 


'0 


rv ; 


r\J 


rj 


rj 


XI 


XI 


XJ 


XJ 


XJ 


XJ 


X 


4 




4 


4 


■4 


■»— J 




4 


4 




•r-l 


•"* 


4 


t-4 


4 


T— 1 


r-l 


4 


4 


4 


4 


▼— i 


»-i 


•J 


4 


4 


4 


1 4 


4 


4 


4 


4 


4 






uv 


in 


in 


M- 


g- 


4- 


ro 


ro 


ro 


CM 


X 


X 


X 


X 


4 


4 


4 


4 


4 


4 


CD 


CD 


CD 


CD 


CD 


a 


CD 


CD 


O 


CD 


CD 


a 


4 


4 


4 


4 


4 


4 


1 4 


4 


4 


4 


4 


4 


4 


4 


r~i 


CD 


CD 


rD 


CD 


a 


CD 


CD 


CD 


a 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


a 


CD 


CD 


O 


CD 


CD 


O 


CD 


cd 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


i CD 


CD 


CD 


CD 


CD 


CD 


CD 


ca 


C3 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


a 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


a 


CD 


CD 


CD 


a 


CD 


a 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


ca 


CD 


ca 


1 


I 


1 


1 


1 


1 


1 


1 


1 


1 


1 


1 


1 


1 


1 


1 


1 


l 


1 


1 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


CD 


X. 


X) 


O 


in 


ro 


cr 


m0 


X 


CM 


X 


ro 


CD 


4 


X 


43 


cr 


co 


in 


cr 


co 


M3 


X 


X 


CO 


ao 


X 


CD 


4 


X 




S3 


in 


4 


M3 


X 


a* 


CD 


i in 


M3 


M3 


in 


S3 


a? 


S3 


M3 


•4 


O 


AJ 


4 


CM 


■n 


X) 


4* 


0 


cr 


X- 


ro 


CD 


X. 


43 


4 


4) 


S3 


\D 


M3 


ro 


4 


X 


X- 


CD 


rO 


X- 


X 


cr 


CD 


in 


■ 0 


X 


CD 


•T* 


4 


4 


4 


i r 


CD 


4 


4 


4 


n 


fO 


X. 


r D 


CD 


m0 


4 


'D 


4- 


■o 


m 


cr 


X 


X 


co 


X 


43 


4 


4 


CD 


X 


S3 


ao 


CD 


ro 


X 


tH 


X- 


ro 


CD 


cr 


S3 


CD 


X 


M3 


4 


ro 


4 


X^ 


r 


X 


l 4 


S3 


4 


•n 


cr 


ro 


S3 


S3 


4 


4 


ro 


4 


ro 


N. 


4 


ro 


43 


4 


X 


ro 


43 


rr 


4 


X 


ro 


4 


in 


X- 


4 


4 


4 


X 


X 


ro 


4 


4 


m 


X- 


S3 


cr 




4 




4 


4 


X 


1 X 


X 


ro 


ro 


<o 


4- 


cr 


4* 


cr 


a 


CD 


CD 


D 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


a 


o 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


a 


CD 


CD 


i CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


T> 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


a 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


ca 


CD 


CD 


IX 


-O 


CD 


■O 


CD 


D 


CD 


CD 


CD 


CD 


CD 


O 


CD 


_D 


CD 


CD 


CD 


a 


CD 


ID 


CD 


CD 


CD 


CD 


CD 


CD 


a 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


O 


ca 


CD 


CD 


ro 


cr 


a 


in 


CD 


in 


CD 


m 


CD 


in 


CD 


in 


CD 


in 


CD 


in 


CD 


in 


CD 


in 


CD 


in 


CD 


in 


CD 


in 


a 


in 


CD 


in 


CD 


n 


a 


in 


CD 


in 


CD 


in 


CD 


in 


CD 


in 


CD 


in 


CD 


in 


n 


TD 


m 


cr 


CD 


D 


4 




CVJ 


X 


O 


ro 


4 


4 


iri 


in 


o 


43 


X- 




o 


CO 


cr 


cr 


CD 


CD 


4 


4 


X 


X 


ro 


ro 


4 


4 


n 


in 


• r 


•o 


X 


x^ 


S3 


S3 


cr 


rr 


O 


CD 


ra 








4 


t— 4 


4 


T— 4 


4 


h 


4 


4 


4 


■»— J 


tH 


4 


T— 1 


4 


4 




4 


4 


4 




X 


X 


X 


X 


X 


X 


X 


X 


X 


X 


X 


X 


X 


X 


X 


i r\j 


X 


X 


X 


X 


fO 


ro 


ro 



N ' 



264 



T P E H S CV CS CP W CS » XPT 

DEG K 3 AR J/MOL J/MCL J/MOL/K J/MOL/K J/MOL/K J/MOL/K M/SEC J/MOL/K 

39.639 I.GIO-lIOj 9293.6 92 36.6 76.497 44.06 68.50 68.50 2231 68.16 



IS 


CO 




in 


o 


fS 


4f 




-t iO 


O 


in 


w 


04 




aO 


LA LTi <S 


in 


in 


CP 


40 


ro r< 


o 


in 


aO 


H N. l£ 


tH 


N» 


CP 


tH 


in 




N. 


ro 


ro 


cO 


04 


IS 


40 


•H 


OJ 




in 




aO 


d w ^ io a> 


*H 






O 


x 


fs» 


•h in 


o 


m 


a 


40 


ro c 


eo 


40 


in 


40 


s. a 


in 


tH 


o 


fO 


<p 


-5 


CD 




<P 


N» 


CD 


tH 


<p 




• 


• 


• 


• 


• 


< 


• 


• 


• 


• 


• 




• 


• 


• 


• 


• < 


• 


• 


• 


• 


. « 


• 


• 


• 


• 


• 1 


• 


9 


• 


• 


• 


• 


• 


• 


• 


• 


• 


• 


• 


GO 


aO 


Q0 


aO 


GO 


<30 


CP (P (P 


(P 


CP 


a 


c 


CD 


tH 


tH 




OJ CV 


ro 


ro 




S 


LA v£j 


40 


N. 


CO 


(P 


a fv 


ro 


in 


N» 


CP 


tH 


in 


<P 




CD 


o 


N. 


CM 


(P 


-0 vO 


40 


40 


40 


40 


ic 


0 


40 


40 


40 


p- 


N 


N- 


P. 




N» 


0- hn 






N. 


N. 


N. N, 






N. 




CO «3 


ao 


co 


ao 


ao 


CP 


ai 


(P 


O 


tH 


CM 


ro 


IS 


tH 






































































tH 


tH 


tH 


tH 


t- 


in 


0 -4 LTV 


tH 


0^ 


eo 




tH 


in 


<p 




o 




x 


O 


BMn j 


x 


OJ 




o 


<r oi 


SO 




40 


in 


ro (4 


o 


k> 




o 


40 


a 




in 


in 


CM 


S’ 


On ro 


rO N. 




vO 


a 


in 




40 




vO 


04 


CO 




CP 


in 


a 


40 


04 OQ 


■4- 


o 


40 


OJ 


ro 


CP 


in 


tH 




ro <T 


in 


o 


vO 


OJ 


r^ 


M 


aO 


ro 


CO 


fO 


N. 


a 


tH 


04 tH 


▼4 


o 


a 


cp 




40 


CO 




N. 


40 




m 


in 


in 


mt 


•4* M 


ro 


ro 


04 


CM 


— 1 T- 


o 


o 


L3 


CP 


Q\ OJ 


44 


«0 


r^. 


N. 


40 


ifl 


in 


in 




Mr 


ro 


ro 


CM 


04 04 


eg 


04 


CM 


tH 




rH 


tH 


tH 


H 


tH 




r< 




tH 


H 


^ *H 


▼4 


*H 


*H 


t-4 


^4 H 


-H 


tH 


tH 































OiflJfOMiOaSNOWO 

t 



•^ir\CMfocr'oo<\)(\jN.eoirior^inaofO'^if^MPoj-j-irivOLrv 

iji«5rM 1 fioinHK'Oo'nS'Oifl^o ■tfr>r-r^o^-cr' r r)r> 



PO T* 
fs. rn 



N S J 
•O >D OO 



c6<ncocotoea 4 (j'CJ'(J'(J'oqawr<(\*Ni<((o^uM^tONooo'WNf<)ifl(voNu\(j'j^o'W(Nj^afo 

iO^OvavD>DvD\4iX)vD^vDh'NtP»KN-N.N.P>^^P>.^.p»r^Ni^N-«OoOoocOoO(7*(I'CJ'(T>c^'r-t.rHroir\cr'a(\j 

tH tH tH H tH X CP 



OiflJ-rOWiflqKvOWCMO'cjWO'O'IO'rtMO'O'iniDWNStnfVJOO'rlOCr'fOiOiOOlflfOOrtNQJ' 



<o«'oeco»oici'i3'0'o'o(SortT((\j(\jN)ro-J4 , W'Ds®o'OT(W4i^scr | wj’r>. 
lO lO O Oi\flifl>OvO>.OiflS.NP.NP.KKN.NP>NN.P»NS.P.«!0®^a5(Oina' l 7'l7' 



N, J- L I\ 4 - O' o 
O —< C\J J- 35 (\J 

tH tH tH tH tH f^ 



vOML^i)L^nHoOinnHOH^vDHCOCO(?fOCnScO 
00(^rON^^fONr4a(rcpNvU^ir>UMn^vfl^ r O 



1 



u'iv0CT'LT>rNjo>juiCT'i£>u'i^'<H®ocr' 

roir\NOK) l a<j'(\ii£ioj’0'r<)(3'j' 



o (\JMP 

PJ H lO in 



^^■Poronr)inr*lPr>roroPO(\)c4 0 ^ t ^6J ( ^nd(\(fNj<\j(Mpjf»5P<3roPoro^-j-^-S-Lf\t^>iJ.OiflP~s.50'T'o^o 



4tnp.io^op.MNiDv04’0'iDONHinif|io40'foooi5J'a(D(M4-MnwfO'Hinroa3i-ti<)or<5jN 

NP-0'44H4NCT'HU\^0<HN^O'Hain\BP5iCN4l!'Nl*5<-IO'ir>OmOintHiOCOWO l D^4'OOH 

inf\jK^f04-MH<0inomc0i\j^^!j)0M!'(5'0'(t)r^^D4MH0'.0-tP4iT's.4N(T'p.j)in4inc0in-}' 



vflc=>roh-orovi)(T'-r-ij-r^iT>-H4'iC 0 o i:3 nvJ4*ioa3aC44'^coo. I -iPOLrir>-a3otNj^ifNN-cr , T-(PoinN.oir> 

N.io'O-oa'cr'O'a'oooo-H-^tTH.r-ifijMtNjojtsjroPOPOPoroj'j-j-j-^j-inL^iriiriLnin'.DvO o >d n s 



ul(M(\iiC4'0'rtOC!'aj<t('JHP>^U'WJNW«OiDJiJl\jrl0'M®P)in\fli»iDO(0iDiB(\JuiWnj' 



in®H-p®(\jj)4'Qsoscoaioff'a) 1 floP3^wMnioin«'Da'oKWSHiB4SiiNJ'a)^«oj) 
aj-p'ipkM.flr<;)oinojiH^mn)4'H®inNo«NifiiC l fl»(i'M'noinNoa(ur-n-o(j'uiiD 
f0^cr>P0^ar»5r^o4I^'>-l4c0'^ir\cD(\)^Qcr’P0r^T-t4a3<\J>Da-4«) r, >P^t\Jv0^^i3'rH>DT-tS.^ , 5o<7'4- 

in tn lp dx)p-n»p ~'0 onrMiT'ooo-iH^MWio'OP) it j in ip ip ,o o k n n cp''5'ooriPJ | 'J-fLP 

fi *— < tH tH tH tH tH »H ^4 rH tH t— i tH tH H t— I tH tH tH tH tH t— ( tH t— 1 C\J C\J C 4 C\J C\J f'j C\J 



ir\(\j(\j^4 , a'^ooos V D(T'\jO'T‘a(ra'c\jdir>QorocvjN(\jafONi)ina'iDLA>j-t)ro(\jmK^ii>ro^iD'' n 
^COr4J-COC\J5)^acO 

CD -J-a^rONCNJvDHvDO 



X O p x 

LH in LO 0 



D- 1 - 
a cd 



CD X S. CD -t- N. tH 

N N N U OC' 93 O' 



vDi-D-DOCD'DCDO 



onaoooonaoa 



I I I I 

a) o ir» ro 



i i I 

f\J N. ro 



□ D r9 □ 



cj* 0 in <t\ (\i (\j 

N H ^ D H C\J n CJ3 



CD DCDCDCDCDOcDCDCDOO 

□ QOGGaQOQOQQ 

□ g □□ a oG □ a □ d a 



CD n 
m ry\ 



o LO a lA 

0 0 - 9-4 



CD n CD n 
PI pj X x 



ai 


OJ 


O 


4 “ 


ro 


in 


(P 


JV 


cr 


N 


ro 


0 J 


03 




40 


ro 


-0 


m 


CD 


ro 


* 


s 


4 * 


P- 




X 


4 - 


CD 


0 


X 


CP 


•D 


cr 


in 


tH 


40 


OJ 


30 


cr 


CD 




j* 


tH 


ip 


0 - 


Lp 




ro 


ro 


ro 


s 


40 


co 


tH 


n 


CD 


40 


-J- 


ro 


n 


CD 


X 


ro 


tH 


0 - 


0 




ao 


tH 


in 


TO 


OJ 


Q 


<P 


ro 




CD 


•r 


rO 


OJ 


0 


CD 




TD 


PJ 


■0 


tH 


n 


CD 


S 


O' 


P 


rr> 


m 


CD 


n- 


in 


X 


0 


CP 


CP 


CD 


CD 


CD 


tH 


tH 


tH 


CM 


OJ 


ro 


ro 


ro 


s 


s 


in 


in 


n 


40 


40 


r^- 




X 


CO 


X 


(P 


IP 


CD 


H 


tH 


OJ 


X 


J- 






tH 


tH 


tH 


tH 


•H 


tH 


tH 


tH 


tH 


H 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


OJ 


CM 


PJ 


OJ 


PJ 


PJ 


CM 


tH 


— H 


tH 


tH 


tH 


tH 


O 


O 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


—4 


tH 


tH 


tH 


■-H 


tH 


-H 


tH 




tH 




-H 




tH 


CD 


CD 


-CD 


CD 


CD 


CD 


a 


CD 


a 


4 D 


CD 


CD 


CD 


O 


a 


CD 


CD 


CD 


CD 


CD 


CD 


a 


CD 


CD 


CD 


a 


CD 


a 


O 


D 


CD 


CD 


CD 


CD 


CD 


a 


CD 


CD 


CD 


a 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


<"D 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


1 


1 


i 


1 


1 


1 


1 


4 * 


+ 


• 4 - 


+ 


♦ 


4 - 


+ 


4 - 


4 - 


♦ 


4 * 


4 - 


4 - 


4 * 


4 » 


4 - 


4 - 


4 - 


4 - 


+ 


4 - 


<> 


4 - 


4 - 


4 - 




s 


OJ 


o 


CP 


cO 


in 


CP 


<o 


-0 


OJ 


OJ 


o 


o 


0 J 


CD 


cr 


04 


r^ 


cO 


n 


tH 


o 


OJ 


CP 


CD 


n 


o 


0 


n 


X 


0 


X 


0 


fs 


40 




40 


CO 


40 


-0 


ro 




OJ 


Of 


CD 


ro 


n. 


OJ 


CP 


CD 


n 


-0 


0 J 


a 


CP 


tH 


M- 


tH 


CP 


CD 


J" 


tH 


tH 


in 


X 


r^ 


40 


cr 


■tH 


CD 


OJ 


CO 


o 


CD 


ro 




tH 




ro 


O 


CP 


ro 


CD 


OJ 


0 


*H 


ro 


s 


r^ 


<n 


OJ 


cr 


O 


tH 


n 


<P 


X 


X 


o 


CP 


tH 


OJ 


ro 




in 


fM 


tH 


tH 


tH 


0 J 


OJ 


ro 


^r 


2 f 


in 


N. 


rO 


<P 


tH 


tH 


tH 


tH 


tH 


0 J 


PJ 


OJ 


ro 


ro 


ro 


2 T 


9 T 


r 


CD 


O 


CD 


CD 


CD 


o 


=D 


CD 


CD 


CD 


CD 


CD 


<D 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


■CD 


D 


CD 


CD 


CD 


>D 


CD 


D 


CD 


a 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


-D 


CD 


CD 


CD 


CD 


CD 


r D 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 




CD 


CD 


4 D 


CD 


a 


CD 


CD 


CD 


CD 


a 


CD 


a 


O 


CD 


a 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


'CD 


CD 


CD 


CD 


X 


CD 


in 


CD 


in 


CD 


in 


CD 


in 


CD 


in 


a 


in 


CD 


in 


CD 


in 


CD 


m 


O 


n 


CD 


n 


CD 


n 


CD 


n 


CD 


n 


CD 


n 


CD 


n 


u% 


IP 


m 


-O 


■o 


K- 


N» 


TD 


co 


CP 


<P 


'CD 


CD 


tH 


tH 


OJ 


OJ 


ro 


rO 


tf 


t 


<n 


in 


•o 


0 


rs. 


*v_ 


X) 


ro 


rr> 




X 


CD 


CD 


H 


tH 


t-H 


tH 


tH 


tH 


tH 


tH 


tH 


H 


OJ 


0 J 


0 J 


OJ 


PJ 


0 J 


P! 


0 J 


PJ 


pj 


pj 


pj 


OJ 


0 J 


pj 


0 J 


PJ 


PJ 


OJ 


<\J 


ro 


X 


X 



265 



3 c 3 . 2 178.420 



Table 27. Thermophysical properties along isobars 



The following pages give physical and thermodynamic properties 
along selected isobars, as computed by methods of section 3 of the 
text. 

The first line of each table refers to freezing liquid on the P(T) 
melting line. 

Each table P<P C contains a blank line for the transition from 
saturated liquid to vapor, as seen by the abrupt decrease of density. 

Table headings for partial derivatives have the following inter- 
pretations - - 

DP/DT s dP/6 T, 

DP/DD = d P /d p . 

The specific heat interpretations are - 

CV = C (P , T), 
v 

CP - C (P , T) . 

P 



*These tables are extrapolated beyond the range of P-p-T data used for 
adjusting the equation of state (P~350 bar). 



266 



Table 27. Thermophysical properties along isobars 

ETHANE ISOBAR AT P = 0.1 BAR 



A> 





o 


H 


o 


If' 


O' 


O' 


in 


y 


v£> 


ro 


O' 


vO 


ro 


O' 


in 


CM 


K 


ro 


O' 


y 


O' 


y 


O' 


y 


O' 


ro 


© 


OJ 


0 - 


^■4 


in 


O' 


y 


® 


OJ 


© 


o 


ro 


N- 


■•H 


© 


O' 


OJ 


© 


© 


ro 


o 




y 


r4 


© 




UJ 


ro 


ro 


9-4 


CD 


O 


9-4 


OJ 


ro 


ro 


OJ 


ro 


y 


y 


in 


vO 


kO 


o- 


0 - 


© 


© 


O' 


O' 


o 


CD 


H 


*■4 


OJ 


OJ 


ro 


ro 


ro 


y 


y 


© 


© 


© 


© 


© 


r^ 




N- 


® 


© 


O' 


© 


© 


o 


*■4 


OJ 


OJ 




on 


C\J 


00 


▼4 


CD 


O' 


OO 


0 - 


U) 


O) 


0J 


0J 


CM 


CM 


0J 


CM 


OJ 


CM 


CM 


CM 


0J 


0J 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


fO 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 




v 

T 


OJ 


00 


OJ 


OJ 


9-4 


9-4 


9-4 


»rH 


H 




















































































LL 


XL 


o 


o 


y 


ro 


CD 


o- 


ro 




ro 


ro 


o- 


O 


ao 


*"4 


© 


y 


CM 


UJ 


y 


o- 


ro 


y 


© 


in 


y 


0 «- 




0 - 


y 


CM 


OJ 


v4 




vl 


*-4 


o 


© 


r- 


y 


© 


in 


O' 


▼4 


CM 


CM 


® 


o- 


CM 




y 


C_> 


X 


© 


© 


OJ 


CD 


9-4 


y 


O' 


in 


in 


o 


in 


CM 


ao 


vO 


y 


CM 


▼H 


o 


© 


o 


*-4 


CM 


ro 


in 


r^ 


O' 


CM 


y 


r^ 


o 


ro 


© 


O' 


CM 


in 


© 


o 


ro 


© 


O' 


t4 


ro 


© 


© 


O 


ro 


© 


© 




CM 




o 


ao 


00 


00 


CO 


O' 


O' O' 


CD 


o 


O' 


O' o 


CD 


H 


0J 


ro 


y 


in s£> 




© 


O' 


© 




CM 


ro 


in © 


K 


O' © 


r4 


0J 


y 


© 


© 


© 


© o 


**4 


ro 


y 


© 


© 


® 


o 


OJ 


y 


N- 


O' 




T 


© 


© 


© 


© 


a? 


v£> 


© 


K 


r^ 


ro 


ro 


y 


J* 


y 


y 


y 


y 


y 


y 


y 


y 


y 


in 


in 


in 


in 


an 


in 


in 


in 


© 


© 


vO 


© 


© 


© 


© 


© 




O- 






h- 




N- 


© 


© 


© 


© 


© 


> 




© © 


© 


If* 


9-4 


in 


9-4 




o 


® 


y£) 


CM 


CM 


0O 


CO 


ro 


ro 


K 


v£> O' 


© 


r^ 




O' 


O' 


*■4 


© 


OJ 


O' 


© 


0 - 










© 


© 


ro 


© 


0 - 


OJ 


© 


© 


O' O' 


© 


© 


O' © 


OJ 


o 


V 


o 


o O' 


N- 


LO 


CM 


o 


® 


® 


y 


CD 




y 




O' 


© 


N. 


© 


vO 


© 


r^ 


® 


© 


■*»4 


ro 


© 


© 


*■4 


ro 


© 


O' 


0J 


© 


© 


•r4 


y n- 


o 


ro 


© 


© 


o 


OJ 


y 


© 


o 


ro 


© N- 


O' 




O 


J- 


y 


ro 


ro 


ro 


ro 


ro 


0J 


OJ 


o 






CM 


ro 


ro 


y 


m 


u; 


K 


© 


O' 


o 


CM 


ro 


y 


in 


© 


© 


O' 


o 




ro 


y 


in 




© O' 


<*■4 


CM 


ro 


y 


© o- 


© 


© CM 


y 


© 


© 


© 




r 

x 


y 


J- 


-J- 


y 


y 


y 


y 


y 


y 


fO 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y y 


y 


in 


in 


© © 


m 


in 


© © 


© © © 


© 


© © 


© 


© 




r^ 


K 0 - 


© 


1/7 


* 




ro 


© 


© 


© 


9-4 


in 


O' 




ro 


0 - 


in 




*4 


m 


y 


in o- 


© 


© 


ro 


a 




o' 


© 


O' 




CM 


y 


© 


© 


© 


K 


O' CM 




y 


y 


© O' 


© 


© 


© 


O 


r^ 


ro 


<*■4 O' 


© 




V 


O' K O' 


y 


y 


O' in 


O' 


® 


y 


K 


O' 




y o' 


© 




O' ro 


ro 


o 


y 


in 


ro 


o 


in 


© 


© 


»4 


o 


© 


© 


t4 © 


© y © 


© 


© 


O' ® K 


© 


OJ 


© © K 


OJ 


ro 


OJ 




-j 


J- 


© 




ro 


ro 


ao 


CD 


QD 


CD 




in 


O' ro 


in 


vD K 


© 


K 


0 - 


© 


in 


ro 




O' 


N- 


y 


*■4 


O' 


© 


ro 


O' 


© 


ro 


O' 


© 


OJ 


® 


y 


o 


© 


OJ 


® 


y © 


© 


© 




© 


© 


© 




i 


© 


© 


ro 


o 


© 


9-4 


r** 




CM 


® 


o 


OJ 


m 


0 - 


O' 




ro 


in 


o- 


O' 




ro 


in 


© 


© 


© 


OJ 


ro 


in 


n- 


ao 


o 


0J 


ro 


© 




© 


o 


OJ 


ro 


© 


© 


® 


o 


s-4 


y 




o 


ro 


vO 






O- 


t ^ 


oo 


cr 


O' 


o 


CD 




▼H 




0J 


OJ 


0J 


0J 


OJ 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


in 


in in 


in 


in 


in 


© © 


© 


© 


© 


© 


N* N- 


K 


0 - 






© 


© 


© 


© O' O' © 
















9-1 


9-4 






0J 


CM 


CM 


OJ 


CM 


CM 


CM 


CM 


OJ 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


OJ 


CM 


CM 


OJ 


OJ 


OJ 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


OJ 


CM 


CM 


OJ 


OJ 


I 


-j 


.1 

.9 

.5 


® 


y 


CM 


9-4 


in 


ro 


0J 


ro 


.9 

,5 


© 




^■4 


0J 


O' © 


© 


© 


O 


® 


y 


© 


o 


in 


n. 


© 


in 


OJ 


O 


N. 


© 


.1 

.7 




OJ 


© 


y 


CM 


OJ 


© 


® 


o 


© o 


y 


9*4 




X 


O' 


© 




OO 


ao 


9-4 


00 


CD 




O' 


O- 


OJ 




y 


y 


ro 


O 


U) 


*-4 


r^ 


ro 


O 


O' 


© 


© 


y 


o 


® 


O' 


ro 


© 


© 


ro 


© 




© 


ro 


H 




y 


© 


r^ 


r^ 


© 


ro 


© 


© 


© 


© 


© 




V 


O' 


CD 


O' 




© 


© 


in 




® 


ro 






0J 


ro 


in 


© 


0J 


© OJ 


© 


© 


in 


y in 


© 


*■4 


© 


*■4 


® 




r^ 


© 


o 


ro 


© 


y 


CM 




▼4 


OJ 


y 


© 


ro 


© 


© 


® 


vD 


© 


y 




“5 


00 


ro 


O' 


© 


ro 


CD 




y 


y 


y 


CD 


OJ 


UJ 


© 


y 


© 


ro 




CM 


UJ 




© 




© 




r^ 


OJ 


© 


ro 


O' 


in 




© 


y 


o 


r- 


y 


^-4 


© 


© 


CM 


© 


o- 


y 


CM 


© 


y 


tH 


© 


© 






in 


© 


O' 


UJ 


o. 


ao 


0D 


O' 


O' 


in 


in 


VO 


OJ 


r^ 


0 - 




© 


© 


O' 


O' 


O 


o 






CM 


CM 


ro 


IO 


y 


y 


in 


© 


© 


r-- 


© 


ao 


© 


O 


© 


▼*=< 


CM 


OJ 


ro 


y 


© 


© 


© 


o 




ro 
























CM 


evj 


0J 


0 J 


CM 


0J 


0J 0J 


0J 


CM 


0J 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


y 


y 


y 


y 


© 


© 


© 


UJ 


-1 


© 


© 


tH 


ro 


O' 


r^ 


© 


vD 


CD 


H 


ro 


y 






v£> 


y 


® 


y 


© 


O' 


© 


CM 


© 


y 


r- 


o 


© 


© 


r^ 


ro 


© 


ro 


© 


CM 


o- 




y 


© 


y 


O' 


o 


© 


y 


y 


© 


CM 


© 


OJ 


OJ 


© 




X 


CD 


© 




© 


o- 


CD 


r- 


O' 




CD 


o- 


OJ 


y 


ro 


O' 


y 


0 * 


© 


OJ 


y 


r^ 


H 


© 


CM 


o 


<r4 


ro 


© 


© 


n. 


o 


o- 


© 


O' 


y 


ro 


y 


© 


© 


y 




*■4 


© 




© 


© 


© 


CD 


y 


9-4 




V 


O' 


o 


O' 


r^ 


© 


© in 


in 


® 


£2 


O' 




ro 


\D 


O' 


y O' © ro 


e=4 


o 


^4 


Kl 


in 


O' 


y 


© 




© 


© 


© 


© 


y O' 


© 


y 


ro 


ro 


© 


© 


rvj 


CD 


y oj 


•4 


ro 


o 


<►4 kD 


■£> 






0 o 


ro 


a 


© 


ro 


© 


n* 


y 


y 


OJ 


y 


aj 




y 


o- 




y 


© 


CM 


© 


CD 


y 


© 


CM 


© 




© 


© 


m 


Q 


© 


▼4 


© 




N* 


ro © 


© 




y 


O 


o- 


y 


■*=4 


© 


CD 


© 


o 


© 






© 


© 


© 


© 




ao 


CO 


O' 


O' 


y 


y 


y 


in 


in 


in 


\D 


© 


vO k 


0 - 


® 


© 


© 


O' O' 


O 


CD 






CM 


CM 


ro 


ro 


y 


y 


© 


© 


© O- 


r- 


© O' O' 


o 




OJ 


y 


© 




® 
























CM 


CM 


OJ 


CM 


CM 


CM 


CM 


CM 


0J 


OJ 


CM 


CM 


0J 


OJ 


OJ 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


y 


o 


_J 


J- 


O' cm 


o O' 


CO 


© 




ro 


in 


<r-« 0 * 


CD 


*-4 


tH 


O' K 


y 


*-4 


O- 


nj 


© 


ro 


0 * 


0J 


© 


o 


y 


© 


0J 


© 


O' 


ro 


© 


O' CM 


© 


© OJ 


y 




© 


ro 


© 


© 


y 


o' y 


O' 


y 


o 


o 


o -4- 


9-4 


o 


y 


r*» r»- fs» 


0J 


o 


CM 


vO 




in 


O' 


CM 


© 


© 


y 


r^- 




y 


© 


^4 


in 


© 


OJ 


m 


© 


CM 


© 


© 


CM 


in 


© 


CM © 


co 


CM 


© 




CM 


© 


CD 




© 


y 


*-» r— 


y 


s 


r 


© 


J- 


0J 


ro 


9-4 


in 


© 


v£> 


y 


ro 




O' 


CD 


l 0 


y 


ro 




o 


© 


© 


in 


ro 


▼H 


© 


© 


© 


in 


ro 


*■4 


o 


© 


© © 


ro 


▼4 


© 


© 


© 


© 


ro 




© 


© © 


© 


r4 


© 


© 


v4 


© 


CD 


-i 


00 


H 


9-4 


94 


CD 


© 


O' 




vD 


OJ 


ro 


ro 


y 


in 




0 - 


© 


O' 


O' 


o 


^-4 


CM 


ro 


y 


y 


in 


© 


K- 


© 


O' O' 


© 


v4 


OJ 


ro 


y 


y 


© 


© 


r^ 


© 


© 


cr 


o 


▼4 


fO 


y 


© 


© 


O' 




» 


© 


© 


© 


r*- 


a 


9-4 


y 












v-4 












«r-( 


CM 


0J 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


OJ 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


y 




K BAR 


CO 


O' CD 


r^ 


© 


© 


in 


y 


y 






















































































ro 


O' 


CD 


in 


OJ 


ro 


© 


y 


U'' 


in 


ro 


y 




O 


ro 


O' 


r^ 


0 - 


© 


OJ 


© 


OJ 


© 


© 


y 


ro 


ro 


y 


© 


© 


© 


▼“i 


y 


r^ 


© 


y 


® 


ro 


© 


CM 


© 


ro 


© 


y 


CD 


CM 


© 


O' 


OJ 


k 


UJ 


"V 


o 


© 


ao 


0 - 


© 


in 


© 


CD 


CD 


r^ 


ro 


O' 


JD 


ro 


o 


r- 


m 


ro 




© 


© 


r^ 


u\ 


y 


ro 


CM 




© 


O' 


© 


r^ 




UJ 


U) 


© 


y 


ro 


ro 


CM 


CM 


▼4 


tH 


o 


CD 


CD 


O' 


© 


p- 


r^- 


UJ 


V 


CL 


0 - 


OJ 


r^ 


oo 


CO 


in 


tH 




y 


vO 


vD 


in 


in 


in 


U' 


y 


y 


y 


y 


y 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


CM 


0J 


CM 


CM 


CM 


OJ 


CM 


OJ 


CM 


CM 


OJ 


OJ 


OJ 


CM 


CM 


CM 


CM 


'H 


▼4 


v4 


v4 


9-4 


LL 


<1 


CD 


CD 


CD 


r^ 


O' 


U' 


y 


in 


y 


CD 


o 


CD 


CD 


© 


© 


© 


© 


© 


© 


o 


a 


© 


© 


a 


o 


o 


o 


© 


© 


© 


© 


© 


O 


© 


© 


© 


o 


© 


CD 


© 


© 


o 


o 


CD 


© 


CD 


CD 


CD 


CD 


CD 


Lj 


CD 




















CD 


o 


CD 


CD 


© 


o 


o 


o 


CD 


o 


© 


o 


O 


o 


© 


o 


o 


© 


o 


CD 


o 


© 


O 


CD 


o 


© 


© 


o 


CD 


CD 


o 


CD 


© 


CD 


CD 


CD 


CD 


CD 


CD 


© 


CD 






© 


LT> 


•*H 


N- 


y 


0 J 


o 


co 


ao 


O 


CD 


CD 


O 


© 


© 


o 


o 


© 


© 


© 


o 


o 


o 


o 


o 


CD 


CD 


© 


© 


o 


o 


© 


© 


o 


© 


© 


© 


o 


O 


o 


O 


© 


o 


CD 


© 


CD 


CD 


O 


CD 


CD 






ro 


ro 


ro 


OJ 


0J 


0J 


0J 






CD 


O 


CD 


CD 


© 


o 


o 


© 


© 


o 


o 


o 


o 


o 


© 


© 


© 


o 


o 


O 


o 


© 


© 


O 


o 


o 


o 


o 


o 


o 


a 


© 


© 


o 


CD 


O 


CD 


CD 


O 


O 


O 


_J 


_l 


ro 


ro 


OJ 


OJ 


© 


ro 


in 


CM 


nD 




vD 




y 


0 *- 


ro 


ro 


© 


O' 


r- 


ro 


© 




© 


ro 


O' 


y 


© 




ro 


y 


© 


y 


ro 


OJ 


O' s. 


y 


o 


© 


OJ 




CM 






© 


OJ 


© 


ro 


© 


9-4 


O 


O 


9-4 


9-4 


O' 


n- 


If 


y 


ro 


ro 


ro 




O' 


O' 




y 




r- 


CM 


0 - 


CM 


0 - 




© 


O' 


ro 


© 


o 


ro r- 


o 


ro 


© 


O' 


OJ 


© 


r^ 


CD 


ro 


© 


© 




ro 


© 


© 


v4 


ro 


© 


CM 


r- 


*■4 


v£> 


> 


X 


© 


© 


© 


0 - 


ao 


cn 


CD 


tH 




O' 


O' 


ro 




^-4 


in 


® 


CM 


in 


O' 


CM 


© 


O' 


CM 


© 


O' 


ro 


© 


O' 


ro 


© 


O' 


CM 


© 


O' 


CM 


© © 


CM 


© 


O' 


CM 


© 


© 


CM 


© 




© 


y 




O- 




X 


J- 


y 


y 


J- 


y 


y 


in 


in 


in 






















































































_J 


cd 


o 


o 


o 


CD 


CD 


o 


CD 


CD 


ro 


*-i 


CD 


co K 


m 


ro 


CM 


© 


© 




U' 


ro 


CM 


CD 


© 




© 


ro 


CM 


© 


® 




© 


ro 


CM 


© 


© 


r^ 


© 


ro 


CM 


O 


© 


O- 


© 


CM 


© 


© 


CM 


© 
























CM 


ro 


y 


y 


in 


vO 


K. 


ffl O' O' 


o 




CM 


ro 


y 


y 


in 


© N 


oo 


O' O' 


© 


»s=4 


0J 


ro 


y y 


© © 


K 


© O' O' 


© 


*■4 


fO 


y 


© © O' 






O 


o 


o 


CD 


O 


CD 


© 


o 


O 




•-4 




^4 


<r4 




^4 


*-4 


*■4 




OJ 


CM 


CM 


CM 


OJ 


0J 


0J 


0J 


OJ 


OJ 


CM 


0J 


ro ro 


ro 


ro 


ro 


ro 


ro 


ro 


to 


to 


to 


to y y 


y y 


y y 


y 


2 


-J 


a 


© 


y 


y 


ro O' 


9-4 


V© 




N. 


® OJ CM vO ^ UN 


O' m ro cm y o» 


o © 0J 


O' © m 


y 


y y in h*. o> <h 


y 


e * 


OJ © 


v*4 


© 




*■4 


ro © n. 


