NBSIR 74-398
NAT'L INST. OF STAND & TECH
PROVISIONAL VALUES FOR THE
THERMODYNAMIC FUNCTIONS OF ETHANE
Robert D. Goodwin
320- 3 IT?
Cryogenics Division
Institute for Basic Standards
National Bureau of Standards
Boulder, Colorado 80302
3'10 -3 o-o o
June 1, 1974
Prepared for
The American Gas Association
Wilson Boulevard
tfon, Virginia 22209
/OO
• ULSb
0<L
!?7f
NBSIR 74-398
PROVISIONAL VALUES FOR THE
THERMODYNAMIC FUNCTIONS OF ETHANE
Robert D. Goodwin
Cryogenics Division
Institute for Basic Standards
National Bureau of Standards
Boulder, Colorado 80302
June 1, 1974
Prepared for
The American Gas Association
1515 Wilson Boulevard
Arlington, Virginia 22209
U S DEPARTMENT OF COMMERCE. Frederick B Dent. Secretary
NATIONAL BUREAU OF STANDARDS Richard W Roberts Director
TABLE OF CONTENTS
Page
PREFACE vii
1. INTRODUCTION 1
2. PHYSICAL PROPERTIES AND THEIR REPRESENTATION . . 2
2.1 Fixed-Point Constants 2
2.2 Melting Line and Vapor Pressures 3
2.3 The Orthobaric Densities. 5
2.4 The Virial Equation 9
2. 5 The Equation of State 11
2.6 The Ideal Gas Functions 13
2.7 The Heats of Vaporization 14
2.8 Specific Heats for Saturated Liquid 15
2.9 Specific Heats Cp (T) along Isobar P^ 15
3. COMPUTATIONAL METHODS 16
3. 1 The Homogeneous Domain 16
3.2 The Vapor -Liquid Transition. 17
3.3 Compressed Liquid States 17
4. TESTS AND COMPARISONS 18
4.1 The P-p-T Compressibility Data 18
4.2 Calculated P(p) Critical Isotherm 19
4.3 Heats of Vaporization and Closure Computation. . . .- . 19
4.4 Heat Capacity for Saturated Liquid. 20
4.5 Specific Heats, C (p, T) 20
ir
4.6 Comparison of Enthalpies 20
4.7 Speed of Sound for Saturated Liquid 20
iii
TABLE OF CONTENTS (Continued)
Page
5. TABLES OF PHYSICAL AND THERMODYNAMIC
PROPERTIES 21
5. 1 Calculated P-p-T Isochores and Isotherms 21
5.2 The Joule -Thomson Inver sion Locus 21
5.3 Thermophysical Properties of the Saturated Liquid . . 21
5.4 Thermophysical Properties along Selected Isobars. . . 21
6. COMMENTS AND RECOMMENDATIONS 21
7 . ACKNOWLEDGMENTS 23
8. BIBLIOGRAPHY 24
APPENDIX A. Symbols and Units 31
APPENDIX B. Fixed-Point Values 32
APPENDIX C. Exposition of the Equation of State 33
APPENDIX D. Manuscript, "The Vapor Pressures of Ethane" . 35
APPENDIX E. Manuscript, "Ethane Virial Coefficients and
Saturated Vapor Densities" 58
APPENDIX F. Manuscript, "The Orthobaric Densities of
Ethane, Methane, Oxygen, and Fluorine ... 79
APPENDIX G. Manuscript, "Liquid-vapor Saturation
(orthobaric) Temperatures of Ethane
and Methane" Ill
APPENDIX H. Computer Programs for Equation of State .... 123
APPENDIX I. Computer Programs for Thermofunctions .... 142
LIST OF FIGURES
Figure 1. The locus of recent P-p-T data 159
Figure 2. Generalized locus of isochore inflection points .... 160
Figure 3. Generalized behavior of the critical isotherm .... 160
Figure 4. Generalized behavior of the locus 0(p) 1 6 1
Figure 5. Generalized behavior of the function $(p, T) 1 62
IV
TABLE OF CONTENTS (Continued)
Page
Figure 6. Generalized behavior of the function iji(p, T) 162
Figure 7. Behavior of coefficients B(/») , C(^>) for methane .... 163
Figure 8. Presumed behavior of C(p) for hydrogen 164
Figure 9. Generalized density-temperature phase diagram. . . 165
Figure 10. Comparisons for saturated liquid ethane 166
Figure 11. Speeds of sound for saturated liquid ethane 1 6 7
LIST OF TABLES
Table 1. Experimental and calculated vapor pressures ..... 168
Table 2. Comparison with vapor pressures of Regnier 5
Table 3. Experimental and calculated saturated liquid
densities 170
Table 4. Vapor densities via vapor -pre s sure and virial
equations 171
Table 5. Experimental and calculated saturated vapor
densities 172
Table 6. Experimental and calculated liquid saturation
temperatures 173
Table 7. Experimental and calculated vapor saturation
temperatures 174
Table 8. Experimental and calculated second virial
coefficients 175
Table 9. Experimental and calculated third virial
coefficients 177
Table 10. Summary of P-p-T data 10
Table 11. Coefficients of the equation of state 178
Table 12. Experimental and calculated P-p-T data 179
Table 13. Experimental and calculated ideal gas functions .... 200
Table 14. Interpolated ideal gas functions 201
Table 15. Experimental and calculated heats of vaporization. . . 202
v
TABLE OF CONTENTS (Continued)
Page
Table 16. Experimental and calculated specific heats for
saturated liquid . .... 203
Table 17. Experimental and calculated specific heats C (T)
on isobar Pp 204
Table 18. Calculated P(p) critical isotherm 205
Table 19. Loop closure computations for staurated liquid .... 207
Table 20. Experimental and calculated specific heats Cp(p,T). . 208
Table 21. Comparison of enthalpies for saturated liquid,
J/mol 213
Table 22. Comparison of enthalpies, J/mol 214
Table 23. Calculated P(T) isochores 215
Table 24. Calculated P(p) isotherms . 237
Table 25. The Joule -Thomson inversion locus 262
Table 26. Thermophysical properties of the saturated liquid . . 263
Table 27. Thermophysical properties along isobars 266
PREFACE
The Cryogenics Division of the National Bureau of Standards,
with support from the American Gas Association, is engaged in a pro-
gram to provide input data and computational methods for physical and
thermodynamic properties of the constituents of liquefied natural gas
mixtures (LNG). These thermophysical properties are the basis of all
LNG technology. All operations such as liquefaction, separation,
storage, pumping, transport, custodial transfer, and regasification
will benefit from accurate data. As the commercial value of LNG
depends on its heat of combustion, the densities of LNG mixtures and
other requisite properties are important data.