© 


UJ 


V 


© 




»4 


© O' 


CM © 




N* 


& 


in 




0 ^ 


ro 


© K 


y oj © 


© © y 


ro 




© 


0 ON «6 


in 


y ro 


0J «-4 


© 


©O' © 


©h*©©©©yyrooj^4 


© 


© 


o 


J 


© 


© 


ro 


O' 


in 


0J 


© 


y 


y 


CO 


o- 


r^ 


vO 


v£) 


V© 


in 


in 


in 


in 


y 


y 


y 


y 


y 


y 


fO 


ro 


ro 


ro 


ro 


ro 


ro 


(O 


ro 


ro 


OJ OJ 


CM 


CM 


CM 


OJ 


OJ 


OJ 


CM 


OJ 


OJ 


OJ 


CM 


OJ 


OJ 




o 




















o 


a 


o 


o 


o 


© 


© 


© 


© 


© 


© 


© 


o 


o 


© 


O 


o 


© 


& 


© 


© 


a 


© 


© 


© 


© 


© 


© 


G 


© 


© 


© 


© 


© 


© 


© 


© 


o 


© 


© 


© 




x 


«^4 


H 


9-4 


© 


o 


CD 


O' O' 


O' 


o 


o 


o 


S3 


o 


O 


© 


© 


o 


© 


© 


o 


© 


© 


© 


o 


© 


o 


© 


© 


© 


o 


© 


o 


© 


o 


© 


& 


O 


o 


© 


© 


© 


© 


© 


© 


© 


o 


© 


© 


o 






OJ 00 


CO 


CM 


CM 


0J 


«*4 




■**4 










































































































o 


® 


o 


e 


© 


o 


© 


o 


o 


o 


© 


O 


© 


© 


© 


o 


© 


© 


© 


© 


© 


o 


© 


© 


© 


© 


© 


o 


© 


o 


© 


© 


© 


O 


© 


© 


o 


© 


O 


© 


© 




JtL 


▼0 


O 


© 


o 


o 


O 


o 


® 


90 


co 


o 


o 


o 


o 


© 


© 


© 


© 


© 


& 


© 


© 


© 


© 


o 


© 


© 


© 


o 


© 


© 


© 


o 


o 


© 


© 


© 


o 


© 


© 


© 


o 


© 


© 


© 


o 


© 


© 


© 


© 






o 


o 


o 


© 


o 


o 


o 


o 


90 


CO 


o 


o 


o 


© 


© 


© 


© 


© 


© 


© 


o 


© 


© 


© 


© 


© 


o 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


o 


© 


© 


© 


© 




OEG 


O' o 


© 


o 


o 


o 


O 


® 


ro 


ro 


o 


o 


o 


© 


o 


© 


© 


© 


© 


© 


o 


© 


© 


© 


o 


© 


o 


© 


© 


o 


© 


© 


© 


o 


o 


© 


© 


© 


o 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 




O' o 


o 


o 


© 


CD 


o 


o 


o 


a 


o 


CD 


© 


o 


o 


o 


o 


© 


© 


© 


o 


o 


Q 


© 


o 


© 


© 


© 


o 


o 


© 


© 


© 


© 


© 


e 


o 


o 


© 


© 


© 


© 


o 


O 


© 


o 


o 


© 


© 


© 






CD 


O' 


CD 


H 


0J 


ro 


y 


in 


in 


in 


vD 


o- 


© 


O' 


© 




CM 


ro 


y 


in 


© 


r^ 


OO 


O' 


o 


*-4 


OJ 


ro 


y 


in 


© 


f*v 


© 


CP 


o 


▼4 


OJ 


ro 


y 


© 


© 


r- 


® 


© 


o 


OJ 


y 


© 


© 


o 










9-4 


9-4 


9-4 


9-1 




T-t 






▼*4 




^-4 




0J 


OJ 


CM 


CM 


0J 


CM 


CM 


CM 


CM 


OJ 


ro 


fO 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


y 


y 


y 


y 


© 


© 


© 


© © 


V0 



267 



ETHANE ISOBAR AT P = 0.5 BAR 



I 

I 

t 



2 o 

LU 



in 

v 

2: 



tH CD IP 
n fO H 

t\J (\J H 
X X X 



CT'(T'iri-*-vD-rHN-'X> 
OOriPjWLna)^ 
OO'lTN^ir-JJ 
CVJ H rH H rH H tH 



x x y 
y y IP 

CVI CM (\J 



o cm co pd on 

vT S S flO eo 

CVJ CM CVJ CM CVI CM 



j- O' m 

c? cr o 

CM CM CO 



® n s 

O H rH 

pd ro ro 



cm kD tH ip O' 

cm cm pd pd pd 

pd pd pd pd ro 



PD X tH LP O' 

y y Uv IP UV 

ro ro ro ro ro 



PD X tH UV ® 

vD vO S S 

PD PD PD PD PD 



CM nO O' PD O 

O B ® O' O 

PD PD PD PD y 



X y tH 
O H CM 

y y y 



T5 

03 

3 

C 



c 

o 

u 



Qfi 

C 

O 

rt 

w 

Q3 



>H 

03 

(X 

o 

5h 

a 



nJ 

cj 

w 



CL 




0 


O 


PD 


PD 


CD 


nD 


PD 


O 


CM 


CO 


CM 


x 


CM 


CD 


a; 


PD 


NO 


uv 


cr 


aj 


CM 


tH 


PD 


O 


X 


CO 


*H 


NO 


PD 


CD 


<r 


CO 


CO 


x 


X 


IP 


y 


CM 


cu 


y 


CP 


CM 


IP 


NO 


IP 




O 


y 


PD 


X 


CJ 


X 


to 


IP 


VO 


® 




y 


CP 


IP 


CM 


O 


PD 


CM 


NO 


CM 


CO 


vO 


J- 


PD 


CM 


CM 


PD 


y 


uv 


NO 


0D 


0 


PD 


IP 


CO 


tH 


PD 


03 


CP 


CM 


IP 


O 


tH 


y 


vO 


cr 


tH 


y 


NO 


CD 


CD 


y 


X 


O' 


tH 


CM 




O 


CO 


00 


CO 


CD 


O' 


CP 


CP 


O 


H 


CM 


CM 


tH 


tH 


CM 


CM 


PD 


y 


ip 


NO 


X 


OD 


cr 


0 


tH 


CM 


y 


IO 


NO 


X 


O' 


0 


tH 


CM 


y 


IP 


03 


00 


O' 


0 


t< 


PD 


y 


IP 


NO 


® 


0 


CM 


-2- 


X 


O' 




t: 




vO 


vO 


nO 


03 


03 


nT3 


X 


X 


X 


x 


-5- 


-T 


y 


y 


y 


y 


y 


y 


y 


y 


y 


LTN 


IP 


lp 


lp 


IP 


IP 


IP 


IP 


nO 


NO 


nO 


NO 


NO 


nO 


VO 


vO 


X 


x 


X 


X 


X 


X 


X 


<30 


® 


co 


CO 


® 



“3 



> 




vO 


NO 


ip 


IP 




NO 


CM 




NO 


03 




UV 




O 


IP 


03 


y 


03 


y 


uv 


CM 


CM 


IP 


CM 


CM 


y «> 


y 


tH 


O 


O' 


O' 


® 


® 


CD 


X 


no y 


tH 


X 


X 


NO 


O' 


0 0 


uv 


IP O' ® 


X 


O 


V 


0 


0 


O' 


X 


LP 


CM 


CD 


CD 


03 


IP 


IP 


CM 


X 


.y 




O' 


ao 


X 


X 


X 


<x> 


O' 


O 


CM 


y 


nO 


CO 


tH 


y 


X 


O' 


CM LP 


® 


tH 


y 


X O 


PD 


uv 


® 


O 


X 


IP X 


0 


PD IP X 


O' 




0 


y 


J- 


PD 


PD 


PD 


PD 


PD 


CM 


CM 


CM 


CM 


CM 


CM 


PD 


y 


y 


UN 


nO 


X 


03 


O' 


CD 


CM 


PD 


y 


uv 


NO 


CO 


O' 


O 


tH 


PD 


y 


UV 


X 


CD 


O' tH 


X 


PD 


y 


NO 


X 


CO O' 


X 


y nd co 


O 




r 


y y 


j- 


y y 


S 


-y 


-y 


«y 


-y 


J- 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


y 


y 


y 


y 


y 


y 


y 


y 


UV 


uv 


uv 


LP 


uv 


uv 


IP 


uv NO 


nO nO nO 


NO 


NO 


NO NO 


N K N K 


CO 


CD 




O' 


0 


PD 


PD 


PD 


00 


CM 


IT. 


X 


0 


X 


NO 


O 


nO 


X 


X 


03 


CM 


tH 


tH 


uv 


O' 


nD 


O' 


tH 


y 


tH 


CM 


O' 


y 


X 


O' 


tH 


PD 


X 


CM 


CO x 


X 


O 


y 


X 


tH 


y cr no 


y x tH 






X 


O' 


X 


cr 






CD 


IP 


cr 


nO 




CM 


CM 




X 


uv 


03 




tH 


NO X 


y 


CO 


O 


O' 


X 


CM 


NO CO 


® 


® 


nO 


PD 


e 


UV 


O' 


PD 


uv X 


® 


O' 


® 


X 


uv 


x ® O' x x y 


PD 




-j 


J- 


IP 


X 


PD 


PD 


CD 


O 


ao 


-y 


ao 


ao 


O' 


X 


O' 




CM 


ro 


PD 


CM 


tH 


0 


co 


X 


y 


CM 


O 


X 


y 


tH 


CD 


IP 


CM 


O' IP 


tH 


® 


y 0 


NO 


X 


® 


y 


0 


vO tH 


X 


pd y y 


y 




2: 


NO 


03 


fD 


O 


03 


*~4 


X 




vD 


CD 




O' 


H 


PD 


NO 


CO 


CD 


CM 


y 


NO 


® 


O' 


«H 


PD 


IP 


X 


CO 


CD 


CM 


PD 


IP 


X 


® 


CD 


CM 


PD 


LP x 


® 


0 


tH 


PD 


uv 


vO ao 


tH 


y x cd 


PD 




X 


X 


X 


CO 


O' 


O' 


O 


CD 


H 


tH 


CM 


CM 


CD 








H 


CM 


CM 


CM 


CM 


CM 


CM 


PD 


PD 


PD 


PD 


PD 


y 


y 


y 


y 


y 


y 


IP 


LP 


LP 


IP uv 


IP 


NO 


NO 


NO 


nO 


nO nO 


X 


XX® 


® 




“3 














H 




vH 






CNJ 


CM 


CM 


IM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


l\J 


CM 


CM 


CVJ 


CNJ 


CNJ 


CM 


CVJ 


CM 


CVJ 


CM 


CM 


X X 


X 


X 


X 


X 


X 


X X 


X 


XXX 


X 


I 


-J 


tH 


IP 


H 


•y 0 


X 


nO 


NO 


H 


.5 

.7 


X 


CM 


PD 


X 


PD 


ao 


O' 


tH 


tH 


CM 


O' 


nO 


X 


IP 


PD 


PD 


CD 


m 


UV 


tH 


Uv 


O' CM 


uv 


X 


.8 

.6 


X 


y 


x y 


® 


.4 

.1 


0 


.3 

.0 

.0 


X 




£ 


tH 


X 


PD 


CD 


O 


CM 


cr 




O 


NO 


O 


uv 


0 


O' 


y 


X 


X 


nO 


uv 


PD 


tH 


O' 


O' 


O 


PD 


CO 


UN 


y 


NO 


tH 


O' 


O' 


CM 


O' 


® 


O 


UN PD 


y 


X 


ro 


tH 


tH 


y o' 


y 


IP X PD 


X 




X 


O 


0 


CP 


ao 


X 


NO 


ip 


03 


X 




NO 


PD 


IP 


nO 


O' 


CM 


NO 


H 


X 


y 


CM 


0 


O 


CM 


y 


X 


CM 


CD 


IP 


y 


PD 


y 


X 


CD 


IP 


CM 


O' ® 


co 


O' 


X 


NO 


tH 


x ^ 


PD 


no y no 


X 




—3 


PD 


fD 


CP 


vO 


PD 


CD 


X 


-y 






CD 


CM 


uv 


O' 


PD 


ao 


CM 


X 


tH 


NO 


tH 


vO 


tH 


vO 


•H 


NO 


CM 


X 


PD 


O' 


LP 


tH 


X 


y 


CD 


X 


PD CD 


X 


y 


X 


O' 


X 


y x 


CD 


y tH ao 


NO 






uv 


LP 


UN 


NO 


X 


CD 


a? 


O' 


O 


CD 




NO 


NL> 


N 13 


X 


X 


ao 


CO 


O' 


O' 


CD 


CD 


tH 


tH 


CM 


CVJ 


rr> 


PD 


y 


y 


UN 


NLJ 


NO 


X 


® 


ao 


O' CD 


0 


tH 


X 


X 


PD 


y uv 


NO 


CD 0 H 


PD 




























CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


fD 


PD 


PD 


PD 


pd y 


y 


y 


y 


y 


y 


y y 


y 


y uv uv 


uv 


LU 


—1 


CO 


CM 


OD 


CD 


IP 


PD 


0 


CD 


LP 


<X) 


CD 


X 


ao 


PD 


IP 


CM 


CD 


X 


NO 


y 


uv 


fD 


- 


Uv 


IP 


NO 


CD 


ao 


PD 


IP 


IP 


IP 


y 


PD 


- 


O' 


,6 

.0 


X 


tH 


UN 


PD 


y 


,7 

.1 


PD 


O X nO 


PD 




n 


CD 


IP 


CD 


CO 


X 


CD 


X 


cr 


X 


PD 


® 


CM 




UV 


uv 


PD 


O' 


PD 


X 


tH 


LP 


CD 


NO 


PO 


CM 


PD 


X 


CM 




CM 


NO 


PD 


PD 


NO 


CM 


O 


X x 


y 


y 


NO 


tH 


® 


X O' 


X 


X X NO 


y 




V 


cr 


O 


cr 


X 


NO 


nO 


IP 


ip 


nO 


® 


IP 


PD 


ao 




IP 


O 


UV 


fNJ 


O' 


CO 


X 


CD 


O' 


fM 


NO 


tH 


X 


IP 


y 


y 


UN 


® 


CM 


X 


y 


X 


•H tH 


PD 


nO 


O nO 


X 


O O' 


tH 


® cr y 


y 




~3 


CM 


PD 


O' 


NO 


PD 


O 


X 


-y 






O 


CD 


0 


y 


X 




y 


ao 


tH 


uv 


O' 


PD 


X 


CM 


NO 


tH 


LP 


CD 


LP 


0 


uv 


CD 


NO 


tH 


X 


PD 


O' IP 


tH 


X 


y 


O 


X 


y 0 


UV 


o' y 0 


NO 






lp 


IP 


ip 


nO 


X 


<D 


CO 


cr 


CD 


O 




S 


uv 


uv 


uv 


nO 


nO 


NO 


X 


X 


X 


CO 


CO 


O' 


O' 


O 


O 


tH 


tH 


CM 


CM 


PD 


PD 


y 


y 


IP 


IP nO 


X 


X 


® 


O' 


O' 


CD tH 


X 


PD UN X 


® 


























▼H 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


PD PD 


PD 


PD 


PD 


PD 


PD 


y y 


y 


y y y 


y 


D 


-J 


ip 


03 


0 


X 


J- 


<r 


PD 


CM 


X 


CD 


X 


O 


O' 


(M 


X 


y 


03 


PD 


X 


CO 


X 


y 


O' 


PD 


nO 


X 


<0 


<E> 


X 


NO 


y 


CM 


O' nD 


CM 


® 


y O 


LP 


O 


UV 


O 


uv 


O' PD 


x o' x y 


0 


O 


O 


03 


X 


ip 


J- 


O 


PD 


-y 


UN 


tH 


X 


O' 


ao 


UV 


y 




ao 


y 


O 


UV 


CD 


uv 


0 


y 


O' 


PD 


X 


tH 


UV 


O' 


fD X 


tH 


y 


® 


CM 


IP 


O' PD 


N 0 


O 


PD 


X 


O 


PD X 


y 


cd x y 


tH 


X 


z 


IP 


IP 


PD 


s 


PD 


X 


ao 


CO 




0 


PD 


X 


-y 


PD 


CM 


0 


O' 


ao 


NO 


uv 


fD 


CM 


0 


ao 


X 


uv 


y 


CM 


0 


O' X 


nD 


y cm 


tH 


O' X NO 


y 


PD 


tH 


O' ® 


no y 


tH 


® y tH 


® 


CD 


_J 


CM 




tH 




O 


nO 


cr 


CO 


PD 


CM 


CD 


PD 


-y 


LP 


nQ 


X 


X 


CO 


o> 


O 


tH 


CM 


PD 


PD 


y 


IP 


nO 


X 


® 


® 


O' 


O 


tH 


CM 


PD 


PD 


y uv 


NO 


X 


® 


® 


O' 


O tH 


PD 


y no ® 


O' 




1 


NO 


03 


03 


X 


O' 




-T 


CO 


PD 


ao 


X 




tH 


wH 






-r -4 


tH 


tH 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


PD 


PD 


PD 


PD 


PD 


PD PD 


PD 


PD 


PD 


PD 


PD 


y y 


y 


y y y 


y 




K BAR 


O' 


CP 


CO 


X 


NO 


nO 


IP 


-y 


«y 


PD 


PD 








































































►— 


CO 


CM 


nO 




PD 


X 


CM 


CM 


PD 


X 


NO 


uv 




PD 


NO 


IP 


CD 


CM 


nO 


CO 


CD 


y 


LP 




CM 


X 


uv 


NO 


tH 


CD 


X 


O' 


PD 


O' 


NO 


uv 


vO CO 


tH 


LTV 


tH 


® 


UV 


y pd 


y 


«o lp y 


uv 




X 


x 


X 


au 


au 


NO 


03 


CD 


CM 


UN 


-y 


ao 


CM 


CO 




vu 


PD 




tH 


tH 


CM 


y 


X 


O 


y 


ao 


CM 


X 


CM 


® 


PD 


O' 


UN 


CM 


CD 


LP 


X 


O' NO 


y 


t— | 


O' 


NO 


y 


x 0 


NO 


X O' NO 


PD 


X. 


ct 


vO 


CM 


X 


CO 


ao 


IP 






cr 


PD 


X 


O 


<X 3 


X 


uv 


y 


PD 


CM 


tH 


CD 


O' 


ao 


CD 


x 


nO 


NO 


uv 


uv 


y 


y 


ro 


PD 


PD 


CM 


CM 


X 


tH «H 


tH 


tH 


0 


CD 


CD 


0 0 


O' 


O' ® GO 


® 


LL 


<1 


CD 


CD 


0 


X 


CP 


IP 


*y 


UN 


X 


CM 


OD 


D 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH tH 


tH 


tH 


tH 


tH 


tH 


tH tH 


CD 


CD CD CD 


CD 


O 


aj 


• 


• 


• 


• 


t 


• 


t 


• 


• 


• 


• 


O 


O 


O 


CD 


O 


O 


O 


O 


CD 


O 


O 


O 


CD 


O 


O 


CD 


O 


O 


O 


O 


CD 


O 


O 


O 


O 


O O 


O 


CD 


O 


O 


O 


O O 


CD 


CD O CD 


O 






IP 


IP 


tH 


X 


J- 


CM 


0 


ao 


vO 


LP 


-y 


O 


O 


O 


O 


O 


O 


CD 


O 


CD 


O 


CD 


O 


CD 


O 


O 


O 


O 


CD 


CD 


O 


O 


O 


CD 


CD 


CD 


O CD 


O 


CD 


O 


CD 


CD 


O CD 


O 


OOO 


O 






PD 


PD 


PD 


CM 


CM 


CM 


CM 








H 


O 


O 


O 


C 5 


O 


O 


O 


O 


O 


CD 


O 


CD 


O 


CD 


CD 


CD 


O 


O 


O 


O 


O 


O 


O 


CD 


CD 


0 . 

0 . 


O 


O 


O 


O 


O 


O O 


O 


CD O CD 


O 


_J 


_J 


CM 


PD 


CM 


CM 


nO 


PD 


IP 


CM 


LP 


LP 


CM 


H 


ao 


w~i 


uv 


PD 


NO 


IP 


O 


PD 


y 


CM 


O' 


LP 


CD 


y 


NO 


O' 


O 


tH 


tH 


tH 


CJ 


O' ® 


nO 


J- C\J 


O 


X 


y 


tH 


® 


y tH 


PD 


IP X ® O' 


O 


0 


tH 


*H 


cr 


X 


LP 


-J 


PD 


ro 


PD 


>y 


X 


NO 


03 


CD 


CO 


CO 


X 


nO 


IP 


fD 


tH 


O' 


nO 


y 


CM 


O' NO 


ID 


tH 


CO 


IP 


CM 


O' uv 


CM 


O' 


vO PD 


O 


NO 


ro 


O 


NO 


PD O 


PD 


NO O' X 


uv 


!> 


2: 


03 


NO 


03 


X 


ao 


cr 


O 


T -1 


CM 


PD 


PD 


O 


PD 


O 


X 


y 


tH 


ao 


uv 


CM O' 


UV 


CM 


O' 


nO 


CM O' 


nO 


PD 


O' vO 


fD 


a* no 


PD O' 


nO PD 


O 


NO 


PD 


O 


vO 


PD O 


PD 


NO O' PD 


NO 




X 


y 


* 2 - 


J- 


J- 


J- 


-y 


IP 


IP 


IP 


IP 


IP 










































































-J 


0 


0 


O 


CD 


CD 


0 


O 


O 


O 


O 


O 


co O' 




CM 


y 


NO 


X 


O' 


tH 


CM 


y 


NO 


X 


O' 


*-4 


CM 


y 


NO 


X O' 


tH 


CM 


y 


nO 


X 


O' tH 


PD 


y 


NO 


CD 


O' 


tH PD 


nO O' X 43 O' 




























CM 


CM 


fD 


PD 


PD 


PD 


PD 


PD 


y 


y 


y 


y 


y 


y 


uv uv 


uv 


uv uv IP 


NO 


NO 


NO 


NO 


NO 


NO X 


X 


X 


X 


X 


X 


co ao 


® 


® O' O' O' 






0 


0 


O 


O 


O 


0 


CD 


O 


O 


CD 


O 








































































z 


-J 


0 


X 


IP 


«y 


PD 


0 


nO 


PD 


0 ,y 


«y uv x 


O 


O 


y 


^4 


OD UV 


0 


PD 




n£ 


uv 


0 


«3 


0 


vO LP s£) 


tH 


® X 


ao 


tH 


uv x 


0 O' 0 X 


uv 


O' uv 


® 


IP LP 00 PD 


UJ 


X 


® X 


H IP cr 


PD 


03 


ao 


O 






nO 0 


*4 IP 


a 


03 


y cm cm pd y 


nO 


<D 


w UV 


« 


PD 


X 


CM X 


PD 


® 


y 


a 


X 


PD O X 


PD 


tH ® LP 


X O uv tH X PD 


0 


a 


-J 


NO 


03 


PD 


O' 


IP 


CM 


co 


-y 




X 


03 


LP 


•y 


CM 


CD 


O' 


X 


nO 


UV 


y 


PD 


CM 


tH 


0 


0 


O' 


CO 


<D 


X 


X 


NO 


NO 


uv 


uv 


LP 


y 


y y 


PD 


PD 


ro 


X 


XXX 


tH 


tH O O 


0 




0 
























PD 


PD 


PD 


PD 


CM CM CM CM 


CM CM 


CM 


CM 


CM 


CM 






tH 


tH 


tH 




tH 


tH 


tH 


tH 


tH 


tH tH 


tH 


tH 


tH 


tH 


tH 


tH tH 


tH 


tH H H 


tH 




X 


tH 


tH 


tH 


CD 


O 


CD 


cr cr cr 


CO 


ao 


CD 


O 


O 


O 


CD 


O 


O 


CD 


O 


O 


O 


O 


O 


CD 


0 


0 


O 


O 


CD 


O 


CD 


O 


O 


O 


O 


O O 


CD 


O 


O 


O 


0 


O O 


O 


O CD CD 


O 






CM 


CM 


CM CM CM CM 






*4 






































































































O 


O 


O 


O 


e 


O 


O 


O 


e 


O 


O 


O 


O 


O 


0 


0 


O 


O 


O 




O 


O 


CD 


O 


O 


0 

a 


CD 


O 


e 


0 


0 


O O 


CD 


O O O 


e 


p- 


*: 


X 


O 


0 


O 


O 


O 


0 


0 


O 


O 


PD 


PD 


O 


O 


O 


0 


O 


CD 


CD 


0 


O 


O 


CD 


O 


CD 


0 


0 


O 


O 


O 


O 


O 


O 


O 


O 


O 


e 0 


O 


a 


e 


O 


0 


0 e 


O 


O O O 


0 






O 


O 


0 


O 


O 


O 


CD 


0 


O 


O 






O 


O 


O 


0 


CD 


O 


O 


0 


O 


O 


O 


O 


O 


CD 


0 


O 


® 


O 


O 


O 


O 


O 


O 


CD 


0 0 


O 


0 


0 


O 


0 


0 0 


O 


O O O 


0 




CD 


O' 0 


O 


O 


O 


O 


O 


0 


O 


CD 


S 




O 


O 


O 


0 


O 


CD 


O 


0 


O 


O 


O 


O 


O 


O 


0 


O 


O 


O 


CD 


O 


O 


O 


O 


O 


0 0 


O 


0 


0 


O 


a 


0 0 


O 


O CD O 


0 




O 


O' 


O 


0 


CD 


a 


CD 


O 


0 


O 


O 


CM 


CM 


O 


O 


O 


0 


O 


O 


O 


0 


O 


O 


O 


O 


O 


O 


0 


CD 


O 


O 


O 


O 


O 


O 


O 


O 


0 0 


O 


0 


0 


O 


0 


0 0 


O 


OOO 


0 






X) 


cr 


0 


tH 


CM 


PD 


-y 


NT' 


03 


X 


X 


X 




cr 


CD 


H 


CM 


PD 


y 


uv 


NO 


X 


ao 


O' 


O 


tH 


CM 


PD 


y 


uv 


NO 


X 


® 


O' 


CD 


tH 


X PD 


y 


lp 


NO 


X 


® 


O' 0 


X 


y no ao 


CD 










tH 






tH 




H 










▼-< 




CM 


CM 


CM 


CM 


(M 


CM 


CM 


CM 


CM 


CM 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


PD 


fD 


PD 


y 


y 


y y 


y 


y 


y 


y 


y 


y uv 


LP 


UV LP uv 


nO 









268 



427 



Table 27. Thermophysical properties along isobars (Continued) 

ETHANE ISOBAR AT P = 1.0 BAR 






<s» 



3 


o 


9-4 


© 


© 


CT' 


CD 


© 


-S’ 


vD 


9-4 


x 


y 


CO 


CO 


CM 


<o 


in 


9-4 


© 


CM 


x 


ro 


OO 


ro 


00 


CM 


x 


9-4 


© 


CD 


in 


O' 


ro 


x 


9-4 


in 


O' 


ro 


X 


9—4 


in 


CO 


CM 


© 


O' 


ro 


o 


x 


y 


9—4 


CC 




LU 


© 


ro 




o 


9-4 


9-4 


CM 


© 


in 


© 


GO 


y 


y 


in 


in 


© 


X 


X 


CO 


CO 


O' 


O' 


o 


o 


9-4 


9-4 


CM 


CM 


ro 


ro 


ro 


y 


y 


in 


in 


in 


vD 


© 


x 


x 


x 


60 


CO 


GO 


CP 


CD 


CD 


9—4 


CM 


CM 




c r 


CM 


CM 


9-4 


o 


O' 


OO 


X 


© 


in 


y 


© 


PO 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


-S' 


y 


-J- 


J- 


J- 




x 

Y 


CM 


CM 


CM 


CM 


■*—4 


■H 


9-4 


t 




rH 


9-4 


9-4 














































































U- 


DC 


O 


O 


© 


ro 


O 


© 


CM 


© 


9-4 


CD 


CM 


ro 


CM 


9—4 


O' 


9-4 


y 


in 


ro 


CO 


CO 


ro 


CM 


© 


CM 


CM 


y 


x 


ro 


o 


co 


Vi) 


in 


y 


ro 


9-4 


O' 


X 


ro 


O' 


ro 


x 


O' 


O' 


O' 


J- 


ro 


x 


in 


O' 


o 


V. 


© 


IT* 


© 


so 


9-4 


y 


O' 


in 


CM 


O 


9-4 


© 


O' 


9-4 


in 


CM 


O' 


x 


© 


in 


in 


© 


x 


OO 


O 


CM 


y 


© 


O' 


CM 


y 


x 


CD 


ro 


© 


O' 


9-4 


y 


x 


O' 


CM 


y 


© 


00 


o 


-S’ 


x 


O' 


9-4 


CM 




O 


© 


OO 


OO 


CO 


CT 


o' 


o' 


o 


*4 


CM 


© 


ro 


CM 


ro 


ro 


y 


-5- 


in 


© 


x 


CO 


O' o 


9-4 ro 


y in 


© 


x 


O' CD 


9*4 


ro 


y in 


© 


GO 


O' o 


9-4 


ro 


y 


in 


© 


OO 


O 


CM 


y 


x 


O' 






vD 


vD 


03 


vO 


vD 


© 


vD 


x 


X 


x 


x 


X 


■2T 


y 


y 


y 


2 S* 


2T 


y 


y 


y 


y 


in 


in 


in 


in 


in 


in 


in 


in 


© 


© 


© 


© 


© 


© 


© 


© 


X 


x 


x 


x 


x 


x 


x 


GO 


GO 


cn 


CO 


GO 



\ 



2* 




X 


X 


© 


vO 


CM 


vD 


CM 


CM 


X 


O' 


O' 


CM 




ro 


CD 


Vi) 


O' 


O' 


y 


y 


O' 


CO 




X 


© 


© 




X 


y 


CM 




© 


© 


© 


© 


O' 


X 


in 


CM 




© 


X 


O' 


o 


o 


© 


© 


o 


CP 


CM 


o 


X 


o 


o 


O' 


X 


in 


rj 


o 


GO 


vD 


in 


in 


vD 


y 


X 


y 


rl 


O' 


CO 


CO 


CO 


CD 


O' 




CM 


y 


© 


O' 




y 


X 


© 


© 


© 


O' 


CM 


y 


X 


© 


© 


in 


® 


o 


CM 


in 


X 


© 


© 


© 


X 


O' 




o 


J- 


J- 


ro 


ro 


ro 


ro 


ro 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


y 


in 


in 


vD 


X 


CO 


O' 


o 


CM 


ro 


y 


in 


© 


© 


O' 


CD 


CM 


© 


y 


in 


X 


® 


O' 


v-i 


CM 


© 


y 


© 


X 


® 


CP 


CM 


y 


© 


© 


o 




r 

X 


J- 


y 


J- 






J- 


s 


«y 


-y 


-y 


y 


y 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


y 


y 


in 


in 


in 


m 


in 


in 


in 


in 


© 


© 


© 


© 


© 


© 


© 


© 


X 


X 


X 


X 


© 


to 




9-4 


v£> 


O' 


O' 


O' 


ro 


X 


CD 


CM 


y 


CM 




Vi) 


CM 


m 


vD 


O' 


y 


CD 


CM 


CO 


CD 


m 


m 


CM 


CD 


vs 


in 


© 


y 


O' 


y 


© 


CM 




y 


CM 




© 


X 


CM 






y 


© 


a) 


X 


X 


X 


X 




X 


o 


© 


co 


ro 


ro 


CO 


J- 


O' 


vi> 


CD 


in 


O' 


Vi) 


X 


O' 


ro 


ED 


CM 


O' 




O' 


in 


X 


X 


in 




in 


X 


© 


© 


© 


y 


o 


© 


© 


y 


X 


O' 


O 


o 


© 


O' 


X 


y 




vl 


O' 


y 


© 


in 




-J 


in 


in 


X 


ro 


ro 


CO 


CD 




-y 


CD 


O' 


VO 


vO 


O' 




ro 


y 


y 


ro 


ro 


▼-* 


o 


CO 


© 


y 


CM 


O' 


© 


© 


CD 


X 


y 




X 


y 


o 


© 


CM 


O' 


in 


■cH 


© 


CM 


® 


y 


in 


in 


© 


© 


© 




X 


© 


© 


ro 


o 


i£> 




X 




vD 


O 


y 


Vi) 


vD 


X 


CD 


CM 


y 


vD 


CD 


o 


CM 


y 


in 


X 


O' 


<*H 


CM 


y 


© 


© 


O' 




© 


y 


© 


© 


CP 




CM 


y 


© 


X 


O' 


© 


CM 


in 


© 




y 


X 




X 


X 


X 


00 


O' 


O' 


O 


O 


■v-1 




CM 


CM 


CM 


o 


CD 












CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


© 


© 


© 


y 


y 


y 


y 


y 


y 


m 


in 


m 


m 


m 


m 


© 


© 


© 


© 


X 


X 


X 




-J 
















vH 






▼H 




CM 


CM 


CM 


CM 


IM 


CM 


CM 


CM 


CM 


CM 


IM 


CM 


CM 


IM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


IM 


CM 


CM 


CM 


CM 


CM 


CM 


VM 


CM 


VM 


CM 


I 


J 


vO 


y 


H 


ro 


O' 


vO 




-y 


O' 


CM 


O 


X 


vO 


O 


y 


ro 


O' 


CM 




H 


<*> 


Q0 


vO 


in 


O' 




y 


O' 


© 


X 


^-4 


© 


in 


in 


y 


+4 


X 




CM 


GO 


© 


© 


y 


© 


© 


© 


X 


O' 


© 


O' 




2~ 


ro 


O' 


in 


CM 




-y 




ro 




CD 


y 


CD 


y 


O' 


(M 




Vi) 


O 


CM 


ro 


ro 


y 


Vi) 


O' 


ro 


CD 


© 


© 


CM 


X 


© 


X 




© 


© 




© 


in 


© 


O' 


© 


y 


in 


© 


© 


© 


© 


X 


O' 


© 




X 


CD 


CD 


O' 


CO 


X 


vD 


vO 


vD 


X 


co 




ro 


in 


O' 


ro 


X 


*-} 


X 


PO 


CD 


CD 


x 


X 


® 




in 


O' 


in 


© 






CM 


in 


© 


© 


O 


X 


© 


© 


X 


O 


y 


CP 


in 


© 




in 


r\j 


y 






o 


ro 


ro 


O' 


ID 


ro 


CD 


X 


-y 




co 


vD 


CP 


Vi) 


CD 


ro 


X 


CM 


vO 




vD 


CD 


in 


CD 


in 


tH 


© 




X 


© 


CP 


in 




X 


© 


CD 


X 


© 


CD 


X 


y 


CM 


CP 


© 


y 


CM 


CD 


y 




© 


© 






U' 


in 


in 


vD 


X 


GU 


a? 


O' 


CD 


CD 


•sH 




vO 


ID 


X 


X 


CD 


GO 


O' 


O' 


CD 


CD 






CM 


CM 


ro 


ro 


y 


y 


in 


© 


© 


X 


© 


© 


O' 


© 


CD 


v-i 


CM 


CM 


© 


y 


in 


© 


cu 


© 


r-i 


© 


























•H 




CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


© 


© 


© 


© 


© 


© 


© 


© 


© 


y 


y 


y 


y 


y 


y 


y 


y 


y 


y 


in 


m 


in 


LU 


_J 


CD 


CO 


J- 


in 


CD 


X 




ro 


vD 


GO 


in 


CM 




CM 


CD 


X 


CD 


y 


X 


y 


CM 


y 


Vi) 


CD 


▼H 




CM 


X 


© 


© 


CM 


© 


o 


CM 


in 


© 


© 


y 


O' 


© 


© 


X 


o 


© 




X 


© 


CM 


O' 


O' 




X 


O' 


y 


CD 


X 


X 


O' 


i£> 


0D 


vD 


CM 


CD 


in 


CM 


vD 




ro 


ro 


CD 


VD 


CM 


CD 


y 




CD 


CD 


CM 


© 


CM 




© 


© 


in 


© 


C T 


in 


y 


© 




© 


CP 




© 


y 


© 


m 


© 


© 


o> 


© 






X 


O' 


o 


O' 


X 


vD 


in 


in 


in 


vD 


CD 


CD 


CM 


X 


vD 




vO 


CM 


O' 


vD 


in 


y 


m 


X 


C3 


y 


O' 


in 


PO 


CM 


CVJ 


© 


© 


o 


in 


IM 


© 


O' 


© 




y 


O' 


y 




O' 


© 


© 


© 


X 


© 


© 






CM 


ro 


o* 


Vi) 


ro 


CD 


X 


-y 


vH 


GO 


Vi) 


O' 


▼H 


ro 


X 


o 


y 


X 




m 


O' 


ro 


X 


CM 


© 


CD 


m 


CD 


in 


CD 


m 


o 


© 




X 


© 


© 


in 


r-i 


X 


© 


O 


X 


© 


© 


in 


O' 


y 


© 


© 






in 


if* 


in 


vO 


X 


CO 


CO 


O' 


CD 


CD 


tH 


vH 


in 


in 


in 


vD 


vO 


vf) 


X 


X 


X 


© 


00 


O' 


O' 


CD 


CD 


v-J 




CM 


CM 


© 


© 


y 


y 


m 


in 


© 


X 


X 


© 


CP 


O' 


CD 




CM 


© 


in 


X 


© 






























CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


y 


y 


y 


j 


y 


y 


y 


O 


—J 


9-4 


v£> 


CM 


o 


X 




ro 


CP 


▼H 




CM 


■r-V 


CM 






y 


ro 


ro 


in 


▼H 




v£> 


© 


X 


ro 


X 


O' 


O' 


X 


y 


CD 


in 


© 


▼-I 


© 


in 


© 


© 


in 


in 


© 


CM 


CD 


X 


y 


© 


▼H 


© 


y 


y 


o 


o 


J- 


ro 


CM 


ro 


O' 


J- 


in 


v£> 


■y 


CD 


y 


O' 


in 


O' 


CM 


ro 


ro 


CM 


CD 


GO 


U' 




X 


ro 


O' 


y 


O' 


y 


O' 


y 


O' 


© 


X 


CM 


© 


o 


y 


© 


CM 


© 


O 


y 


© 




in 


CM 


© 


X 


y 




X 


X 


vD 


X 


in 


vD 




O' 


CD 


CD 


ro 


ro 


y 


ro 


ro 


CD 


OO 


X 


vO 


in 


y 


CM 




O 


© 


X 


in 


y 


CM 




O' 


GO 


© 


in 


© 


CM 


© 


O' 


X 


in 


y 


CM 




O' 


X 


© 


y 




© 


y 




© 


D 


—J 


CM 


9 H 






CD 


vO 


O 


O' 


ro 


CM 


in 


vD 


y 


y 


in 


v£> 


X 


CO 


O' 


o 




CM 


CM 


ro 


y 


in 


© 


X 


X 


® 


O' 


© 




CM 


© 


© 


y 


in 


© 


X 


© 


© 


O' 


CD 




© 


y 


© 


© 


O' 




0 


vi) 


© 


Vi) 


X 


O' 




in 


SD 


ro 


CO 


ro 


>5-C 


«r-< 








'H 






CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


y 


y 


y 


y 


y 


y 


y 




(X 


O' 


O' 


CO 


X 


vj0 


vD 


in 


-y 


y 


ro 


ro 


ro 















































































CD 



b- 


* 


X 


in 


© 


y 


X 


y 


CM 


IT. 


© 


in 


CM 


© 


© 


CM 




© 


O' 


© 


O' 


in 


© 


CM 


o 


O' 


X 


© 


© 


O' 


© 


O' 


© 


O' 


© 


© 


© 


© 


© 


CM 


© 


© 


X 


CD 


© 


CM 


o 


CM 


CD 


© 


9-4 


© 


CJ 


X 


y 


x 


O' 


O' 


X 


© 


© 


y 


X 


X 


© 


© 


O 


O' 


© 


X 


9H 


O' 


© 


© 


© 


© 


y 


© 


© 


X 


Vi) 


Vi) 


X 


© 


o 


CM 


in 


© 


CM 


in 


O' 


y 


© 


© 


© 


y 


O' 


© 


9-4 


© 


VD 


O' 


ro 


X 


X. 


a: 


© 


CM 


X 


© 


© 


in 


CM 




CP 


© 


O 


CM 


© 


in 


CM 


O' 


X 


y 


CM 


9-4 


O' 


X 


© 


in 


© 


CM 


9H 


O 


O' 


© 


© 


X 


© 


in 


m 


y 


© 


© 


CM 


CM 


9-4 


9-4 


CD 


O 


© 


O' 


© 


X 


X 


© 


LL 


«a 


O 


CD 


o 


X 


O' 


in 


y 


in 


X 


CM 


© 


CM 


in 


in 


in 


y 


y 


y 


y 


y 




© 


© 


© 


© 


© 


© 


© 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


9-4 


9-1 


9*4 


9— 1 


9-4 


U 


CD 


























© 


© 


© 


© 


o 


© 


© 


© 


© 


o 


© 


o 


o 


o 


O 


© 


O 


O 


© 


CD 


o 


o 


© 


O 


O 


CD 


© 


CD 


CD 


CD 


© 


O 


O 


CD 


© 


CD 


CD 


CD 






in 


in 




X 


y 


CM 


© 


© 


© 


in 


© 


© 


CD 


o 


CD 


o 


o 


CD 


© 


© 


© 


© 


© 


o 


o 


o 


© 


o 


CD 


CD 


O 


© 


CD 


CD 


© 


CD 


CD 


O 


CD 


CD 


O 


© 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


© 






© 


© 


© 


CM 


CM 


CM 


CM 






▼H 






o 


© 


CD 


© 


o 


O 


CD 


CD 


© 


o 


© 


o 


o 


o 


O 


© 


CD 


© 


o 


CD 


CD 


CD 


© 


CD 


o 


© 


CD 


© 


CD 


O 


CD 


© 


CD 


CD 


CD 


© 


CD 


O 


-J 


-J 


CM 


© 




CM 


© 


© 


in 


CM 


y 


y 


© 


© 


in 


® 


© 


© 


O' 


O' 


y 


© 


© 


y 


© in 


© 


o 


CM 


CM 


CM 


9-4 


O' 


X 


in 


CM 


O' 


in 


9-4 


X 


© 


® 


© 


© 


© 


® 


CM 


9-4 


O' 


X 


y 




(_> 


o 






O' 


X 


© 


y 


© 


© 


© 


y 


© 


q—1 


CM 


CM 


© 


X 


© 


O' 


in 


O 


in 


o 


in 


O' 


© 


GO 


CM 


© 


O 


y x 


9-4 


in 


CP 


CM 


© 


CD 


© 


X 


© 


y 


X 


9-4 


y 


® 


© 


9-4 


GO 


© 


CM 


> 


z 


© 


© 


© 


X 


© 


CP 


o 




CM 


© 


y 


in 


GO 


© 


CM 


o 


O' 


X 


Vi) 


in 


© 


CM 


© 


© 


X 


in 


y 


CM 


9-4 


O' x 


© 


y 


CM 


9-4 


O' 


© 


© 


y 


© 


9-4 O' 


© 


© 


y 


9-4 


® 


y 


9-4 


© 




X 


y 


y 


y 


y 


y 


y 


in 


in 


in 


in 


in 


cn 
















































































-J 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


y 


in 


© 


X 


X 


© 


0> 


© 


9-V 


CM 


© © 


y 


in 


vO 


X 


© 


© 


O' 


© 


9-4 


CM 


© 


© 


y 


in 


© 


X 


© 


© 


O' 


CD 


9-4 


© 


y 


© 


© 


0 1 
































s-i 


9-4 




9-1 


9«^ 


9-4 


CM 


CM CM 


CM 


CM 


CM CM CM 


CM 


CM 


CM 


CM 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


y 


y 


y 


y 


y 


y 


y 






fcD 


© 


o 


o 


© 


© 


© 


© 


o 


© 


o 


© 














































































z 


© 


O 


X 


in 


in 


y 


o 


CM X 


y 


CM X 


© 


m 


y 


<H © 


y 


o 


© X 


cm y 


® m 


CM O' m 


© 


© 


in 


© 


© 


O' X 


a> ■* n 


© 


CM O 


CM 


© 


CM 


o 


9-4 


X 


■*-5 


9-4 


X 


X 


© 


X 


GO X 


4 


in 


O' © 


© 


© 


o 




o 


CM 


y 


CM 


x in 


X 


€VI 




X 


© 


O 


© 


GO 


y o 


© 


vo m in m 


© 


X O' 


9-4 y x 


© 


y 


© 


CM 


© 




© 


9-4 


9-4 


© 


© 


X 


© 


o 


-J 


© 


© 


© 


CP 


© 


CM 


GO 


y 




X 


© 




X 


in 


9-4 


© 


in 


© 


o 


© 


© 


in 


© 


9-4 


© 


O' x 


© 


in 


y 


© 


CM 


9-4 


© 


o 


CP co 


© 


X 


© 


© 


© 


© 


y 


y 


© 


CM 


9-4 


CD 


o 




o 


























© 


© 


© 


in 


in 


m 


in 


y 


y 


y 


y y y © 


© 


© 


© 


© 


© 


© 


© 


© 


© 


CM 


CM 


CM CM CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM CM 


CM 




Y 


tH 


•r-V 




CD 


CD 


O 


O' O' 


O' © 


© 


© 


© 


© 


O 


© 


CD 


o 


a 


a 


© 


o 


© 


O 


o 


© 


© 


© 


© 


o 


o 


O 


o 


© 


© 


o 


o 


© 


© 


o 


CD 


o 


© 


o 


o 


CD 


© 


CD 


CD 


O 






CM 


CM 


CM CM CM CM 






















































































































© 


o 


O 


© 


© 


© 


o 


o 


o 


© 


© 


o 


© 


o 


© 


CD 


© 


o 


© 


© 


© 


© 


© 


o 


o 


o 


© 


© 


O 


o 


© 


o 


o 


CD 


© 


© 


O 


© 


X 




in 


© 


o 


CD 


o 


© 


CD 


© 


© 


© 


© 


© 


© 


o 


© 


© 


CD 


o 


o 


o 


© 


o 


o 


o 


o 


© 


© 


© 


o 


o 


o 


o 


© 


O 


o 


o 


o 


© 


© 


o 


o 


o 


© 


O 


o 


CD 


O 


© 


© 


o 






t-i 


© 


o 


© 


CD 


© 


o 


O 


© 


© 


O 






o 


o 


© 


© 


© 


© 


© 


© 


o 


o 


© 


o 


o 


o 


© 


o 


o 


© 


o 


o 


o 


CD 


o 


o 


o 


o 


o 


o 


o 


CD 


Q 


© 


CD 


o 


a 


o 


CD 




DEG 


O' 


o 


o 


O 


o 


o 


o 


o 


o 


© 


© 


© 


© 


o 


o 


© 


© 


o 


© 


o 


o 


o 


© 


© 


© 


© 


© 


© 


© 


o 


o 


© 


© 


© 


© 


o 


o 


© 


© 


© 


o 


o 


© 


O 


© 


CD 


CD 


o 


o 


CD 




O' 


o 


o 


O 


© 


© 


o 


o 


© 


O 


© 


y 


y 


o 


© 


© 


© 


o 


© 


© 


© 


© 


© 


o 


© 


o 


© 


© 


© 


o 


© 


© 


© 


© 


o 


o 


o 


CD 


o 


CD 


© 


© 


O 


CD 


CD 


CD 


O 


o 


CD 


O 






© 


O' 


CD 




CM 


m 


y 


in 


© 


X 


© 


© 


© 


O' 


CD 


9—1 


CM 


© 


y 


in 


© 


X 


© 


O' 


CD 


9-4 


CVJ 


© 


y 


in 


© 


X 


© 


O' 


CD 


9-4 


CM 


© 


y 


in 


© 


X 


© 


O' 


CD 


CM 


y 


© 


© 


© 










tH 










▼H 




-H 










CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© 


y 


y 


y 


y 


y 


y 


y 


y 


y 


y 


© 


© 


© 


© 


© 


© 



269 



T OEN VOL OP/CT OF/OD F H S CV CF W 

DEG K MOL/L L/MCL ESfi/K BAR-L/MOL J/MCL J/60L J/MCL/K J/MCL/K J/MOL/K M/SEC 

89.922 21.681 0.09612 35.0616 962.716 5299.2 5306.1 76.503 99.07 68.50 2231 




OJ -f 

ro HOHHf\JMLf\vO®o® 
(\jHoo'cosvou>^ropofvj 

OJ (\J(\JHrlr<THrHr(rlrHH 



OrOI'OO^WOHNrtOJS 

UNsDaUrHj’O'UNOJCD^-trosi) 



(oaocoo'CJ'cr'OHpvjwj-j 

iD^CvDvD'CvDKN-K-NKN 



P si) 
a O' 



-f ro 

-f J- 



kD (\ J 

P m 



ro ro 

-f jf 



sD (\J 
OJ CD 



ro ro 

-f «f 



c\j p 

OO si) 



oo ro 

J- J” 



<J\ CD 

in <d 



ro ro 

-f J- 



O' 00 

si) P 



OO Oo 

J- Of 



OO U' 
lO 00 
UN P 



st> ro 
P 0O 



IT. J- 

ro ro 
ro ro 



O X) 

CP CP 



CT O0 

P- -f 

CD CD 



rH P 
CD CD 



Us st> 
CD UN 

oo J- 



rH v£) 




<D sO 
CP J* 
p co 



CD JT 

ro oo 



oo so 
ro p 
cr p 



<D CO 

00 00 



-J- CD 



rH P 
•rH CO 

ro co 

LO in 



OO CD 



-T ro 

CD P 

su ro 
su p 



in ro 



s£> ro 
sD sO 
CD P 
CD CD 



00 vD 



UN ro 

sD P 
of -H 
CO CD 



CO v£> 



CO LO 

CO —4 
CO Si) 
CD rH 



CO CD 



CM -J 
in -h 
ro m 
no oo 



in cd 



i in 



P in ao O' -f of sD 



^oNtDU'insirHNjin 
otoo-voinininsooooj'o 
w «' id ro o n 4 rH cu si) ro us 
in in so o* «coo'ooh(\joo 



injroorooovDinooHiiNrH 

C'CTri(OJ^floa)rocoi[NN 

CDvDcOvO*HOdMinin'DinvD 

HHHosacoroMincMn 
vt) ajNO'Hincurocoroo'co 

crcosxxinj-^roroovjoo 



coou\rHHojNjnroroH 

Nootrocv^ooHroTi 

OOCOO'vOvD(\JtH 04 'HU>C\J 

OONU^a^finCDOOWjM 



ro H(\j^ro^H^^(\jocr 
’Ha'Nin 4 rororo 4 vCO'H 
lUvDNcoO'OHOorojlfivU 
j- -f-fj-j-minininu^inin 

aoooQooaoooa 

CD CD CD CD CD CD O CD CD CD O CD 



DsDsOin^roaOvDro<DCOsO 
P HlO(T'IOvDcDOHO(D(J' 
a)MCT'int\jcoj-HNroaDN 

• •»••••••••• 

HHOooCTO'crcOoONN 

NCUMNCNJHHHHHHH 



OOOOOCOOOOOJ 
CD CD CD O CD CD O O CD CD CD sO 
CD CD O CD CD O CD CD CD O CD rH 



OCDOOCDOCDOCDCDOO 

OHMIO^UUDNCDO'D' 



CD 


lD 


ro 


cp 


in 


rH 


sO 


OJ 


p 


CM 


r^ 


OJ 


lD 


"-I 


in 


o 


jf 


ao 


ro 






in 


CP 


ro 


r^ 




-f 


CO 


00 


vD 


CP 


ro 


O 


p 


Jf 


r 4 


co 


in 


in 


sO 


sO 


p 


co 


co 


CP 


CP 


CD 


CD 




T — 4 


OJ 


OJ 


ro 


ro 


ro 


of 


jf 


in 


in 


in 


sO 


vO 


r^ 


0 - 


P 


ao 


ao 


ao 


CP 


CD 


CD 




OJ 


OJ 


oo 


CM 


oo 


oo 


OJ 


00 


OO 


OJ 


CM 


iO 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


-f 


-f 


J- 


«f 


J- 


-f 


ro 


ao 


co 


CD 




CD 


si) 


P 


~f 


in 


CP 




p- 


CD 


J- 


CD 


p- 


in 


ro 


oo 


CD 


au 


U' 


CM 


ac 


J- 


ao 


▼-■( 


ro 


ro 


ro 


P 


Si) 


CD 


GO 




00 


-f 


CO 


-f 


00 


o 


CT 


ao 


ao 


0 ‘ 


Cj 




ro 


in 


ao 


o 


ro 


in 


CD 




J- 


r- 


CP 


OJ 


in 


r^ 


CD 


CM 


in 


P 


CP 




-f 


P 


CD 




ro 


J* 


-f 




in 


SO 


p 


P 


00 


CP 


o 


CM 


ro 


J- 


UN 


sO 


ao 


CP 


CD 




ro 


J- 


UN 


si) 


ao 


CP 


o 


0 J 


ro 




UN 


sO 


ao 


O 


OJ 


UN 


P 


CP 


or 


-f 


■f 


-T 


-f 


-f 


Jf 


-f 


-r 


in 


in 


in 


in 


in 


in 


UN 


in 


sO 


vO 


vO 


sD 


sD 


v£> 


sO 


vD 


0 - 




p 


p 


P 


P 


P 


CO 


ao 


an 


an 


cn 


in 


CD 


CT 


p 


ro 


s D 


-f 


p 


in 


k 


CM 


CD 




UN 


o 


Vi) 


J- 


ro 


CM 


CM 


CM 




CD 


CP 


vO 


ro 


(J 


-f 


ao 


O 






St) 


si) 


CD 


O' 


ro 


CM 


p 


ro 


rH 


o 


CP 


CP 


CP 


CD 


rH 


ro 


UN 


P> 


CP 


OJ 


Of 


r^ 


CD 


ro 


sO 


CP 


CM 


in 




CD 


ro 


in 


<D 


CD 


ro 


in 


P 


CD 


ro 


sO 


P 


O' 


«f 


J- 


in 


sO 


p 


p 


co 


CP 


r -4 


CM 


ro 




m 


si) 


au 


O' 


CD 


OJ 


ro 


J- 


UN 


P. 


ao 


CP 


"H 


OJ 


ro 


•f 


Si) 


P 


CO 


CP 


CM 


J- 


si) 


co 


CD 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


rf 


J" 


-J 




J- 




Of 


J- 


UN 


UN 


in 


UN 


m 


UN 


in 


m 


sO 


sD 


sO 


sO 


sO 


sO 


si) 


si) 


P 


P 


P 


p 


00 


ro 


J- 


00 


ro 


CD 


ro 


CD 


p 


CD 


ro 


CP 


ro 


si) 


CM 


CD 


«f 


in 


ro 


CD 


P. 


ro 


CD 


ao 


CD 


CP 




sD 


ro 


00 


«f 


aj 


Of 


-f 




J- 


U' 


P 


ro 


CD 


ao 


co 


00 


o 


J" 


ro 


CD 


ro 


ro 


CM 




ro 


s D 


p- 


s 


sD 


-f 


O 


sO 


»~4 


J- 


p- 


CP 


•H 


^-4 


4 


CD 


CO 


in 


0 J 


ro 


*— 4 


s D 


CD 


P 


co 


sO 


p 


CD 


CT 


O' 


CO 


0 - 


sO 


of 


CM 


CD 


p. 


in 


CM 


CP 


St) 


ro 


CD 


r- 


ro 


O 


sO 


00 


ao 


in 




P 


ro 


co 


-f 


CD 




CM 


OJ 


OJ 


OJ 


J- 


sO 


CO 


CD 


C\J 


-f 


vX 


ao 


CD 


CM 


J* 


sD 


r^ 


CP 




CM 


J- 


sO 


ao 


CP 


^4 


ro 


-f 


Vi) 


P- 


CP 




OJ 


J- 


UN 


p 


CP 


OJ 


UN 


ao 




-f 


CD 


o 


CD 


r -4 


rH 


rH 


rH 


rH 


00 


CM 


CM 


00 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


J- 


J- 




-J- 




Of 


in 


in 


UN 


in 


UN 


in 


sD 


si) 


sD 


P 


P 


OO 


l\J 


OO 


OO 


CM 


CM 


CM 


CM 


OO 


CM 


CM 


CM 


CM 


CM 


IM 


IM 


CM 


O 0 


00 


IM 


OJ 


CM 


IM 


IM 


CM 


CM 


CM 


OJ 


CM 


CM 


CM 


CM 


CM 


SM 


CM 


IM 


IM 


CO 


H 


J- 


CP 


H 


CD 


-f’ 




r^ 




s O 


P- 


in 


OJ 


O 


CM 


CP 


ro 


Jf 


ro 


O 


SD 


O 


0 J 




P- 


<D 




J" 


sO 


CT 


ro 


Of 


00 


vD 


UN 


UN 


CD 


CD 


-X 


UN 


J 1 


CD 


-T 


CO 




u^» 


CD 


Si) 


j- 


J- 


Si) 


o 


si) 


sO 


CD 


ro 




•H 


UN 




CD 


^4 


in 


CM 


■rH 


CM 


in 


*-« 


P 


O' 


P 


l> * 


J 


CM 


sO 


rH 


sD 


OJ 


CP 


sD 


9 f 


-S’ 


-T 


sD 


CD 


00 


P- 


ro 




CP 


CP 


o 


ro 


P- 


00 


C 


Vi) 


UN 


UN 


sD 


CP 


ro 


CO 


-f 


CM 


CD 


ro 


«_4 


ro 


CD 


CO 


OJ 


p 


rH 


SO 


CD 


in 


CD 


in 


CD 


in 


CD 


si) 


▼H 


p- 


ro 


au 


jt 




p. 


ro 


CD 


Si) 


ro 


CD 


P- 


-f 


▼H 


(P 


si) 


-f 


CM 


ao 


-f 


^4 


QJ 


Si) 


ID 


p 


p 


aj 


ao 


O' 


O' 


cd 


CD 


tH 




CM 


00 


ro 


ro 


of 


■S 


in 


SO 


so 


p- 


CD 


CD 


CP 


CD 


CD 


■»— 4 


CM 


CM 


ro 


-T 


U' 


v£> 


<o 


CD 


y-i 


ro 


00 


00 


00 


OO 


OO 


00 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


J- 


Of 


-f 


*f 


-f 




J- 


-f 


Of 


-f 


UN 


in 


UN 


CD 


00 




ro 


CT 


ao 


p 


J- 


OJ 


p~ 


J- 


in 


-T 


-f 


P- 


UN 


CP 


CD 


CP 




in 


-H 


sD 


CP 


CD 


CD 


OJ 


▼“4 


-f 


CP 


P 


J- 


J- 


<D 


in 


U' 


P 


OO 


CO 


in 


CD 


ao 


P 


in 


ro 




CP 


O' 


CD 


ro 


CD 


UN 


in 


r- 


ro 


CD 




UN 


OJ 




ro 


O' 


Si) 


r^ 


CD 


in 


OO 


CM 


Jf 


ro 


ao 


CP 


-T 


CM 


CO 


sO 


OJ 


ao 


in 


ro 


CM 


fM 


ro 


-S' 




fM 


P- 


ro 




CD 


CD 


00 


in 


CP 


C 7 




(P 


CD 


co 


CD 


ro 


ao 


ro 


CD 


CO 


P 


CP 


in 


sO 


OJ 


CM 


ro 


SO 


CD 


ro 


p 


rH 


UN 


O' 


ro 


p~ 


^-4 


Si> 


CD 


UN 


CD 


in 


CD 


UN 


CD 


U' 




p- 


CM 


co 


J 


r -4 


p- 


ro 


CD 


P 


ro 


CJ 


«f 


O- 


-f 


CD 


si) 


in 


UN 


sO 


sO 


sO 


P 


P 


p 


CO 


ao 


CP 


a> 


CD 


CD 




■*-4 


CM 


CM 


ro 


ro 


or 


J- 


in 


in 


sD 


0 - 


0 - 


ao 


CP 


CP 


o 


H 


CM 


ro 


in 


P 


ao 


CM 


Oo 


CM 


00 


CM 


00 


00 


00 


oo 


oo 


CM 


00 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


or 


J- 


-f 


J- 


-f 


a 


J- 


oo 


in 


cp 


00 


0 - 


CD 


00 


in 


H 




v£) 


r- 


J- 


OD 


O' 


co 


of 


<P 


fH 


CM 


CM 




co 


J- 


CD 


J- 


<D 




J- 


sD 


P 


ao 


ao 


V D 


r»D 


CP 


ro 


CO 


p 


ro 


CO 


CD 


00 


00 


rH 


o 


CO 


in 


CM 


CP 


in 


*-4 




ro 


CO 


Of 


CP 


or 


CP 


ro 


GO 


ro 


P- 


▼H 


SO 


CD 


of 


ao 


CM 


CD 


ou 


si) 


ro 




in 


ro 


ro 


00 


00 


H 


CD 


CP 


CO 


sD 


in 




CM 




CD 


D 


r^ 


in 




0 J 




CP 


CD 


Vi) 


in 


ro 


OJ 


CD 


CP 


P 


UN 


-f 


v -4 


p 


-f 


*-4 


ao 




in 


sO 


p 


ao 


O' 


CD 


CD 


H 


OJ 


ro 


J- 


UN 


vD 


r^ 


r^ 


CO 


CP 


CD 


*-4 


CM 


oo 


ro 


of 


in 


si) 


p 


ao 


ao 


CP 


O 


▼H 


ro 


-f 


si) 


CO 


O' 




*H 


rH 


rH 


rH 


rH 


oo 


CM 


CM 


00 


CM 


00 


CM 


00 


00 


00 


00 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


«f 


-J 


-f 


«f 


-f 




of 



si) 


CD CD 


in 


O 


UN 


ro 


O' 


CO 


P 


or 


sO 


ri 


CP 


P 


so CM 


P 


O' 


ao 


CM 


0 J 


P 


P 


CM 


CD 


OJ 


au 


sO au 


ro 


CD 


ro 


-f 


ro 


CP 


00 


■f 


^-4 ro 


^-4 


U 1 


OJ 


ro 


si) 


0 J 


CD 


CD 


t -4 


-f 


p 


CM 


ao U' 


00 


CD 


O' 


O' 


O' 


O' 


CD 


CM 


-f 


si) 


au 


rH -f 


au 


OJ 


CD 


O' 


CT 


U' 


rH 


in 


■*—4 <X) 


CM 


co 


in 


CM 


CP 


P 


in 


ro 


T-t 


O' 


p 


vO 


-f ro 


00 


r -4 


O' 


CO 


p 


sD 


sO 


UN 


-f 


ro 


0 J 


OJ rH 


CD 


CD 


<p 


p 


vt) 


U' 


UN 


CD 


au P 


P 


Vi) 


SD 


sD 


in 


U' 


in 


Us 


us 


-T 


~f 


-T 


of ~r 


-T 


-f 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro ro 


ro 


ro 


oo 


CM 


00 


IM 


l\J 


CD 


CD CD 


O 


O 


o 


CD 


CD 


O 


o 


CD 


CD 


O 


CD 


CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD CD 


o 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD CD 


o 


CD 


o 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CD 


O 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


ro 


SO 00 


H 


in 


in 


*— 4 


in 


P 


P 


UN 


▼-4 


P 


OJ 


UN 


ao cd 


OJ 


ro 


~f 


-f 


ro 


ro 


OJ 




CP 


CO 


sO 


ro rH 


CP 


V £) 


O 


-f 


P 


CD 


OJ 


CP 


si) si) 


in 


ro 


y-4 


(P 


so 


ro 


CD 


P 


Of 


CD 


P 


ro 


O' so 


CM 


OJ 


-f 


CD 


so 


OJ 


co 


~3 


CP 


in 


rH 


P ro 


SO 


-f 


Si) 


P 


au 


CD 


r-< 


t -4 


vi) CM 


co 


«f 


CD 


in 




P 


ro 


ao 


J- 


CD 


in 


▼H 


vO 00 


aO 


ro 


CP 


in 


CD 


sO 


rH 


P 


CM 


<XD 


-f 


cp in 


CD 


sO 


p 


au 


CP 


rH 


OJ 


CD 


CD t -4 


^4 


CM 


ro 


ro 


J- 


J 


UN 


Us 


sO 


P 


p 


au 


uj O' 


O' 


CD 


o 


▼H 


CM 


OJ 


ro 


ro 


*f 


JT 


UN 


US sO 


P 


P 


a) 


U' 


CD 


OO 


ro 




«H »™4 




y* 


H 




y* 


** 








W 


•H 




«-4 y* 


*"■4 


CM 


CM 


CM 


00 


CM 


0 J 


CM 


0 J 


CM 


CM 


CM CM 


00 


CM 


CM 


CM 


ro 


OJ 


ro 




sO a 


<© 


0 J 




CO 


CD 


vO 


ro 


O' 


00 


CD 


■r -4 


cr 


CO CNJ 


UN 


sO 


UN 


o 


CM 


O 


-f 


CM 


UN 


ro 


UN 


CD <js 


CM 


P 


p 


P 


P 


in 


rH 


^-4 


P ao 


ro 


-f 


CO 


UN 


vO 


ao 


ro 


CP 


ao 


CO 


O' 




-f CP of 


CD 


P 


UN 


ro 


OJ 




rH 


r -4 


0 J 


ro 


UN v£> 


CP 




p 


-f 


oo 


rH 


rH 


ao 


ro co 


-f 


CD 


v£) 


ro 


o 


P 


in 


00 


CD 


CO 


sD 


in 


ro 


o 


CP 


P 


sO 


in 


-f 


ro 


00 


rH 


CD 


CP 


ao P 


s D 


sO 


-f 


ro 


oo 


rH 


CD 


CP 


O' ao 


CO 


<o 


P 


P 


p 


vO 


vO 


sO 


sO 


in 


in 


UN 


UN UN 


UN 


J- 


-f 




-f 


«f 


J- 


rf 


-f 


-f 


ro 


ro ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


o 


CD o 


CD 


CD 


CD 


CD 


o 


o 


o 


CD 


CD 


CD 


CD 


CD 


CD O 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD O 


CD 


CD 


o 


CD 


CD 


CD 


CD 


-f 


<=> CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


O 


CD 


CD 


CD CD 


O 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


X) 


CD CD 


o 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


O CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


O CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


^4 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD O 


CD 


O 


O 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


00 


CD CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


O 


CD 


CD 


CD 


CD 


O CD 


CD 


CD 


CD 


O 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CP 


CD y-i 


CM 


ro 


-f 


UN 


sO 


P 


ao 


CP 


CD 


4 


OO 


ro 


-T UN 


s£) 


P 


ao 


O' 


CD 


r -4 


OO 


ro 


Jf 


UN 


vD 


P 30 


CP 


CD 


OJ 


-T 


sO 


CO 


CD 


^—4 


00 00 


CM 


CM 


OJ 


CM 


OJ 


CM 


OJ 


CM 


ro 


ro 


ro 


ro 


ro ro 


ro 


ro 


ro 


ro 


-f 


-f 


-f 


-J 


Of 


-f 


-T 


DT -f 


Of 


UN 


in 


UN 


in 


in 


JJ 













* 



•# 



270 



ETHANE ISOBAR AT P = 2.0 BAR 



<D 

2 

C 



C 

o 

u 



CuD 

c 

o 

oj 



</) 

<u 

£ 

<u 

a 

o 

Jh 



3 o 
UJ 
</) 



> ^ 
O V 



I ~J 

0 

1 



a _j 
o o 

\ £ 



H- * 
CJ 

V. c* 



o o 

> 2_ 



z -J 
LU V 

O _J 

o 

X 



H- * 



o 

UJ 

o 




rH 


CD 


LA 


CP 


O 


LA 


LA 


S 


tH 




LA 


OJ 


LA 


OJ 


ro 


o 


r^ 


ro 


O' 


LA 


o 


UJ 




<0 


tH 


U> 


O 


LA 


O' 


y 


aO 


0J 


UJ 


tH 


IA 


O' 


ro 


P- 


CD 


y 


CO 


OJ 


UJ 


O' 


r^ 


CD 


p- 




tH 


CO 


ro 


ro 


tH 


o 


«H 


tH 


OJ 


ro 


LA 


UJ 


CO 


o 


ro 


LA 


LA 


UJ 


UJ 


p. 


rw 


CO 


CT 


O' 


o 


CD 


H 


H 


OJ 


OJ 


OJ 


ro 


ro 


y 


J- 


LA 


LA 


IA 


U> 


U> 


K 




0. 


ao 


00 


CO 


O' 


CD 


CD 


tH 


0J 


OJ 


CM 


00 


tH 


o 


CT 


<30 




vD 


LA 


y- 


ro 


ro 


OJ 


OJ 


CM 


OJ 


OJ 


0J 


CM 


OJ 


OJ 


0J 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


J- 


y 


y 


•J 


J- 


CM 


CM 


<\J 


OJ 


tH 




tH 


H 


tH 


tH 


H 


tH 


tH 












































































O 


o 


ro 


ro 


O 


LA 


tH 


CP 


O 


UJ 


O 


LA 


UJ 


O' 


CD 


ro 


0D 


O' 


OJ 


IA 


UJ 


-J 


p- 


U' 


r^ 


ro 


OJ 


ro 


UJ 


tH 


0- 


y 


OJ 


O* 




LA 


0J 


<30 


J- 


O' 


ro 


LA 


r^ 


0- 


UJ 


o 


O' 


OJ 


o 


ro 


LA 


LA 


U) 


CO 


tH 


J- 


O' 


J- 


OJ 


O 


tH 


ro 


LA 


ro 


J- 


OJ 


o 


UJ 


y 


OJ 


tH 


tH 


tH 


OJ 


ro 


LA 


r^ 


O' 


tH 


J- 


vO 


O' 


0J 


y 


P- 


CD 


ro 


LA 


CO 


o 


ro 


LA 


p- 


O' 


tH 


IA 


p- 


CD 


0J 


ro 


CD 


00 




ao 


<P 


CP 


(A 


O 


«H 


OJ 


ro 


y 


LA 


LA 


LA 


LA 


U> 


U> 




ao 


O' 


O 


tH 


0J 


ro 


J- 


LA 


U> 


60 


O' 


o 


tH 


ro 


y 


LA 


K 


CO 


O' 


o 


0J 


ro 


y 


LA 


UJ 


CO 


O 


OJ 


LA 


P- 


O' 


UJ 


UJ 


UJ 


U> 


UJ 


U> 


U> 


P- 


p- 


0- 


p- 


r^ 




-3- 


y 


y 


y 


J* 


-5- 


S’ 


y 


LA 


IA 


LA 


LA 


LA 


LA 


LA 


IA 


LA 


vD 


UJ 


UJ 


UJ 


vD 


UJ 


UJ 


U> 


P- 


r^ 


p- 


r^ 






p- 


ao 


an 


ao 


CO 


CO 



r^ 




Jj 


r^ 


OJ 


r- 


ro 


0J 


ao 


CD 


CD 


O' 


J- 


LA 




j* 


v£> 


CD 


CD 


J- 


vD 


OJ 


ro 


r^ 


LA 


LA 


00 


ro 


O' K 


LA 


J- 


J- 


ro ro 




CD 


CD S 


o 


LA 


CP 




0J 


CM 


r^ 


r- 


<rH 


o 


ro 


CD 


CD 


O' 


r^ 


LA 


0J 


CD 


ao 


U> 


U> 


UJ 


vA 


<t) 


O' O vO 


ro 




° 


o 


CD 




CM 


ro 


LA 


N. 


O' 


0J 


J- N. 


CD 


ro 


a> 


O' CM 


LA 


00 


cd ro 


vO 


0O 


o 


ro 


LA 


r^ 


CD 


ro 


vA 


ao 


O' 


JT 


S' 


ro 


ro 


ro 


ro 


ro 


CM 


CM 


0J 


OJ 


CM 


OJ 


J- 


LA 


LA 


a> 


r^- 


CD 


O' 


o 




CM 


ro 


J- 


U' 


UJ 


ao 


O' O 


CM 


ro 


J- 


IA o- 


CD 


O' 


O CM 


ro 


S 


sV 




ao 


O' 


CM 


-T 


•A 


cu 


CD 


y 


y 


y 


J- 


J- 


y 


y 


J- 


y 


y 




S 




ro 


ro 


ro 


ro 


ro 


ro 


ro 


^ -3- 


^ j- 


s- 




^ LA 


LA 


LA 


LA 


LA LA 


LA 


LA 


vD s£) 


vD 


\D 


vD 


vO 


vD 


vD 


0- 


0- 


S- 




ao 



LA 


CC 






CD 


JT 


N- 


O 




ro 


o 


LA 




▼H 


J- 


ro 


LA 




O' 


tH 


tH 


j- 


UJ 


tH 


tH 


o 


o 


ro 


CD 


y 


UJ 


LA 


y 


ro 


0J 


tH 


0J 


LA 


O' 


LA 


ro 


ro 


LA 


o 


o*. 


CO 


o 


tH 


ro 


LA 


CD 


LA 


oe 


ro 


ro 


r- 


ro 


CO 


LA 


O' 


J* 


CM 


ao 


vA 




O' 


0J 


CD 


ao 


s- 


LA 


CM 


U) 


CO 


K 


y 


O' 


CM 


y 


y 


ro 


tH 


CO 


y 


O' 


ro 


UJ 


ao 


O' 


CD 


o 


O' 


N- 


LA 


tH 


CM 


tH 


u> 


CD 


N- 


LA 


LA 




ro 


ro 


ao 


o 


CO 




r- 


O' 


O' 


CD 


LA 


O' 


tH 


ro 


ro 


ro 


ro 


CM 


▼H 


O' 


N- 


LA 


ro 


CD 


ao 


LA 


0J 


O' 


UJ 


0J 


O' 


LA 


CM 


<30 


y 


CD 


r*- 


ro 


CO 


y 


CD 


UJ 


r^ 


CD 


CO 


<XJ 


ao 


A 


vA 


ro 


o 


UJ 






tH 


UJ 


o 


J- 


ao 


OJ 


ro 


ro 


UJ 




o 


CM 


-y 


vA 


CO 


cr* 


tH 


ro 


IA 


r- 


00 


CD 


0J 


ro 


LA 


r^ 


ao 


CD 


OJ 


ro 


LA 


N- 


ao 


o 


tH 


ro 


LA 


u> 


CP 


OJ 


LA 


<30 


tH 




K 


© 


O' 


O' 


CD 


o 


<7-1 


T~< 


(M 


CM 


CM 


ro 


o 


CD 


a 


CD 


tH 


tH 


tH 


tH 


tH 


tH 


CM 


CM 


CM 


OJ 


0J 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


LA 


LA 


LA 


LA 


LA 


LA 


UJ 


UJ 


UJ 


N- 














V— 1 








tH 


tH 




OJ 


CM 


CM 


0J 


CM 


CM 


CM 


OJ 


OJ 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


OJ 


CM 


OJ 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


OJ 


CM 


CM 


CM 


CM 


CM 


IM 


vA 


S 


O' 


CM 


r^ 


s- 






Jf 


UJ 


ro 


ro 


CM 


tH 


CM 


O' 


tH 


UJ 


CD 


tH 


CD 


■y 


CO 




<© 


CM 


ro 


LA 


O' 


ao 


tH 


OJ 


O' 


y 


K 


CO 


u> 


tH 


0J 


O' 


O' 


y 


CD 




y 


OJ 


ro 


UJ 


O' 


IA 


ao 


ro 


ao 


UJ 


LA 


at) 


LA 


r^- 


LA 




S'- 


-y 


ao 


CO 


O 


«y 


ro 


UJ 


r^ 


LA 


OJ 


ao 


J- 


tH 


O' 


O' 


CD 


ro 


CD 


UJ 


Of 


CD 


LA 


y 


LA 


O' 


UJ 


UJ 


ao 


0J 


O' 


CP 


tH 


y 


CD 


r- 


a 


CD 


CD 


UJ 


CD 




O' 


ao 


r^ 


vA 


vD 


U) 


r^ 


O' 




LA 


U) 


tH 


CD 


LA 


tH 


r^ 


-y 


0J 


tH 


CD 


tH 


ro 


LA 


O' 


LA 


tH 


CD 


o- 


r-. 


O' 


tH 


LA 


CD 


u> 


y 


ro 


ro 


LA 


N- 


tH 


r^ 


ro 


tH 


O' 


ro 


CD 


ro 


O' 


ro 


ro 


O' 


vl) 


ro 


CD 


r*- 


j- 




CO 


UJ 


ro 


O' 


tH 


OJ 


UJ 




LA 


CD 


LA 


CD 


LA 


CD 


LA 


CD 


LA 


tH 


r- 


CM 


ao 


y 


CD 


K- 


ro 


CD 


UJ 


ro 


CD 


r^ 


y 


tH 


CP 


UJ 


y 


CM 


o- 


y 


tH 


CD 


LA 


U> 


UD 


IA 


OJ 




CD 


CO 


O' 


CD 


CD 




CM 


OJ 


r^ 


N- 


r^ 


CD 


a; 


O' 


O' 


CD 


CD 


tH 


tH 


CM 


CM 


ro 


ro 


y 


y 


LA 


u> 


UJ 


r^ 


<30 


co 


O' 


CD 


CD 


tH 


CM 


OJ 


ro 


-j 


U' 


UJ 


ao 


CD 


tH 


ro 






















•H 




»H 


CM 


CM 


0J 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


y 


y 


y 


y 


IA 


LA 


LA 


ro 




vA 


U) 


CD 


LA 


▼H 


CD 


O' 


CP 


ro 


OJ 


ao 


<A 


ao 


-y 


o 


tH 


O' 


ro 


O' 


LA 


LA 


LA 


N- 


0- 


UJ 


UJ 


tH 


OJ 


O' 


y 


N. 


OD 


O' 


r- 


y 


O' 


O' 


UJ 


CD 


ro 


tH 


w 


CD 


ro 






y 


ao 


CP 


-I* 


O' 


U) 


UJ 


CD 


LA 


U) 


-y 


CD 


u> 


ro 


U) 


r^ 


OJ 


LA 


ro 


r^ 


CD 


O' 


CD 


CD 


<u 


O' 


^4 


LA 


tH 


O' 


CD 


ro 


0D 


a- 


ao 


OJ 


O' 


O' 


OJ 


a- 


LA 


UJ 


CP 


LA 


ro 


r*D 


IA 


y 


CD 


tH 


UJ 


y 


O' 


CD 


ao 


0- 


<A 


LA 


LA 


LA 


UJ 


CO 


o 


-y 


LA 


LA 


CM 


ao 


LA 


OJ 


o 


O' 


O' 


O 


CM 


LA 


o 


LA 


0J 


O' 


O' 


CP 


CD 


ro 


r^ 


ro 


O' 


K» 


K 


r- 


O' 


CM 


UJ 


OJ 


O' 


N- 


vO 


co 


LA 


u> 


tH 


tH 


(M 


ro 


O' 


UJ 


ro 


CD 


K 


J- 




«J 


UJ 


ro 


O' 


LA 


UJ 


O' 


ro 


A' 


tH 


«y 


ao 


ro 




tH 


UJ 


CD 


LA 


O' 


y 


O' 


LA 


CD 


LA 


tH 


UJ 


0J 


CD 


y 


CD 


r» 


ro 


CD 


UJ 


ro 


CD 


y 


O' 


y 


CD 


UJ 


LA 


LA 


LA 


UJ 


r^- 


CO 


<X) 


O' 


CD 


CO 


tH 


OJ 


CM 


LA 


LA 


LA 


U) 


vA 


r^ 


r^ 


n. 


ao 


ao 


O' 


O' 


CD 


O 


CD 


tH 


tH 


0J 


fO 


ro 


y 


y 


LA 


LA 


UJ 


I s - 


0- 


00 


O' 


O' 


CD 


tH 


CM 


ro 


LA 


K 


co 
























*H 


tH 


CM 


OJ 


0J 


CM 


0J 


OJ 


CM 


0J 


0J 


CM 


0J 


0J 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


y 


-J- 


-i- 


N- 


A- 


ro 


jr 


CM 


CM 


O' 


ro 


O' 


tH 


CO 


vA 


vA 


0- 


UJ 


O' 


-y 


s 


CM 


O' 


ao 


CD 


UJ 




y 


u> 


LA 


tH 


LA 


UJ 


LA 


CM 


r*. 


CD 


ro 


y 


ro 


CM 


CD 


U> 


OJ 


ao 


0J 


O' 


y 


UJ 


h- 


UJ 


O' 


IT. 


A 


O' 


co 


j- 




O 


CO 


U) 




O 


UJ 


o 


O' 


tH 


o 


vA 


tH 


s 


U) 


UJ 


UJ 


vA 


-y 


0J 


o 




y 


tH 


h- 


ro 


O' 


LA 


O 


U) 


tH 


u> 


tH 


U) 


tH 


LA 


CD 


y 


CP 


p- 


UJ 


y 


0J 


CD 


r^ 


o 


CO 


O' 


ao 


ro 




LA 


r- 


N> 


O' 


00 


O' 


K 


ao 


O' 


CP 


ao 


<30 


N- 


u> 


LA 


y 


ro 


OJ 


tH 


o 


ao 




u> 


y 


ro 


tH 


o 


O' 


N* 


UJ 


y 


fO 


tH 


CD 


ao 


N» 


LA 


ro 


CD 


N- 


y 


tH 


<30 


OJ 


OJ 






o 


r- 


CD 


O' 


ro 


CM 


LA 


0J 


O' 


-y 


«y 


LA 


kO 


f*- 


<20 


(JD 


o 


tH 


0J 


ro 


-y 


LA 


UJ 


UJ 


r- 


ao 


O' 


o 


tH 


CM 


0J 


ro 


y 


LA 


UJ 


r*. 


CD 


co 


CP 


CD 


tH 


ro 


y 


UJ 


CO 


CP 


vA 


UJ 


vA 


N- 


O' 




LA 


00 


ro 


<30 


ro 


O' 


LA 


tH 




tH 


tH 


tH 




tH 


0J 


0J 


CM 


CM 


0J 


CM 


CM 


CM 


CM 


0J 


0J 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


(O 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


y 


O' 


O' 


00 


N- 


vA 


u> 


LA 


■4" 




ro 


ro 


CM 


0J 













































































y 


tH 


ao 


UJ 


LA 


ao 


tH 


CD 


O' 


CM 


LA 


CO 


r>w 


y 


O 


y 


CO 


ro 


tH 


o 


o 


IA 


O' 


O' 


tH 


0J 


tH 


y 


tH 


CD 


CD 


tH 


CD 


r^- 


ro 


LA 


ro 


CO 


GO 


ro 


ro p- 


UJ 


CO 


y 


UJ 


tH 


LA 


CD 


ro 


CD 


CD 


CD 


tH 


CD 


tH 


y 


O' 


0J 


ro 


y 


UJ 


CO 


ao 


y 


0J 


tH 


O' 


ro 


CM 


LA 


tH 


o 


CM 


0- 


ro 


tH 


CD 


tH 


ro 


UJ 


® 


LA 


CD 


P* 


y 


CM 


CD 


CP 


O' 


O' O' 


CD 


tH 


ro 


r>- 


ro 


O* 


P- 


LA 


LA 


CM 


ao 


CP 


CP 


UJ 


0J 


tH 


CD 


y 


tH 


O' 


CO 


0J 




y 


ao 


CM 


GO 


y 


CD 


N» 


y 


tH 


aj 


UJ 


y 


CM 


o 


ao 


UJ 


LA 


ro 


0J 


o 


O' 


OJ 


P- 


LA 


y 


ro oj 


OJ 


tH 


CD 


co 


r^ 


LA 


y 


ro 


CD 


O 


CD 


0- 


CP 


LA 


y 


LA 


co 


CM 


CO 


y 


y 


tH 


tH 


CD 


O' 


O’ 


ao 


CD 


au 


P- 


r^. 