The compositions of LNG mixtures vary widely, depending on
the source and selective vaporization during handling. To predict
properties of mixtures, it is essential to know accurately the properties
of the pure components and of selected binary mixtures, so that the
excess property (over the mole- fraction average of the components)
can be examined.
The equation of state of pure components is an essential tool
in work on mixtures because from this single formulation there can be
obtained not only the density but also thermodynamic properties such as
the enthalpy and specific heats at any desired temperature and pressure
for which the component exists as a fluid.
A major contribution from this laboratory for computations on
LNG and its components is the development of a simple, rational
equation of state which originates on the liquid-vapor coexistence
boundary, and gives a qualitatively correct behavior for derived specific
heats, especially about the critical point. A form of this equation was
used in our recently completed, comprehensive project on the major
Vll
component of LNG, namely methane, "The Thermophysical Properties
of Methane from 90 to 500 K at Pressures to 700 bar. " NBS Technical
Note 653, April, 1974.
In addition to the above publication, this laboratory has provided
accurate experimental data on the compressibilities, vapor pressures,
saturated liquid densities, specific heats, sound velocities, dielectric
constants, refractive indices, and viscosities of compressed and liquid
methane at temperatures down to 90 K.
A similar comprehensive project on ethane now is under way. The
present report makes use of available physical properties data to obtain
tables of thermodynamic functions, and provides the first of such tables
available for liquid ethane below its normal boiling point temperature
(184. 5 K). In this work we use a simplified and more highly constrained
version of the equation of state formerly used for methane. Auxiliary
functions also are improved to accommodate the enormous range of ethane
vapor pressures and saturated vapor densities. The use of these new
analytical descriptions of PVT data for ethane does not in any way invali-
date the methods used to compute the thermodynamic properties of
methane in NBS TN 653. The equation of state used for methane in TN
653 had nine least- square s coefficients, and thereby gives a better rep-
resentation of some of the experimental PVT data than does the present,
more highly constrained equation with only five such coefficients. For
ethane, the present equation of state is valuable because the available
PVT data are less precise (over the entire P(p,T) surface ) than tho se
used for methane in TN 653. Further work on the equation of state has
been carried out to obtain the simplest possible form, amenable to cor-
responding states computations on mixtures. This work, "Equation of
State for Thermodynamic Properties of Fluids, " was submitted to the
NBS Journal of Research in October, 1974.
viii
PROVISIONAL VALUES FOR THE
THERMODYNAMIC FUNCTIONS OF ETHANE*
Robert D. Goodwin
Thermophysical properties are tabulated at integral
temperatures over the entire range of fluid states from 90
to 600 K along isobars to 700 bar. A new, rational equation
of state is employed for the first time. Thermodynamic
functions in the compressed liquid at T<T are obtained by
c
use of specific heats C (T) along a high-pressure isobar.
P
Keywords: Densities; enthalpies, entropies; equation of
state; internal energies; isobars; isochores; isotherms;
Joule- Thomson inversion; latent heats of vaporization;
melting line; orthobaric densities; specific heats; speeds
of sound; vapor pressures.
1. INTRODUCTION
The economic importance of methane and ethane, as the major
components of liquefied natural gas (LNG), is well known. Our objec-
tive is to produce basic thermodynamic information, needed for the
prediction of properties of the constituents of liquefied natural gas mix-
tures. For the wide range of compositions encountered, it will be neces
sary to utilize accurate thermodynamic properties ofthepure components
We recently have published the properties of methane [25]. The
present work on ethane provides background on available physical pro-
perties data, and may serve engineering needs for thermodynamic
properties until such time as new physical data permit a revision of
the table s .
* This work was carried out at the National Bureau of Standards under
sponsorship of The American Gas Association.
1
All of the analytical formulations of physical properties data
in this report are new as compared with [25]. The major contribution
of present work is development of a rational equation of state. As in [25],
our description of the P(p, T) surface originates on a given liquid-vapor
coexistence boundary (vapor-pressure and orthobaric densities equations).
It yields a maximum in the specific heats C (p, T) at the critical point,
and has only five arbitrary coefficients to be found by least squares
from experimental P-p-T data. We give constants of this equation of
state both for methane and for ethane because uniform methods of
computation will be helpful with mixtures.
Some recent thermal data have been especially valuable for
our computation of the thermodynamic network. These are the ideal
gas functions of Chao et al. [8], and the low temperature specific heats
C (T) of Furtado along isobars [20].
Symbols and units of this report, listed in Appendix A, are the
same as for methane [25]. For equation of state (5) the gas constant is
R = (0.0831434) • (d ) bar/K, consistent with use of the dimensionless
density, p h d/d^_.
2. PHYSICAL PROPERTIES AND THEIR REPRESENTATION
2 . 1 Fixed- Point Constants
These values are listed in Appendix B. For methane, they are
taken from [25].
The triple-point temperature and pressure for ethane are from
our analysis of ethane vapor pressures [26]. The liquid density is a
short extrapolation of the saturated liquid densities of Miller [48]. The
vapor density is given by intersection of our present virial equation of
state with our vapor-pressure locus [27].
The critical-point temperature and density for ethane were ad-
justed by examination of the critical isotherm from the present equa-
2
tion of state. Our value of T = 305.37 K agrees with the recent experi-
c
mental observation of Strumpf et al[68-a], namely T c = 305.368 ± 0.005 K.
Our critical density, = 6. 74 mol/4 may be compared with 6. 83 ±
0. 07 mol/4 from [68-a], with 6. 79 ± 0. 02 mol/4 from [49], and with
6.87 mol/4 from [14]. Critical densities reviewed in [ 14, 17, 70]
range from 6.75 ± 0.07 to as high as 7.32 mol / -t , a s pr e ad of 8/o .
Our critical pressure of 48. 755 bar at T = 305. 37 K may be com-
pared with other authors by use of the slope of the vapor pressure
curve at the critical point, namely dP^/dT = 1. 04 bar/K. Most re-
cently, for example, Douslin and Harrison [14] give = 48. 718 bar at
T = 305. 33 K.
c
The reader should note that our "critical density" is essential for
the present equation of state to give a critical isotherm with no negative
slopes, (SP/d p)rp 2: 0. Our procedure is an altogether new method for
x c
finding this characteristic constant, but may depend heavily on the ana-
lytical form of the equation of state used [29a]. It follows that our "criti-
cal density, " d c , should be regarded as a fitting parameter, and not neces-
sarily as the best value for this characteristic constant.
2. 2 Melting Line and Vapor Pressures
For the melting line of ethane we have found only the rough data
of Clusius and Weigand to 42 bar [ 11] . In the Simon equation [25],
P = P + aT(T/T ) g -?
t I t
we assumed e = 2, finding A = (1. 01325)- (2840. 0) bar from their data by
averaging P/ ! (T/T ) £ -l
The vapor pressure equation (2) for ethane is an extension [ 26]
of our early form [23],
2 3 4 . , 3/2 . .
4n(P/P ) = a- x + b- x + c- x + d- x + e- x- (1-x) f (2)
where the argument is x = (1 -T /T)/(l -T /T ), and the coefficients are
t t c
3
Coefficients for Vapor Pressure Equation (2)
Methane
Ethane
10.7954 9166
8. 3589 9001
-3. 1149 0770
-0.6496 9799
6. 0734 9549
Table 1 for ethane compares the data.
After the present report was completed, we received the vapor
pressures of Regnier [58] from 80 to 135 K. His results for the liquid
were described in mm Hg by
log 10 (P) = 7. 75-881 /T.
The following Table 2 compares results from our present vapor pressure
equation (2) with his calculated pressures. If we use the ideal gas law to
obtain the vapor density, and obtain dP/dT from the above equation, the
Clapeyron equation gives the heat of vaporization independent of tempera-
a = 4. 7774 8580
b = 1. 7606 5363
c = -0.5678 8894
d = 0.0
e = 1.3278 623 1
ture. The Clapeyron equation is -
' Qvap =T- (dP/dT)- (v g - v t ).
From the above vapor pressure equation, P = exp[a - b/T], one obtains -
(dP/dT) = b* P/T 2
At low pressures, v^ is negligible relative to Vg, hence via the ideal gas
law - ,
(Vg - v t ) = R-T/P.
Introducing the last two expressions into the first yields
Q-wan = b*R = 16.87 kJ/mol.
V ct p
The smoothed experimental value of previous workers at 100 K is
17.3 ± 0.2 kJ/mol (Table 15). Regnier's duplicate pressure gages
agreed to 1% or better, but he makes no estimate of absolute accuracy.
4
Table 2. Comparison with vapor pressures of Regnier
-3
(U nits of bar* 1 0 )
T , K This Report Regnier [ 58]
89.899
0.0101
0.0119
90
0.0104
0.0122
95
0.0363
0.0399
100
0.1110
0.1161
105
0.3025
0.3051
110
0.7463
0.7342
115
1.689
1.637
120
3.546
3.414
125
6.967
6.713
130
12. 92
12. 53
135
22. 77
22. 33
The Orthobaric
Densities
For the saturated liquid and vapor densities, o(T), we have
developed analytical expressions which are constrained to any given
boundaries, namely the triple and critical points [28], In eqs (3 -a) and
(3-b) the basic behavior is given by Y(p, T) = const. , and polynomials
on the right side are selected to describe small deviations.
a) For the saturated liquid, define the variables -
x(T) = (T -T) / (T -T ),
c c t
y(p) = (p-p )/(P -P ),
c t c
0
Y(p,T) = (y-x)/(x -x),
when the equation is
2/3
Y = a + b* x + c • x, (3 - a)
5
with the following coefficients
e =
a =
b =
c =
Methane
0. 36
0. 8595 3758
0. 0243 6448
-0. 0268 5285
Ethane
0. 33
0. 72 19 0944
0.2965 7790
-0. 3003 6548
Table 3 compares data with (3-a).
b) For the saturated vapor, define the variables--
x(T) = (T / T -1) / (T / T -1),
c c t
y ( p) = 4n(p / p) /j?.n(p c /p t ),
Y(p,T) = (y-x)/(x G -x),
when the equation is--
Y = A i A .-x l/3 , (3-b)
i = 2
with the following coefficients --
Methane Ethane
e =
0.41
0.39
A 1 -
0.4171
4211
0.2158
7515
A 2 =
-0.5194
9762
-0.0852
2342
a 3 =
1. 2077
7553
-0.6152
3457
A 4 =
-1.4613
0509
0.2545
2490
A 5 =
0.5765
8540
0. 1517
7230
The data of Table 4 are obtained from the virial and vapor pressure
equations [27], The heading PLANK/KAMB refers to [52]. The data
of Table 5 for ethane are compared with (3-b).
c) For the equation of state, we use the liquid-vapor, equilib-
rium (saturation) temperature T (T (p) as a function of density. Densities
are obtained from the following expressions for T rT (p) by iteration,
using eqs (3 -a) and (3-b) only to find the initial density. We shall
describe T^p) in two parts, according as p>p^. This simplifies the
design of constraints to the boundaries (vapor and liquid triple points).
At the critical point the two parts are continuous because the deriva-
tives of all orders n, d I1 T rT /dp n , from each are zero. For each range
the dependent variable is
Y(T_(p)) = (T /T ct -1)/(T IT -1),
c c t
and we use the following function,
U(c ) = - y (1/x-l/x ),.
where
x = |ct- 1 I, x fc = l a t " 1 1 >
cr - d/d , CT . = d t / d
c t t c ,
and d^_ refers to vapor or liquid at the triple point according as ~ $ 1.