P- 


UJ 


UJ 


UJ 


UJ 


UJ 


LA 


LA 


LA 


LA 


LA 


LA 


y 


y 


y 


y 


y 


y y 


y 


y 


y 


ro 


ro 


ro 


ro 


ro 


• 


• 


9 


• 


• 


• 


• 


• 


• 


• 


• 


• 


• 


tH 


tH 


tH 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


O 


O 


CD 


® 


CD 


o 


CD 


o 


CD 


CD 


O CD 


CD 


o 


CD 


CD 


CD 


CD 


CD 


o 


LA 


LA 


tH 


N- 


y 


OJ 


CD 


co 


UJ 


LA 


ro 


OJ 


▼H 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


O 


CD 


CD 


o 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


O 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


ro 


ro 


ro 


CM 


CM 


0J 


0J 




*"* 




tH 




tH 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


O 


CD 


o 


CD 


CD 


o 


O 


O 


O 


CD 


CD 


CD 


CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CM 


ro 


tH 


CM 


LA 


ro 


y 


tH 


y 


y 


0J 


O' 


ro 


ro 


0- 


CO 


CD 


ao 


O 


O' 


u> 


CP 


tH 


tH 


CD 


ao 


y 


O' 


y 


<30 


tH 


y 


U> 


ao 


O' 


CD 


tH 


tH 


tH 


tH 


tH CD 


CP 


CO 


P- 


y 


tH 


S- 


ro 


CO 


tH 


tH 


O' 




LA 


y 


ro 


ro 


ro 


y 


UJ 


OD 


CD 


CD 


CO 


y 


CD 


y 


O' 


CM 


UJ 


O' 


ro 


UJ O' 


tH 


y 


UJ 


O' 


tH 


y 


UJ 


co 


CD 


0J 


LA 


P- 


O' 


tH 


ro 


LA P- 


<30 


o 


0J 


UJ 


CD 


ro 


p- 


o 


UJ 


UJ 


UJ 


N- 


ao 


O' 


CD 


tH 


0J 


ro 


y 


LA 


A- 


CO 


00 


ro 


UJ 


0J 


UJ 


tH 


LA 


O' 


y 


ao 


0J 


P- 


tH 


LA 


O' 


y co 


OJ 


UJ 


tH 


LA 


CP 


ro 


p- 


CM 


U) 


cd y 


ao 


ro 


P- 


LA 


y 


ro 


CD 


a* 


y 


y 


y 


y 


y 


y 


LA 


LA 


LA 


LA 


LA 


LA 


LA 










































































CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


r^ 


P* 


CO 


ao 


CP 


O' 


CD 


CD 


CD 


tH 


tH 


CM 


CM 


ro 


ro 


ro 


y 


y 


LA 


LA 


UJ 


UJ 


UJ 


P- 


p- 


CO 


GO 


O' CP 


O' 


o 


CD 


tH 


CM 


ro 


y 


y 








































tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH <tH 


tH 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


O 


CD 


CD 


CD 


CD 


o 


O 


CD 


CD 


o 


CD 


O 


O 










































































tH 


ao 


UJ 


UJ 


u> 


0J 


y 


O' 


r ^ 


y 


e 


«H 


LA 


U) 


O' CD 


ro 


y & 


0J 


LA 


tH 


CO 


tH P» 


ro 


«0 




u> 


UJ 


CO 


tH 


LA 


o 


O 


O 




tH 


tH 


K» 


O' UJ 


GO 


y LA N 


y 


ro 


y 


IA 


ao 


K 


tH 


LA 


O' 


ro 


UJ 


© 


o 


tH 


tH 


O' 


ro 


tH K 00 \D 


tH 


CM 


N> 


UJ 


O' 


y ro 


ro 


u> o n. 


y 


ro 


ro 


LA N* 


o |A 


m la 


OJ 


O' 


JD 


y ro 


OJ 


CM 


CM 


ro 


u> 


CD 


IA 


tH 


UJ 


UJ 


ro 


CP 


LA 


CM 


ao 


y 


tH 


r^ 


ro 


co 


LA 


OD 


U> 


O' 


ro 


ao 


ro 


C0 


y 


CD 


p* 


y 


tH 


co 


UJ 


fO 


tH 


O' P- 


LA 


ro 


OJ 


CD 


O' 


rs. 


UJ 


y 


ro 


CM tH 


o 


O' 


CO 


UJ 


y 


ro 


tH 


CD 


8 


• 


• 


• 


• 


e 


• 


• 


• 


• 


• 


0 


0 


0J 


CM tH 


tH 


o 


o 


O' O' O' 


co 


<s ao 


N N» S 




UJ UJ 


UJ lO vO UJ LA IA 


LA 


LA 


LA 


LA LA LA 


y 


y 


y y 


y 


y 


y 


tH 


tH 


tH 


CD 


O 


CD 


O' 


CP 


CP 


ao 


CO 


K 


r^ 




tH 


tH 


tH 


tH 


*H 


o 


o 


a 


o 


CD 


O 


CD 


o 


o 


CD 


o 


o 


o 


CD 


o 


O 


o 


o 


CD 


o 


o 


CD CD 


CD 


o 


CD 


CD 


CD 


CD 


CD 


CD 


CM 


eu 


CM 


OJ 


CM 


CM 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


CD 


O 


O 


CD 


CD 


CD 


o 


CD 


o 


<o 


CD 


o 


o 


o 


O 


O 


o 


o 


& 


CD 


CD 


o 


CD 


CD 


CD 


CD 


o 


CD CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CD 


CD 


O 


o 


CD 


CD 


O 


tH 


tH 


O 


o 


O 


CD 


O 


o 


CD 


CD 


o 


CD 


o 


CD 


o 


o 


CD 


CD 


CD 


® 


O 


o 


CD 


O 


CD 


CD 


O 


o 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


ro 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


O' 


CP 


o 


o 


CD 


O 


o 


CD 


a 


CD 


o 


CD 


CD 


CD 


o 


o 


O 


O 


CD 


o 


o 


o 


CD 


o 


CD 


CD 


o 


o 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CP 


a 


CD 


CD 


O 


CD 


O 


CD 


O 


O 


CD 


CD 


tH 


tH 


CD 


CD 


CD 


o 


CD 


o 


o 


CD 


o 


O 


CD 


CD 


o 


® 


CD 


CD 


Q 


CD 


CD 


CD 


CD 


CD 


O 


O 


CD 


CD 


CD CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 



O'oooooooooooao cocdoooooocdooooocdcdocdoooooooooooooocdocdcdo 

CDa>OH(\jm4'U>vDNoOOT(P 0TOH(\jmjinvDN®0'OHNr04 , tf(v0N©0'OH(\jr0JinvDN®Cro(\J^^CDO 

HHHHHHHHHHrH tHPjcMojCMCMCMCMOjojCMforororororororororoyyyyyyyyyyiAiAiAiAiAUJ 



271 



T DEN VOL DF/CT DF/DD E H S CV CF W 

DEG < MOL/L l/NOl BAR/K BAR-L/MOl J/HCL J/ROL J/MCL/K J/HOL/K J/MOL/K M/SEC 

89.946 21.681 0.04612 35.0522 962.947 5299.7 5313.6 76.509 44.06 68.50 2231 



■c- 



oir*ooLOirN-rvjaoLT*ro,Ho 

r-HHrHH^VjrOlfllDOPOfVjvD 

cxjrHDO'coNvDir'jnnroH 

CVJ CM (\J t-4 *-l t-4 t-4 t-4 t-4 t-4 t-4 t-4 t-4 



o ro t\j O' if' h co 
LP vO CO CD 4 CP 4 



O ' IP CP TO ro 4 

th o o ro ® th 



cococcrcj'O'OHCMrj-ins 

vDvDvDvDvD^DKSK^KN.S 



COSNPOCOmn®OHDlJ'(P 

OO'M^WOCOiOvOvDKcOO 



4rororororocMCMCMCVJCMCMro 

4444444444444 



OnrO(\JU‘'OOOr4r4COMHin 

lPN-CMCVJvOPJK4aofM*-4v04 

iftsronooocoj-NO'crMr 



W O r4 N 
S- ao (p CP CD cd 



rl vD D ^ CO (\J U> 
H H (\J (\J (\J ro fO 



fOCOIfiMO'KO'OlfC^UcO 



N(\JO(T(\J»0©U>ONMn 
^OcrNK^NNCT(\Jlf»ON 
n o vd r^) o s j tH co vO r*o «-( vu 

ir'\oa)N < ^coo'ODr4(\jr r iro 



^CKOJ'eOfOCVjOHiDCOlfi 



ntDlBlfNniTino'^OON 

cDao^voiPiPiPvOK-cD4(PLP 

poo'a)fooN4^®vunouj 

lfcif\vDN®aO(rooH(\jroro 



rrrHrocoNovUvoif'vDnrofvj 

SH^vXJ-J'0'f^rOC\jCP(POr4 

rocMrocMf'-aocpcMCMrocMiPCP 



(MCMCMTHP-c3(P4ro^DroroLP 

^aJN^H^concono 1 ^^ 

0'<oSd)vDir'j^mroc\jrj(\j 



cOMNrO'HHLTiOCONSJ-O 1 

CUCNJPOrOLCCO^COCOOrOHN 

f\JCOO'CPO)C\J(\IO^(\JOCO(\J 

oaN(ru'ju>cu('jcoin<\J4' 



l^HNJ-rjocOvDlf'f^MHC' 



roHMin(\j^ororoHoo®o 

H(^Ninj-rororo^^(C(\j4' 

cDcDNCOO'OHCVjroJ-l^ScO 

44444lpipipiplpipipip 

CDCDCDOCDCDCDCDCDCDCDCDCD 



OOOOOOOOOOOOO 



cr>N.aoN.4vpcMCPr^f04cr'ro 

f'-THipcprovocpoTH^-icpipcM 

vDnO'lTiroaOJ-rHNrOtO^H 



H»HOOO(T'(J'(rcD<OKKK 



CDCDCDCDCDCDCDCDCDCDCDOvP 

ODODOOOODDDOH 

OOCDCDOOOCDCDCDOC54 



ooooooooooooh^ 

O'OHWroj’invDNcoo'oo 

t-4 H rH H H H H H »-4 t-4 C\J C\J 



4 


vD 


ro 


CD 


vO 


CVJ 


CO 


ro 


(P 


>3- 


CP 


-3- 


<p 


.3- 


ao 


ro 


N- 




vO 


CD 


J- 


CO 


CM 


vD 


o 


-3 


ao 




ip 


CP 


ro 


CD 




-3 




CO 


ITS 


LP 


vP 


r- 


N- 


0D 


eo 


CP 


(P 


CD 


CD 


t-4 


4 


OJ 


CM 


ro 


ro 


-3 




IP 


ip 


IP 


lO 


vD 


r^ 




r^ 


ao 


ao 


CO 


CP 


O 


CD 


t-4 


CV 


CM 


CV) 


CVJ 


CVJ 


OJ 


CM 


CM 


00 


00 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


-3 


-3 


-3 


-3 


>3 


LP 


O 


IP 


CD 


4 


CM 




o 


vP 


ao 


VP 


r^ 


ro 




CM 


J- 


ao 


ro 


CP 


v£> 


CM 


CP 


LP 




ip 


CD 


ro 


LP 


vi) 


vP 


J- 


co 


vP 


CD 


vP 


au 


4 


-3“ 


>3 


CO 


ro 


o 


CD 




vP 


vP 


O- 


ao 


CD 


CM 


jr 


lO 


OJ 




ro 


vO 


CP 








CP 


CM 


t3 


vO 




CD 


CM 


IP 


GO 


CD 


CM 


ro 




K 






CO 


(P 


CP 


o 


^4 


cm 


ro 


-3- 


vO 


0- 


ao 


CP 


o 


CM 


ro 


J- 


IP 




CD 


CP 


CD 


CM 


ro 


J* 


IP 


N- 


co 


CD 


CM 


IP 


P- 


CP 


4 


4 


4 


4 


-3- 


4 


4 


IP 


IP 


LP 


ip 


IP 


IP 


IP 


ip 


IP 


v£> 


vD 


vD 


vO 


vD 


vO 


vO 


lO 






N- 






P- 


P- 


CD 


ao 


co 


ao 


an 


O 


00 


o 


CM 


IP 


vP 


4 




vP 


ao 


ip 


4 


IP 


a> 




OJ 


CD 


ao 


K 




vO 


-3 


CM 


CD 




CM 


P- 


CD 


ro 


-3 


ro 


00 


ao 


CM 


t-4 


-3 




CVJ 




IP 


ro 


CM 


CM 


OJ 


ro 


4 


vO 


ao 


CD 


CM 


IP 


ao 


▼*4 


ro 


\£> 


<P 


CM 


IP 


OO 


H 


ro 


vD 


CO 


tH 


ro 


IP 


p- 


o 


ro 


vO 


ao 


CP 


vp 


vP 


\P 


0- 


CO 


(P 


O 


T-4 


00 


ro 


-3 


IP 


K 


CD 


CP 


CD 


OO 


ro 


J- 


IP 


r^ 


OD 


CP 


^—4 


CM 


ro 


-3 


Vi) 


r^ 


co 


O' 


CM 


.3 


vP 


ao 


CD 


ro 


ro 


ro 


ro 


ro 


ro 


-3- 


4 


-3- 


4 


-3- 


4 


-3 


-3 


-3 


IP 


IP 


LP 


IP 


IP 


ip 


IP 


IP 


vO 


vD 


vD 


v£> 


Vi) 


vP 


vP 


vP 




P- 


r^ 


P- 


ao 


PO 


o 


ip 


tH 


vP 


ro 


CD 


r- 


ao 


ao 


CVJ 


ro 


ro 


vO 




CM 


o 


ip 


CP 


CM 


ip 


CO 


CM 




.3 


ro 


ro 


IP 


CD 


Vi) 


LP 


O' 


ro 


p- 


t-4 


IP 


CD 


<P 


<p 


H 


ip 


4 


<0 


0- 


ro 


vO 




ip 




IP 


CO 


CP 


CP 




-3- 


H 


vO 


o 


-3 


vD 


ao 


<P 


(P 


00 




.3 




CM 


t-4 


vP 


CP 




CO 


ro 


ip 


r- 


h* 


K 


vD 


ip 


4 


CM 


o 


CO 


vD 


ro 


CD 


r- 


-3 


wH 


ao 


IP 


*H 


ao 


<3 


o 


vO 


CM 


ao 


.3 


CD 


vP 


CM 


ro 


t3 


-3 


.3 


.3 


*4 


CVJ 


4 


vP 


CC 


o 


OJ 


-3 


vO 


ao 


o 


tH 


ro 


ip 


r^ 


CO 


CD 


CM 


ro 


IP 


r- 


oo 


CD 


CM 


ro 


ip 


vO 


cD 


CD 


tH 


ro 


vO 


<P 


CM 


IP 


<C 


o 


CD 


CD 


o 


CD 


t-4 




t-4 


tH 


t-4 


OJ 


CM 


00 


CM 


OJ 


oo 


ro 


ro 


ro 


ro 


ro 


ro 


-3 


*3 


>3 


-3 


<3 


*3 


IP 


IP 


IP 


ip 


LP 


vP 


vP 


vP 


CM 


CVJ 


IVJ 


oo 


CVJ 


OJ 


CVJ 


IVJ 


CVJ 


CM 


oo 


CO 


oo 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


IVJ 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


IVJ 


vO 


o 




IP 


ao 


ro 


CM 


IP 


t-4 


K- 




K 




- 


- 


ro 


ao 


ao 


-3 


vD 


-3 


CP 


O 


CO 


CD 


K 


00 


CM 




ro 


CO 


CD 




CP 


ro 


CO 


4 


rv* 


o 


Vp 


vP 


ro 




(P 


t-4 


0J 


-3 


0- 


CM 


ao 


SV 


VO 


OJ 


ro 


•H 


TH 




CP 


CD 


CD 


CM 


P«. 


IP 


Vi) 


ao 


ro 


O’ 


OD 


CM 


T-T 


LP 


«H 


o 


00 


o 


r- 


IP 


4 


ro 


ro 


IP 


K 


CD 


4 


CD 


kD 


-3 


ro 


ro 


ip 


CO 


CM 




ro 




CD 


t-4 


CM 


LP 


CP 




w4 


ao 


P- 


T— 4 


CP 




ao 


4 


LTV 


CD 


4 


CP 


-3 


CP 


-3 


CP 


4 


CD 


IP 


*— 1 


vO 


OJ 


cc 


-3 


CD 


vU 


ro 


CP 


a> 


ro 


CD 


r- 


•3 


T-4 


ao 


Vi) 


-3 


t-4 


P- 


-3 


CD 


00 


u> 


r-- 




<o 


cu 


cc 


O' 


CP 


CD 


CD 


t-4 


CM 


CM 


ro 


ro 


-3 


J- 


IP 


VJD 


UJ 






GU 


CP 


a 


CD 


tH 


CM 


CM 


ro 


JT 


IP 


VP 


ao 


CD 


t-4 


ro 


CVJ 


CVJ 


CVJ 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


-3 




-3 


-3 


-3 


*3 


J- 


t3 


-3 


J- 


IP 


LP 


U' 


CVJ 


IP 


vD 


CO 


ro 


CD 


OO 


vD 


CP 




-3 


vD 


J- 


CM 


ro 


r- 


n- 


ro 




ao 




-3 


ao 


o 


N- 


CD 


P- 


ao 


tH 


IP 


CP 


CD 


IP 


CM 


CD 


CP 


ro 


CD 


<0 


CD 


CP 


IP 


CP 


OJ 


ip 


CP 


4 


CD 


CD 


ao 


CD 


-3 




^4 


ro 


ao 


a? 


P- 


CD 


r^- 


IP 




o 


vO 


IP 


IP 


P- 


CD 


.3 


vi) 


CM 


CD 


o 


CD 


N- 


vJO 


4 


4 


-3- 


vD 


ao 


♦-4 


vP 


CM 


CD 


kD 


vO 


lD 


ao 




ip 


CD 




IP 


IP 


ip 


P- 


CD 


IP 


CD 


r*. 


IP 


-3 


vO 


ro 


-3 


O 


O 


<u 


cr 


00 


Vi) 


CD 


4 


00 


00 


OJ 


T-4 


IP 


CD 


-3 


O' 


-3 


(P 


-3 


O 


ip 




Vi) 


CM 


au 


-3 


CD 


p- 


ro 


CD 


Vi) 


ro 


CD 


-3 


a 


-3 


CD 


VP 


ip 


IP 


VP 


VP 


r- 


N- 




<D 


CO 


CP 


CP 


CD 


CD 


o 




«r-4 


CM 


ro 


ro 


J- 


-3 


IP 


IP 


vO 


K- 


p- 


ao 


CP 


O' 


CD 


tH 


CM 


ro 


IP 


r- 


ao 


(VI 


00 


CM 


00 


CM 


CM 


0J 


00 


00 


OJ 


00 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


or 


-3 


*3 


-3 


-3 


-3 


-3 




a- 


CD 


r- 


H 


CP 


N- 


(P 


0- 


-3 


OJ 




ro 


03 


CP 


ip 


vD 


~3 


CD 


o 


CP 


ip 


CP 


t-4 


CM 


CD 


ao 


ro 


CO 


t-4 


ro 


-3 


CM 


vP 


co 


P- 


00 


tH 


t-4 


u . 


K 


IP 


00 


o- 


■*-4 


<3 


vO 


r- 


P- 


lO 


ip 


-3 


00 


CD 


r^ 


IP 


t-4 


ao 


*3 


t-4 




ro 


to 


-3 


CP 


IP 


CD 


CD 


CD 


(P 


ao 


P- 




o 


*“* 


tH 


t4 


▼-4 


tH 


CD 


CD 


CP 


ao 


r^ 


v£) 


IP 


<3 


ro 


CM 




CP 


ao 




LP 




ro 


t-H 


CD 


® 


P- 


LP 


J- 


ro 


O 


r^ 


ro 


o 


P- 


4 


IP 


vO 


K- 


GO 


CP 


CD 




OO 


00 


ro 


-3 


IP 


vP 


r^ 


ao 


CP 


O 


a 




CM 


ro 


-3 


ip 


vP 


P- 




ao 


CP 


CD 


t-4 


ro 


j- 


vP 


<x> 


CP 


tH 


tH 


▼4 


«r4 


tH 


tH 


CM 


00 


CM 


CM 


0J 


00 


00 


0J 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


-3 


-3 


<3 


-3 


J- 


«3 


*3 



Pt 


-3 


tH 


CO 


IP 


ro 


CD 


CM 




P- 


vp n- 


ao 


J- 


CM 


t-4 


r^ 


O' 


r- 




o 


ro 


tH CM 


CM 


CD 


-3 


IP 


CVJ 


4 


4 


ro 


ao 


CO 


CD 


t-4 


CP 


LP 


VP 


P- 


ao 


h- 


CM 


CM 


P- 


vp ao 


ro 


t-4 


r4 


ro 


VP 


T-4 


CD 


VP 


VP 


VP P* 


cd ro 




CM 




ro 


CD 


P- 


ro 


t-4 


CD 


tH 


4 


CO 


-3 


ro 


-3 


vP 


CP 


ro 


CO 


ro 


O) 


-3 o 


P- 


-3 


t-4 


co 


IP 


ro 


O 


CO 


vp 


-3 CM 


T-4 (P 


P- 


vP 


4- 


ro 


CM 


O 


ao 


vP 


4 


CM 


CD 


VP 


vO 


ip 


•J 


ro 


CM 


CM 


T-4 


tH 


CD 


CD CD 


CP 


CP 


O' 


ao 


co 


® 


au 


p- 


p- 


p. p. 


P- VP 


VP 


VP 


VP 


VP 


vi) 


VP 


IP 


LP 


UV 


uv 


U' 


tH 


t-4 


tH 


t-4 


t-4 


T-4 


t-4 


T— 4 


t-4 


T-4 


t-4 t-4 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o o 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD CD 


o 


CD 


CD 


O 


CD 


o 


CD 


CD 


CD 


o o 


CD CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CD CD 


O O 


O 


CD 


O 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CO 


CM 


CD 


CM 


CP 


T— 4 


CD 


r^ 




ro 


-3 .3 


CM 


O 


vP 


CM 


h- 


CM 


vO 


CP 


CM 


IP P- 


CP t-4 


CM 


4- 


IP 


LP 


vP 


VP 


r- 


vO 


vD 


4 


ro 


ro 


CM 


J- 


LP 


IP 


vP 


vP 


LP 


IP 


J- 


ro cm 


t-4 


CD 


CO 




IP 


-3 


CM 


o 


CP 


P- LP 


ro cm 


CD 


co 


vP 


4 


CM 


CD 


vP 


CM 


au 


4 


CD 


ro 


-3 


r^ 


CD 


ro 


vP 


CP 


CM 


LP 


ao 


T-4 -3 


P- 


CD 


CM 


ip 


ao 


t— 4 


-3 


r- 


(P 


CM U) 


CO t-4 


-3 


vP 


CP 


CM 


LP 


CO 


ro 


LP 


4 


CD 


vP 


LP 


IP 


U' 


vP 


vP 


VP 


vP 


P- 


r^ 


r^ 


ao ao 


OJ 


<P 


CP 


CP 


O' 


CD 


CD 


CD 


CD 


t-4 t-4 


t-4 CM 


CM 


CM 


CM 


ro 


ro 


ro 


4 


4 


LP 


VP 


VP 


































t4 


t-4 




tH 


t-4 t-4 


^4 t-4 


tH 


tH 


H 


*"* 




T-4 


■*"* 




H 




*“* 


-3 


.3 


t-4 


ro 


P- 


ro 


ao 


^4 




CD 


-3 t-4 


CP 


CM 


CP 


p- 


IP 


O 


CM 


OD 


P- 


O' ro 


V0 O 


ro 


4- 


ro 


o 


ro 


ro 


t-4 


CD 


CO 


ro 


ro 


ro 




CM 


CM 


CM 


t-4 \P 


ao 


-3 


IP 


CP K 


r^ 


T-4 


vP 


4- -3 


vP 


CP 


ro 


CP 


vD LP 


-3 IP 


vD 


ao 


t4 


IP 


CP 


-3 


Vp 


CD 


IP 


ro 


CM 


p. 


-3 


-3 


IP 


r^ 


CD 


ro 


r^ 


CM 


P- 


CM ao 


-3 


T-4 


r^ 


-3 


t-4 


CD 


IP 


ro 


CD 


OD vP 


-3 CM 


CD 


co 


P- 


ip 


ro 


CM 


CP 




4 


CM 


CD 


o 


ao 


P- 


vP 


LP 


IP 




ro 


ro 


CM 


CM t-4 


tH 


t-4 


a 


CD 


CD 


CP 


CP 


CP 


CP 


aO ao 


CO CO 


ao 






P- 






vP 


vO 


vP 


vO 


VP 


t-4 


t-4 


t-4 


t-4 


^4 


t-4 


t-4 


t4 




t-4 


t-4 t-4 




t-4 


t-4 


t-4 


t-4 


CD 


CD 


CD 


CD 


CD o 


o o 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CD 


O 


O 


CD 


CD 


O 


CD 


CD 


CD CD 


CD 


CD 


CD 


O 


CD 


CD 


O 


CD 


CD 


CD o 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


VP 


CD 


O 


CD 


o 


CD 


CD 


CD 


CD 


CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


O CD 


CD CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


o 


CD 


^—4 


OD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


O 


CD 


CD O 


CD CD 


CD 


CD 


O 


O 


CD 


CD 


CD 


CD 


CD 


CD 


O 


-3 


CD 


O 


o 




CD 


CD 


CD 


CD 


CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


o 


CD 


CD O 


CD O 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


o 


P- 


CD 


o 


CD 


CD 


CD 


O 


CD 


CD 


O 


O CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD CD 


O O 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


T— 4 


CM 


ro 


-3 


IP 


vO 


P- 


CO 


CT 


CD t-4 


CM 


ro 


-3 


LP 


vD 


r^ 


co 


CP 


CD 


t— 4 CM 


ro .3 


IP 


vP 


P- 


ao 


CP 


CD 


CM 


4 


VP 


ao 


CD 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


-3 


-3 -3 


4" ~3 


4 


4 


4 


4- 


4 


IP 


LP 


LP 


LP 


IP 


VP 







I £• 



272 



T OEN VOL DF/CT DP/OO E H S C V CP W 

DEG K MOL/L L/MCL BAR/K BAR-L/MOL J/MOL J/MOL J/MOL/K J/MOL/K J/MOL/K M/SEC 

89.961 21.682 0.CL612 35.0460 963.101 5300.1 5318.5 76.513 44.09 68.49 2231 







1 CD 


<x> 


o 


o 


© 


© 


© 


(M 


cr 


© 


a 


CVJ 


cr 


CVJ 


a 


cr 


© 


ro 


cr 


in 


vi 


O- 


CVJ 


r^ 


CVJ 


K 


CVJ 


r- 


vi 


© 


o 


in 


cr 


ro 


O- 


vi 


in 


cr 


ro 




vi 


in 


cr 


CVJ 


CD 


O' 


-a- 


vi 




ro 


vi 


vi 


vi 


vi 


CVJ 


ro 


ITk 


© 


OO 


CD 


oj 


ro 


O 


in 


in 


© 


N. 


r^ 


OO 


cr 


cr 


CD 


o 


vi 


vi 


CVJ 


CVJ 


ro 


ro 


a 


a 


a 


in 


in 


© 


vP 


© 


O' 


O- 


CO 


CO 


00 


cr 


CD 


o 


vi 


CVJ 


CVJ 


1 OJ 


H 


© 


O' 


OO 


O- 


© 


in 


a 


ro 


ro 


(VJ 


vi 


vi 


OO 


CVJ 


CVJ 


CVJ 


CVJ 


CVJ 


CVJ 


CVJ 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


a 


-T 


a 


-a- 


1 OJ 


Co 


CVJ 


vi 


vi 


vi 


vi 


vi 


vi 


▼4 


v4 


H 


vi 


vi 








































































1 © 


ro 


C\J 


cr 


J- 


O 




CO 


J- 


o- 




O 


O 


in 


vi 


o 


00 


O' 


r^ 


ro 


CVJ 


cr 


in 


r^ 


-a- 


in 


o 


CO 


GO 


o 


a 


OO 


ro 


oo 


-a- 


cr 


ro 


r- 


vi 


ro 


in 


in 


in 


ro 


UV 


CVJ 


U' 


vi 


ro 


© 


© 


® 


o 


a 


cr 


3 




CD 


o 


ro 


OO 


© 


in 


ro 


vi 


o 


ro 


00 


in 


ro 


vi 


vi 


vi 


CVJ 


ro 


m 


vD 


GO 




ro 


in 


oo 


o 


ro 


in 


© 


O 


ro 


in 


o> 


cr 


*“• 


ro 


© 


cr 


vi 


ro 


-a- 


© 


GO 


OO 


cr 


cr 


cr 


CD 


vi 


CVJ 


ro 


a 


in 


r- 


e 


cr 


cr 


cr 


cr 


cr 


o 


vi 


CVJ 


ro 


a 


in 


© 


N. 


OO 


cr 


vi 


CVJ 


ro 


a 


© 


r- 


oo 


O' 




CVJ 


ro 


-a- 


in 


O' 


00 


© 


CVJ 


in 


r^ 


cr 


• © 


vP 


© 


© 


© 


© 


O' 


r^ 


o- 


o- 


r^ 




r^ 




a 


a 


a 


a 


a 


in 


in 


in 


in 


in 


in 


in 


in 


in 


in 


© 


© 


© 


© 


© 


© 


© 


© 


o- 




r^ 


r^ 


O' 


o. 




CO 


CO 


oo 


on 


or 



cr 


® 


oo 


a 


oc 


a 


3 


cr 


vi 


CVJ 


vi 


cr 


® 


a 


© 


CD 


CD 


in 


o J- 


3 CD 


CD 


in 


ro 


ro 


vP 




i<- 




ro 




o 


cr n. 


in 


OJ 


cr 


-a* 


cr oj 


3 


in 


in 


o 


cr 


ro 


CVJ 


in 


o 


cr 




in 


CVJ 


© 


CO 


© 


© 


vP 


N- 


00 


vi 


ro 


o 


ro 


cr 


© 


in 3 


3 in 


kD S. 


cr 


w4 


ro 


vP 


GO 




-a 


n- 


o 


oj in 


cc 


•H 


ro 


vP 


GO «H 


ro 


in 


k 




ro 


lD 


ao 


cr 


a 


ro 


ro 


ro 


ro 


ro 


(VJ 


oo 


CVJ 


CVJ 


CVJ 


(VJ 


ro 


ro 


O' 




o. 


CO 


o 


OJ 


ro 


-a- 


in 


n- 


CO 


cr 


O 


OJ 


ro 


-a- 


VP 


n- oo 


O' 




OJ 


ro 


a«flN 


OO 


cr 


OJ 


j- 


VP 


oo 


CD 


a 


-a- 


a 


a 


a a 


-a- 


-a- 


.a- 


-a- 


3 


3 - 


a 


3 


ro 


ro 


ro 


ro 


ro -a- 


-a- 3 




-a- 


3 


3 


-a- 


-a- 


m m 


in 


in 


in 


m in m 


\P 


vP 


cP 


wD vP 


vP 


vP \P N- 


0- 


h- 


0* 


QO 



ro 


in 


3 


ro 


N- 


cr 


CD 


o 


CD 


vP 


© 


0* 




0- 


ro 


cr 


cr 


ro 


© 


r^ 


CD 


O 


© 


0- 




OJ 


ro 




© 


o 


▼4 


CD 


o- 


a 


OJ 


© 


© 




© 


^4 


© 


OJ 


o 


▼4 


© 


© 


*4 


o- 


ro 


3 


lO 




h 


in 




vP 


ro 




^4 


cr 


3 


® 


in 


K 


o 


© 


© 


O 


N* 


cr 


© 


OJ 


a 


a 


>*4 


© 


O' 


*4 


OJ 


*4 


cr 


© 


*4 


© 


cr 


OJ 


a 


© 


© 


© 


a 


OJ 


cr 


CD 


cr 


© 


0- 




in 




ro 


ro 


CO 


o 


00 


a* 


r- 


cr 


© 




a- 


y-i 


in 


© 


cr 


CD 


*4 


© 


cr 


® 


N» 


in 


ro 


▼4 


© 


© 


ro 


o 




ro 


CD 


O- 


ro 


cr 


© 


OJ 


© 


a 


O 


© 


OJ 




cr 


cr 


O 


CD 


CD 


vP 


ro 


o 


vP 




r^ 




vP 


CD 


a- 


© 


OJ 


© 


© 


© 


H 


ro 


© 


© 


CD 


^4 


ro 


in 


o- 


cr 




OJ 


a 


© 


© 


cr 


H 


ro 


a 


© 


0- 


© 


*4 


OJ 


a 


© 


N- 


cr 


o 


ro 


© 


o 


ro 


© 


r^ 


00 


cr 


cr 


CD 


o 






CVJ 


(VJ 


OJ 


ro 


ro 


ro 


o 


O 


o 


O 


O 


*4 


^4 


^4 


▼4 


*4 


*4 


OJ 


OJ 


OJ 


OJ 


OJ 


OJ 


ro 


ro 


ro 


ro 


ro 


ro 


a 


a 


a 


a 


a 


a 


© 


© 


© 


© 


© 


© 












*"• 


y-i 






tH 






tH 




OJ 


CVJ 


OJ 


CVJ 


CVJ 


CVJ 


CVJ 


OJ 


cvj 


CVJ 


CVJ 


OJ 


CVJ 


CVJ 


CVJ 


CVJ 


CVJ 


VVJ 


OJ 


(VJ 


OJ 


CVJ 


OJ 


CVJ 


OJ 


CVJ 


CVJ 


0J 


CVJ 


OJ 


VVJ 


OJ 


OJ 


CVJ 


CVJ 


OJ 


r^ 


cr 




O 


vP 


ro 


in 




© 




© 


in 


o 


o 


ro 


© 


a 


CVJ 


© 


N. 


o 


in 


© 


© 


a 


© 


ro 


cr 


K 


© 


ro 


OJ 




K 


OJ 


OJ 


r^ 


© 




o 


© 


CD 


ro 


CD 


® 


© 


*4 


© 




vP 


ro 


ro 


Sp 


CVJ 


a- 


CVJ 


QD 


ro 


o 


o 




CVJ 


o 


© 


© 


© 


© 


© 


r^ 


m 


^4 


r^. 


a 


OJ 


*4 


OJ 


a 


cr 


© 


© 


© 


OJ 


© 


© 


*4 


© 


OJ 


*4 


ro 


© 


CVJ 


cr 


© 


a 


© 


CD 


o- 


CVJ 


o 


cr 


GO 


N- 


r^ 




® 


cr 


CVJ 


© 




0- 


ro 






© 


© 


in 


in 


© 


® 


»4 


a 


cr 


in 


OJ 


o 


cr 


cr 


*4 


a 


© 


a 


CD 


® 


© 


© 


CD 


ro 




OJ 


O' 


© 


© 


cr 




CD 


© 


ro 


CD 


vP 


ro 


CD 


r^ 


a- 




so 


© 


ro 




CD 


CVJ 


© 


© 


ro 


6D 


ro 


CD 


ro 


© 


a 


cr 


a 


CD 


© 


OJ 


c- 


ro 


© 


© 


OJ 


O' 


© 


Cvj 


© 


© 


3 


*4 


© 


© 


m 


▼4 


TV. 


ro 


© 


© 


© 




VP 


VP 


r- 


GO 


co 


cr 


O 


o 




CVJ 


ro 


ro 


3 


r^ 


0- 


© 


CD 


cr 


cr 


o 


CD 


*4 


▼4 


OJ 


ro 


ro 


a 


a 


in 


© 


© 


r^ 


r^ 


© 


© 


© 


CD 


«4 


OJ 


OJ 


ro 


3 


© 


© 


© 


CD 


*4 


ro 


















^4 




*■4 


^4 




*4 


OJ 


0J 


CVJ 


CVJ 


OJ 


CVJ 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


to 


ro 


3 


a 


a 


a 


a 


a 


a 


a 


a 


© 


© 


© 


n> 


o 


GO 


CD 


CVJ 


«a- 


GO 


in 


O 


cr 


H 


cr 


O 


OJ 


r- 


CVJ 


© 


a 


ro 


in 


»4 


h 


CD 


in 


CD 


cr 


© 


ro 


ro 


© 


© 


CD 


*4 


CD 


© 


® 




▼4 


CD 


a 


CD 


© 


o- 


© 


© 


© 


*4 


© 




CVJ 


CO 




3 


vP 


CVJ 


ro 




r^ 


v4 


© 


r^ 


a- 


© 


© 


N- 


cr 


in 


o- 


0- 


in 


CVJ 


cr 


© 


in 


a 


© 


o 


© 


a 


© 


© 


© 


a 


© 


© 


© 


© 


© 


CVJ 


© 


r^ 


© 


*4 


CVJ 


cr 


CVJ 


CD 


® 


CD 




r^ 


VP 


in 


in 


in 


vP 


rw 


O 


ro 


© 


in 


© 


00 


cr 


© 


© 


® 


cr 


•4 


a 


0* 


OJ 


© 


in 


ro 


ro 


ro 


© 


® 


OJ 


© 


© 


ro 


CVJ 


ro 


© 


© 


ro 


© 


© 


ro 


ro 


© 


»4 


TO 


® 




ro 


cr 


VP 


ro 


o 


r^ 


-a- 




CD 


© 


ro 


o 


© 


0J 


cr 


▼4 


m 


cr 


ro 


r**» 


CVJ 


© 


© 


m 


<T 


a 


cr 


a 


cr 


a 


cr 


© 


CD 


© 


OJ 


© 


a 


CD 


© 


ro 


cr 


© 


ro 


o 


a 


cr 


a 


cr 


© 


m 


in 


vP 


r^ 


GO 


cc 


cr 


O 


O 


^4 


CVJ 


ro 


ro 


a- 


in 


© 


© 


© 




0- 


© 


© 


cr 


cr 


cr 


CD 


o 


*4 




Oj 


OJ 


ro 


3 


a 


© 


© 


© 


0- 


0- 


© 


© 


<T 


o 


«r4 


OJ 


ro 


if' 


© 


® 
















>»H 








▼4 






CVJ 


OJ 


CVJ 


CVJ 


OJ 


CVJ 


OJ 


OJ 


OJ 


OJ 


OJ 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


a 


a 


a 


a 


a 


a 


a 


OJ 


in 


o 




CD 


<r 


cr 


3 


vP 


OJ 


in 


rvj 


O 


OJ 


© 


a- 


3 


ro 


in 


© 


a 


OJ 


a 


ro 


o 


© 


0- 


cr 


a 


a 


cr 


cr 


© 


0- 


© 


OJ 


© 


© 


© 


CVJ 


© 


cr 


o 


CD 


© 


© 


Oj 


© 


a 


cr 


in 


ro 


in 


in 


o 


vP 


CO 




N- 


© 


▼4 


© 


ro 


0J 


r^ 




o 


m 




r^ 


in 


*4 


© 


CD 


OJ 


a 


in 


© 


© 


© 


a 


ro 


▼4 


cr 


r^ 


a 


^4 


© 


© 


*4 


k 


a 


CD 


▼4 


Cvl 


ro 


ro 


ro 


vP 


in 


0- 


vP 




ro 


ro 


vP 


vP 


© 




O 




ro 


© 


OJ 


a- 


in 


in 


m 


in 


in 


in 


a 


3 


to 


0J 


*4 


o 


cr 


© 


r^ 


© 


© 


ro 


0J 


^4 


O 


© 




© 


a 


ro 


OJ 


cr 


© 


ro 


CD 


0- 


CVJ 


OJ 


OJ 




GO 




CD 


a- 


ro 


© 


ro 


a- 




»4 


a- 


in 


© 




© 


cr 


o 


^4 


CVJ 


ro 


3 


in 


© 


N- 


© 


© 


cr 


o 


»4 


CVJ 


ro 


a 


© 


© 


© 


N* 


© 


<T 


o 


t4 


OJ 


a 


© 


CO 


cr 


ip 


\D 




cr 




in 


cr 


ro 


© 


ro 


cr 


m 


▼4 


O 








*4 


t4 


^4 


CVJ 


OJ 


OJ 


OJ 


OJ 


oj 


OJ 


OJ 


0J 


OJ 


OJ 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


a 


a 


a 


a 


a 


3 


a 


cr 


® 




vP 


vP 


in 


a- 


3 


ro 


ro 


CVJ 


CVJ 


CVJ 


0J 









































































CVJ 


© 


cr 


*4 


© O 


CD 


CD 


a 


O' 


© 


cr 


ro 


© 


cr 


© 


O' 


© 


© 


o 


*4 


0- 


a 


o 


© 


© 


ro 


a 


a 


CD 


cr ® 


a © 


CVJ 


OJ 


ro © © -h 


0J 


CVJ CP 


© 




vi 


© 


© 


O' 


ro 


© 


© 


® CVJ 


© 


ro 


a 


© 


O 


® 


© 


ro 


© 


ro 




© 


CVJ 


CVJ 


OJ 


o 


© 


© 


a 


© 


o 


© 


U' 


to 


© © © 


© t4 


© 


OJ 


O' N- © fv* 


® 


© (VJ 


© 


o 


ro 


O' 


ro 


OJ 


® 


CP 


<r 


© ro 


CVJ 


▼4 


© 


OJ 




© 


a 


© 


a 


© 


CD 


© 


© 


cr 


*4 


a 


r- 


*4 


© 


v4 


0* 


OJ 


© 


© 


v4 © © 


oj o 


0* 


© 


0J © ® © 


a 


ro -h 


© 


© 


OJ 


O' 


0- 


CD 


CD 


o*. 


cr 


© j- 


© 


© 


OJ 


® 


© 


OJ 


*4 


© 


CVJ 


*4 


CD 


© 


rv 


© 


© 


in 


3 


a 


ro 


ro 


OJ 


OJ 


vi 


•*4 


tH O CD 


CD © 


CP 


CP 


u» (jy © © 


© 


© co 


o. 


r- 


r^ 


© 


© 




























0J 


CVJ 


0J 


*4 


*4 


*4 


*4 


t4 


y-i 




v4 


vi 


r4 


vi 


vi 


vi 


4 H ti 


vi vi 


© 


o 


© © © o 


o 


CD © 


o 


© 


o 


© 


© 


© 


•*4 


r- 


a 


CVJ o 


© 


© 


© 


ro 


OJ 


«4 


CD 


cr 


CD 


CD 


CD 


O 


CD 


O 


CD 


CD 


CD 


© 


O 


CD 


CD 


CD 


CD 


© 


o o o 


CD O 


o 


o 


© CD CD CD 


CD 


O O 


CD 


CD 


o 


CD 


CD 


ro 


to 


CVJ 


OJ 


OJ CVJ 


*4 


*4 


*4 


*4 


▼4 




*4 




CD 


© 


O 


o 


O 


CD 


O 


CD 


CD 


© 


o 


© 


O 


O 


CD 


O 


O CD CD 


0. 
0 . 


o 


o 


o o o o 


o 


o o 


o 


O 


o 


CD 


O 


OJ 


*4 


*4 


© 


oj ro 


O 


0J 


CVJ 


CD 




© 


O 


© 


© 


ro 


© 


N- 


OJ 


ro 


^4 


N- 


y-i 


ro 


a 


a oj 


o 


t- 


ro 


© ro © 


Oj © 


© 


^4 


a © ® © 


OJ 


ro j- 


© 


© 


© 


cr 


cr 


*4 


cr 


r^ 


© 


a ro 


ro 


ro 


a 


© 


® 


0J 


© 


© 


© 


o 


a 


© 


OJ 


© 


© 


O 


ro 


© 


0- 


CP 


vi 


ro 


3 


© 


s O' o 


oj ro 


a 


© 


rv. ® cr vi 


OJ 


ro a 


© 


® 


o 


CVJ 


a 


© 


© 


N- 


© 


O' o 


*4 


OJ 


ro 


a 


© 


o- 


© 


<r 


O 


OJ 


a 


© 


cr 


▼4 


ro 


© 


© 


© 


OJ 


a 


N. 