For the liquid range at n> 1 the equation is --
5
f,n(Y) = U(o) + B.- (a 1 ) . (3-c)
i = l
For the vapor range at a < 1 we need a modification for extreme-
ly low densities approaching the triple point. The form is selected for
7
qualitative consistency with the ideal gas law and the basic vapor pres-
sure equation. Define--
W(o) = Tn( 14-e /ct ) /Tn( 14-e /cr ),
when the equation is --
l n(Y) = U(a ) + A -TnrW(a )] + A • (a
o 1
1/3 1/3.
" CT t >
A , 2/3 2/3 +
+ A 2 -(a -a t )
f
£
i=3
A
i- 2 i- 2
(3-d)
The coefficents for (3-c) and (3-d) are —
Coefficients for Saturation Temperatures, Eqs. (3-c, d)
Methane
Ethane
Y
1/2
1/2
e
1/4
1/4
Ao
0.9034 9557
0.8681 0517
A i
0.0
0.0151 6978
A 2
0.0
-0.7296 0432
A 3
-0.3834 4338
1.0096 5493
A 4
-3.9210 8638
-8.7340 2710
a 5
6. 2600 3837
21. 1071 2823
a 6
-9.3296 0083
-31.4499 4087
A?
5.6060 2816
17.8637 0397
B 1
11.4317 7230
23.7245 1840
b 2
-3.8765 9480
-14.8860 5161
B 3
0.5378 8326
5.4317 7443
B 4
0.0
-1.0715 0566
B 5
0.0
0.0913 5183
8
I
For ethane the liquid saturation temperatures appear in Table 6,
and the vapor temperatures in Table 7. Densities of the freezing liquid
are obtained by use of the equation of state in present work.
2. 4 The Virial Equation
For the virial equation of state,
Pv/RT = 1 + B(T) • ct + C(T)- a 2 +--- ? (4)
the second and third coefficients B(T), C(T) are dimensionless. We
reduce temperature and density of the critical point, x = T/T , a =
c
d/d^. Following initial research on the representation of these coeffi-
cients [27], we now have adopted McGlashan's formula for B (T),
B(T) = B + B /x + B 3 /x 2 + B 4 /x 4 * 5 (4-a)
B = 0. 552 671, B 3 = -0. 592 947,
B_ = -1. 106 244, B = -0. 041 944.
2 4
These constants were obtained with our values for p , T . Date from
c c
McGlashan were increased by 0. 5 percent in absolute value to improve
consistency with the data of Michels and of Douslin near 300 K.
Table 8 compares data and calculated values.
For C(T) our new representation from [27] is,
C(T) =
C /x +
1
C 2 /x '
+
C 3 /x-
]•
( 1 -T /T),
o
(4-b)
T 0 = 217. 8 K, C 2 = 0. 83253,
C = 0.24423, C 3 = 0. 53488,
using critical constants of the present report. Table 9 compares data
and calculated values.
9
Table 10. Summary of P-p-T Data
Cfl
O
>
<u
Q
CO
CM
vO
lO
o
CM
r-H
CM
00
•
•
•
•
•
o
T— H
o
O
I— 1
o
mo
o
un
CO
o
o
oo
o
cn
0)
!— I
• p-i
Jh
CCj
>
<D
0)
OJO
£
ctf
Oh
00
M3
r-H
oo
LO
-/ j
CO
r-
O
O'
CM
r-H
r-H
CM
r-H
O
O
o
o
pH
o
o
CM
r-H
o
£
CM
CM
rQ
1
i
1
1
i
Oh"
o
LO
CM
O'
IT)
r-H
r-H
r-H
r— I
o
cn
U
o
4->
3
C
o
o
CO
CO
o
o
r-H
CM
CM
00
vO
LO
sO
CO
1
1
o
o
CO
00
CO
r— H
l>
L T)
CM
CO
CM
CM
r-H
00
1
1
LO
f— H
1
i
O'
•
•
o
o
o
0-
LO
"st
1 1
1 1
£
o
•
r-H
r-H
4->
£
£
a5
4— 1
H->
d
CD
CD
cr
CD
Jh
a)
#H
r-H
r-H
0)
£
s
• I - 1
U
£
o
• r -1
CD
• r- 1
xO
t— H
r-
o
>
<u
£
• r-*
i— I
Cfl
£
o
Q
LO
£
Oh
to
<’
CM
00
O'
+
10
2 . 5 The Equation of State
Data reproduced in the present report are summarized by Table
10. The locus of recent data is shown by Figure 1. From the data of
A. K. Pal we selected only twelve isochores at the highest densities,
runs Nos. 13 through 24 of Table 12, because they were found to be
self-consistent. An increase of all densities by 0. 5 percent than made
these PVT data compatible with data of other authors (Table 10) via
our equation of state. We finally used adjusted data of A. K. Pal
kindly provided by Professor R. Kobayashi, J. R. Ely, et al of the
Chemical Engineering Department, Rice University. We omitted the
data of Reamer et al because those of Douslin and Harrison are be-
lieved to be more accurate.
For background on this equation of state, the reader may refer
to our work on methane [25]. We consider density to be a parameter
in the description of P(T) isochores, Figure 2. (In Figure 3 we show
the well-known zero slope and curvature of the critical isotherm. )
For any density we obtain the liquid-vapor coexistence temperature
from our function for T CT (p), eqs (3-c, 3-d). Placing this in the vapor
pressure equation gives the coexistence pressure. The equation of
state thus is defined as a function of density on the coexistence boundary.