O' 


vi 


ro 


© rv o 


cvj a 


© 


® 


© oj a n 


cr 


vi ro 


O' 


<4 


© 


o 


a 


a 


a 


a 


a 


a © 


© 


© 


© 


© 


© 


© 


© 


© 


























































© 


CD 


CD 


© 


© © 


O 


© 


© 


© 


o 


o 


© 


© 


a 


a 


a 


a 


a 


If. 


© 


© 


© 


© 


© 


9 

9 


© 




rv. 


7 

7 

8 


8 

8 


© 


© 


9 

9 

o 

9 


O' 


© o 


© 


^4 


vi 


CVJ 


OJ 








































































vi ^i 


vi 


vi 


vi 


vi 


vl 


o 


CD 


O 


o 


CD CD 


O 


CD 


o 


o 


o 


© 


o 


© 


























































o 


cr 


cr ® 


© © 


a 


*4 


cr 


vP 


© ro 


K. 


OJ 




a 


<j4 


ro 


© © OJ 


a 


<r © cr 


© 


© 


o 


ro 


0J 


© 0J © 


ro © 


ro 


© 


«h <r ® cr 


cr 


O' 0- 


© 


© 


a 


ro 


ro 


© 


*4 


© <r 


ro © 


cr 


v4 


*4 


*4 cr © 


o 


<T 


O' O' 


© 


ro 


*4 


© 


© 


ro a 0J 


ro 


© cr 


ro 


cr © 


O' ro © 


© © © 


© 


cvj © oj cr 


Pv, 


vP © 


© 


ro 


vi 


vi 


ro 


© 


ro 


O' 


© 


OJ © 


a 


*4 


o- 


ro 


© 


a 


o 




© 


o- 


a 


ro 


ro 


a 


© 


© 


*4 


© 


cr 


a © 


a 


cr 


© 


v4 ® a 


v4 ® 


© 


OJ 


© O' © OJ 


© 


® © 


CVJ 


cr 


© 


ro 


o 




























a 


ro 


0J 




© cr 


© 


NKlO 


© 


© 


a 


a ro 


ro 


rO OJ OJ OJ -ri 


*4 


v4 


vi © © © 


© 


O' O' 


O' 


© 


© 


© 


© 


*4 


*4 


o 


o 


o cr 


cr 


cr 


© 


© 


N> 


r- 


© 


OJ 


0J 


0J 


OJ 


OJ 


▼4 




^4 


♦4 


v4 


vi 


vi 


v4 


v4 


v4 


v4 


H H 4 


vi *4 


s4 


r4 


4 4 4 4 


vi 


o o 


o 


© 


CD 


o 


© 


OJ 


OJ 


CVJ 0J 


0J *4 


*4 


*4 


▼4 






^4 


^4 


^4 




















































































© 


o 


o 


© 


© 


© 


O 


© 


CD 


© 


© 


CD 


© 


O 


© 


© 


© © © 


© O 


CD 


O 


© O O O 


© 


© o 


CD 


CD 


CD 


CD 


o 


CD 


CD 


o 


o 


O O 


© 


O 


© 


© 


O 


O 


CD 


^4 


v4 


s 


© 


© 


© 


© 


© 


© 


© 


© 


© 


O 


© 


O 


O 


© 


© © O 


© O 


© 


© 


o © © © 


O 


© o 


o 


O 


O 


o 


o 


CD 


CD 


CD 


o 


CD CD 


CD 


O 


CD 


O 


O 


© 


O 


a 


a 


© 


© 


© 


© 


© 


o 


O 


© 


© 


© 


© 


© 


© 


© 


© 


o © o 


O CD 


O 


o 


o © © o 


© 


o o 


o 


o 


o 


© 


© 


O 


CD 


O 


CD 


O CD 


O 


o 


O 


© 


© 


o 


o 


© 


© 


o 


© 


© 


© 


© 


o 


O 


O 


O 


o 


o 


O 


© 


© 


O 


© o © 


& o 


o 


o 


© © o o 


o 


© o 


o 


o 


o 


CD 


CD 


o 


CD 


CD 


© 


o o 


© 


o 


o 


o 


© 


o 


o 


a 


a 


o 


o 


© 


© 


© 


o 


© 


© 


O 


o 


© 


o 


o 


o 


o 


CD O O 


O CD 


o 


o 


o © o o 


© 


o o 


© 


o 


© 


© 


CD 


CP 


CD 


«4 


Oj 


ro a- 


© 


© 


rv. 


© 


CP 


CD 


^4 


*4 


H 


OJ 


ro 


a 


© 


© 




© 


cr 


o 


*4 


CVJ 


ro 


a 


© 


© 


O'. © c r 


CD y-i 


OJ 


ro 


a © © O' 


© 


cr © 


OJ 


a 


© 


© 


CD 




▼4 


▼4 


^4 


*4 *4 


▼4 


*4 




t4 


▼H 


0J 


0J 


CVJ 


OJ 


OJ 


OJ 


OJ 


OJ 


OJ 


CVJ 


OJ 


OJ 


to 


ro 


ro 


ro 


ro 


ro 


ro 


ro ro ro 


3 3 


a 


a 


a a a a 


a 


a © 


© 


© 


© 


© 


© 



273 



Table 27. Thermophysical properties along isobars (Continued) 



$ 



~z 


o 




CD 


X 


CD 


tH 


X) 


x> 


CO 


ro 


CP 


p 


ip 


ro 


o 


P 


ro 


3 


CM 


CP 


X 


ro 


CP 


IP 


CD 


X 


tH 


X 


^4 


X 


CD 


X 


CP 


-3- 


X 


CM 


P 




X 


X 


ro 


p 


tH 


3 


X 


CM 


X 


X 


-3- 


tH 


p 




LiJ 


ro 


ro 


H 


tH 


tH 


tH 


CM 


ro 


LT> 


X) 


<x> 


o 


CM 


3 


LP 


LP 


IP 


X 


X) 


P 


x 


CO 


CP 


o 


CD 


tH 


tH 


CM 


CM 


ro 


ro 


ro 


-3- 


<3- 


X 


X 


X 


X 


X 


p 


p 


X 


X 


X 


X 


X 


CD 


tH 


CM 


CM 




l/) 


(\j 


CM 


tH 


O 


X 


en 


p 


X) 


X 


3 


ro 


ro 


CM 


tH 


CD 


o 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


-3 


3 


-3- 


3 




\ 

I 


CM 


C\J 


CM 


CM 


tH 


tH 






tH 


tH 


- 1 


tH 




H 




tH 






































































CL 




x 


X 


CM 


CM 


X 


3 


O' 1 


X) 


P 


CM 


x 


O' 


p 


P 


P 


CO 


IP 


P 


-3- 


CM 


CM 


00 


X 


3 


o 


CM 


O' 


tH 


X 


ro 


ro 


X 


p 




X 


X 


ro 


p 


o 


CM 


3 


X 


X 


3 




ro 


X 


tH 


P 


X 


o 


P 


3 


3 


X 


x 


O 


3 


CO 


3 


tH 


O 


o 


CM 


p 


IP 


P 


CO 


o 


IP 


IP 


X 


ro 


(P 


P 


X 


X 


X 


X 


X 


CP 


tH 


ro 


X 


p 


o 


CM 


.3- 


p 


X 


CM 


3 


X 


X 


o 


CM 


3 


P 


a' 


Pi 


X 


-3- 




O 


CD 


CO 


CO 


x 


X 


CP 


X 


o 


tH 


CM 


ro 


-3- 


ip 


P 


CP 


(P 


tH 


O 


o 


O 


tH 




CM 


ro 


3 


X 


X P 


X 


O 


tH 


CM 


ro 


X 


X 


P 


X 


X 


tH 


CM 


ro 


3 


X 


p 


X 


CD 


CM 


X 


p 


X 




TL 


x 


X 


x 


X 


-X) 


X) 


X) 


p 


p 


p 


p 


P 


p 




p 


p 


IP 


IP 


IP 


IP 


ip 


LP 


IP 


ip 


X 


X 


IP 




IP 


X 


X 


X 


X 


X 


X 


X 


X 


X 


P 


P 


p 


p 


P 


P 


p 


X 


X 


X 


X 


X 



> 




CD 


o 


X 


X 


X 


X 


X 


X 


c 


CM 


CM 


CM 


o 


X 


X 


X 


tH 


ro 


X 


X 


X 


tH 


3 


ro 


X 


CM 


rH 


ro 


p 


ro 


CD P 


X 


3 


CM 


o 


X 


X 


tH 


X 


tH 


3 


X 


p 


X 


H 


O 


3 


CM 


X 


O 


V 


*■* 


tH 


X 


P 


X 


CM 


CD 


X 


P 


X 


X 


P 


X 


tH 


X 


X 


X 


X 


X 


p 


X 


X 


X P 


X 


CD 


CM 


3 


X 


X 


CM 


3 


p 


CD 


ro 


X 


X 




3 


X 


X 


tH 


ro 


X 


P 




3 


X 


X 


X 




o 


-3 


3- 


X 


ro 


ro 


ro 


ro 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


p 


X 


X 


O' 


o 




CM 


ro 


3 


X 


P 


X 


X 


o 


CM 


ro 


3 


X 


P 


X 


X 


tH 


CM 


ro 


3 


X 


p 


X 


X 


CM 


3 


X 


X 


CD 




2 : 


■3 


3 


3 


3 


3 


3 


3 


3 


3 


3 


3 


3 


3 


3 


3 


3 


ro 


ro 


ro 


ro 


3 


3 


3 


3 


3 


3 


3 


3 


3 


X 


X 


X 


X 


X 


X 


X 


X 


X 


X 


X 


X 


X 


X X 


X P 


P 


p 


P 


X 



P 
— N 



(/iscpxpujx<c>xoO'xroxcMtHxx 

\T^roiroo^oif'rtirio®roK(\jGO 

jifMf)Nnro®ocr^scrcDN^H(\j 



noocc o(r^(r j 

CMxroxo3Xtnx 

iDN(T(J'OCr®MO 



HnmNnj-HU) 

vD^o^ncco'C 

roHtrvofoos^ 



(Dcrortrovoo'U) 

rocr»xxcM3xx 

HS^osncrir 



rlOO(\JM(\Jrl(J' 

vDLftWOCVJHNO' 

rlSWCTO^Hri 







o 

X 


X 


X 


ro 


CD 


X 




p- 


^■H 


X 


CD 


3 


X 


CM 


X 


CD 


CD 


X 




ro 


X 


X 


X 




ro 


X 


p 


X 


CD 


CM 


3 


X 


p 


X 


tH 


CM 


3 


X 


P 


X 


O 


CM 


3 


X 


P 


X 


CM 


X 


X 




3 






V 


r^ 


P» 


X 


X 


X 


o 


CD 




▼H 


CM 


CM 


CM 


ro 


ro 


3 


3 


X 


O 


CD 


CD 


CD 


CD 


■tH 


tH 


tH 


tH 


tH 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 


3 


3 


3 X 


X 


X 


X 


X 






















*— 1 














'—i 






CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


C\J 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


(M 


CM 


l\i 


CM 


CM 


CM 


CM 




X 


_J 


X 


rl 


X 


X 


CM 




ro 


o 


CD 


X 


o 


X 


X 


o 


ro 


CD 


X 


P 


X 


X 


H 


CM 


X 


ro 


ro 


H 


3 


P 


ro 


X 


X 


CD 


3 


CM 


ro 


X 


X 


CM 


.9 

.9 


CM 


X 


CD 


3 


X 


X 


tH 


tH 


.9 

.5 






L. 


ro 


X 


CD 


r^ 


P- 


X 


X 


X 


X 




p 


ro 


ro 


CD 


UD 




X 


3 


X 


X 


X 


CM 


X 


p 


X 


X 


tH 


ro 


p 


CM 


X 


X 


CD 


3 


o 


X 


X 


ro 


X 


X 


P 


X 


3 


o 


X 


X 


P 


X 


3 


rj 






V 


CM 


CM 




X 


X 


p- 


p. 


p 


ec 


O 


CM 


X 




X 


X 


CD 


X 


X 


X 


X 


P 


X 




3 


X 


ro 


CD 


P 


X 


X 


X 


P 


tH 


X 




p 


X 


X 


X 


P 


CD 


3 


CD 


P 


3 


ro 


P 


X 


X 


X 






~y 


ro 


ro 


CD 


X 


ro 


CD 


p 


3 


▼H 


X 


X' 


ro 


▼H 


X 


X 


P 


p 


CM 


P 


CM 


P 


CM 


X 


ro 


X 


3 


CD 


UN 


tH 


P 


ro 


X 


vU 


CM 


X 


X 


CM 


X 


X 


ro 


tH 


X 


UJ 


ro 


tH 


P 


ro 


CD 


P 


X 








X 


X 


X 


X 


p- 


X 


X 


CP 


X 


CD 




CM 


ro 


ro 


3 


3 


p 


X 


X 


X 


X 


CD 


CD 


tH 


tH 


CM 


ro 


ro 


3 


3 


UN 


X 


UJ 


P 


p 


X 


X 


O' 


CD 


tH 


CM 


CM 


ro 


3 


UN 


X 


X 


CD 


tH 


ro 
























vH 












^H 




CM CNJ 


CM 


CM 


CM ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 


3 


3 


3 


3 


3 


3 


X 


X 


X 




UJ 


_j 


X 


CD 


CM 


X 


X 


CD 


▼H 


ro 


X 




P 


X 


X 


X 


O 


P 


ro 


P 


X 


X 


X 


X 


X 


CM 


X 


p 


X 


X 


CD 


X 


ro 


3 


tH 


3 


CM 


p 


X 


3 


X 


(M 


CM 


3 


P 


CM 


X 


3 


3 


X 


X 


X 






X 


CD 


CM 


r^ 


ro 


CM 


X 




CM 


O' 


X 


X 


X 


3 


CD 


X 


CD 


P 


ro 


X 


P 


CM 


3 


X 


X 


X 


p 


CD 


3 


CD 


p 


p 


X 


3 




,H 


ro 


aj 


X 


X 


X 


3 


tH 


a 


CM 


X 


P 


X 


X 


X 


X 








O 


CD 


X 


p- 


X 


X 


X 


X 


X 


P 


X 


ro 


X 


X 


ro 


P 


CM 




H 


CM 


3 


X 


X 


ro 


X 


3 


ru 


CD 


CD 


CD 


ru 


X 


CD 


X 


ro 


tH 


X 




ro 


X 


tH 


P 


3 


CM 


tH 


ro 


CD 


tH 


p 


P 






“> 


ro 


ro 


X X 


ro 


X 


P 


3 




X 


u> 


ro 


CD 


X 


X 


X 


w-i 


X 


X 


ro 


p 




X 


CD 


3 


X 


3 


a' 


3 


X 


3 


X 


X 


o 


X 


CM 


X 


3 


o 


X 


ro 


X 


X 


ro 


CD 


3 


O' 


3 


X 


X 








X 


X 


X 


X 


p- 


X 


X O' 


CD 


CD 




CM 


ro 


ro 


3 


3 


X 


X 


X 


P 


p 


X 


X 


X 


X 


X 


CD 


CD 


tH 


tH 


CM 


CM 


ro 


3 


3 


X 


X 


X 


P 


P 


X 


X 


X 


CD 


tH 


CM 


ro 


X 


X 


X 


























tH 








t-H 


■n 




CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 


3 


3 


3 


3 




D 


_j 


3 




CD 


X 


CD 


ro 


p 


CM 


tH 


X 


X 


P 


CD 


X 


X 


CM 


X 


X 




X 


P 


CM 


CM 


CD 


tH 


P 


CD 


ro 


X 


tH 


X 


X 


X 


X 


tH 


CM 


CD 


3 


X 


3 


CD 


ro 


3 


ro 


O 


O 


ro 


tH 


3 


ro 




O 


o 


X 


vH 


CD 


X 


3 


X 


CM 


CD 


ro 


3 


3 


P 


CM 


CD 


X 


X 


X 


3 


CM 


ro 


tH 


X 


X 


X 


X 


CM 


X 


CM 


UN 


X 


X 


CD 


tH 


tH 


tH 


CD 


X 


P 


X 


ro 


tH 


X 


X 


CM 


X 


CM 


3 


X P 


X 




V 


X 


CM 


CD 


X 


o 


O 


X 


P 


X 


•H 


•H 


ro 


CM 


X 


P 


3 


CD 


3 


X 


X 


X 


O 


O 


CD 


CD 


CD 


CD 


X 


X 


X 


P 


X 


X 


X 


3 


ro 


CM 


o 


X 


X 


P 


X 


3 


ro 


CM 


CD 


X 


X 


CM 


X 


X 




o 


—1 


ro 


ro 


CM 


ro 


CM 


X 


H 


O 


X 


3 


P 


3 


3 


P 


ro 


CM 


3 


X 


X 


P 


X 


o 




CM 


ro 


3 


3 


X 


X 


P 


X 


X 


a 


tH 


CM 


ro 


3 


3 


X 


X 


p 


X 


X- 


o 


tH 


CM 


3 


X 


p 


X 






1 


X 


X 


X 


P- 


X 




X X 


ro 


X 


ro 


X 


X 


▼H 


X 


CO 












CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 


3 


3 


3 


3 


CL 

cu 




CL 
< I 
dj 


X 


X 


X 


P- 


X 


X 


X 


3 


3 


ro 


ro 


CM 


CM 


CM 




vH 






































































p- 


X 


X 




CD 


O' 


X 


CD 


X 




CD 




3 


X 


P 


X 


3 


X 


X 


3 


P 




P 


tH 


P 


CD 


3 


X 


X 


O' 


CM 




CD 


X 




p 


ro 


X 


CM 


CD 


ro 


o 


X 


X 


o 


CM 




3 


X 


CM 


tH 




<_J 




O' 


X 


UN 


X 


X 




X 


CM 


CL 


CD 


ro 


P 


\u 


U J 


UN 


CD 


X 


U' 


3 


P 


CM 


CM 


X 


U' 


CM 


tH 


UJ 


p 


CM 


CM 


UN 


tH 


O' 


tH 


3 


CD 


p 


p 


X 


CD 


3 


X 


3 


CM 


CD 


X 


tH 


X 


3 


3 


CD 


X 


CL 


ro 


CM 


X 


O' 


X 




ro 


ro 




X 


ro 




X X 


X 


3 


CM 




3 


X 


P 


X 


X 


P 


O 


ro 


X 


o 


X 


O 


X 


tH 


X 


ro 


X 


X 


CM 


X 


X 


3 


tH 


X 


X 


3 


CM 


P 


3 


o 


P 


3 


• 


LL 


<1 


CD 


CJ 


CD 


p- 


O' 


X 


3 


X 


CO 


CM 


X 


X 


CM 


▼H 


CD 


CD 


X 


X 


3 


CM 


*H 


CD 


U' 


X 


X 


p 


X 


X 


UN 


X 


3 


3 


ro 


ro 


CM 


CM 


CM 


tH 


tH 


tH 


tH 


CD 


CD 


CD 


CD 


O' 


O' 


X 


X 


X 


X 


O 


CD 


































C\J 


CM 


CM 


CM 


CM 


CM 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


o 


CD 


o 


CD 


CD 








X 


X 




p- 


3 


CM 


CD 


CO 


X 


X 


ro 


OJ 




X 


X 


X 


o 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CJ 


CD 


CD 


CD 


CD 


O 








ro 


ro 


ro 


CM 


CM 


CM 


CM 


tH 


▼H 


tH 


T-i 




i-i 












































































II 






































o 


CD 


O 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


O 


CD 


CD 


CD 


a 


_J 


_J 


CM 


CM 


CD 




3 




ro 


X 


CM 




X 


X 


X 


X 


X 


P 


3 


CM 


CM 


X 


P 


X 


X 


CM 


ro 


ro 


tH 


X 


X 


CD 


X 


X 


ro 


X 


X 


CD 


CM 


3 


X 


X 


X 


X 


X 


X 


X 


X 


ro 


tH 


X 


X 




o 


O 




tH 


X 




X 


3 


ro 


CM 


ro 


3 


X 


X 


CM 


P 


3 


X 


X 


X 


X 


P 


X 


X 


ro 


(M 


o 


X 


X 


ro 


tH 


X 


X 


ro 


tH 


X 


X 


ro 


CD 


P 


3 


tH 


X 


X 


CM X 


X 


CD 


3 


X 


tH 


X 


p- 


> 


X 


X 


OJ 


X 


r^ 


X 


X 


CD 




CM 


ro 


3 


X 


P 


X 


CD 


CD 


CM 


3 


X 


X 


o 


CM 


3 


X 


X 


X 


tH 


ro 


X 


X 


X 


o 


CM 


ro 


X 


P 


X 


CD 


CM 


3 


X 


P 


X 


O 


CM 


X 


X 


CM 


X 


X 


<1 




\ 


3 


3 


3 


3 


3 


3 


X 


X 


X 


X 


X 


X 


X 


X 


X 


X 






































































QL 

3 

CD 




_J 


o 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CJ 


CD 


CD 


ro 


ro 


ro 


ro 


3 


3 


3 


3 


3 


3 


UN 


X 


UN 


X 


UN 


X 


X 


X 


X 


X 


X 


P 


P 


P 


p 


P 


P 


X 


X 


X 


X O' 


O' 


O' 






CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CD 


CD 


CD 


o 


O 


CD 






































































O 

(/) 


z 


-J 


CM 


CM 


CD 


CD 


O 


N. 


X X 


3 


CM 


X 


▼H 


P 


(M 


CM 


O 


X 


X 




p 


X 


3 


X 


3 X 


X 


X 


CM 


ro 


3 


CD X 


X 


o 


X 


X 


X 


P 


ro 


X 


CM 


ro 


X 


tH 


X 


tH 


tH 


3 


X 


X 


PH 


UJ 




X 


X 


CM 


X 


CD 


ro 


X X 




CM 




O 


X 


^H 


ro 




3 


X 


X 


X 


O 


CM 


ro 


tH 


X 


P 


ro 


ro 


P 


X 


X 


X X 


j- in 


X 


ro 


o 


X 


X 


X 


tH 


X 


X 


CM 


X 


P 


X 3 




□ 


_J 


X 


X 


ro 


X 


X 


CM 


X 


3 




P 


ro 


X 


3 


O 


X 


X 


3 


p 


▼H 


P 


X 


X 


X 


X 


X 


CD 


ro 


p 


tH 


X 


CD 


X 


CD 


X 


CM 


X 


3 


tH 


X 


3 


tH 


X 


X 


ro 


CD 


X 


tH 


P 


ro 




UJ 




o 


































o 


X P 


X 


3 


ro 


CM 


tH 


CD 


CD 


X 


X 


X 


p 


P 


XXX 


X 


3 


3 


3 


ro 


ro 


ro CM CM CM CM 


tH 


tH 


O 


o 


o 


z 




X 








CD 


CD 


CD 


X X 


X 


X 


X 


p 


P 


P 


X 


X 


ro 


CM 


CM 


CM 


CM 


CM 


CM 


(M 


CM 


CM 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 




tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


< 






CM 


CM 


CM 


CM 


CM 


CM 


"H 


•H 


▼H 




▼H 
















































































X 

p- 






































o 


o 


CD 


CD 


CD 


o 


O 


CD 


O 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


o 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


LU 


p- 




P- 


o 


CD 


O 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


O 


O 


O 


X 


X 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


o 


O 


CD 


O 


CD 


a 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


O 


CD 


CD 








P- 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


O 


O 


O 


o 


CD 


ro 


ro 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


o 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


O 


o 


CD 


CD 






L5 


X 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


o 


o 


CD 


CD 


CD 


3 


3 


O 


CD 


CD 


CD 


o 


O 


CD 


O 


O 


CD 


CD 


CD 


CD 


CD 


CD 


a 


CD 


e 


CD 


o 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 






O 


X 


CD 


CD 


O 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 








X 


X 


CD 


tH 


CM 


ro 


3 


X 


X 


P 


X 


X 


CD 




CM 


CM 


CM 


ro 


3 


X 


X 


P 


X 


X 


CD 


tH 


CM 


ro 


3 


X 


X 


P 


X 


X 


CD 


tH 


CM 


ro 


3 


X 


X 


P 


CO 


X 


CD 


CM 


3 


X 


X 


CD 












▼H 


▼H 


f-i 


▼H 




▼H 


▼H 


tH 


▼H 


▼H 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 


3 


3 


3 


3 


3 


3 


3 


X 


X 


X 


X 


X 


X 






8f 



i 



274 



197 



ETHANE ISOBAR AT P = 6.0 BAP 



4 



T3 

OJ 

3 

C 



C 

o 

u 



U) 

(U 

o 

cn 



DC 

C 

o 

"rd 



V) 

0) 



Jh 

<D 



*H 

a 



fd 

u 



3 


o 


t — 4 


CD 


P 


o 


•J-4 


N. 


P 


(P 


y 


CD 


K 


ip 


Of 


t -4 


p 


CM 


y 


CO 


UD 


PO 


CD 


U) 


CM 


ao 


y 


CP 


y 


<p 


-5* 


CP 


y 


CO 


PO 


N. 


CM 


UJ 


CD 


y 


CO 


CM 


U) 


o 


y 


<30 


CM 


CP 


UJ 


PO 


CD 






UJ 


PO 


PO 


t -4 


t -4 


t 4 


t — 4 


CM 


PO 


IP 


K- 


CO 


CD 


CM 


y 


LP 


t -4 


IP 


IP 


P 


P^ 


QD 


ao 


CP 


CP 


CD 


CD 


t -4 


tH 


CM 


CM 


PO 


ro 


y 


y 


IP 


IP 


u> 


UJ 


UJ 


ru 




CO 


ao 


ao 


CP 


CP 


CD 


T— 1 


CM 


CM 




to 


CO 


OJ 


■3-) 


CD 


CP 


CD 


P- 


P 


IP 


or 


PO 


PO 


CM 


t-I 


O 


CD 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


PO 


PO 


PO 


PO 


PO 


PO 


ro 


ro 


PO 


PO 


ro 


PO 


PO 


PO 


PO 


PO 


ro 


ro 


PO 


PO 


PO 


ro 


-3* 


y 


y 


y 




V 

2T 


CJ 


CM 


00 


CM 


t -4 


t -4 


t -4 


t -4 


t -4 


■ h 


t -4 


t-H 


t -4 


t -4 


t -4 


t -4 






































































a 


* 


O' 


O' 


CM 


t 4 


oo 


PO 


CP 


UJ 


UJ 


t -4 


PO 


UJ 


or 


PO 


CM 


UJ 


PO 


O 


P 


UJ 


N- 


CP 


r- 


U> 


IP 


CM 


IP 


CM 


y 


CP 


UJ 


UJ 




CP 




y 


r^ 


CD 


CM 


y 


IP 


ip 


ip 


PO 


o 


tH 


r^ 


r^ 


ro 


y 


o 


\ 


y 


y 


a) 


CO 


o 


J- 


ao 


J- 


t -4 


O 


o 


CM 


r- 


P 




*“• 


r- 


PO 


P 


ao 


t-H 


UJ 


ro 


t -4 


o 


CD 


CD 


tH 


CM 


ro 


ip 


n- 


CP 


t -4 


y 


UJ 


CO 


tH 


PO 


ip 




CP 


TH 


PO 


IP 


P 


© 


CM 


y 


ip 




o 


P 


QO 


00 


CO 


(P 


CP 


CP 


o 


•H 


CM 


ro 


J- 


ip 


K 


CP 


t -4 


CM 


CM 


tH 


t-4 


CM 


CM 


PO 




IP 


UJ 


r*. 


ao 


CP 


o 


tH 


CM 


PO 


IP 


UJ 


N- 


ao 


CD 


t -4 


CM 


PO 


y 


UJ 




OD 


CD 


ro 


LP 


N- 


CP 




T* 


P 


P 


P 


P 


P 


P 


P 




r*- 


r^ 






N. 






ao 


IP 


IP 


IP 


IP 


IP 


IP 


ip 


IP 


IP 


IP 


ip 


IP 


IP 


UJ 


UJ 


UJ 


u> 


UJ 


u> 


UJ 


UJ 








p^ 




K- 


r^ 


K- 


OD 


ao 


flO 


an 


CO 



\ 

”J 



> 


* 


t ~4 


H 


CD 


o 


IP 


CD 


UJ 


p 




PO 


ro 


CM 


v 4 


CP 


r^ 


CM 


CD 


ro y 


P 




O 


© 


P 


P 


tH 


O' 


© 


y 


p 


P 


CM O' 


K 


p 


ro 


t -4 S 


fO 


O' ro 


p 


GO 


p 


p 


CM 


T-4 


p 


ro 


fx- 


O 


V 


t -4 


*"* 


CD 


ao 


IP 


PO 


CD 


CO 


P- 


U> 


U) p^ 


O' H 


p 


© 


P 


ao 


PO 


CD 


P 


eQ 


P ao 


O' 




CM 


p 


K 


O' CM 


p 


K. 


o 


ro 


p 


O' 


t -4 


y 


p 


O' 


t -4 


ro 


p 


t -4 


y 


p 


p 


O' 




o 


y 


y 


-y 


ro 


PO 


PO 


PO 


CM 


CM 


CM 


CM 


CM 


CM 


PO 


ro 


ro 


CD 


CD 


O' 


CD 


o 


T-H 


CM 


ro 


y 


P 


ru 


00 


O' 


o 


CM 


ro 


y 


p 




p 


O' 


T-4 


CM 


ro 


y 


P 


ru 


p 


O' 


CM 


y 


p 


p 


© 




X 

V 


y 


y 


-y 


-y 


*y 


y 


y 


y 


y 


y 


y 


y 


y 


y 


y 


y 


PO 


PO 


PO 


y 


y y 


y y 


J- -S’ ^ ^ 


y 


p p 


P 


p 


p 


p 


p 


p 


p 


P 


vC <£> 


P 


p 


p 


p 




r^ 


N- 


fu 


p 


i r 


* 


CM 




a 


GO 


U) 


a* 


CD 


O 


CP P- 




CM 




p 


CD 


O' 


CO 


ro 


P 


ro 


ro 


tH 


O' P 


P 




t -4 


PO 


p 


O' 


P 


O' 


O' 


p 


CM 


p^ 


CM 


pT. 


ro 


O' p^ 


P 


p 


O' 


ro 


h- 


O' 


© 


O 


O' 






CM 


CM 


«y 


IP 


CP 


ro 


CD 


y 


o 


y 


O' K 




p 


tH O' 


y 


ao 


O' 


tH 


p 


ro 


p 


y o' 


tH 


t -4 


P 


ro uj 


P 


P Pw 


p 


CM 


p^ 


CM 


p 


p O' © 


O 


O' s P 


r^ 


p 


ro 


P 


p 




-J 


IP 


ip 


rs. 


CM 


CM 


ao 


CD 


CO 


y 


p- 




CO 


k 


y 


t -4 


CD 


00 


CO 


CD 


CM 


CM 


CM 




o 


P 


N- 


P 


CM 


© 


p^ 


y 


t -4 


p 


p 


CM 


p 


P 


t -4 


h- 


ro 


© 


P 


t -4 




ro 


y 


p 


p 


P 


p 




£ 


U) 


UJ 


PO 


CD 


UJ 


*-| 


Cw 


tH 


p 


CD 


y 


CO 


CM 


p 


CD 


CM 


ao 


O' 


CM 


y 


P 


P 


o 


CM 


ro 


P 


pu 


O' 


t -4 


CM 


y 


P 


pu 


O' 


t -4 


CM 


y 


P 




O' 


t -4 


CM 


y 


p 


N- 


o 


fO 


p 


O' 


CM 




V. 


N. 




CD 


CP 


CP 


CD 


CD 




▼-4 


CM 


CM 


CM 


ro 


o 


y 


y 


O' 


O' o 


CD 


CD 


CD 


t -4 


t -4 


t -4 


T-4 


t -4 


t -4 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


PO 


PO 


ro 


ro 


ro 


y 


y 


y 


y 


y 


p 


p 


p 


p 


P 




J 






















■" 




t -4 


*"* 








t -4 


CM 


IM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


C\J 


CM 


X 


-J 


IP 


o 


IP 


pw 


CD 


P 


CD 


viD 


P 


CM 


ro 


UJ 


y 


p 


ro 


y 


o 


.6 

.6 


P 


CM 


tU 


CD 


PO 


t -4 


CM 


ro 


O' 


.5 

.5 

.1 


P 


O 


P 


y p 


O 


K. 


fu 


O 


ro 


P 


CM 


P 


P 


P 


CM 


P 


y 


t -4 




X 


00 


CP 


«y 






ro 


CD 


tH 


O' 


P 


CD 


UJ 


p 


CM 


au 


T-4 


au 


ro 


ro 


t -4 


T-4 


P 


P 


CM 


P 


ro 


p 


ro 


© 


P 


P 


© 


y 


O' 


p^ 


r- 


© 


y 


t -4 


T-4 


CM 


P 


tH 


P 


ru 


o 


O' 


CM 


O' 


O' 




V 


CM 


CM 




CD 


IP 


ao 


ao 


eo 


CO 


O 


ro 


p 




ao 


P 


r4 


O' 


PO 


p 


pu 


O' 


T— 1 


y 


P 


CM 


p 


y 


CM 


tH 


O 


t 4 


y 


Pu 




Pu 


y 


ro 


CM 


ro 


p 


p 


CM 


P 


y 


CM 


CM 


P 


y 


p 


ro 




~J 


PO 


PO 


o 


r^ 


PO 


CD 


ps. 


y 


tH 


O' 


UJ 


ro 


t -4 


CO 


P 


tH 


© 


t -4 


u» 


t -4 


p 


CM 


r'- 


CM 


au 


ro 


O' 


p 


t -4 




ro 


O' 


p 


CM 


P 


p 


CM 


O' 


p 


ro 


© 


P 


P 


ro 


t -4 


ru 


ro 


o 


r^ 


p 






U> 


UA 


UJ 


UJ 


f^- 


ao 


CO 


O' 


CD 


CD 




CM 


ro 


ro 




P 




P 


p 


O' 


O' 


© 


CD 


tH 


t -4 


CM 


CM 


ro 


y 


y 


p 


p 


p 


P^ 


r^ 


p 


O' 


O' 


o 


T— 4 


CM 


CM 


ro 


y 


P 


p 


p 


© 


T-4 


ro 
























<rH 












tH 


CM 


CM 


CM 


CM 


CM 


ro 


PO 


PO 


ro 


PO 


PO 


ro 


ro 


PO 


ro 


PO 


PO 


PO 


ro 


ro 


ro 


PO 


y 


y 


y 


y 


y 


y 


y 


y 


y 


p 


p 


p 


LU 


-J 


CO 


PO 


-y 


CD 


CT 


CP 


ao 


ao 


CM 


CM 


P 


^—4 


CD 


CM 




p 


P 


r^ 


tH 


CD 


CM 


CD 


© 


o 


p 


ro 


O' 




© 


ro 


p 


T-4 


© 


ro 


CM 


ru 


P 


t -4 


© 


ro <p 


r^ 


r^ 


p 


y 


CM 


t -4 


O' 


p 


ro 




X 


CD 




UJ 


PO 




ro 


CP 


CD 


ao 


ro 




ro 


CO 


P- 


CM 


y 


P 


CM 


p 


P 


P 


ro 


O' 


ro 


UJ 


o 


y 


© 


p 


r- 


p 


ro 


O' r- 


p 


t 4 


r^ 


P 


r- 


© p 


ro 


ro 


p 


O' 


CM 


tH 


y 


CM 


ro 




V 


CD 


o 


«> 




UJ 


P 


y 


P 


P 




CP 


ro 


GO 


y 


ro 


r- 


y 


PO 


y 


P 


P 


t -4 


y O' 


y 




p 




p 


Pu 


O' 


ro n. 


ro 


© 




eo 


O' 


T-4 


p 


O' 


P 


CM 


© 


O' 


CM 


O' 


© 


P 


P 




■J 


PO 


PO 


CP 


UJ 


PO 


CD 


r^ 


y 




ao 


P 


ro 


CD 


a- 


p 


CD 


CM 


y 


p 


CM 


P 


tH 


p 


O' 


y 


O' 


ro 


p 


ro 


p 


ro 


O' 


y 


© 


P 


t -4 N 


ro 


© 


p 


CM 


O' 


p 


ro 


O' 


y 


p 


y 


O' 


u> 






IP 


IP 


p 


U) 


1^- 


CO 


CO 


O' o 


CD 


4 


CM 


ro 


PO 


y 


P 


P 


p 


P 


K 


h- 


P 


p 


p 


O' 


O' 


o 


o 


tH 


t -4 


CM 


CM 


ro 


y 


y p 


P 


p 


h- 


I s - GO 


p 


O' 


o 


© 


CM 


ro 


p 


p 


p 
























*H 






t -4 


tH 


t-H 


T— 4 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


PO 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


PO 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


y 


Q 


_J 


r*. 


CD 


-y 


CM 


p 


UJ 


UJ 


P 


au 


CP 


PO 


CD 


IP P 


P 


00 


O' 


O' P 


P 


y 


O' 


tH 


K 


© 


P 


y 


o 


y 


p 


ro 


© 


t -4 


p 


y 


Pu 


P^ 


CM 


ro 


t -4 


P 


p 


fu 


y 


p 


t -4 


r*- 


p 


© 


O' 


O 


o 


o 


ro 


•y 


UJ 


CM 


p 


y 


PO 




CD 


CM 


P 


CM 


PO 


y 


CD 


P 


P 


CM 


T-4 


p 


y 


t -4 


y 


P 


P 


PO 


o 


p 


O' 


ro 


P 


P 


O' o 


© 


© 


© 


O' P 


p 


y 


CM 


© 


f*. 