By subtraction we shift the origin to this boundary. Define the
variables - -
x(T) = T/T ,
c
X (p) = T (p )/T
ct a
c
Y (P , p,T)= (Z-l).x/p,
when the equation of state is--
Y (P) * (Z - 1 ) • x /p ,
o a a
(Y-Y ) = B(p)*$ (p , T) + C(p). Y (P , T)
<3
(5)
li
where B(p), C(p) are polynomial coefficients to be found by least squares,
and the temperature-dependent functions are
$(p , T) = x 1 / 2 -^n[T/T a (p)], (5 -a)
Y(p , T) = [ 1 - 0 ) -Tn(l+l/ci))] /x - [ 1 -uj jTn(l+l/u>^ jj/x^ . (5-b)
Each of these functions is zero on the coexistence boundary at
T = T a (p). The second gives nonanalytic behavior for C (p, T) about
the critical point by use of the variables,
uu(p,T) h 5 . [T/0(p)-l], a) a (p) = 6 - [T CT (p)/0(p)-l],
where 6 is an adjustable constant and 0 (p) is our locus of temperatures
inside the coexistence envelope, Figure 4,
Q(P) = T^(P )• exp* _cy. | cr _ 1 1 3 /(a - l ) 3 ! e (5-c)
In the above, = d^/d c for liquid at the triple point. Figures 5 and 6
show behavior of the functions $(p, T) and Y (p, T).
The coefficients of (5) are--
B(p ) = B + B «p + B «p 2 /(1+b.p 2 ), (5-d)
o 1 c
C(p) = (a - 1)» (a -C )• (C + C • p ) , (5-e)
o 1 4
and the constants are--
12
Constants for Equation of State (5)
Me thane
Ethane
O' =
2
2
b =
1
1
6 =
1/2
1/2
B o =
1.5082 12989
1.8481 67996
V
0.6544 90304
1,5697 04511
B 2 =
4. 1320 82291
5.5601 86452
Co"
1. 90
1.90
C 1 =
-0.7654 09076
-1.0428 42462
n
ro
ii
-0.0590 88717
+0.2249 78299
Behavior of B(p) and C(p) for ethane is given by Table 11. For
methane the behavior is shown by Figure 7. Figure 8 shows the pre-
sumed behavior of C(p) for hydrogen, discussed in Appendix C. De-
viations of experimental data for ethane appear in Table 12. Appendix
C explains the rationale of this equation of state.
2. 6 The Ideal Gas Functions
For use in our computations we have represented the internal
energies of Chao et al. [8], by the following empirical power series--
9
(E°-E°)/RT = 3.0 + Zv (T/100) (l+3)/3 , < 6)
l=f
13
with coefficients
A
o
= 21.705
718
A 5
= 906.218 4427
A 1
= 65.498 641
a 6
= -459. 230 2545
A 2
= -362.011
5914
a 7
= 143.030 0226
A 3
= 853.340
8616
A 8
= -25.074 95605
A 4
=-1123.601
6220
A 9
= 1.897 54004
The specific heats are obtained by differentiation,
C°(T) = dE° /dT ,
v
and the entropies by integration of C°,
AS° =
C v .dT/T
The dimensionless integration constant for S /R is the value A tabu-
o
lated above. The concise computations are given by computer sub-
routine IDEAL, below. Table 13 gives the comparisons, and Table 14
gives values interpolated by means of (6).
We have compared the results of Chao et al [8] with those ob-
tained earlier by Ziegler et al [77], At temperature, 200 K, (values
in Joules, moles, kelvins)-
o o
H -H
o
C
Ziegler et al [77] 7281.4 210.72 42.45
Chao et al [8], 7257.6 210.50 42.26
o o
We see a difference of 24 Joules in (H - H ), or 0. 3 percent. We
o r
have not further compared these independent calculations.
2. 7 The Heats of Vaporization
The data of Table 15 are represented as follows,
6 i/3
Q
vap
2 >.
• X
, kJ/mol,
(7)
i=l
14
where the argument is x(T) = (T -T)/(T -T )
c c t
T =
89. 899 K
T
= 305. 37 K
t
c
A i
12. 102 730
A 4
= -71. 854 695
A 2
11.165 588
a 5
= 82. 166 239
A, =
16. 539 265
A.
=-32. 610 514
3
6
Comparisons are given in Table 15.
2. 8 Specific Heats for Saturated Liquid
Data shown in Table 16 have been represented in J/mol/K with a
minimum of arbitrary constants as follows by use of the argument,
x = T/T , (T = 305. 37 K) -
c c
C (T) = a+ b-x + c«x/(l-x) £ , J/mol/K, (8)
CT
with these constants,
e = 0. 5 b = -16.5876
a = 67. 3153 c = 16. 3526
The form of (8) permits integration,
AS a = J C a 'dx/x,
giving results in closed form. Comparisons are given in Table 16.
2. 9 Specific Heats C (T) along Isobar P
P ®
In our computations of the thermodynamic functions we have en-
tered the compressed liquid region at T<340 K by use of specific heats
C (T) kindly provided by Andre Furtado, as obtained with the flow
calorimeter at the University of Michigan [20].
Data shown in Table 17 for the isobar at P, = 137. 895 bar are
b
represented by use of the argument,
x(T) = (T-T )/ (T -T ),
t m t
15
as follows in J/mol/K,
C (T) =k.[C -exp(Y)] , J/mol/K, (9)
p m
where
Y " A 1 + A 2 * x2 /n- x ) + A 3 -x 2 + A 4 -x 3 + A 5 -x 4 ,
with constants T^_ = 89.899 K, and--
T
m
354. 0 K
II
<M
<
-0. 154 423
C m =
62.60
A 3 =
-0. 141 489
k
r-
00
r— 1
335
ii
C
-0.506 438
A
1
3. 263
00
00
CM
a 5 =
0. 276 992
The data were estimated by the author to be accurate to 0. 7% on
average, with a few values uncertain by several percent.
3. COMPUTATIONAL METHODS
The numerical values for E and H in this report are on the same
o
absolute basis as those of Tester [701, obtained by use of E =
L J o
(4. 1868)- (4827. 2) J/mol.
3. 1 The Homogeneous Domain
With reference to Figure 9, we start our computations with ideal
gas values at zero density, and then integrate along isotherms by use
of the equation of state in the following relations,
AE = ' [P-T. (5P/8T)]-dp /p 2 , (10)
AC v = -T. 1 (8 2 p/dT 2 ).dp/p 2 , (11)
AS = R* -Ln [P / (pRT)] 4- [R -(dP/d T) /p] . dp /p .