CM 


p 


p 


t -4 


CM 


\ 


X 


y 


ro 


CM 




-y <p 




CM 


P 


UJ 


<o 


ru 


CD 


CM 


o 


CM 


CM 


P 


tH 


PO 


y p 


P P 


P 


P 


p 


P 


p 


y 


y 


PO 


CM 


tH 


t -4 


© 


O' 


CO 


p 


P 


y 


ro 


CM 


t -4 


O' r- 


y 


t -4 


O' 


P 


Q 


-J 


PO 


ro 


PO 


ro 


CM 


ao 


CM 


H 


P 


y 


P^ 


y 


P 


CO 


y 


P 


y 


y 


P 


r^ 


p 


O' 


CD 


t -4 


CM 


PO 


y 


P 


p 


pu 


p 


O' 


o 


t — 4 


CM 


ro 


ro 


y 


p 


P 


h- 


p 


O' 


O 


© 


CM 


y 


P 


r^ 


O' 




1 


UJ 


UJ 


U) 


p^ 


CP 




P 


cp ro 


CO 


ro 


(P 


P 




p 


P 


tH 


t -4 


t -4 


t -4 


t -4 


T-4 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


PO 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


y 




K BAR 


CP CP 


ao 


pw 


U) 


U> 


P 


y 


y 


ro 


ro 


CM CM 


CM 


t -4 


t -4 






































































K- 


UJ 


*y 


IP 


CM 


N- 


PO 


CP 


CD 




UJ 


ro 


CM 


CD 


CD 


CP 


P 


t -4 


P 


ru 


CM 


P 


p 


O' 


P 


CM 


P 


© 


P 


o 


P 


t -4 


P 


p 


p 


O' 


r^ 


p 


tH 


p 


P 


y 


p 


p 


r<- 




CM 


ro 


© 


O' 


p 


O 




PO 


CD 


UJ 


CD 




P 


O' 


r- 


PO 


p 


O' 


y 


y 


P 


y 


O 


CM 


T-4 


p 




O' 


UJ 


O' 


P 


O' 


O' 


P 


ro 


p 


T-H 


ro 


P 


h- 


O' 


y 


CM 


CM 


P 


O' 


P 


ro 


CM 


ro 


p 


O' 


O' 


ro 


t -4 


T-4 


m 


\ 


ct 


ro 


ro 


CO 


CD 


O 


r^ 


PO 


ro 


CM 


UJ 


ro 


CM 


o 


P 


O' 


ro 


CM 


O' 


y 


y 


N» 


ro 


CD 


O' 


O' 


© 


CM 


p 


p 


CM 


P 


© 


p 


© 


p 


CM 


P 


y 


o 


N- 


y 


tH 


P 


p 


CM 




ro 


O' 


p 


t -4 


a 


«a 


CD 


CD 


CD 


CD 


CD 


U' 


y 


p 


OJ 


CM 


CD 


P 


ro 


t — 4 


CD 


p 


y 


CM 


CD 


p 


P 


p 


y 


CM 


T-4 


t -4 


© 


O' 


GO 


P 


p-~ 


r- 


p 


p 


p 


U' 


y 


y 


y 


ro 


ro 


ro 


CM 


CM 


CM 


t-H 


t -4 


O 


© 


CD 


o 


CD 


































PO 


PO 


PO 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


t -4 


T-4 


t -4 


t -4 


T-4 


t -4 


t -4 


t -4 


t -4 


T-4 


t -4 


t -4 


T-4 


■H 


T-4 


T — 1 


t -4 


t -4 


t -4 


t -4 


T-4 


tH 


t -4 






IP 


u^ 


tH 


P- 


UA 


CM 


o 


CO 


UJ 


p 


PO 


CO 




CD 


CP 


CO 


o 


CD 


CD 


CD 


CD 


CD 


o 


© 


© 


© 


O 


© 


O 


© 


O 


© 


© 


O 


O 


© 


O 


© 


O 


CD 


o 


© 


o 


© 


O 


© 


O 


O 


© 


© 






PO 


ro 


PO 


CM 


CM 


CM 


CM 


*H 




H 


*-4 


H 


t -4 


t -4 






CD 


CD 


CD 


CD 


CD 


o 


© 


CD 


© 


o 


o 


O 


O 


© 


o 


a 


a 


© 


O 


O 


© 


© 


o 


a 


o 


O 


© 


© 


O 


O 


© 


o 


O 


O 


-i 


_i 


CM 


CM 


CD 




y 




CM 


CP 


^—4 


^—4 


CO 


P 


y 


N- 


r» 


o 


y 


P 


O' 


P 


CM 


CM 


© p O' 


t -4 


CM 


CM 


T— 4 


O' 


p 


CM 


P 


y 


O' 


ro 


N- 


t -4 


p 


CO 


t -4 


ro 


p 


GO 


o 


y 


r^ 


O' 




ro 


o 


o 


t -4 


•sH 


CP 


N. 


ip 


y 


PO 


CM 


PO 


y 


P 


CD 


CM 


P- 


y 


p 


p 


ro 


o 




y 


o 


P 


tH 


P 


CM 


N- 


CM 


r- 


TH 


p 


T—t 


P 


o 


y 


O' 


ro 


P 


CM 


P 


T-4 


p 


O' 


ro 


p 


p 


y 


CM 


t -4 


O' 


D> 


X 


UJ 


vD 


U) 


P^ 


CO 


CP 


CD 


•H 


CM 


PO 


y 


P 




P 


o 


t -4 


r- 


p 


CD 


t -4 


ro 


p 


P 


P 


O' 


t-4 


CM 


y 


p 


pu 


p 


© 


t -4 


ro 


y 


p 


ru 


P 


o 


t -4 


ro 


y 


p 


fu 


p 


t -4 


y 


N- 


a 


CM 




V. 


y 


J- 


-y 


J- 


y 


y 


P 


P 


P 


p 


p 


P 


p 


P 


p 


P 








































































-J 


CD 


CD 


CD 


CD 


CD 


o 


O 


CD 


CD 


CD 


CD 


O 


CD 


o 


CD 


CD 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


P 


P 


P 


p 


p 


p 


P 


p 


P 


p 


p 


p 


P 


p 


fu 


h- 


1 ^- 


p 


p 






O 


CD 


O 


CD 


O 


o 


CD 


CD 


CD 


O 


CD 


CD 


O 


o 


CD 


O 






































































Z 


_J 


PO 


PO 






▼■4 


CP 




CD 


UJ 


P 


t -4 


y 


<*■4 


K 


K> 


o 


t -4 


P 


CM 


o 


P 


y 


CM P 


ro 


ro p y 


© 


CM 




© 


P p ro 


O' o y 


O' ro p 


p 


t-4 


t-4 


p 


O' O' P 


CM 


p 


UJ 


V 


CO 


GO 


CM 


U) 


O 


PO 


P-w 


CP 


■sH 


CM 


CM 


o 


P»» 


H fO ^ 


H S ^ 


MMP 


CM © 


O' 


p © 


t -4 


pu O' P P 


ee 


P 


P pu 


ro 


O O' 


y 


O' 


p y ro p 


CM 


ro 


® 


p 


□ 


-J 


UJ 


UJ 


PO 


O' 


U) 


CM 


00 


y 


v -4 


K 


PO 


O' 


y 


o 


P 


CM 


PO 


CM CM 


y 


O' 


p 


ro 


CM 


T-4 


CM 


y 


P 


GO 


t -4 


P 


O' 


ro 


p 


ro 


p 


y 


a 


p 


CM 


p 


y 


tH 


P 


p 


O' 


y 


O' 


y 


o 




o 


































p p ro 


H cr ® 


N» p P 


y ro 


CM 


t-4 


t -4 


© 


O' O' P 


P N> 


fu pu P 


P P P 


P 


y 


y 


ro 


ro 


CM 


CM 


CM 




X 


t -4 






CD 


CD 


CD 


CP 


CP 


CP CO 


ao 




K. 


K. 


P 


P 


PO 


ro 


ro 


ro 


CM 


CM 


CM CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


t -4 


t -4 


▼4 


v -4 




t-4 


iH 




t-4 


t-4 


tH 


t-4 


t -4 


t -4 


t-4 


t -4 


t -4 


t -4 


t -4 






CM CM 


CM 


CM 


CM 


CM 




•H 


•u 


■H 








V* 




<?=4 










































































































o 


eo 


CD 


o 


© 


© 


© 


o 


© 


© 


© 


© 


CD 


O 


O 


O 


© 


O 


Q 


O 


© 


O 


O 


O 


© 


o 


O 


© 


© 


© 


O 


© 


© 


O 


»— 




PO 


O 


CD 


o 


CD 


o 


CD 


CD 


CD 


O 


CD 


O 


CD 


O 


O 


O' 


O' 


CD 


O 


CD 


CD 


© 


o 


o 


o 


© 


© 


O 


O 


© 


o 


O 


O 


© 


O 


o 


O 


o 


© 


© 


O 


© 


o 


© 


© 


CD 


© 


© 


O 


© 






CP 


o 


O 


CD 


CD 


o 


O 


CD 


o 


CD 


CD 


o 


CD 


CD 


o 


O 


CD 


CD 


o 


CD 


© 


o 


© 


© 


© 


© 


© 


© 


© 


o 


o 


O 


o 


o 


© 


o 


o 


o 


© 


© 


© 


© 


© 


© 


O 


O 


© 


© 


CD 


© 




o 


CP 


o 


CD 


CD 


CD 


® 


o 


CD 


o 


O 


CD 


o 


CD 


O 


o 


P 


P 


o 


o 


O 


O 


CD 


© 


o 


o 


© 


© 


© 


© 


CD 


o 


© 


© 


o 


© 


o 


o 


© 


© 


© 


© 


o 


© 


© 


O 


o 


o 


O 


O 


CD 




o 


(P 


o 


CD 


O 


CD 


o 


CD 


CD 


o 


o 


CD 


o 


CD 


o 


CD 


P 


P 


o 


o 


CD 


o 


© 


o 


O 


© 


© 


© 


© 


© 


o 


© 


o 


© 


© 


© 


© 


o 


o 


© 


o 


o 


o 


o 


© 


O 


© 


© 


o 


O 


O 






CD 


CP 


CD 




CM 


ro 


y 


P 


U) 




ao 


CP 


CD 


t -4 


CM 


CM 


CM 


ro 


y 


P 


p 




p 


O' 


© 


t -4 


CM 


ro 


y 


p 


p 


N. 


p 


O' 


© 


t -4 


CM 


ro 


y 


p 


p 


r^ 


p 


O' 


o 


CM 


y 


p 


P 


o 










■»— I 




*-» 






•'H 






t -4 


■»— 4 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


y 


y 


y 


y 


p 


P 


p 


p 


P 


p 



275 



Table 27. Thermophysical properties along isobars (Continued) 






3 


o 


o 


'X3 




tH 


p 


P 


cp 


y 


CD 


CO 


vO 


y 


CM 


O' 


LP 


y 


y 


CM 


CD 


p 


y 


o 


M3 


CM 


00 


ro 


oo 


ro 


CO 


ro 


P 


CM 


M3 


tH 


in 


O' 


y 


CO 


CM 


M> 


CD 


y 


P 


o 


O' 


M> 


r^ 


a 


P 




LU 


ro 


tH 


tH 


tH 


tH 


CM 


ro 


in 


p 


CO 


o 


CM 


y 


in 


p 


lp 


in 


M3 


p 


P 


CO 


O' 


O' 


CD 


o 


tH 


tH 


CM 


CM 


ro 


ro 


y 


y 


in 


in 


in 


M3 


M3 


p 


p 


00 


oo 


00 


O' 


O' 


CD 


tH 


CM 


CM 




l/> 


C\J 


tH 


CD 


CT 


CD 


p 


M3 


in 


y 


ro 


ro 


CM 


tH 


o 


O' 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


J- 


y 


y 




"V 

r 


CM 


CM 


CM 


H 




H 






tH 


tH 


tH 


tH 


tH 


tH 








































































LL 




O' 


CM 


tH 


p 


ro 


CO 


in 


IT' 


O' 


CM 




tH 


O' 


CO 


tH 


M3 


M3 


M3 


CM 


o 


M3 


tH 


tH 


ro 


ro 


tH 


in 


ro 


m 


o 


oo 


p 


p 


OO 


CD 


CM 


ro 


in 


M3 


M3 


M3 


in 


CM 


O' 


O' 


y 


J- 


O' O' 


O 




J- 


M3 


03 


CD 


y 


CO 


y 


tH 


O' 


CD 


CM 


P 


y 


M3 


J- 


ro 


ro 


ro 


O 


H 


y 


O 


p 


in 


y 


J- 


y 


in 


M3 


00 


O' 


o 


ro 


U' 


GO 


o 


CM 


y 


M3 


oo 


O 


CM 


J- 


in 


oo 


tH 


ro 


y 


in 




o 


CO 


CO 


CO 


CT 


O' 


o' 


o 


tH 


tH 


ro 


y 


in 


P 


CT 


CM 


y 


y 


ro 


ro 


ro 


ro 


y 


y 


in 


M3 


p 


00 


O' 


CD 


tH 


CM 


y 


in 


M3 


P 


O' 


O 


tH 


CM 


ro 


in 


M> P 


03 


CD 


ro 


in 


P 


O' 




x 


M> 


M3 


M> 


M3 


vT 


M3 


p 


p 


p 


p 


P 


p 


p 


p 


oo 


in 


in 


in 


in 


in 


in 


in 


in 


in 


in 


in 


in 


in 


M3 


M3 


M3 


M3 


M3 


M3 


M3 


M3 


P 


P 


p 


p 


p 


P 


p 


P 


00 


on 


on 


00 


OO 



“5 



> 


* 


CM 


o 


tH 


M3 




p 


M3 








ro 


CM 


o 


00 


in 


O' 


O' 


in 


in 


CM 


CD 


M3 


O' 


OO 




<XD 


00 


o 


-y 


o 


M3 


ro 


»“4 


O' 


M> 


ro 


CD 


M3 


tH 


in 


00 


O' CD 


O' 


ro 


CM 


M3 


y p 


o 


V 




o 


OO 


in 


ro 


o 


ao 


r»- 


M3 


m> r^ 


CP 


CM 


in 


CD 


ro 


ro 


p- 


ro 


tH 


CD 


O' 


O' 


o 


(M 


ro 


in 


OO 


o 


ro 


in 


co 


tH 


ro 


M) 


O' 


CM 


-y p- 


O' 




ro 


M3 


pw 


T* v0 


co O' 




C3 


J- 


y 


ro 


ro 


ro 


ro 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


-y 


O' 


O' 


O' 


CD 




CM 


CM 


ro 


in 


M3 


P- 


CO 


O' 


tH 


CM 


ro 


-y 


M3 P- 


CO 


O' 


CM 


ro 


«y 


M3 


r^ 


oo 


O' 


CM 


-y 


M3 


03 


o 




X 

p 


y 


y 


y 


y 


y 


y 




-y 


-y 




-y 


^y 


-y 


-y 


-y 


ro 


ro 


ro 


-y 


-J- 


-y 


-y 




-y 




-y 


*y 


*y 


in 


in 


in 


in 


in 


in in 


m M) 


M3 


M3 


M3 


M3 


M3 M3 


M3 K 


p p p 


00 


<SI 


*: 


M) 


CM 


CD 


CD 


CD 




CD 


-o 


M3 


O' CP 


ro 


O' 


CM 


O' 


O' 






o 






-y 




O' 


in 


CM 




in 


p- 


CM 




M3 


O' O' 


oo 


M> 


in 


ro 


CM 


ro 


*y 




tH 






O' 


CM 


m 


M3 




v. 


CM 


y 


O' 


OO 


ro 


O' 


ro 


O' 


ro 




in 


CD 


ro 


O' 


<x> 


CO 


O' 


ao 


in 


ro 


J- 


O' 


O 


M3 


o 


o o' in 


O' 


CM 


ro 


CM 


CD p. 


ro 


<D 


CM 


in p- 


co 


CO 


P- M) 


ro 


M) 


in 


CM 


in in 




_J 


in 


p 


CM 


CM 


ao 


O' 


CO 


ro 


P- 


OO 


co 




■y 


o 


M> 




▼H 


J- 


M3 


r^ 




M3 


M3 


-y 


ro 




CO 


M3 


ro 


■*H 


ao 


in 


CM 


00 


in 




00 




O 


M3 


CM 


ao 


-y 


o 


tH 


CM 


ro 


ro 


ro 




£ 


M3 


ro 


CD 


M3 




M3 




M3 


CD 




CD 


CM 


M> 


o 


ro 


0D 


OO 


CD 


CM 


<y 


M3 


OO 


CD 


CM 


J- 


M3 


r^ 


O' 


^4 


ro 


-y 


M3 


CO 


O' 


tH 


ro 


-y 


M) 


CD 


O' 


tH 


CM 




M3 


O' 


CM 


in 


CD 


tH 




\ 


P 


CO 


O' 


O' 


CD 


O 






CM 


CM 


CM 


ro 


ro 




-y 


O' 


O' 


O 


CD 


o 


CD 


o 


«»H 












CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


■y 


<y 




-y 


•y 


in 


in 


in 


M3 




~5 












tH 








■*“* 










H 






CM 


CM 


CM 


CM 


CM 


CM 


CM 


(M 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CVJ 


CM 


CM 


CM 


CM 


CM 


IM 


CM 


CM 


CM 


X 


_J 


in 


y 


in 


O' 


ro 




ro 




K 


in 


M3 


CM 


CD 




M3 


ro 


00 


CM 


-y 


-y 


K 


M3 


ao 


P* 


CM 




CM 


O' 


M3 


K 


in 


CD 


in 




O' 


O' O' CM 




CM P. 


H 


ro 


ro 


O' 


CD 


P 


00 


M3 




X 


ro 


00 


in 


y 


p 


ro 


in 


ro 


00 


ro 


O' 


O' 


in 


o 


O' 


ro 


ro 


CM 


ro 


ro 


in 


(M 


in 


M3 


M3 


in 


J- 


ro 


J- 


M3 


o 


M> 


ro 


ro 


«y 


ao 


in 


-y 


-y 


P- 


tH 


oo 


M3 


M> 


CD 




in 


ro 


y 




P 


ro 


tH 


O 


O' 


CD 


<X3 


co 


cr 


CD 


ro 


M3 


▼-4 


CD 


r^ 


h- 


CD 


CD 




p- 


CD 


ro 


P- 




M3 


CM 


O' 


P- 


M) 


M> 


P- 


CD 


ro 


<X3 


*y 




O' 


O' 


CD 


cm in 


CD 


in 


CM 


CD 


CD 


■y 


CM 


in 


CM 




“3 


ro 


CD 


p 


ro 


CD 


n- 


j- 




O' 


M3 


ro 


H 


03 


M3 


-y 


CD 


CD 


in 


CD 


M) 




M) 


CM 


P- 


ro 


ao 


-y 


o 


M3 


CM 


CP 


in 




CD 


in 


tH 


ao 


M3 


ro 


CD 


<D 


in 


ro 


tH p. 


ro 


CD 


p 


in 






U' 


M3 


MJ 


p 


CO 


ao 


O' 


CD 


CD 


■»-H 


CM 


ro 


ro 


-y 


in 


CD 


oo 


ao 


O' 


O' 


CD 


CD 






CM 


CM 


ro 


-y 


-y 


in 


in 


M3 


P- 


r^ 


CO 


O' 


O' 


CD 


tH 


CM 


CM 


ro 


J- 


in 


M3 


ao 


CD 


tH 


m 






















- 1 






wH 


w< 






CM 


CM 


PJ 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


*y 


J- 


J- 


-y 


<y 


*y 


«y 


t* 


-y 


in 


in 


in 


Uj 


_J 


CM 


M3 


tH 


.9 

.7 


in 


.y 


in 


ro 


ro 


M) 


CM 


CD 


tH 


O' 


in 


O' 


-y 


ro 


M) 


ao 


r^ 


M3 


-y 




CM 


CM 


in 


-y 


ro 


ro 


in 


CD 


o 


<y 


ro 


in 


CM 


CM 


in 


CD 


in 


CD 


ro 


tH 


ac 


y 


oo 


«H 




X 




in 


CM 


O 


CM 


<o 


CP 


M3 




in 


CD 


CP 


ro 


ao 


in 


.y 


-y 


ro 


O' 


P^ 


CD 


CD 


oo 


in 


CM 


O' 


p- 


M3 




o 


in 


CM 


CM 


J- 


<X3 


in 


in 


P^ 


tH 


p- 


M3 


M3 


O' 


ro 


P 


M3 




O' 


tH 




V 


CD 


CO 


p 


M3 


in 




-y 


in 


r*«- 


O' 


ro 




-y 


CM 


ro 


-y 


-y 


P- 


CP 


CM 


M> 


CD 


-y 


C 1 


r^. 




ro 


ro 


-y 




o 


in 




ao 


M) 


M> 


P- 


O' 


ro 


p- 


ro 


CD 


<D 


ao 


CD 


p 


O' 


y 


in 




“3 


ro 


O' 


M3 


ro 


o 


r^ 


-y 




oo 


U ' 


ro 


CD 


ao 


M3 


-y 


ro 


ro 


r^ 




VL 


CD 


in 


O' 


-y 


co 


ro 


ao 


ro 


CD 


ro 


O' 


-y 


O 


in 






ro 


O' 


M3 


CM 


O' 


M3 


CM 


O' 


y 


oo 


ro 


o' in 






in 


in 


M3 


p 


CD 


oo 


CP 


CD 


CD 




CM 


ro 


ro 


<y 


in 


M3 


M3 


M3 


P- 


P- 


ao 


aO 


ao 


O' 


O' 


o 


o 


*-♦ 




CM 


CM 


ro 




J- 


in 


in 


M3 


M> 


P. 


ao 


CO 


<T> o 


O CM 


ro 


in 


M> 


<D 




























H 






H 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


*y 


*y 


-y 


y 


y 


y 


y 


o 


_J 


tH 


00 


O' 




M3 


J- 


<o 


in 


o 


O' O' 


M3 


CM 


in 


N- 


ao 


O' 


_< 


J- 


M3 


-y 




-y 




in 


CD 


O' 


-y 


00 


o 




O' 


P- 


O' 


J- 


in 


CD 


CM O' 


CM 


ro 


CD 


J- 


M3 


CM 


CD 


o 


y 


CM 


o 


o 


MJ 


CO 


CM 


tH 


in 


M3 


M3 


CM 


r^ 


O' 


in 


ro 


M3 


O' 


-y 


ro 


ro 


tH 


ao 


OO 


ro 


J- 


•H 


M3 


co 


O' 


r^ 


in 


*-i p. 




<y p- o' 




CM 


ro 


ro 


CM 


CM 


tH 


CD 


CD 


M3 


CM 


P 


tH 


y 


P 


\ 

LL 


X 

P 


in 


in 


00 


OO 


ro 


in 


M) 


CD 


CD 


CM 


CM 


in 


r^ 


in 




o 


CD 


-y 


M> 


ao 


CD 




CM 


CM 


CM 


CM 


CM 


CM 


CM 






CD 


O' ao 


CD 


r^ 


M> 


in 


-y 


ro 


CM 


tH O' 


CO 


M3 


ro 


tH 


oo 


in 





O 




ro 


ro 


ro 


CM 


CP 


CM 


t-4 


M3 


in 


ao 


in 


m 


CD 


y 


CM 


y 


y 


in 


a? 


p 


CP 


CD 


tH 


CM 


ro 


y in 


M> 


p 


co 


O' 


CD 


CD 


tH 


CM 


ro 


y 


in 


M3 


P CO 


O' O' 


CD 


CM 


y 


M3 


p 


CP 






1 


M3 


M3 


P 


O' 


tH 


in 


O' 


ro 


CO 


ro O' 


in 


tH 


oo 


in 


tH 


tH 


▼H 


tH 


tH 


tH 


CM 


CM 


CM 


CM 


CM CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro ro 


ro ro 


y 


y 


y 


y 


y 


y 


(X 

•a 

CD 




K BAR 


O' 


oo 


P 


M3 


M3 


in 


y 


y 


ro 


ro 


CM 


CM 


CM 


tH 


tH 
































































P- 


y 


O' 


ro 


in 


P 


O' 


in 




CM 


in 


CD 


in 


ro 


tH 


CD 


ro 


CD 


in 


P 


P 


ro 


ro 


O' 


CM 


y 


y ro 


O' 


CM 


ro 


in 


tH 


CO 


tH 


M3 


CD 


tH 


p 


y 


CM OO 


CM CM 


p 


p 


M3 


p 


M3 


p 




LJ 


P 


p 


p 


CM 


y 


co 


ro 


tH 


au 


tH 


in 


tH 


tH 


ro 


y 


ro 


y 


y 


O' 


y 


VL 


CM 


ro 


ro 


o 


CP 


O' cu 


y 


CO 


p 


tH 


O 


CM 


O' 


CO 


tH 


M3 


ro 


ro 


in co 


y tH 


O' 


CD 


M3 


M3 


CD 


p 


CD 


\ 


CL 


CM 


ao 


CD 


o 


p 


y 


y 


CM 


P 


y 


ro 


tH 


p 


CD 


O' 


ro 


ro 


CP 


ro 


tH 


ro 


P 


ro 


tH 


O' 


O' CD 


CM 


y 


p 


tH 


in 


O' 


ro 


ao 


y 


O' 


in 


tH 


P ro 


O P 


ro 


CO 


CM 


P 


ro 


00 


• 


LL 


<l 


CD 


CD 


ao 


CD 


in 


j- 


in 


CD 


CM 


CO 


in 


ro 


tH 


tH 


CD 


CD 


CD 


M3 


y 


IM 


o 


CD 


p 


M3 


y 


ro ro 


CM 


tH 


CD 


CD 


U' 


ao 


ao 


P 


p 


M3 


M3 


M3 


in in 


in j- 


y 


ro 


ro 


(M 


CM 


tH 


P 


Cl 


CD 
































y 


y 


ro 


ro 


ro 


ro 


CM 


CM 


CM 


CM 


CM CM 


CM 


CM 


CM 


CM 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH tH 


tH tH 


tH 


tH 


tH 


tH 


tH 


tH 








in 


tH 


P 


in 


CM 


CD 


co 


M) 


in 


ro 


CM 


tH 


CD 


O' 


CO 


o 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O CD 


CD 


CD 


o 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD o 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 








ro 


ro 


CM 


CM 


CM 


CM 


tH 


tH 


tH 


tH 


tH 


tH 


tH 




































































II 




































CD 


CD 


CD 


o 


CD 


CD 


CD 


o 


CD 


CD 


O CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


a 


_ 1 


_l 


CM 


CD 


O 


y 


tH 


CM 


ao 


tH 


CD 


P 


y 


ro 


in 


in 


P 


CD 


CD 


P 


p 


ro 


y 


ro 


CP 


ro 


M3 


P P 


M3 


in 


CM 


CP 


in 


tH 


M3 


tH 


in 


O' 


ro 


M3 


O' CM 


in ao 


CD 


y 


P 


O 


ro 


in 




o 


O 


tH 


O' 


P 


in 


y 


ro 


0J 


ro 


y 


in 


CO 


CM 


p 


y 


ro 


P 


P 


CM 


p 


CM 


M3 


o 


ro 


P 


CD 


ro M3 


O' 


CM 


in 


P 


CD 


ro 


in 


ao 


CD 


CM 


in 


P 


O' (M 


y M) 


O' 


ro 


P 


CM 


M3 


CD 


►— 


T> 


X 


M3 


M3 


P 


co 


O' 


CD 


tH 


CM 


ro 


y 


in 


p 


M3 


CD 


CM 


ro 


ro 


in 


M3 


M3 


O' 


tH 


CM 


ro 


m 


M3 P 


CO 


CD 


tH 


CM 


y 


in 


M3 


P 


O' CD 


tH 


CM 


ro in 


M3 P 


CD 


tH 


ro 


M> 


ao 


tH 


<i 




P- 


y 


y 


y 


y 


y 


in 


in 


in 


in 


in 


in 


in 


in 


M3 


M3 
































































a: 

<i 

CD 




—i 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


CM 


CM 


(M 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


3 

3 


ro 


y 


y 


y 


y 


y 


y 


y 


y 


in 


m 


in 


in in m in 


in 


M3 


M> 


u3 


M3 


P 






O 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 
































































O 

1/3 


z 


-J 


ro 


CM 


ro 


ro 


O 


ro 


CD 


CO 


P 


y 


co 


in 


tH 


ro 


CM 


O' 


p 


y 


ro 


CD 


00 


CD 


in 


M3 y 


y in in p in 


tH 


tH CM 


00 


p 


p 


y 


P 


ro 


o oo 


y co 


OO 


ro 


O 


in 


tH in 


t-H 


UJ 


p 


ao 


CM 


M3 


o 


y p 


CD 




CM 


CM 


CD 


p 


CM 


y 


ro 


O' 


O' P 


in 


ro 


ro 


ro 


p 


y cm 


<p y m> 


y 


M3 P 


O 


p 


P 


tH 


00 


ao 


CD 


in cm o 


tH ro 


p 


CD 


ao 


CD P 


P 




□ 


-1 


M3 


ro 


O' 


M3 


CM 


CO 


in 


tH 


P 


ro 


CP 


y 


O 


in 


CD 


tH 


tH 


in 


ro 


y 


p 


CM 


ao 


M3 


in 


y in 


M3 


ao 


CD 


ro 


P 


O y 


CP 


ro 


ao 


y O' in tH 


p ro 


O' ro 


M3 


tH 


in 


O 


UJ 




o 
































CM 


CM O' P 


in ro fM 


o 


O' ® P M> 


in 


y y 


ro 


CM CM tH 


CD 


o O' O' co 


O OO 


P P 


i0 i0 m 


in 


y 


y 


z 




X 


tH 


tH 


CD 


CD 


CD 


O' 


O' 


CP 


ao 


oo 


p 


p 


P 


M3 


M3 


y 


y 


ro 


ro 


ro 


ro 


ro 


ro 


CM 


CM 


CM CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


tH 


tH 


tH 


tH tH 


tH tH 


tH 


tH 


tH 


tH 


tH 


tH 


«I 






CM 


CM 


CM 


CM 


CM 


tH 


tH 


tH 


tH 


tH 


tH 


tH 




tH 


tH 
































































X 

p 




































CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


O 


CD 


CD 


CD CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


ID 






ao 


CD 


o 


o 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


tH 


tH 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


a 


CD 


CD 


CD CD 


CD CD 


O 


CD 


CD 


O 


CD 


CD 








CD 


CD 


CD 


o 


CD 


CD 


CD 


O 


CD 


o 


O 


O 


CD 


CD 


O' 


O' 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o o 


CD 


CD 


O 


CD 


CD 


CD 


O 


O 


CD 


o 


CD 


CD 


o o 


o o 


CD 


O 


CD 


O 


CD 


O 






o 


CD 


O 


CD 


CD 


CD 


CD 


O 


O 


O 


CD 


CD 


CD 


O 


CD 


O' 


O' 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD CD 


CD 


CD 


a 


CD 


CD 


O 


o 


CD 


CD 


CD 


CD 


CD 


CD CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 








O 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


O 


CD 


CD 


CD 


O' 


O' 


CD 


CD 


o 


CD 


O 


CD 


CD 


CD 


CD 


O CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD CD 


CD CD 


O 


CD 


O 


CD 


CD 


CD 








cr- 


CD 


tH 


CM 


ro 


y 


LT\ 


M3 


P 


CO 


CP 


CD 


tH 


CM 


CM 


CM 


ro 


y 


in 


vD 


P 


ao 


O' 


CD 


tH 


cm ro 


y 


in 


M3 


P 


co 


O' 


o 


tH 


CM 


ro 


y 


in 


M3 P 


ao CP 


CD 


CM 


y 


M3 


OO 


CD 










tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


tH 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


y y 


y y 


in 


in 


in 


in 


in 


M3 



276 



Table 27. Thermophysical properties along isobars (Continued) 





:r 


o 


CD 


vjD 


rH 


CM 


00 


P 


CD 


in 


rH 


CP 


K 


in 


ro 


rH 


UJ 


CM 


ro 


<P 


P- 


s 


rH 


© 


y 


o 


© 


rH 


P- 


CM 


p- 


CM 


© 


rH 


© 


o 


y 


© 


ro 


K 


rH 


© 


© 


ro 


p- 


rH 


© 


© 


ro 


CD 


P- 






UJ 


ro 


rH 


rH 


H 


rH 


CM 


s 


in 


P 


CO 


O 


CM 


j- 


UJ 


K 


nr 


in 


in 


U> 


p- 


<o 


CD 


<p 


CD 


© 


rH 


rH 


CM 


CM 


ro 


ro 


y 


y 


© 


© 


© 


© 


© 


P» 


p- 


p» 


© 


© 


© 


© 


© 


rH 


<\J 


CM 






(/> 


CM 


H 


O 


© 


© 


P 


U) 


in 


J- 


ro 


ro 


CM 


rH 


CD 


CP 


CP 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 






V 

z 


cm 


CJ 


CM 


rH 


rH 


rH 


rH 


rH 




rH 


rH 


rH 


rH 


rH 










































































CL 


it. 


CP 


CVJ 


rH 


p 


CM 


P 


J- 


ro 


CO 


CD 


CM 


CP 


U) 


ro 


in 


in 


to 


CP 


CM 


CM 


CO 


CP 


CP 


CM 




CP 


0‘ 


ro 


CM 


© 


o 




© 


© 


© 


© 


P- 


© 


© 


© 


© 


y 


CM 


© 


P. 


rH 


CD 


© 


© 




CJ 


s 


S 


© 


CO 


o 


S 


OO 




H 


CP 


CD 


CM 


UJ 


J- 


UJ 


ro 


UJ 


CP 


O 


ro 


rH 


CM 


UJ 


CM 


o 


© 


p- 


P- 


© 


CP 


CD 


CM 


ro 


© 


P- 


© 


rH 


ro 


© 


P- 


© 


rH 


ro 


© 


© 


© 


(M 


y 


© 


© 






o 


CO 


CO 


® 


© 


CP CP 


CD 


rH 


rH 


ro 


S 


in P- 


<p 


cm ro 


in 


in 


s 


•y y 


y 


If VO 


© 


K 


© 


<p 


O 


CM 


ro 


y 


© 


© 


P- © o 


rH 


CM 


ro 


© 


© 


P» 


© 


o 


ro 


in 




© 






T- 

\ 


© 


© 


© 


UJ 


UJ 


U) 


p 


P 


P 


p 




p- 


r^ 


p- 


ao 


ao 


in 


in 


in 


in 


in 


in 


in 


in 


in 


in 


in 


in 


© 


© 


© 


© 


© 


© 


© 


© 


r^ 


P~ 


P- 




r^ 


r^ 




P- 


© 


© 


© 


© 


© 




> 




f\J 


rH 


rH 


P 


▼H 


p 


P 


CM 


-3- 


in 


-3- 


ro 


rH 


CP 


in p- 


in 


CD CP 


ao 


o 


ro 


ro 


© 


rH 




© P- 


© 


© 


rH 


© 


© 


CM 


© 


© 


ro 


® 


ro 


P- 


o 


rH 


rH 


rH 


m 


y 




© 


© 




o 


V 


rH 


O 


CO 


in 


ro 


o 


OO 


p 


U) 


u> 


N- 


(P 


CM 


in 


o 


CM 


CD 


CM U> 


ro 


CM 


rH 


rH 


CM 


ro 


y 


© 


© 


rH 


ro 


© 


© 


rH 


y 


© © CM 


y p» 


© 


CM 


y 


© 


© 


rH 


y 


© 


© 


© 






o 


J- 


J- 


ro 


ro 


ro 


ro 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


-3 


-3 


CD 


CD 


CD 


rH 


CM 


ro 


y in 


© 


p» 


© 


CP 


rH 


CM 


ro 


y 


© 


p- 


© 


© 


rH 


CM 


ro 


y 


© 


p- 


© 


© 


CM 


y 


© 


© 


© 






r 

X 


y 


s 




J- 


•3“ 


-3* 


S 


-3- 


s 


y 


^ -3 -3 


<>3 


J* 


nt 


s 


s s 


y y s 


y 


y 


y 


y 


y y in in in in 


© 


© 


© 


© 


© 


© 


© 


© 


© 


© © 


© 


P- P- P- 


p- 


© 




i/j 




o 


s 


CM 


CP 


▼H 




© 


OO 


in 


p 


in 


CP 


ro 


S 


rH 


rH 


in 


s in 


© 


in 


UJ 


in 


rH 


(M 


CM 


in 


© © 


© 


ro 


y 


CM 


© 


© CM 


ro 


© 


p- 


© 


ro 


© 


y 


CM 


ro 


CD 


© 


rH 


y 






V 


PO 


ro 


00 K 


CM 


00 


CM 


CO 


CM 


u> 


-3* 


ao CM 


P- 




rH 


rH 


rH -3 




rH CP 


CM 


rH 


© 


© 


P» 


y cp 


cm y 


y 


ro 


CD 


© 


CM 


© 


© 


rH 


CM 


ro 


CM 


rH 


© 


CM 


CM 


© 


CM 


CM 






-J 


in 


P- 


CM 


CM 


OO 


CP 


© 


ro 


p 


ao 


CD 


UJ 


s 


CD 


UJ 


rH 


UJ 


O 


CM 


ro 


y 


ro 


ro 


CM 


O 


© 


© 


y 


rH 


CP 


© 


ro 


o 




ro 


CD 


© 


CM 


© 


© 


rH 


P- 


ro 


© 


O 


rH 


rH 


CM 


CM 






z 


© 


ro 


© 


UJ 


rH 


UJ 


rH 


UJ 


o 


J- 


ro 


CM 


UJ 


CD 


ro 


in 


P- 


O' 


rH 


ro 


in 


p- 


O'' rH 


ro 


y 


© 


© 


O 


rH 


ro 


© 


r- 


® 


o 


CM 


ro 


© 


© 


© 


© 


rH 


ro 


y 


© 


rH 


y 




CD 






\ 


p- 


<o 


© cp 


O 


o 


rH 


rH 


CM 


CM 


CM 


py 


ro 


s 


s 


s 


CP 


<p 


Q 


o 


o 


© 


© 


rH 


rH 


rH 


rH 


rH 


CM 


CM 


CM 


CM 


CM 


CM 


ro ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


in 


in 


© 


© 
















T " 


rH 


rH 


rH 


rH 


rH 


rH 


rH 


rH 


rH 




rH 


rH 


rH 


INJ 


IM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


IM 


CM 


CM 


IM 


CM 


CM 


IM 


IM 


CM 


CM 


CM 


IM 


CM 


CM 


CM 




i 




in 


ro 


.4 

.7 


H 


in 


.9 

.6 


rH 


OO 


K 


o 


in 


in 


ao 


OO 


P- 


.1 

.2 


10 


o 


y 


.9 

.1 


CM 


CM 


© 


Pr 


CM (P CP © 


CD y 


© 


ro 


© 


y 


rH 


© 


ro 


© 


O' ao 


rH 




P- 


rH 


O 






£ 


OJ 


CM 


CP 


CP 


rH 


r- 


OO 


UJ 


CM 


UJ 


CM 


CM P- 


CM 


rH 


in 


CM 


-3 


CD 


*H 


y 


CD 


P. 


y 


© 


rH 


ro 


© 


o 


y 


CD 


© 


© 


© 


CM 


© 


© 


© 


P» 


o 


© 


ro 


to 


y 


rH 


CM 


© 


® 


o 






V 


ro 


CM 


o 


CT 


CP 


oo 


ao 


CP 


rH 


ro 


P- 


CM 


ao 


p- 


CD 


rH 


CP 


CM P- 


rH in 


CP 


y 


© 


© 


y 


CM 


rH 


CM 


ro 


© 


© 


y 


O 


© © © 


r^ 


© ro 


p. 


ro 


o 


© 


® 


CM 


© 


ro 


rH 






“J 


ro 


o 


P- 


ro 


CD 


p 


-3- 


rH 


CP 


UJ 


ro 


rH 


<© 


U) 


-3 


CD 


CD 


•y 


CP 


in 


CD 


in 


rH P- 


CM 


® 


y 


CD 


© 


CM 


OD 


y 


rH 


© 


y 


rH 


® 


© 


CM 


CD 




© 


ro 


© 


© 


ro 


CD 




© 








in 


© 


UJ 


p 


CD 


ao 


CP 


CD 


CD 


rH 


CM 


ro 


ro 


s 


in 


in 


0D 


ao 


CD 


CP 


© 


© 


rH 


rH 


CM 


CM 


ro 


y 


y 


© 


© 


© 


P- 


P- 


© 


© 


© 


CD 


rH 


CM 


CM 


ro 


y 


in 


© 


© 


CD 


rH 


PD 






















rH 


rH 


rH 


rH 


rH 


•H 


rH 


rH 


rH 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


y 


y 


y 


© 


© 


© 




UJ 


-1 


© 


CO 


CM 


<P 


UJ 


CM 


CP 


® 


J- 


CM 


rH 


ro 


in 


CM 


CP 


ro 


S 


ro 


U) 


P- 


rH 


CD 


CD 


y 


rH 


© 


- 


y 


CM 


r^ 


rH 


© 


ro 


y 


© 


© 


ao 


ro 


CD 


© 


rH 


ro 


ro 


CM 


© 


y 


© 


© 


© 






z 


H 


J- 


rH 


CP 


rH 


p 


P 


-3- 


CP 


ro 


CO 


U) 


o 


S 


rH 


in 


CD 


ro 


CP 


in 


UJ 


rH 


ro 


ro 


ro 


CM 


ro 


y 


r^ 


rH 


to 


© 




CD 


© 


ro 


ro 


© 


rH 


® 


P- 


® 


CM 


r^ 


rH 


CM 


P- 


© 


© 








© 


© 


P^ 


in 


in 


y 


s 


in 


UJ 


CP CM 


P- 


-3 


M 


ro 


u> 


ro 


CP 




UJ 


© 


in 


© 


© 


ro 


rH 


o 


o 


rH 


y rv 


CM 


© 


© 




y 


© 


p* 


rH 


© 


rH 


CO 


p- 


© © © 


P- 


ro 


ro 






-J 


ro 


O' 


UJ 


ro 


o 


P 


s 


rH 


ao 


u. 


ro 


O 


oo 


UJ 


nr 


Pr 


J- 


u> 


rH 


in 


© 


y 


o' ro 


© 


PO 


© 


ro 


CD 


ro 


© 


y 


© © 


rH 


r- 


ro 


© 


© 


CM 


© 


© 


CM 


O' ro 


© 


ro 


© 


© 








in 


in 


UJ 


p 


CO 


CO 


CP 


O 


o 


rH 


CM 


ro 


ro 


>3 


in 


in 


UJ 


U> P- 


r^ 


© 


© 


© CP 


CP 


o 


o 


rH 


rH 


CM 


CM 


ro 


ro 


y 


© 


© 


© 


© 


P- 


© 


© 


© 


o 


© 


CM 


ro 


© 


© 


® 






















rH 


rH 


rH 


rH 


rH 


rH 


rH 


rH 


rH 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


y 




o 


_J 


j- 


ro 


in 


UJ 


rH 


CM 


rH 


CM 


CD 


s 


CP 


-3- 


CP 


<3 


in 


CO 


CM 


UJ 


CD 


rH 


UJ 


© 


ro 


y 


® 


CD 


CM 


CP 


rH 


rH 


rH 


rH 


ro 


P~ 


y 


© 


rH 


CM 


© 


rH 


© y 


© 


y 


ro 


ro 


y 


© 


© 




o 


o 


rH 


ro 


© 


CP 


U) 


CO 


CD 


P 


ro 


h- 


J- 


J- 


CO 


«3 


cp in 


CD 


P- 


-3 


rH 


rH 


r^ 


© 


© 


rH 


in 


© 


in 


y 


rH 




CM 


© 


© 


cm y 


© 




p» 


© 


p* p- 


© 


in 


CM 


© 


ro 


p- 


rH 




V 


T. 