12 )
Equation
states at P =
(12) is for use with initial entropies in hypothetical gas
1 atm. For the compressed liquid at T<T, and p>p
b c
16
(the cross-hatched region of Figure 9) we start with values of S(T, P^)
on isobar P, , and then use
b
AS = - J (3P/3T).dp/p 2 . (12 -a)
In each (p, T) state, reached by above integrations, we compute
H = E + P. v , (13)
Cp = C v + T. (dP/dT) 2 /(SP/3p)/p 2 ,
(14)
W
2
= C • (dP/Sp ) /C .
P v
(15)
3. 2 The Vapor-Liquid Transition
As discussed below, we have used this computation only as a
check against experimental heats of vaporization, and for closed-
loop checks terminating on the saturated liquid.
We traverse the vapor-to-liquid "dome" of Figure 9 by use of the
Clapeyron equation, and Av = (v -v ),
f e
AH = T. (dP/dT). Av,
(16)
AE = AH - P. Av,
(17)
AS = AH/T,
(18)
where (dP/dT) is slope of the vapor pressure curve.
3. 3 Compressed Liquid States
Computations along isotherms which pass close to the critical
point, Figure 9, cannot be expected to be accurate, as discussed in
[25]. For ethane there is an additional problem for use of the
Clapeyron equation to enter compressed liquid states. At low tem-
peratures the vapor pressures become so small that they have yet to
be measured accurately, and the saturated vapor densities obtained
17
here are correspondingly uncertain. We therefore have used the follow-
ing procedure to compute around the critical point into the cross-
hatched region of Figure 9:
We use the isobar of specific heats C (T) at P = 137. 895 bar
P b
from [20]. We then select = 340 K, obtaining (by integration along
T. )
H(T P J = 25 737 -97 J/mol, S(T , PJ = 176.4384 J/mol/K.
b :
By use of our description (9) for C (T, P ) we then integrate down to
P b
any T<T
b
AH
T,
C -dT,
P
We finally integrate along isotherm T as described among eqs (10)
through (18). On the saturated liquid boundary we compute the specif-
ic heat C rj .(T) of liquid along the coexistence path from the following
relation [61],
C CT (T) = C v (P ’ T) ■ T -( ap / 5 T).(dp^/dT)/p^ , (19)
where (dp^/dT) is the slope of saturated liquid density vs. T.
4. TESTS AND COMPARISONS
4. 1 The P-p-T Compressibility Data
Deviations of experimental densities and pressures from the
smooth P(p, T) surface of the equation of state (5) are given in Table
12, using author identifications from Table 10. The data of Michels
[47] and Douslin [ 14] are highly precise, and the deviations generally
are systematic, as might be expected from an equation of state with
as little freedom as (5). Any inaccuracies in the liquid-vapor bound-
ary will be propagated along calculated isochores because the equation
18
of state originates on this boundary. At high densities in the compres-
sed liquid, the derivative BP/Bp becomes extremely large, hence pres-
sure deviations should be ignored.
4. 2 Calculated P(p) Critical Isotherm
Table 18 gives a high-resolution examination of the P(p) critical
isotherm from equation of state (5). This was obtained by adjusting
the assigned critical point (p , T^) to eliminate negative slopes BP/3p
in the neighborhood of p . The selected critical point is within the
range of values found by previous workers.
4. 3 Heats of Vaporization and Closure Computation
The last column of Page 1 of Table 26 gives experimental heats of
vaporization from eq (7) for comparison with values in column Q, VAP
computed by the Clapeyron equation. The differences are plotted in
Figure 10 as (Q -Q ).
xptl calc
Table 19 gives loop-closure computations for the saturated liquid.
Values for enthalpy in Column H_ and for entropy in Column S are ob-
tained by computing around the critical point, whereas values in
Columns HC and SC are via the Clapeyron equation (see Sections 3. 2,
3. 3). The enthalpy differences are plotted in Figure 10 as
(H . -H^ ) in which refers to computation around the C. P. by
calc Furt Furt
use of C (T) data of Furtado [201.
P
Heats of vaporization via the Clapeyron equation at low tempera-
tures are uncertain by several percent (up to about 500 J/mol) due to
uncertainty in the vapor-pressure equation and the vapor densities.
In Table 16, moreover, we see that experimental heats of vaporiza-
tion may differ by over 2 percent at 100 K, (about 350 J/mol). The
apparently large deviations seen in Figure 10 therefore do not exceed
known uncertainties. The heats of vaporization have not been used for
present computations.
19
4. 4 Heat Capacity for Saturated Liquid
The last column of the second page of Table 26 gives experimental
heat capacities for the saturated liquid from eq (8) for comparison with
values in column CS computed as described above in Section 3. 3. As
seen in eq (19), this is a difficult computation from which to obtain
high accuracy. We also have computed C a (T) = T* (dS^/dT), but prefer
to omit this further complication of present work.
4. 5 Specific Heats, C ^ (p, T)
Table 20 compares specific heats of [20] at constant pressure
with values calculated by present methods. Except near the sharp
maxima in Cp in the critical region, the differences generally do not
exceed combined uncertainties of a few percent.
4. 6 Comparison of Enthalpies
Table 21 compares our saturated liquid enthalpies (obtained by
computation around the critical point) with results of Tester [70]. From
low-temperature specific heat data on the solid, and the heat of fusion,
he obtained the third-law entropy of liquid at the triple point. He then
used experimental C a (T) data, liquid densities and dP/dT from the
vapor-pressure equation to obtain AH(T) on the liquid coexistence path.
Table 22 compares enthalpies of three authors for the homogen-
eous domain at a few, selected (P, T) points. To make use of the values
of Eubank et al. , we have added H°(T) obtained from Tester. This com-
parison shows that our results from the present very simple equation of
state are consistent with the work of other authors.
4. 7 Speed of Sound for Saturated Liquid
Figure 11 compares the speed of sound W for saturated liquid
from Table 26 of present work with the experimental data of Poole and
Aziz [53], Positive curvature of our calculated results below the boil-
ing point (184. 55 K) suggests that derivatives of our P(p, T) surface are
20
not sufficiently accurate in the compressed liquid. Below 105 K the
calculated dependence of the saturated liquid densities on the tempera-
ture in Table 6 also has a positive curvature, which probably is quali-
tatively incorrect.
5. TABLES OF PHYSICAL AND THERMODYNAMIC
PROPERTIES
5. 1 Calculated P- p -T Isochores and Isotherms
A selection of calculated isochores and isotherms is given by
Tables 23 and 24. They are useful to examine behavior of the surface
generated by the equation of state, and to supplement the isobars of
Table 27 in obtaining P-p-T values and their derivatives.
5. 2 The Joule-Thomson Inversion Locus
Table 25 gives our calculated P-p-T locus for the J. T. inversion,
(ST /^P)h = These results are obtained from the equation of state
under the condition, T* OP/ST) = p*(dP/dp).
5. 3 Thermophysical Properties of the Saturated Liquid
Table 26 gives physical and thermodynamic properties for the
saturated liquid. Column headings are interpreted on the first page
of this table.
5. 4 Thermophysical Properties Along Selected Isobars
Table 27 gives physical and thermodynamic properties on isobars,
as computed by methods of Section 3. Explanations for the table are
given on the first page. This table is extrapolated beyond the range of
P-p-T data used for adjusting the equation of state (P ~ 350 bar).
6. COMMENTS AND RECOMMENDATIONS
Uncertainty of the saturated liquid densities (Table 3) is estimated
to be 0. 1 percent from 90 to 140 K. Greatest uncertainty, approaching
0. 5 percent, exists in mid-range (160 to 250 K) where no experimental
data were found. Whereas several sets of precise data exist approach-
21
ing the critical temperature, we have not been able to represent them
with a function of simple form to better than 0. 2 to 0. 3 percent [28].
Saturated vapor densities at very low temperatures are uncertain
by several percent because they have been estimated by use of the
vapor-pressure equation which is uncertain by at least 2 percent at
these temperatures [26], and the virial equation of state. The latter
is extrapolated below the range of data for the virial coefficients where,
however, we approach ideal gas behavior [27].
Our calculated densities (Table 27) over the homogeneous domain
( n <0 , or T>T ) are uncertain by an estimated 0. 2 percent, except for
r c c
the critical region (p r /3<p<2* p c at 0. 9* T C <T<1. 2- T c ) where deviations
from experimental data may exceed one percent, Table 12. For the
compressed liquid at low temperatures, densities probably are un-
certain by about 0. 2 percent (adjusted P-p-T data of A. K. Pal [54]).
Uncertainty of enthalpy differences is most difficult to estimate.
Along isotherm T^ of Figure 9, we compute Cp(p, T) at point (T^, P^)
within one percent of the experimental value from [20]. For the homo-
geneous domain, having an adequate density of P-p-T data, therefore,
the uncertainty of enthalpy differences probably is comparable with
that estimated for methane [25], namely about 2 percent. For com-
pressed liquid, as seen in Section 4 above, however, the uncertainty
may be several-fold greater.
The purpose of this report has been, in part, to find the inade-
quacies in physical properties data needed for thermal computations.
Some recommendations can be made, based on the inaccuracies shown
in Section 4 above. The possible methods for preparing a thermo-
dynamic network are so numerous and varied, however, that the reader
may wish to draw his own conclusions. We make only the following
simple observations and recommendations:
22
1) The melting line is poorly defined. Accurate P-p-T data for
the freezing liquid would provide a boundary for the equation of state.
The triple-point temperatures which have been published are highly
discordant. Extrapolation of the P(T) melting line to zero pressure
might yield a reliable value. This is needed especially for the vapor
pressure equation.
2 ) More accurate P-n-T data (better than 0. 1% in density) are
needed for the low-temperature compressed liquid. From such data
accurate saturated liquid densities may be obtained by intersection
with an accurate vapor-pressure line.
3) Accurate densities for the saturated liquid are needed in mid-
range where few if any experimental data exist.
4) Accurate vapor pressure measurements apparently exist
only from 200 K (2 atm) upwards. These could be extended down to
150 K (0. 1 atm) by use of the "air dead-weight gage. " Their use might
give a vapor pressure equation with more reliable derivatives, dP/dT,
over the entire range.
5) Sound velocity measurements over a wide range, as well as
additional specific heat measurements, e. g. C v (p, T), would provide
further tests of the thermodynamic computations.
7. ACKNOWLEDGMENTS
We are indebted to The American Gas Association for generous sup-
port of this work, to Robert D. McCarty for the essential lea st - square s
program, and to Dwain E. Diller and Lloyd A. Weber for discussions and
valuable suggestions. Importance of the nonanalytic behavior of C (p,T)
about the critical point, in formulating an equation of state, was empha-
sized for us by Anneke Levelt Sengers, for which we are most grateful.
The PVT compressibility data of Douslin and Harrison, of A.K. Pal as
revised at Rice University, and the specific heat data of A. Furtado,
have all been essential ingredients making possible the present provi-
sional computations of thermodynamic functions.
23
8. BIBLIOGRAPHY
[1] Amer. Petrol. Inst. Res. Proj. 44, Selected Values of Proper-
ties of Hydrocarbons and Related Compounds (loose-leaf). Table
20 k, (Part 1), p. 1, Dec. 31 (1952), (Vapor Pressures).
[2] C. H. Barkelew, J. L. Valentine and C. O. Hurd, Thermody-
namic properties of ethane, Trans. Amer. Inst. Chem. Eng. 43 ,
25 (1947).
[3] L. A. Bulavin, Yu. M. Ostanevich, A. P. Simkina, and A. V.
Strelkov. Density of ethane near the liquid-vapor critical point,
Ukrainain Physics Journal 16, 90 and 183 (1971).
[4] L. J. Burnett and B. H. Muller, Melting points of ethane and
three of its deuterated modifications, J. Chem. and Eng. Data
15.(1), 154 (1970).
[5] L. No Canjar, P-V-T and related properties for methane and
ethane, Chem. Eng. Data Series 3^(2), 185 (1958).
[6] L. N. Canjar, C. M. Tejada and F. S. Manning, Thermo Pro-
perties of ethane, Hydrocarbon Processing and Petroleum
Refiner, 4]_(10), 149 (1962).