P^ 


CP 


rH 


rH 


p 


CP 


rH 


J- 


in 


Nr 


r^ 


o 


CM 


rH 


CM 


O 


ao 


UJ 


CD 


ro 


in 


© N. 


® CP 


CP 


CP 


CP 


(P (T 00 


© 


P* 


© 


© © 


y 


ro 


CM 


rH 


© © 


© 


p- 


in 


CM 


o 


fu 


© 




o 


-J 


ro 


ro 


J" 


ro 


CP 


CM 


CM 


UJ 


in 


CO 


in 


U> 


CP 


in 


ro 


rH 


ro 


-3 


UD 




CO 


CP 


o 


rH 


CM 


ro 


y 


in 


© 


P- 


© 


© 


o 


rH 


CM 


ro 


y 


© 


© 


P- 


® 


© 


© 


© 


CM 


y 


© 


ru 


© 






(1 


UJ 


U) 


p- 


O' 


rH 


in 


(P 


ro 


00 


ro 


CP 


in 


rH 


CO 


in 


s 


rH 


rH 


rH 


rH 


rH 


rH 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


fO 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


BAR 




K BAR 


© 


CO 


ru 


© 


U) 


in 


J- 


y 


ro 


ro 


CM 


CM 


CM 


rH 


rH 


rH 






































































ro 


y 


in 


CM 


o 


00 


a* 


CM 


co 


p- 


CP 


rH 


UJ 


ro 


-3 


O 


rH 


in 


P- 


y 


CO 


in 


ro 


P» 


© 


CM 


CM 


© 




P* 


© 


P^ 


ro 


ro 


CM 


© 


CM 


© 


© 


ro 


rH 


© 


© 


rH 


© 


CM 


© 


ro 


O' 




LJ 




rl 


© 


y 


p 


CM 


p 


in 


ro 


UJ 


rH 




U’ 


rH 


ro 


CM 


O' 


J- 


o 


*3 


UJ 


y 




© 


in 


rH 


rH 


CM 


CM 


rH 


P- 


O' 


Pw 


© 




© 


CM 


o 


o 


ro 


© 


r^ 


UJ 


© 


CM 


ro 


r-1 


ro 


o 


CD 


O 


\ 


CL 


CM 


00 


o 


o 


CO 


j- 


s 


ro 


P 


in 


ro 


rH 


00 


rH 


CD 


CD 


UJ 


rH 


UJ 


CD 


m 


in 


© 


ro 


O 


© 


P. 




© 


a* 


rH 


y 


© 


rH 


© 


CD 


© 


CD 


© 


o 


© 


CM 


® 


in 


® 


CM 


© 


rH 


© 


• 


CL 




© 


o 


CD 


O 


in 


j- 


in 


ao 


CM 


CO 


in 


ro 


rH 


rH 


vH 


P- 


UJ 


-3- 


CD 


P^ 


in 


ro 


rH 


© 


CP 


p- 


© 


in 


y 


ro 


ro 


CM 


rH 


rH 


o 


O 


© 


CT, 


© 


© 


r^ 


P. 


u> 


© 


m 


in 


y 


S 


ro 


CO 


o 


CD 


































-3 


y 


■y 


ro 


ro 


ro 


ro 


ro 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


rH 


rH 


rH 


rH 


rH 


rH 


rH 


rH 


rH 


rH 


rH 


rH 


rH 








© 


rH 


p 


in 


CM 


© 


ao 


UJ 


in 


ro 


CM 


rH 


CD 


<P 


CO 


P- 


CD 


CD 


CD 


© 


o 


o 


CD 


© 


Q 


O 


CD 


CD 


CD 


CD 


o 


o 


CD 


CD 


CD 


CD 


CD 


O 


CD 


© 


CD 


O 


CD 


O 


CD 


CD 


CD 


CD 


CD 








ro 


ro 


CM 


CM 


CM 


CM 


rH 


rH 


rH 


rH 


rH 


rH 


rH 










































































II 






































CD 


O 


O 


© 


CD 


o 


O 


© 


O 


o 


O 


CD 


O 


CD 


CD 


CD 


O 


CD 


CD 


CD 


O 


CD 


CD 


O 


CD 


CD 


O 


CD 


CD 


CD 


O 


CD 


CD 


CL 


-J 


-J 


CO 


o 


O 


ro 


o 


rH 


© 


CD 


CP 


U) 


ro 


rH 


ro 


ro 


in 


O 


00 


ro 


rH 


CM 


o 


y 


© 


© 


y 


rH 


© 


O 


y 




© 


o 


rH 


rH 


rH 


rH 


CD 


© 


© 


© 


y 


CM 


o 


P- 


CM 


in 


© 


rH 


y 




o 


O 




CP 


P 


in 


y 


ro 


CM 


ro 


ro 


in 


ao 


CM 


p- 


-3 


ro 


CM 


P- 


UJ 


CD 


ro 


UJ 


© 


o 


CM 


y 


© 


P 


CP 


CD 


rH 


CM 


y 


© 


© 




© 


© 


© 


O 


rH 


CM 


to 


y 


y 


© 


p- 


© 


CD 


rH 


b~ 


> 


X 


© 


UJ 


P- 


0D 


O'* 


o 


rH 


CM 


ro 


s 


in 


P- 


CO 


o 


CM 


ro 


o 


rH 


ro 


y 


in 


© 


© 


CP 


© 


rH 


CM 


fO 


in 


© P- 


® 


O' 


CD 


rH 


CM 


ro 


y 


© 


P- 


© 


© 


© 


rH 


ro 


in 


P- 


CD 


OJ 


<X 




s 




y 


J- 


j- 


J- 


in 


in 


in 


in 


in 


m 


in 


in 


U) 


UJ 


u> 








































































-J 


CD 


a 


o 


o 


o 


CD 


O 


o 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


y 


y 


y 


© 


m 


in 


m 


© 


© 


© 


CD 






O 


o 


o 


o 


o 


o 


CD 


CD 


o 


o 


CD 


O 


O 


O 


CD 


o 




































































O 

(/) 


z 


«=1 


J* 


ro 


4- 


S 


CM in CM 


rH 


o 


P- 


rH 


oo UJ 




ao 


CM 


s 


rH 


in 


M J- 


y p. cp ro 


rH 


© 


© © 


rH 


CD 


CM 


«H 


ro 


y 


© © 


p* 


ro 


© 


© © 


ro 


© 


rH 


© 


© 


ro 


ro 


►H 


UJ 




CO 


CM 


vO 


o J- 


p 


O 


CM 


ro 


CM 


rH 


Pr 


CM S 


ro cm 


nj 


CM 


u> 


rH v0 m ro p. in 


y 


CM 


(P y in cm 


y 


<H CM 


K 


© P- 


CM & 


© 


ro p. 


y 


cm in ro 


fP 


© 


© 




o 


-J 


UJ 


ro 


CP 


UJ 


CM 


CO 


in 


rH 


p 


ro 


CP 


-3- 


o 


in 


o 


CD 


rH 


CM 


<y 


rH 


o 


CM 


© 


rH 


® 


© 


in 


y 


© 


© © 


© 


ro 


© 


© 


ro 




CM P- 


CM 


r^ 


CM 


© 


y 


© 


© 


CM 


© 


© 


UJ 




o 


































© 


10 


ro 


tT> S IT J N 


rH 


o 


CP 


© P. © 


© 


© 


y 


ro 


ro 


CM 


CM 


rH 


«=H 


o 


O 


© 


© 


so ru 


P- 


© 


© 


z 




2 : 


rH 


rH 


o 


o 


o 


CP 


CP 


CP 


co 


ao 


Pw 


K. 


p- 


vO 


UJ 


in 


s 


-3 


-3 


y ro 


ro 


ro 


ro 


ro 


ro 


ro 


CM 


CM 


CM 


CM 


CM 


CM CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


rH 


rH 


rH 


rH 


rH 


rH 


rH 


«r 






Co CM 


CM CM 


CM 


rH 


rH 


rH 


rH 


rH 


rH 


rH 


rH 


rH 


rH 


rH 




































































i 

i- 






































CD 


CD 


o 


o 


© 


© 


o 


© 


© 


o 


© 


© 


o 


© 


o 


© 


Q 


© 


© 


o 


o 


o 


O 


© 


© 


© 


© 


© 


O 


O 


© 


© 


CD 


UJ 


1— 




y 


O 


o 


O 


© 


CD 


CD 


O 


O 


O 


O 


CD 


O 


O 


CD 


in 


in 


CD 


© 


© 


© 


0 


© 


o 


o 


© 


o 


© 


o 


O 


o 


o 


© 


© 


O 


CD 


© 


© 


© 


© 


O 


© 


© 


© 


© 


O 


O 


CD 


© 








CM 


o 


o 


a 


CD 


o 


CD 


O 


CD 


o 


o 


CD 


o 


o 


CD 


CM 


(M 


O 


o 


© 


© 


o 


o 


o 


o 


© 


o 


© 


© 


© 


o 


© 


© 


© 


o 


O 


CD 


o 


© 


o 


© 


o 


O 


O 


O 


© 


CD 


© 


O 






930 


o 


© 


o 


o 


o 


o 


CD 


CD 


CD 


o 


o 


CD 


CD 


CD 


O 


© 


o 


o 


o 


© 


© 


© 


o 


© 


© 


o 


o 


© 


© 


© 


a 


o 


O 


© 


o 


CD 


© 


o 


O 


o 


o 


© 


© 


© 


© 


a 


O 


CD 


o 






o 


o 


o 


o 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


o 


CD 


-3 


*3 


o 


CD 


© 


© 


o 


© 


© 


© 


o 


o 


O 


CD 


o 


CD 


o 


o 


CD 


o 


CD 


o 


o 


CD 


© 


o 


CD 


© 


CD 


CD 


o 


CD 


CD 


CD 








CT- 


o 


H 


CM 


ro 


J- 


in 


U> 


p 


OO 


CP 


CD 


rH 


CM 


ro 


ro 


ro 


-3 


in 


UJ 


p- 


© 


CP 


a 


rH 


CM 


ro 


y 


© 


© 


P- 


© 


© 


CD 


rH 


CM 


ro 


y 


© 


© 


r- 


© 


© 


CD 


CM 


y 


© 


© 


© 










rH 


rl 


▼-4 


rH 


rH 


rH 


rH 


rH 


rH 


rH 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y 


y 


y 


y 


y 


y 


y 


y 


y 


y 


in 


in 


in 


© 


© 


© 



277 







Table 27. Thermophysical properties along isobars (Continued) 






X 


o 


O 


K. 




OJ 


CO 


CO 


O 


© 


OJ 


O' 


CO 


© 


3 


OJ 


s- 


,-4 


ro 


in 


3 


OJ 


O' 


© 


OJ 


CD 


3 


o 


in 


t-4 


© 




in 


o 


in 


O' 


3 


CO 


OJ 


S' 


t-4 


in 


O' 


ro 


0- 


o 


CO 


in 


ro 


o 


S- 




LU 


ro 


t-4 


t-4 


t-4 


t-4 


OJ 


3 


LP 


s~ 


ao 


o 


OJ 


-3- 


© 


0- 


t-4 


in 


in 


© 


k 


N- 


ao 


O' 


O' 


o 


tH 


t-4 


OJ 


OJ 


ro 


ro 


3 


3 


3 


in 


in 


© 


© 


r^ 


s. 




CO 


CO 


O' 


O' 


o 


t-4 


OJ 


OJ 




tn 


OJ 


t-4 


O 


O' 


CO 


K 


OJ 


in 


3 


ro 


ro 


OJ 


t-4 


O 


O' 


O' 


OJ 


OJ 


OJ 


OJ 


OJ 


OJ 


OJ 


OJ 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 


3 




\ 

3: 


CVJ 


CO 


OJ 




t-4 


t-4 




t-4 




t-4 


** 




■n 


t-4 








































































LL 




U' 


CO 


o 


s> 


tH 


© 


ro 


OJ 


p' 


CO 


© 


© 


OJ 


CD 


CO 


O' 


O' 


_ 


© 


ro 


r^ 


OJ 


o 


■3 


OJ 


O' 


ro 


3 


o 


o 


OJ 


CO 


in 


ro 


OJ 








CD 


O' 


r- 


3 


t-4 


0- 


3 


CO 


r' 




CD 


O 


V 


3 


v£> 


CO 


O 


3 


CD 


3 


t-4 


a 


O' 


OJ 


© 


3 


in 


OJ 


CO 


in 


t-4 




OJ 


*"• 


3 


O' 


© 


ro 


t-4 


tH 


H 


OJ 


ro 


3 


in 


S' 


O' 


tH 


ro 


m 


S' 


O' 


CD 


OJ 


3 


© 


s- 


o 


OJ 


3 


© 


s- 




o 


CO 


CD 


CO 


O' 


O' 


O' 


o 


tH 


t-4 


OJ 


3 


in 


S' 


O' 


OJ 


-2- 






in 


in 


in 


in 


in 


© 


K 


® 


O' 


O 




nj 


ro 


3 


in 


© 


ao 


O' 


o 


tH 


OJ 


3 


in 


i D 


K 


CO 




ro 


in 


N. 


O' 




27 


© 


© 


© 


© 


© 


© 


S' 


s- 


S~ 


r^ 




r^ 


K 


p' 


ao 


CD 


in 


in 


in 


in 


in 


in 


in 


in 


in 


in 


in 


© 


© 


© 


© 


vD 


© 


© 


© 


© 


s> 


S' 


S' 


S- 


s> 


S' 


S- 


S' 


© 


CO 


CP 


CD 


CO 



s 

”5 



> * 


ro 


OJ 


OJ 


CO 


OJ 


CD 


CO 


ro 


in 


© 


in 


3 


OJ 


CD 


yD 


co 


CD 


t-4 


in 


in 


OJ 


tJ 


co 


OJ 


OJ 


vO 


ro 


3 


yD 


CD 


© OJ 


O' 


vO 


ro 


O' in 




in 


O' 


r< 


ro 


ro 


0J 


yD 


in 


CO 


vD 


O' 


O V 


" H 


CD 


CO 


in 


ro 


CD 


ao 


S' 


© 


© 


S' 


O' 


OJ 


© 


CD 


-3 


yD 


K 


CD 


© 


3 


ro 


OJ 


ro 


3 


in 




O' 


*4 3 


yQ O' 


tH 


3 


S' 


O' 


OJ 


in 


N- 


O' 


0J 


3 


vO 


CO 




3 


vO 


CD 


O' 


o 


3 


3 


ro 


ro 


ro 


ro 


OJ 


OJ 


OJ 


OJ 


OJ 


OJ 


ro 


ro 


-3 


>3 


o 


© 




tH 


OJ 


ro 


3 


in 


© 


0- 


CO 


O' 


▼H 


CNJ 


ro 3 


VO 


s- 


ao 


O' 


t-4 


CM 


ro 


3 


yD 


0- 


CO 


O' 


CM 


3 


sO 


00 


CD 


X 


3 


3 


3 


-2 


-3- 


-2 


3 


3 


3 


-3 


3 


3 


-3 


-3 


3 


■3 


3 


<3 


3* 


•3 


3- 


3 


3 


3 


3 


3 


3 


3 


in 


in 


in in 


in m 


in 


in 


vO 


vO 


v0 


vO 


yD vO 


vD 


vO K 








CO 








00 




3 


VO 


3 


^-4 


CM 


OJ 


O 


h- 


ro 


in 


OJ 


3 




vO 




ro 


3 


Us 


vO 




ro 


ro 


yD 




<E> 




vD 


vD 


3 


3 


v£> ro 


Us 


3 


CM 


S' 


0J 




CM 


S> 


ro 


© 


© 


© 0J 


0J 


t-4 


S' 


ro 






\ 


ro 


0J 


N* 












<rJ 


in 


ro 


r^ 


CD 


in 


in 


o 


o 


Us Us 


ro 


*-4 


OJ 




ao 


3 


CO 


<© 


v£> 


0J 


v£> 


CO O' 


co yD 


ro 


00 


ro 


vD CP 


o 




H O' 


S' -H 


tH 


© 


T* 0J 






_J 


in 


r^ 


0J 


CM 


ao 


O' 


CO 


ro 


o- 


CD 


co 


yD 


3 


CD 


vO 


3 




vO 


O' 




CM 


CM 




CD 


O' 


O' 


in 


ro 




CO 


Us 


0J 


CP 


vO 


ro 


CP 


vO 


OJ 


© 


in 




r^ 


CM 


© © 


t-4 


t-4 


0J 


CM 






i 


vO 


ro 


CD 


vO 


^4 


yD 


H 


vO 


CD 


3 


co 


0J 


vO 


CD 


ro 


vD 


r^ 


S- 


O' 


0J 


3 


SO 


CO 


CD 


wH 


ro 


Us 


S' 


CP 


O 


0J 


3 


in 


S' 


CP 


© 


0J 


3 


in 


S' 


O' 


© 


CM 


ro s- 


© 


ro 


© 


CP 








r- 


co 


O' 


O' 


CD 


CD 




fH 


0J 


OJ 


CM 


ro 


ro 


3 


3 


3 


CP 


O' O' 


CD 


CD 


CD 


CD 




v-4 






▼H 


*-4 


0J 


0J 


0J 


0J 


0J 


OJ 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 3 


© 


© 


© 


© 




















H 


H 












H 




*— ( 






** 


CM 


CM 


IM 


CM 


CM 


CM 


CM 


IM 


0J 


CM 


CM 


CM 


OJ 


CM 


CM 


OJ 


CM 


CM 


0J 


OJ 


CM 


CM 


IM 


OJ 


OJ CM 


CM 


CM 


CM 


l\J 




X 


-i 


in 


0J 


ro 


in 


O' 


CM 


in 


0J 


in 




CO 


O' 


O 


vO 


ro 


O' 


CO 


ro 


in 


r^ 


CD 


3 


vO 


3 


ro 


in 


CO O' 


3 


vjD 


CD 


<X> 


0J 


3 


.5 

.5 


3 


3 


ro 


H 


© 


0J 


3 


.1 

.1 


CM 


© 


0J 


OJ 








ro 


vO 


ro 


CM 


3 




OJ 


CD 


in 


o 


in 


3 


o 


3 


ro 


VO 


CO 


CD 


ro 


0- 


O' 


r4 




CD 


O' 


VO 


CM 


ao 


US 


CM 


*-4 


CD 


CM 


u> 


CD 


S' 


v£> 


S' 


CD 


Us 




© 


o 


CM CD 


ro 


t4 


CM 


© 






V 


3 


0J 




CD 


O' 


O' 


CP 


CD 


*-4 


3 r- 


OJ 


CP 


r^ 




OJ 


vD 


CD 


vD 




vD 


0J 




3 


CD 


ao 




yD 


S' 


O' OJ 


vO 


H 


r^ 


in 


ro 


ro 


3 


S' 


© 


in 


<H 


© 


yD yD 


© 


CP 


CM 


O' 








ro 


CD 


o- 


3 


CD 


0- 


3 


OJ 


CP 


yD 


ro 




CD 


VO 


3 




^—4 


ro 


co 


3 


CP 


U' 


CD 


VD 


CM 


r^ 


O) 


CP 


US 


y-4 


CO 


3 




r^ 


3 




co 


Us 


0J 


© 


S' 


in 


0J 


© © 


ro 


O' 


S' 


3 








in 


yD 


vO 




CO 


ao 


O' 


CD 


CD 




CM 


ro 


ro 


3 


in 


VO 


OD 


au 


CO 


CP 


CP 


CD 




*-4 


rj 


OJ 


r> 


ro 


3 


Us 


in 


so 


O' 


s- 


CD 


O' 


O' 


CD 


r4 


CM 


OJ 


ro 


3 


Us vu 


© 


O’ 


t-4 


ro 




























r4 










•H 


CM 


0J 


CM 


OJ 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 


3 


3 


3 


3 3 


3 


3 


© 


© 




UJ 


-j 


CD 


CD 


ro 


O' 


3 


O' 


3 




3 


O 


VO 


3 




CM 


0J 


ro 




OJ 


3 


ro 


Us 


CO 


ro 


in 


ro 


r- 


3 


O' 


in 


v£> 


vO 


3 


3 


so 


CD 


ao 


CO 


r4 


vD 


ro 




® 


3 


,9 

.6 


© 


tH 


CP © 






£ 


OJ 


3 


CD 


CO 


CD 


in 


yD 


ro 


r- 




in 


ro 


r^ 


CD 


r- 


O' 


us 


CP 


N- 


CM 


«D 


CD 


in 


CD 


ro 


in 


co 


r4 


vo 


OJ 


CD 


CD 


0J 


vo 


ro 




OJ 


VO 


^-4 


O' 


O' 


© 


3 


O' in 


S' 


3 


ro 


© 








CD 


co 


K- 


in 


in 


3 


3 


in 


vD 


CP 


0J 


r^ 


ro 


CM 


CM 


vD 


CD 


CD 


in 


o 


3 


CP 


in 


CM 


O' 


O' 


vD 


K 


CD 


» 4 


in 


CD 


vD 


ro 


SJ 


OJ 


ro 


Us 


CP 


ro 


CP 


S' 


Us 


3 


3 


© 


CM 


OJ 






“> 


ro 


CP 


vO 


ro 


CD 


O- 


3 




CO 


Us 


ro 


CD 


co 


VO 


3 


CD 


US 


SO 


CD 


US 


CP 


ro 


co 


ro 


s. 


CM 




0J 




ro 


ao 


3 


O' 


in 




P' 


ro 


cp in 


CM 


© 


in 


IM 


o' ro 


© 


ro 


O' 


U' 








in 


in 


vO 


0» 


CO 


00 


O' 


CD 


CD 




0J 


ro 


ro 


3 


Us 


vO 


yD 


vO 


N. 


r^ 




CO 


co 


O' 


O' 


CD 


CD 


r4 


t-4 


0J 


0J 


ro 


ro 


3 


US 


in 


vD 


yD 


P' 


co 


© 


O' 


O 


© OJ 


ro 


© 


\D 


© 




























v-l 






** 






CM 


OJ 


OJ 


0J 


0J 


CM 


CM 


0J 


0J 


ro 


ro 


ro 


r) 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 3 


3 


3 


3 


3 




□ 


— J 


<o 


r- 




tH 


ro 


CD 


ro 


co 


'H 


ao 


O' 




in 


0J 


O 


K 


3 


ro 


O' 


ao 


3 




0J 


ao 


ro 


0J 


CP 


yD 


CO 


yD 


0J 


s£ 


H 


co 


S' 


o 


vD 


yQ 




OJ 


® 




O' 


in 


© 


o 


ro 


CP 




o 


o 


vO 


r- 


vO 


CO 


vO 


CD 


ro 




CP 


3 


ro 


in 


▼-4 


O' 


K 


ro 


in 




0- 


CM 


O' 


CP 


in 


yD 


Us 




3 


yD 


vD 


in 


ro O' 


US 


CP ro 


S- 


CP 




ro 


3 


3 


in 


3 


3 OJ 


CP 


© 


t-4 


© 




N 


X 


CO 


0J 


in 


in 


H 


3 


in 


O' 


O' 


CM 


0J 


in 


CD 


vO 


CO 


r^ 


in 


O' 


ro 


r^ 


O' 




ro 


3 


US 


yD 


vO 


yD 


vO 


v£> 


V0 


Us 


Us 


3 


3 


ro 


0J 


CM 




CD 


CP 


® 


S- 


yD 3 


t-4 


CP 


s- 


3 




CD 


-j 


ro 


3 


3 


ro 


CD 


ro 


0J 


vO 


in 


O' 


vO 


vO 


CP 


in 


ro 


o 


ro 


ro 


in 


vD 




O' 


o 




CM 


ro 


3 


in 


vD 


S' 


CO 


CP 


CD 


H 


CM 


ro 


3 


Us 


vD 


S' 


S' 


© 


O' 


CD OJ 


3 


© 


S' 


CP 






i 


yD 


yD 


r- 


O' 


0J 


in 


O' 


ro 


co 


ro 


O' 


in 




CO 


Us 


ro 


*~4 




*-4 




▼H 


f-4 


CM 


OJ 


CM 


0J 


0J 


CM 


0J 


0J 


0J 


0J 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 3 


3 


3 


3 


3 


PAR 




K BAR 


O' 


CO 


0- 


vO 


yD 


in 


3 


3 


ro 


ro 


0J 


CM 


0J 




H 




































































1— 




co 


yD 


CD 


3 


r- 


3 


CM 


3 


O' 


o- 


vO 


O' 


in 


0- 


3 


CD 


CD 


0- 


GO 


O 


CO 


ao 




Us 


CP 


3 


co 


OJ 


3 


CD 


ro 


ro 


vO 


m 


in 


CM 


3 


s- 


co 


in 


yv 


® 


oj ro 


t-4 


© 


CD 


CP 




(_) 


V 


us 


CD 


vO 


CD 


US 




CD 


<o 


CM 


o- 


3 


VO 


CP 


CM 


CM 


vo 


OJ 


CD 


CM 


T-4 


US 


ro 


vo 


VO 


vO 


ro 


U'S 


ao 


CM 


3 


3 


CD 


OJ 


CP 


▼H 


s* 


r' 


© 


vO 


in 


S' 


ri 


i^ 


© © 


s- 


t-4 


tH 


3 


CD 


\ 


QCL 




O' 


CD 


▼H 


co 


in 


in 


ro 


CO 


in 


3 


CM 


co 


OJ 




vD 




O' 


3 


O' 


CD 


yD 


Us 


N. 


T~i 


N- 


3 


0J 


OJ 


0J 


ro 


in 




CP 


ro 


vD 


o 


in 


CP 


3 


CP 


Us 


o 


© © 


t-4 


© 


CP 


ro 


• 


LL 


<3 


f-D 


CD 


ao 


CD 


in 


3 


us 


co 


CM 


ao 


U'S 


ro 


■*H 


1-1 


T-i 


ro 


ro 


*-4 


O- 


ro 


*-i 


aj 


vl) 


3 


ro 




CD 


CP 


aj 


s. 


v£> 


in 


3 


ro 


ro 


CM 


CM 


▼H 


CD 


© 


CP 


O' O' 


© O' 


S' 


© 


© 


© 


O' 


O 


Qj 


































Us 


in 


3 


3 


3 


ro 


ro 


ro 


ro 


ro 


ro 


0J 


OJ 


CM 


0J 


0J 


0J 


0J 


0J 


OJ 


CM 


0J 


0J 


CM 


tH 






t-4 tH 


t-4 


tH 


t-4 


T-4 








in 


tH 


r^. 


in 


0J 


CD 


co 


yD 


in 


r^. 


CM 


V-4 


CD 


CP 


CD 




CD 


CD 


CD 


o 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


© 


o 


CD 


CD 


CD 


© 


© 


© 


© 


O 


O © 


CD 


CD 


© 


O 








ro 


ro 


OJ 


CM 


0J 


CM 




w4 




tH 


wt 












































































II 






































CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


O 


O 


CD 


o 


o 


CD 


CD 


CD 


© 


O 


© 


© 


O 


0 

0 


CD 


CD 


O 


© 


a 


3 


-1 


0J 


CP 


CD 


ro 


o 




0- 


O' 


CO 


in 


0J 


CD 


0J 




0J 


CD 


O' 


O' 


O' 


CO 


in 


CO 


O' 


CO 


3 


CD 


3 


rw 


CP 


CD 


H 


CD 


O 


CP 




in 


ro 


CD 




3 






ro 


CP f-4 


t-4 


OJ 


t-4 


t-4 




O 


O 




<D 




in 


3 


ro 


0J 


OJ 


ro 


in 


ao 


0J 


P- 


3 


ro 


CD 


3 




CD 


CM 


3 


Us 


vO 


O' 


<c 


CP 


CP 


CP 


CP 


CD 


CD 


CD 


CD 


CP 


CP 


CP 


<p 


CP 


CO 


co 


© 


S' 


s- 


© © 


© 


3 


ro 


OJ 


i— 


D> 


X 


UJ 


yD 


r- 


CO 


O' 


CD 


▼H 


CM 


ro 


3 


in 


0- 


co 


CD 


0J 


3 


CD 


CO 


O 


t-4 


0J 


ro 


3 


US 


vD 


O' 


CO 


CP 


CD 


0J 


ro 


3 


Us 


US 


vO 


r^ 


co 


O' 


© 


*-4 


0J 


ro 


3 


in S' 


CP 


t-4 


ro 


© 


<3 




V* 


3 


3 


3 


3 


3 


in 


in 


in 


in 


in 


in 


in 


in 


vD 


yD 


vO 


































































cr 

CD 




_J 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


▼-4 




0J 


0J 


0J 


CM 


CM 


CM 


CM 


0J 


0J 


0J 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 


3 


3 


3 3 


3 


© 


© 


us 






CD 


CD 


CD 


O 


CD 


O 


CD 


CD 


CD 


CD 


CD 


o 


CD 


O 


O 


o 


































































O 

(/) 


Z 


_J 


3 


3 in 


yD 


ro 


K 


3 


ro 


CM 


CD 


in 


CM 


CD 


ro 


Us Us 


Us 


ao 




co 


0J 


CD 


O' 


3 




\D 




CD 




o 


co 


CO 


ro 


CD 


aO 


CP 


CO 


tH 


v£> 


CP CD 


v0 


Us 


© vO 


S- 


CP 


S' 


3 




LU 


V 


CO 


0J 


vO 


o 


3 N. 


o 


OJ 


ro 


ro 




ao 


ro 


in 


3 


CM 


O' 


ro 


co 


3 CD 


O' 


O' in 


3 in 


KMT 


CP 


o 


r^ 


co 


3 


3 


ao 


vO vjD 


CP v£) 


3 Us 


© © 


cp 3 in 


t4 




C_J 


-J 


VO 


ro 


O' 


vO 


CM 


ao 


in 


tH 


r*. 


ro 


CP 


3 


CD 


in 


CD 


vO 


CD 


0J 


ao 


O' 


Us 


3 


3 


0- 


0J 


CO 


Us 


ro 


0J 


0J 


OJ 


3 


Us 


r^ 


CD 


ro 


vO 


o 


3 


ao 


ro 


® 


ro 


CO CD 


t-4 


3 


s- 


t-4 


UJ 




o 


































3 ro O' 


v£> 


3 CM 


CD 


co 


K. 


m 3 


ro 


0J 


▼H 


o CP 


a0 S* 




yD 


Us 


in 


3 


ro 


ro 


0J 


0J 


tH 


CD 


CP 


® 


© 


z 




X 






CD 


CD 


CD 


O' 


CP 


O' 


ao 


ao 


r- 


N- 




yD 


vO in 


u> 


in 


3 


3 


3 


3 


3 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


0J 


0J 


CM 


0J 


0J 


0J 


0J 


CM 


0J 


0J 


0J 


0J 


0J 0J 


0J 


t-4 


tH 


tJ 


<L 






CM 


CM 


0J 


OJ 


0J 


tH 








▼H 




«H 






+4 




































































X 

s— 






































CD 


o 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


© 


CD 


© 


CD 


CD 


CD 


o 


CD 


o 


© 


© 


o 


o 


© O 


© 


O 


o 


O 


u 


h- 




O' 


CD 


CD 


CD 


o 


CD 


CD 


O 


CD 


CD 


CD 


CD 


O 


O 


CD 


3 


3 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


O 


CD 


O 


CD 


CD 


CD 


CD 


© 


o 


o 


CD 


© 


© 


o 


© 


© 


o o 


© 


© 


O 


© 








ro 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


O 


O 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


O 


o 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


© 


© 


CD 


o 


© 


o 


o 


© 


o 


CD 


© © 


O 


o 


© 


CD 






LD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


O 


CD 


CD 


O 


CD 


CD 


r^ 


r^ 


O 


CD 


CD 


CD 


O 


CD 


o 


CD 


CD 


O 


CD 


CD 


CD 


CD 


O 


CD 


O 


O 


O 


o 


O 


© 


o 


o 


o 


CD 


o © 


O 


o 


© 


© 






CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


o 


CD 


CD 


r^ 


r- 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


© 


o 


o 


o 


© 


CD 


© o 


a 


CD 


CD 


CD 








O' 


CD 


T-i 


OJ 


ro 


3 


in 


vO 


P- 


<© 


CP 


CD 




OJ 


ro 


ro 


ro 


3 


in 


vO 


r- 


CO 


O' 


CD 




CM 


ro 


3 


US 


yD 


r^ 


ao 


CP 


CD 


H 


OJ 


ro 


3 


in 


vD 


S' 


CO 


CP 


O OJ 


3 


yD 


ao 


© 
















tH 














0J 


0J 


0J 


CM 


OJ 


0J 


0J 


0J 


0J 


CM 


0J 


0J 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 


3 


3 


3 


3 


3 


3 


3 


© © 


© 


© 


© 


© 






278 



Table 27. Thermophysical properties along isobars (Continued) 








-X 


o 


© 


r^ 


rH 


CM 


CO 


ao 


*H 


U) 


CM 


CD 


CO 




P 


ro 


P 


CM 


ro 


CM 


CD 


P 


P 


3 


CD 


r^ 


ro 


P 


3 


P 


p 


CD 


p 


P 


3 


P 


ro 


r^ 


CM 


P 


O 


3 


® 


CM 


P 


O 


® 


P 


ro 


© 








UJ 


ro 


rH 


rH 


rH 


rH 


CM 


J" 


p 


K- 


P 


CD 


CM 


*3 


p 


r^ 


P 


co 


P 


P 


P 


r*«- 


ao 


P 


p 


CD 


CD 




tH 


fM 


ro 


ro 


ro 


3 


3 


p 


p 


P 


P 


r^ 




N- 


CD 


® 


P 


p 


o 


rH 


CM 


CM 






</) 


CM 


•3—1 


CD 


CP 


CO 


r^ 


UJ 


p 


3 


ro 


r*-* 


(V 




CD 


p 


ao 


CD 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 


3 






2 ; 


CM 


r j 


CM 




■n 


rH 




rH 




' H 








tH 










































































LL 




P 




O 


UJ 


rH 


UJ 


CM 




P 


UJ 


CO 


ro 


P 


ro 


tH 


P 


3 




ro 


r^ 


ro 


O 


3 


O' 


® 


P 


P 


p 


® 


p 


p 


p 


3 


o 


® 


p 


p 


3 


CM 


© 


co 


3 


© 


P 


CM 


P 


ro 


r^ 


P 




O 


v, 


3 


UJ 


GO 


CD 


3 


CO 


-J 




P 


P 




U) 


ro 


p 


CM 


P 




CM 


-3 


3 


▼H 


CM 


P 


o 


r^ 


P 


3 


3 


3 


P 


p 




P 




CM 


3 


p 


® 


CD 


CM 


ro 


P 


r^ 


ec 




ro 


p 


p 


r- 






o 


CO 


ao 


CO 


P 


CP 


CP 


O 


rH 




CM 


J- 


p 


N- 


P 


CM 


P 


P 


P 


N- 


p 


P 


P 


P 




N* 


® 


p O 




fM 


ro 


3 P 




® 


p o 




ro 


3 


p 


P f**- 


® 




ro 


p 


N- 


p 






X 

v. 


P 


P 


UJ 


UJ 


P 


UJ 


r^ 




N- 


K. 


r^ 


r^ 


k- 


r- 


CO 


CO 


00 


IP 


P 


p 


P 


P 


P 


p 


P 


P 


P 


P 


P 


P 


p 


P 


P 


p 


P 


P 




r^ 


r*- 


r^ 


r^ 




N- 


N. 


CD 


CD 


CD 


® 


ao 




D> 




3 


ro 


ro 


CO 


ro 


CP 


P 


J" 


UJ 


UJ 


UJ 


<3- 


ro 


CD 


N- 


ro 


P 


CD 


P 


p 


P 


O 


3 


p 


ro 


P 


CM 




CM 


P 


H 


P 


ro 


p 


P 


CM 


® 


ro 


r- 




ro 


P 


P 


3 


© 


p 


p 




o 




o 


V 


rH 


o 


00 


IP 


ro 


CD 


CO 


N- 


UJ 


vO 


k 


p 


CM 


UJ 


o 


p P 


CM 


-3 P 


P 


P 


3 


3 


p 


P 


® 


O 


fM 


3 K 


P CM 


3 K 


© 


CM 


p r^ 


O 


CM 


3 


P 


® 




3 


p 


® 


o 






o 


3 


J- 


ro 


ro 


ro 


ro 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


-3 


3- 


-3 




rH 




CM 


ro 


3 


P 


p 




® 


CD 




CM 


ro 


3 


p 


r^ 


® 


O 


*-t 


CM 


ro 


P 


P 




CD 


P 


CM 


3 


p 


® 


rH 






T 

^M 


3 


J- 


3 


J- 


3 


3 


3 


3 




-3- 


-3- 


-3 


J- 


•3- 


J- 


3 


-3 




3 


3 


3 


3 


3 


3 


3 


3 


3 


P 


P 


P 


P 


P 


P 


p 


P 


P 


P 


p 


P 


P 


P 


p 


P 


P 


N- 


K 


r^ 




® 




(/) 




CD 


CO 


IP 


CM 


ro 


CM 


rH 




CM 


ro 


p CD 


▼H 


CO 


o 


P 






ro 


3 


r^ 


P 


P 


CM 


P 


CM 


® 


® 


P 


CM 




3 




p 


N- 


P 


P 


ro 


o 


® 


P 


p 


P 




3 


® 


p 




P 






s 


ro 


rH 


U) 


UJ 


o 


P 


CD 


UJ 


CD 


*3- 




UJ 


P 


ro 


ro 


P 


P 


-S’ 


P 


CO 


o 


3 


CM 


P 


ro 


® 


P ® 


P 


CD 


ro 


3 


3 CM P 


P 


O 


3 h- 


® 


P P 


® 


p 


O 


© 


K 


rH 


CM 






_ 1 


p 


r*- 


CM 


CM 


CD 


CP 


CO 


ro 


s. 


co 


CO 


UJ 


ro 


CD 


P 




P 


p 




p 


▼h 


«iH 




o 


p 


K 


P 


ro 


▼H 


P 


P 


ro 


o 


r- 


ro 


CD 


N- 


ro 


p 


P 




r*- 


ro 


p 




CM 


CM 


ro 


ro 






X 


P 


ro 


CD 


UJ 


rH 


UJ 


rH 


P 


CD 


-T 


CO 


CM 


UJ 


O 


ro 




r^ 


p 


co 


o 


ro 


P 


N- 


P CD 


CM 


3 


p 


® 


P 




ro 


p 


p 


® 


O 




ro 


3 


UJ 


® 


p 




fM 


P 


P 


CM 


P 


® 






V 


N- 


CO 


CP 


p 


CD 


CD 


rH 


tH 


CM 


CM 


CM 


ro 


ro 


-3- 


-3 


-3 


<3- 


p p 


o 


o 


O 


CD 


O 




vi 


tH 




H 




CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 


3 


P 


P 


p 
















rH 


rH 


rH 


rH 








H 








*"* 






* 


CM 


CM 


CM 


CM 


CM 


CM 


tM 


CM 


CM 


tM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


(M 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 




X 


d 


IT* 


h 


rH 


.4 

.7 


CP 


fM 




P 


ro 


P 


K 


p 


K 


P 


P 




^-1 


CD 


3 


N- 




.9 

.6 

.6 




CM 


K 




O 


® 


® 


CM 


CM 


O 


P 


p 


CM 


ro 


ro 




.5 

.7 


ro 


P 


P 


ro 


CM 


ro 






£ 


CD 


o 


fM- 


UJ 


CD 


3 


UJ 


ro 


CO 


ro 


CD 




CM 


UJ 


-3 


ro 




ro 


CM 


CD 


CM 


ro 


P 


3 


® 


a 




CD 


O 


CD 


O 


CM 


P 


vs 


co 


P 


p 


O' 


ro 


p 


r^ 


P 


h*. 


o 


P 


3 


ro 


P 


O' 






V 


J- 


ro 


rH 


CD 


CP 


CP 


P 


CD 


rH 


-3* 




CM 


P 


r*- 


CO 


CM 




ro 


P 


fM 


ao 


3 


CD 


r- 


3 


ro 


CM 


fM 


ro 


P 


® 


fM 




3 




© 


CD 




3 


r^ 


CM 


® 


p 


3 


ro 


® 


s- 


© 








"5 


ro 


CD 




3 


a 


r^ 


3 


CM 


O' 


UJ 


ro 




® 


UJ 


-3 


ro 


3 


CM 


r^ 


ro 


CD 


3 


CD 


UJ 




r*^ 


ro 


P 


p 




h- 


3 


CD 


K 


3 




® 


P 


CM 


p 


r^ 


3 


fM 


o 


p 


CM 


p 


r- 


3 








ip 


P 


UJ 


r*. 


CD 


ao 


P 


CD 


o 




Cvj 


ro 


ro 


-3 


P 


p 


P 


ao 


«o 


p 


P 


CD 






CM 


CM 


ro 


ro 


3 


P 


p 


P 




r^ 


® 


P 


P 


CD 






C\J 


ro 


3 


UJ 


UJ 


CD 


O' 


rH 


ro 






















rH 


rH 












»H 






CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 


3 


3 


3 


3 


3 


3 


3 


P 


P 




UJ 


_J 


ro 


CM 


3 


CO 


ro 


UJ 


P 


3 


P 


CO 




p 


CD 


ro 


P 


CD 


P 


CO 


P 


ro 


P 


CM 


3 


p 


® 




CM 


p 


3 


ro 


r^ 


o 


CM 


p 


- 


® 


r^ 


® 




P 


P 


CM 


P 


3 




P 


3 


© 


CM 






£ 


CM 


ro 


CP 


N- 


CP 


3 


J- 


rH 


P 


CO 


ro 


CD 


ro 


UJ 


CM 


P 


CM 


P 




p 


P 


p 


r^ 


p 


w 


r^ 


ro 


® 


P 


ro 


CM 


3 




CM 


o 


P 




P 


CM 


© 


o 


ro 




ro 


© 


CM 


P 


© 


ro 






V 


o 


® 


UJ 


IP 


3 


J- 


3 


P 


UJ 


CO 


CM 




ro 




fM 


P 


P 


P 


® 


ro 


CO 


3 


o 


N. 


p 


ro 


ro 


ro 


P 


® 


CM 




ro 


•H 


o 


P 


•H 


ro 


N. 




® 


P 


ro 


ro 


P 


ro 


3 




rH 








ro 


CP 


UJ 


ro 


O 




3 


rH 


CD 


p 


ro 


CD 


ao 


UJ 


-3 


CM 


ro 


P 


P 


3 


CO 


ro 




CM 


r^ 


CM 


r- 


CM 


r^ 


CM 


® 


ro 


p 


P 


▼H 


p 


ro 


O' 


P 


CM 


® 


P 


CM 


P 


ro 


® 


ro 


Q 


UJ 








P 


ip 


UJ 


r^ 


CD 


CO 


P 


CD 


CD 




CM 


ro 


ro 


-3 


P 


P 


p 


P 


P 


r^ 




® 


® 


P P 


o 


o 




tH 


CM 


CM 


ro 


ro 


3 


P 


p 


P 


p 




® 


® 


p o 


o 


CM 


ro 


p 


P 


CD 






















H 




▼U 


■ H 


■n 












CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 


3 


3 


3 


3 




D 


-J 


CM 


rH 


N- 


U) 


IP 


ao 


CP 


3 




ro 


P 


r- 


CD 


P 


■3 


▼H 


r- 


P 


CO 


ro 


P 


▼H 


CD 


3 


o 


fu 


® 


fu 


p 


3 


P 


P 


3 


ro 


3 


K 


ro 


ro 




p 


o 


o 


P 


CO 


CM 


3 


P 


P 


P 




O 


O 


CM 


CM 


CM 


uJ 


P 


rH 


UJ 


UJ 


P 


CM 


CM 


p 


-3 


ro 


3- 


P 


o 


P 


P 


ro 


P 


CM 


CM 




P 




ro 




p 


o 


P K 


3 


CD 


P 


P 


ro 


p 


® 


CD 


CM 


ro 


ro 


ro 


ro 




GO 


3 


© 




X 


X 


O 


P 


CP 


CP 


IP 


CO 


P 


ro 


«3- 


r^ 


N. 


o 


ro 


CM 


■3 


P 


p 


CM 


P 


h 


3 




P 


CD 


'H 


CM 


ro 


ro 


ro 


3 


ro 


ro 


ro 


ro 


CM 






o 


p 


p 


® 




p 


p 


ro 


rl 


® 


P 


3 




o 


— J 


J- 


J- 


3 


ro 


CD 


ro 


CM 


r^ 


U) 


p 


P 


S- 


CD 


P 


-3 


-3 




ro 


3 


p 


r- 


CO 


P 




CM 


ro 


3 


p 


p 


r^ 


® 


p 


CD 




CM 


ro 


3 


P 


p 


p 


r- 


® 


p 


a 


CM 


3 


P 


fM. 


P 






1 


UJ 


UJ 


fM- 


CP CM 


ip 


CP 


ro 


CO 


ro 


P 


p 


CM 


CO 


P 


CM 


CM 














CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 


3 


3 


3 


ear 




K BAR 


P 


CO 


r^ 


U) 


P 


ip 


3 


-3- 


ro 


ro 


CM 


CM 


CM 










































































►— 


O' 


CM 


CO 


CO 


ao 


P- 


P CM 


CD 




P 




CM 




O 


CD 


P 


N- 




P 




® 


ro 


ro 


P 


® 


ro 






P 


® 


p 


p 


CD 


3 


K 


3 


o 


CM 


p 


o 


CM 


p 


o 


3 


CM 


P 




ao 




L_) 


V 


CD 


CM 


CD 


CM 


CD 


Ui 


J- 


ro 


CO 


-3 


*r-< 


«3- 


CD 




ro 


CD 


P 


CO 


P 


UJ 


UJ 


ro 


P 


CM 


3 


r^ 


® 


ro 


O 


1^ 


ro 


r^ 


® 


P 


® 


p 


h- 


ro 


CM 


3 


CD 


® 


CO 


CM 


3 


3 


© 


CM 


O' 


o 


\ 


CL 


O 


CP 


CD 


rH 


CO 


UJ 


IP 


J- 


CO 


UJ 


P 


ro 


P 


ro 


CM 


P 


P 


N- 


r^ 


ro 


co 


P 


3 


ro 


3 


r^- 


CM 


P 


r^ 


P 


p 


p 


p 


® 


O 


ro 


P 


CD 


3 


CD 


ro 


r^- 


CM 


® 


P 


y-i 


3 


fM- 


© 


• 


LL 


«3 


© 


CD 


CD 


© 


IP 


3 


UJ 


CO 


CM 


aj 


UJ 


ro 








i 


CD 


P 


3 


CD 


p 


ro 


•H 


O' 


r- 


p 


3 


CM 




CD 


O' 


CD 




P 


P 


UJ 


3 


3 


ro 


CM 


CM 




vl 


© 


P 


U' 


aj 


r*- 


fM- 


o 


o 


CD 




































P 


P 


p 


3 


3 


3 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 




rH 


rH 


rH 


rH 


-H 






p 


rH 


r- 


IP 


CM 


CD 


CO 


P 


IP 


ro 


CM 




CD 


p 


ao 




r^ 


o 


CD 


CD 


o 


CD 


CD 


CD 


o 


o 


o 


CD 


CD 


CD 


CD 


o 


CD 


CD 


CD 


O 


CD 


© 


CD 


CD 


CD 


O 


© 


© 


CD 


© 


© 


O 


© 








ro 


ro 


CM 


CM 


CM 


CM 


rH 


rH 




▼u 
















































































It 








































CD 


CD 


CD 


CD 


O 


O 


CD 


CD 


o 


CD 


CD 


CD 


O 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


a 


© 


O 


© 


© 


© 


© 


CL 




-J 


CM 


CP 


CD 


ro 


CP 


rH 


r- 


P 


CO 


P 




P 


CD 


P 


CD 




r*. 


ro 




3 


ro 


co 


P 


P K 


ro 


® 


CM 


P 




® 


P 


P 


P 


® 


r^» 


P 


ro 




P 


P 


ro 


o 


r^ 


© 


CM 


3 


P 


P 




o 


O 


^H 


CO 


N- 


ip 


ro 


ro 


ro 


CM 


ro 


P 


CO 


H 


r^ 


ro 


ro 


p 




P 




aj 


O' 


P 


P 


p 


P 


P 


® 


® 


N. 


P 


P 


3 


ro 


CM 




o 


P 


CO 




P 


3 


ro 


CM 


© 


CO 


P 


CM 


P 


P 


►— 


> 


X 


UJ 


U) 


N- 


CO 


<P 


o 


rH 


CM 


ro 


J- 


P 


r^ 


CO 


o 


CM 


n3 


j- 


p 


r^- 


<XJ 


p o 




CM 


ro 


3 


P 


P 


N- 


® 


P 


o 




CM 


ro 


3 


3 


p 


p 


r^ 


® 


P 


o 


tH 


CM 


3 


P 


r- 


P 


<1 




s. 


J- 


J- 


J- 


J- 


3 


P 


UJ 


P 


p 


P 


P 


p 


p 


UJ 


p 


P 


p 


































































CL 

< 

CD 




— J 


O 


o 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


o 


CD 


CD 


▼H 








CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 


3 


3 


3 


3 






o 


o 


CD 


CD 


CD 


a 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


O 


O 


































































O 

(/> 


z 


-J 


P 


U) 


rw 


N, 


IP 


CO 


UJ 


P 


P 


ro 


90 


u> 


P 


P 




ro 


p 


P T-t 


3 


ro 


P 


P 


P 






O 


® 


& 


ro 


P 


P rs. 


CM P 


3 


© 


r>- 


P 


3 


© 


3 3 


P P 






3 


fM- 


►H 


UJ 


V 


ao 


CM 


P 


CD 


J- 


fM- 


o 


CM 


ro 


ro 




CD 


ro 


P 


P 


o 


ro 


■^4 


® 


h- 


CO N* 


p P CM 




3 ® 


3 


® 


O 


P P fu 


fO 


P 




© 


ro 


© 


© CM S 


3 


P 


P 


CM 


P 


ro 




o 


-J 


UJ 


ro 


CP 


UJ 


CM 


CO 


IP 


H 


r^ 


ro 


P 


-3" 


CD 


P 


CD 


p 


3 




3 


a 




P 


3 


3 N> 


▼H 


P 


CM 


CD 


® 


® 


fu 


® 


P 


'sH 


ro 


P 


P CM 


P 


© 


3 


® 


ro 


ro 


3 


p 


® 


rH 


UJ 




o 




































O 


P 


ro 


O 


N» 


P 


ro 


tH 


O 


® h. 


P 


3 


ro 


CM 




© 


© 


p ao 


fu 


rw 


P P P 


3 


3 


ro 


fM 


rH 


o 


O 


z 




X 


rH 


rH 


CD 


CD 


CD 


(P 


p 


P 


00 


co 








U) 


P 


p 


P 


P 


P 


p 


P 


3 


3 


3 


3 


3 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


CM 


CM 


CM 


CM 


<M 


CM 


CM 


CM 


CM 


CM 


CM 


(M 


CM 


CM 


<1 






CM 


CM 


CM 


CM CM 


rH 




rH 














vH 






































































X 

1— 








































o 


CD 


o 


o 


CD 


o 


O 


CD 


o 


® 


CD 


o 


o 


o 


o 


© 


o 


© 


CD 


© 


© 


o 


© 


o 


© 


o 


O 


o 


o 


o 


o 


© 


UJ 


1— 




P 


O 


o 


a 


CD 


O 


CD 


O 


O 


CD 


O 


CD 


CD 


O 


CD 


Q 


P 


p 


O 


o 


o 


CD 


Q 


O 


O 


o 


o 


o 


o 


o 


CD 


o 


© 


© 


© 


© 


© 


O 


o 


© 


CD 


© 


o 


© 


o 


© 


© 


o 


© 








IP 


o 


CD 


CD 


CD 


CD 


O 


O 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


P 


p 


o 


o 


o 


O 


O 


CD 


o 


CD 


CD 


o 


o 


o 


CD 


CD 


CD 


o 


© 


o 


CD 


CD 


CD 


O 


o 


© 


o 


O 


© 


o 


© 


o 


© 






o 


o 


o 


CD 


CD 


CD 


O 


o 


CD 


CD 


CD 


CD 


O 


O 


O 


o 


O 


o 


o 


CD 


o 


o 


CD 


o 


o 


o 


o 


CD 


o 


o 


CD 


O 


O 


O 


o 


o 


o 


CD 


O 


o 


© 


© 


© 


a 


o 


o 


© 


o 


© 


O 






a 


O 


o 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


O 


CD 


O 


o 


CD 


o 




tH 


a 


o 


o 


O 


o 


CD 


CD 


o 


O 


CD 


CD 


CD 


CD 


o 


o 


© 


CD 


CD 


a 


CD 


© 


© 


CD 


O 


o 


© 


o 


a 


o 


© 


o 








CP 


CD 


rH 


CM 


ro 


-3* 


IP 


UJ 


r- 


co 


P 


CD 


•H 


CM 


ro 


-3 


-3 


-3 


p 


p 


r*w 


co 


p 


CD 




CM 


ro 


3 


P 


P 


r^ 


ao 


p 


CD 


▼H 


CM 


ro 


3 


p 


P 


r- 


® 


P 


o 


CM 


3 


UJ 


® 


© 










rH 


▼“I 


*-» 


rH 


rH 


T-» 


rH 








CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


3 


3 


3 


3 


3 


3 


3 


3 


3 


3 


p 


P 


P 


p 


p 


p 



279 



Table 27. Thermophysical properties along isobars (Continued) 



3 


O 


o 


P 


(VJ 


0 


0 


0 


(VJ 


P 


PO 


rH 


CD 


0 


P 


LP 


rH 


10 


rH 


CD 


PO 


ro 


_» 


rp 


0 


ro 


CD 


0 


rH 


P 


rvj 


30 




CO 


(VJ 


P 


(VJ 


0 


rH 


IP 


CP 


PO 


CO 


(VJ 


0 


CD 


p 


IP 


(VJ 


O' 


<D 




UJ 


0 


H 


rH 


rH 


rH 


(VI 


-4 


LO 


p 


CP 


rH 


(VI 


4 


0 


CO 


0 


ro 


l P 


LTV 


0 


p 


P 


CO 


CP 


CD 


o 


rH 


rH 


(VI 


(VJ 


ro 


PO 


4 


4 


LP 


IP 


0 


0 


V0 


P 


P 


GO 


ao 


CP 


O' 


CD 


rH 




(VJ 




0 


(Vi 


rH 


O 


CP 


CD 


p 


0 


iP 


-4 


PO 


ro 


(VI 


rH 


CD 


CP 


ao 


CO 


(VJ 


(VI 


(VJ 


(VJ 


(VJ 


(VJ 


(VI 


PO 


PO 


ro 


PO 


PO 


ro 


PO 


ro 


ro 


ro 


PO 


ro 


ro 


ro 


ro 


ro 


PO 


PO 


ro 


PO 


ro 


4 


4 


4 


4 




V 

2 : 


(VI 


(VI 


(VJ 


rH 


rH 


rH 


rH 


rH 










rH 


rH 








































































Li. 




0 




CP 


IT. 


O 


-4" 


o 


CP 


PO 


PO 


ro 


CO 


rH 


ro 


CO 


0 


o 


(VI 


p 


p 


(VJ 


ro 


IP 


0 


CD 


IP 


4 


CVJ 


p 


P 


ro 




ro 


V0 


rH 


p 


ro 


0 


0 


ro 


(T 


4 


CP 


PO 


GO 


(X* 


0 


CP 


V0 


(-> 


X 


4 


0 


p 


O 




ao 


-4 


O 


0 


cr 


rH 


LP 


ro 


4 


CD 


IP 


p 


LTV 


ip 


PO 


ro 


CP 


O' 


(VJ 


P 


4 


CVJ 




CD 


o 


rH 


(VJ 


PO 


4 


0 


p 


CP 


rH 


(VJ 


4 


IP 


P 


CO 


o 


(VJ 


4 


0 


r^ 


CO 




o 


CD 


GO 


CD 


CP 


CP 


CP 


CD 


rH 


rH 


(VJ 


4* 


l P 


P 


0 


(VJ 


iP 


ao 


(VJ 


rH 


CP 


CD 


p 


p 


GO 


CO 


CP 


o 


•H 


(VJ 


PO 


4 


IP 


V0 


p 


GO 


0 


CD 


OJ 


ro 


4 


IP 


V0 


p 


cr* 


rH 


PO 


IP 


p^ 


O' 




T’ 

V 


0 


if) 


0 


0 


0 


0 


P 


P 


P 


p 


P 


P 


p 


P 


CO 


GO 


ao 


0 


0 


to 


ip 


LP 


ir> 


IP 


IP 


IP 


0 


0 


0 


0 


0 


0 


vD 


0 


0 


0 


P 


P 


p 


P 


P 


P 


p 


p 


GO 


ao 


<0 


GO 


CO 


:> 


* 


0 


4 


-4- 


CD 


4 


CD 


CD 


LO 


ao 


GO 


P 


0 


4" 


(VI 


0 


4 


o 


CD 


GO 


(VJ 


0 


O 


0 


(VJ 


10 


IP 


ao 


IP 


IP 


P 


rH 


IP 




V0 


(VJ 


CO 


ro 


ao 


(VJ 


IP 


P 


CO 


GO 


p 


CD 


co 




O' 


(VJ 


O 




** 


CD 


CO 


0 


PO 


rH 


O' 


P ^ 


0 


0 


P 


0 


(VJ 


0 


CD 


0 


^■1 


4 


PO 


0 




(P 


P 


p 


p 




CP 


«H 


PO 


LP 


<0 


CD 


PO 


IP 


GO 


o 


ro 


IP 


GO 


CD 


(VJ 


4 


0 


CO 


(VJ 


4 


P 


co 


CD 




o 


4 


4 


0 


0 


ro 


PO 


(VJ 


(VJ 


(VJ 


(VJ 


(VJ 


(VJ 


ro 


PO 


4 


4 


LO 


(VJ 


(VJ 


(VJ 


ro 


PO 


4 


ip 


V0 


P 


ao 


0 


rH 


(VJ 


ro 


IP 


0 


p 


ao 


o 




CVJ 


ro 


IP 


0 


P 


CO 


cr 


(VJ 


4 


10 


CO 


_ 




X 


4 


4 


-4 


4 


4 


-4 


-4 


4- 


4- 


4 


4- 


4 


4- 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


IP 


IP 


IP 


IP 


IP 


LP 


IP 


IP 


V0 


V0 


0 


V0 


V0 


vO 


V0 


V0 


V0 


P 


P 


p 


K 


CO 



“5 





CO 




S0 


(VJ 


a 


IP 


IP 


4 


rH 10 


O 


0 


ro 


rH 


O' 


0 


o 


CVJ 


4 


OJ 


rH 


0 


0 


O' 


rH 


CD 


0 


0 


0 


P- 


CVJ 


0 


P- 


CVJ 


CD 


0 


0 


CD 


0 


0 


0 


0 


0 


CVJ 


P- 


(VJ 


0 


0 


rH 


4 


0 






X 


4 


CD 


4 


4 


GO 


4 


GO 4 


CO 


rH 


O' 


ro 


IP 


CD 


O' 


0 


0J 


(VJ 


(VI 


0 


CD 


rH 


0 


(VJ 


0 




0 


0 


0 


rH 


0 


0 


0 


0 


0 


0 


GO 


(VI 


0 


GO 


0 


CD 


0 


0 


OJ 


0 


rH 


0 


0 








LP 


P^ 


(VI 


(VJ 


N- 


CP 


P~ PO 


10 


0 


r- 


i0 


0 


CD 


0 


rH 


P- 


0 


LP 


0 




(VI 


(VI 


OJ 


,H 


CD 


0 


0 


4 


OJ 


O' 


0 


0 


O 


P- 


4 


CD 




0 


0 


0 


(VJ 


P- 


0 


0 


0 




P 


P 






i 


V0 


ro 


CD 


10 


rH 


10 


rH v0 


CD 


4 


0 


(VJ 


0 


CD 


0 


P- 


O' 


0 


0 


0 


*H 


0 


0 


P^ 


O' 


rH 


OJ 


4 


0 


0 


O' 


rH 


0 


0 


0 


GO 


CD 


rH 


0 


4 


0 


0 


0 


rH 


4 




CD 


0 


0 








P^- 


Oj 


O' 


O' 


CD 


CD 


rH rH 


(VI 


(VJ 


(VJ 


PO 


0 


4 


4 


4 


4 


O' 


O' 


O' 


O 


CD 


CD 


o 


CD 


rH 


rH 


rH 


rH 


rH 


rH 


(VJ 


(VJ 


0J 


OJ 


0J 


0 


0 


0 


0 


0 


0 


0 


4 


4 


4 


0 


0 


0 




















rH rH 




*"• 




rH 


■ rH 


rH 






" H 


rH 




rH 


OJ 


OJ 


(\J 


(VJ 


l\J 


OJ 


(VJ 


OJ 


OJ 


OJ 


OJ 


i\J 


(VJ 


OJ 


(VI 


(VJ 


OJ 


(VJ 


CVJ 


CXJ 


OJ 


OJ 


CVJ 


CVJ 


IVJ 


(VJ 


(VJ 


(VJ 


CVJ 




X 


_j 


4 


O' 


O' 


CD 


(VJ 


ro 


IP 00 


CO 


O' 


CD 


4 


0 


O' 


O' 


CD 


0 


0 


O' 


O' 


0 


0 


4 


O' 


P- 


4 


0 


O' 


0 


O 


P- 


0J 


fp 


4 


0 


(VJ 


0 


0 


rH 


0 


4 


0 


CD 


0 


4 


rH 


0 


0 


(VJ 






X 


CO 


r- 


4 


4 


10 


(VJ 


ro cd 


IP 


CP 


U1 


ro 


P- 


CD 




0 


rH 


P. 


CD 


0 


rH 


0J 


rH 


rH 


0 


P- 


0 


rH 


P- 


0 


0 


0 


0 


OJ 


(VI 


4 


P^- 


(VJ 


0 


Pt 


P- 


0 


0J 


0 


O' 


P» 


0 


OJ 


0 






v. 


IP 


ro 


(VI 




CD 


CD 


CD rH 


(VI 


4 


0 


PO 


CP 


0 


0 


(VJ 


0 


0 


rH 


rH 


CD 


0 


0 


4 


(VJ 


rH 


rH 


00 


0 


0 


CP 


4 


CD 


fp 


0 


4 


4 


0 


ao 


OJ 


P*> 


0 




0 


0 


4 


0 


P 


4 








ro 


CD 


ps. 


4 


rH 


<0 


LP (VJ 


O' 


i0 


ro 


rH 


co 


0 


4 


0 


O' 


0 


0 


rH 


P> 


(VJ 


0 


4 


CD 


0 


(VJ 


0 


4 


CD 


0 


0 


CD 


0 


0 


CD 


P*- 


4 


rH 


0 


0 


4 


0J 


0 


iP 


OJ 


0 


0 


4 








u-t 


10 


10 


P^ 


au 


CO 


O' CD 


CD 


rH 


(VJ 


ro 


0 


4 


0 


0 


0 


0 


0 


CP 


CP 


CD 


CD 


rH 


(VJ 


OJ 


0 


0 


4 


0 


0 


0 


P- 


P- 


ao 


0 


0 


CD 


rH 


rH 


OJ 


0 


4 


4 


0 


0 


O' 


rH 


0 






















*“• 




rH 


rH 




rH 


rH 






(VJ 


OJ 


0J 


0J 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


0 


0 




UJ 


_J 


rH 


r- 


r- 


GO 


CD 


CD 


CD rH 


P^- 


4 


rH 


0 


- 


IP 


(VI 


P» 


rH 


0 


co 


0 


O' 


0 


CVJ 


CD 


4 


O' 


0 


0 


- 


0 


OJ 


4 


0J 


0 


0 


0 


CD 


CD 


0 


0 


OJ 


0 


OJ 


0 


CD 


0J 




P 


0 






2 : 


ro 


rH 


r- 


IP 


P- 


(VJ 


(VI GO 


rH 


4 


0 


4 


p^ 


0 


0 




(VJ 


CO 


0 


4 


0 


0 


0 


0 


0 


O' 


CD 


CD 


,H 


CVJ 


0 


CD 


0 


0 


0 


0 


O' 


4 


OJ 


OJ 


4 


P- 


0 


CD 


O' 


0 


rH 


0 


0 






V. 


0 


GO 


id 


IP 


4 


4 


4 4 


10 


0 


rH 


0 


« 


CD 


rH 


4 


P- 


p^ 


rH 


O' 


0 


0 


CD 


0 


0 


0 


0 


P- 


O' 


OJ 


0 


«VJ 


CO 


0 


0 


0 


0 


0 


0 


GO 


4 


rH 


CD 


C3 


(VJ 


CD 


(VJ 


0 


0 






“2 


ro 


O' 


10 


PO 


CD 




4 *H 


co 


LP 


ro 


O 


0 


0 


4 


(VJ 


0 


0 


0 


(VJ 


p^ 


0J 


P- 


rH 


0 


rH 


0 


rH 


0 


(VJ 




0 


0 


4 


o 


0 


OJ 


CO 


0 


rH 


au 


0 


OJ 


O' 


0 


0 


0 


0 


4 








LP 


IP 


10 


p- 


CO 


ao 


O' CD 


CD 


rH 


(VJ 


lO 


0 


4 


0 


0 


0 


0 


0 


P~ 




0 


0 


O' 


O' 


O 


CD 


rH 


rH 


OJ 


(VI 


0 


0 


4 


0 


0 


0 


0 




0 


0 


0 


CD 


CD 


OJ 


0 


0 


0 


0 


























■ rt 






” H 


rH 


rH 




OJ 


CVJ 


(VJ 


OJ 


00 


CVJ 


0J 


(VJ 


0 


0 


ro 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


4 


4 


4 


4 


4 


4 


4 




Q 


_J 


CD 


O' 


O' 


p^ 


CD 


ro 


O' 10 


CD 




h- 


O' 


O' 


(VJ 


0 


rH 


rH 


OJ 


rH 


4 


0 


0 


0 


rH 


0 


CD 


OJ 


0 


0 


O' 


4 


0 


0 


0 


p^ 


rH 


p- 


0 




0 


(VI 


P- 


0 


rH 


CD 


4 


0 


P 


0 




o 


O 


ro 


CD 


IP 


PO 


P- 


ip 


(VJ IP 




1^- 


CD 


0 


0 


0 


0 




P- 


0 


0 


O' 


p- 


0 


4 


0 


0 


rH 


OJ 


CD 


0 


o 


0 


4 


0 


0J 


0 


0 


rH 


0 


CD 


4 


p- 


0 


rH 


0 


0 


0 


4 


0J 


0 




Vw 


X 


PO 


ro 


10 


p>- 


ro 


i0 


<0 (VJ 


ro 


10 


P 


CD 


0 


0 


0 


0 


0 


p- 


(VI 


0 


0 


p-w 


CD 


OJ 


4 


0 


p- 


0 


0 


O' 


O' 


0 


0 


0 


GO 


aO 


CO 


Pt 




0 


0 


4 


4 


0 


rH 


0 


P- 


0 


0J 




CD 


_J 


4 


IP 


IP 


4 


^H 


4 


ro co 


N- 


CD 


r^- 


0 


rH 


K 


0 


0 


0 


CVJ 


0 


4 


0 


p- 


CP 


CD 


rH 


0J 


0 


4 


0 


0 


P^ 


0 


0 


CD 


"H 


(VJ 


0 


4 


0 


0 


p- 


0 


0 


CD 


OJ 


0 


0 


P 


0 






1 


V0 


10 


p- 


O' (VI 


IP 


O' ro 


GO 


4 


0‘ 


IP 


(\) 


0 


0 


PJ 


O 


rH 


rH 


rH 


rH 


rH 


rH 


(VJ 


0J 


0J 


0J 


0J 


0J 


0J 


CJ 


0J 


0J 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


4 


4 


4 


4 


4 


4 


QZ 
< l 

Oj 




K B4R 


O' 


GO 




10 


10 


IP 


4 4 


ro 


PO 


(VI 


(VJ 


(VJ 


rH 




rH 




































































P- 


10 






4 


LP 


LP 


ao ro 


(VJ 


4 


rH 


CD 


0 


O' 


4 


(VJ 


0 


P^ 


P^. 


4 


4 


0 


(VJ 


O' 


OJ 


0 


O' 


0 


0 


4 


p- 


0 


0 


rH 


0 


0 


0 


0 


co 


0 


p- 


0 


P- 


P- 


0 


0 


0 


(VJ 


4 




o 




L0 


IP 


ro 


GU 


U' 


ro 


ro ro 


O' 


10 


LP 


(P 


4 


O' 


0 


0 


(VJ 


rH 


CP 


0 


0 


rH 


P- 


4 


(VJ 


O 


0 




0 


0 


CD 


0 


0 


rH 


0 


0J 


0 


JJ 


CD 


0 


rH 


P- 


0 


0 


CD 


CVJ 


OJ 


U’ 


(VJ 


O 


\ 


(X 


O' 


CP 


rH 


rH 


O' 


i0 


i0 ip 


CP 


P- 


10 


4 


rH 


4 


4 


0 


rH 


P- 


0 


0 


4 


0 


0 


O' 


4 


(VJ 


(VJ 


4 


0 


4 


rH 


0 


p- 


P- 


P- 


aO 


0 


rH 


4 


0 


CD 


0 


Pt 


rH 


rH 


rH 


OJ 


0 


0 


• 


LL 


«3 


O' 


CD 


CU 


CD 


u\ 


4 


u> co 


(VI 


0 


IT. 


PO 


(VJ 


rH 


rH 


rH 


0 


r> 


rH 


4 


O' 


0 


rH 


0 


0 


4 


(VI 


CD 


0 


P 


0 


4 


0 


CVJ 


rH 


CD 


0 


O' 


GO 




P- 


0 


U' 


iP 


4 


r»j 


OJ 


rH 


CD 


(VJ 


a 


CL) 


































P- 


P- 


0 


0 


0 


0 


4 


4 


4 


4 


4 


0 


0 


0 


0 


0 


0 


0 


0 


0J 


(VJ 


(VI 


(VJ 


OJ 


0J 


0J 


(VJ 


0J 


CVJ 


0J 


0J 


0J 


rH 








rH 


N- 


LP 


(VJ 


CD 


0 V0 


LP 


ro 


(VJ 


rH 


CD 


CP 


0 


P- 


0 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 








ro 


ro 


(VI 


CVJ 


CVJ 


(VJ 


rH rH 


rH 


rH 


rH 


rH 


rH 










































































II 






































CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


a 


—i 


_J 


rH 


CP 


O' 


(VJ 


CP 


o 


10 P~ 


10 


ro 


O' 


0 


r- 


0 


0 


4 


0 


0J 


0 


0 


0 


0 


4 


rH 


0 


0 


O' 


O' 


O' 


P- 


0 


OJ 


0 


4 


0 


4 


0 


0 


P~ 


rH 


4 


0 




0 


0 


0 


P 




4 




o 


O 


rH 


ao 


10 


LP 


ro 


ro 


CVJ (VJ 


PO 


LP 


r- 


rH 


0 


0 


(VJ 


4 


OJ 


0 


rH 


rH 


rH 


CD 


CP 


0 


0 


4 


(VJ 


CD 


0 


0 


4 


0J 


0 




4 


CVJ 


0 


P- 


4 


0J 


0 


0 


4 


rH 


0 


CD 


4 


0 


0 


h- 


D> 


X 


L0 


10 


P- 


CD 


O' 


CD 


rH (VJ 


ro 


4 


LP 


fT 


0 


CD 


(VJ 


4 


0 


0 


4 


0 


0 


P~ 




0 


O' 


CD 


rH 


P0 


0J 


0 


4 


0 


0 


0 


P*. 


ao 


ao 


0 


CD 


rH 


rH 


OJ 


0 


4 


0 


P- 


0 


0 


rH 


•a 




\ 


4 


4 


4 


4 


4 


ip 


LP IP 


LP 


IP 


LP 


iP 


IP 


0 


0 


0 


0 


































































QZ 

<r 

CD 




_J 


CD 


CD 


CD 


O 


0 


o 


O O 


O 


CD 


O 


CD 


CD 


O 


CD 


CD 


CD 




,H 




rH 


rH 






rH 


0J 


0J 


CVJ 


CVJ 


0J 


(VJ 


0J 


0J 


CVJ 


0J 


(VJ 


0J 


0J 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


4 






CD 


CD 


CD 


CD 


a 


CD 


CD CD 


CD 


O 


CD 


CD 


CD 


o 


CD 


CD 


CD 


































































O 

in 


2 


-1 


10 


GO 


O' 


CD 


GO 


CVJ 


CD CD 


O 


O' 


LP 


4 


4 


O' 


4 


O' 


(VJ 




4 


0 


0 


0 


CVJ 


O' 


0 


O' 


4 


O' 


4 


0 


Pr 


0 


0 


rH 


0 


0 P- 


0 


CO 


0 


0 


4 0 


0 


CD 


0 


OJ 


P 


0 


»-H 


UJ 




GO 


(VI 


i0 


rH 4 


GO 


rH PO 


4 


PO 


(VJ 


O' 


4 


0 


0 


rH 


O' 


0 


O' 


0 


CD 


4 


0 


0 


0 


(VJ 


0 


0 


O' 


4 


CD 


0 


0 


O 




CD 


0 


0 


rH 


4 


CD 


CD 


0 


0 


CD 


O 


0 0 


0 




Q 


_J 


iD 


ro 


(J' 


10 


CVJ 


cO 


IP rH 


P~ 


ro 


O' 


4 


CD 


IP 


O 


0 


CD 


0 




O' 


CD 


0 


p~ 


rH 


0 


0 


O' 


0J 


0 


OJ 


0 


0 


4 


4 


0 


4 


4 


0 


CO 


CD 


0 


0 


0 


(VJ 


rH 


o 


0 


CD 


rH 


UJ 




o 


































(VJ 


CD 


0 


(VJ 


0 


0 


0 


O 


0 


0 


0 


0 


(VI 


CD 


0 0 Pv, 


0 


0 


4 


0 


0J 


(VJ 


rH 


CD 


0 


0 


0 


p- 


0 


0 


4 


2 




X 


rH 


rH 


CD 


CD 


CD 


O' 


O' O' 


0 


0 


P- 


P- 


P~ 


0 


0 


0 


0 


p^ 


P- 


0 


0 


0 


0 


0 


0 


4 


4 


4 


4 


4 


4 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


(VJ 


OJ 


(VJ 


(VJ 


OJ 


0J 


CVJ 


<1 






(VI 


(VJ 


(VI 


CVJ (VI 


rH 


rH 


rH 


rH 


rH 




rH 


rH 


rH 


rH 


rH 


































































T 

1- 






































CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


UJ 


P— 


* 


10 


O 


CD 


CD 


CD 


CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O' 


O' 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 








CO 


CD 


CD 


CD 


CD 


CD 


CD CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


O' 


O' 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 






o 


CD 


CD 


CD 


CD 


CD 


CD 


CD CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


rH 


rH 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


o 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 






o 


CD 


CD 


CD 


CD 


CD 


O 


CD CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


O 


P- 


P^ 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


O 


CD 


CD 


O 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 


CD 








CP 


CD 


rH 


(VJ 


ro 


4 


LP lO 


P~ 


0 


CP 


CD 


•*H 


(VJ 


0 


4 


4 


4 


0 


0 


P- 


0 


CP 


CD 


rH 


0J 


0 


4 


0 


0 


P^» 


0 


O' 


CD 


rH 


OJ 


0 


4 


0 


0 


fv. 


ao 


0 


CD 


OJ 


4 


0 


0 


CD 










rH 


rH 


rH 


rH 


rH 


rH rH 


rH 


rH 


rH 


(VI 


(VJ 


(VI 


(VJ 


OJ 


0J 


0J 


0J 


OJ 


CVJ 


0J 


OJ 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


4 


4 


4 


4 


4 


4 


4 


4 


4 


4 


0 


0 


0 


0 


0 


0 







280 



Table 27. Thermophysical properties along isobars (Continued) 

ETHANE IS08AR AT P = 14.0 BAR 



3 O 


CD 


CD 


C\J 


ro 


CD 


CD 


ro 


ao 


ip 


ro 




CD 


CP 


p 


y 


aO 


(P 


ip 


CO 


0 


40 


y 


CM 


CD 


40 


ro 


O' 


IP 


o 


40 




vO 


t-4 


40 


CD 


IP 


© 


y 


ao 


ro 


P 


▼H 


SP 


CP 


p 


y 


OJ 


CP 


40 


LU 


ro 


tH 


■*-• 


▼H 


CM 


ro 


-2 


ITv 


p 


cr 


7-4 


ro 


-y 


0 


ao 


CP 


CD 


ao 


y 


IP 


40 


p 


ao 


CP 


CP 


CD 


CD 


t-4 


CM 


CM 


ro 


ro 


y 


y 


IP 


IP 


40 


40 


40 


p 


P 


ao 


CO 


ao 


cp 


CD 


<rH 




CM 


ir 


OJ 


T— < 


o 


CP 


CO 


P 


0 


IP 


y 


ro 


ro 


CM 


7-4 


o 


CP 


ao 


CD 


p 


CM 


CM 


CM 


CM 


CM 


CM 


CM 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


ro 


y