[7] F. G. Carruth, Determination of the vapor pressure of
n-paraffins and extension of a corresponding states correlation
to low reduced temperatures, Thesis, Dept. Chemical Engineer-
ing, Rice University, Houston, Texas, (Nov. 1970).
[8] J. Chao, R. C. Wilhoit, and B. J. Zwolinski, Ideal gas thermo-
dynamic properties of ethane and propane, J. Phys. Chem. Ref.
Data 2(2), 427 (1973).
[9] P. L. Chueh and J. M. Prausnitz, Third virial coefficients of
nonpolar gases and their mixtures, A. I. Ch. E. Journal 13(5)
898 (1967).
[10] C. H. Chui and F. B. Canfield, Liquid density and excess pro-
perties of argon + krypton and krypton + xenon binary liquid mix-
tures, and liquid density of ethane, Trans. Faraday. 67 , 2933).
(1971).
24
[11] K. Clusius and K. Weigand, The melting carves of the gases A.
Kr, X, CH 4 , CH 3 D, CD 4 , C 2 H 4 , C 2 H 6 , COS, and PH 3 to 200 atm
pressure, Z, physikal, Chem. B46 (1 ), 1 (1940).
[12] R. K. Crawford and W. B. Daniels, Equation of state measure-
ments in compressed argon, J. Chem. Phys. 50(8), 3171 (1969).
[13] D. E. Diller, The specific heats (C ) of dense, simple fluids,
Cryogenics 1 1 , 186 (June, 1971). V
[14] D. R. Douslin and R. H. Harrison, Pres sure -volume-temperature
relations of ethane, J. Chem. Thermodynamics, _5(4),491 (1973).
[15] N. M. Dykhno, M. V. Tsyrulnikova and M. V. Mochalova,
Hydrocarbon vapor pressures at low temperatures, Zh. Fiz.
Khim. 42(9), 2310-1 (1968).
[16] J. H. Dymond and E. B. Smith, The virial coefficients of gases,
Oxford Science Research Papers 2, Clarendon Press, Oxford,
England, (1969).
[17] P. T. Eubank, Thermodynamic properties of ethane: vapor-
liquid coexistence, Advances in Cryogenic Engineering, 17 , 270
(Plenum Pub. Corp. , New York, N. Y. 10011,(1971)).
[18] P. T. Eubank, B. F. Fort, and C. C. Reed, Jr., Thermody-
namic properties of ethane: PYT surface and corresponding
thermodynamic properties, Advances in Cryogenic Engineering ,
T7, 282 (1971).
[19] A. Eucken and A. Parts, Z. Phys. Chem. B2Q , 184 (1933),
(virial coeffs. quoted by Ziegler et al. [77].
[20] Andre Furtado, The measurement and prediction of thermal
properties of selected mixtures of methane, ethane, and propane,
(Ph. D. Thesis, Dept, of Chemical Engineering , Univ. of
Michigan, Ann Arbor, Mich., Dec. , (1 973) ).
[21] R. D. Goodwin, An equation of state for fluid parahydrogen from
the triple-point to 100°K at pressures to 350 atmospheres, J. Res.
Nat. Bur. Stand. 71A (3), 203 (1967).
[22] R. D. Goodwin, Formulation of a nonanalytic equation of state for
parahydrogen, J. Res. Nat. Bur. Stand. 73A ( 6 ), 585 (1969).
25
[23] R. D. Goodwin, Nonanalytic vapor pressure equation with data
for nitrogen and oxygen, J 0 Res. Nat. Bur. Stand. 73A (5), 487
(1969).
[24] R. D. Goodwin and R. Prydz, Densities of compres sed liquid
methane, and the equation of state, J. Res. Nat. Bur. Stand.
76A(2), 81 (1972).
[25] R. D. Goodwin, The thermophysical properties of methane from
90 to 500 K at pressures to 700 bar, NBS Tech. Note 653, April
(1974).
[26] R. D. Goodwin, The vapor pressures of ethane, Unpublished
Report, Nat. Bur. Stand., Boulder, Colorado, 9 July, 1973.
Appendix D, this report.
[27] R. D. Goodwin, Ethane virial coefficients and saturated vapor
densities, Unpublished Report, Nat. Bur. Stand. , Boulder,
Colorado, 15 Aug., 1973. Appendix E, this report.
[28] R. D. Goodwin. The orthobaric densities of ethane, methane,
oxygen, and flourine, Unpublished Report., Nat. Bur. Stand. ,
Boulder, Colorado 18 Sept. , 1973. Appendix F. this report.
[29] R. D. Goodwin, Liquid-vapor saturation (orthobaric) tempera-
tures of ethane and methane, Unpublished Report, Nat. Bur.
Stand., Boulder, Colorado, 28 Nov., 1973. Appendix G, this
report.
[29a] R. D. Goodwin, Equation of state for thermodynamic properties
of fluids, Submitted to J. Res. Nat. Bur. Stand. , Boulder,
Colorado, October, (1974).
[30] R. D. Gunn, M. S. Thesis, Univ. Calif. (Berkeley), 1958, quoted
by J. A. Huff and T. M. Reed, J. Chem. Eng. Data 8 _, 306 (1963).
(Virial coefficients. )
[31] K. R. Hall and P. T. Eubank, Experimental technique for direct
measurement of interaction second virial coefficients. J. Chem.
Phys. 59(2), 709 (1973).
[32] A. Harmens, Orthobaric densities of liquefied light hydrocarbons,
Chem. Eng. Science 20, 813 (1965), 2J_, 725 (1966).
26
[33] A. S. Holmes, W. G. Braun and M. R. Fenske, Bibliography of
vapor -pres sure data for hydrocarbons, Amer, Petrol. Inst. ,
New York, Bibliog. No. 2, 1964.
[34] A. E. Hoover, I. Nagata, T. W. Leland and R. Kobayashi, Virial
coefficients of methane, ethane, and their mixtures at low tem-
peratures, J. Chem. Phys. 4_8 (6), 2633 (1968).
[35] J. A. Huff and T. M. Reed, Second virial coefficients of mixtures
of nonpolar molecules from correlations on pure components, J.
Chem. and Eng. Data 8^(3), 306 (1963).
[36] E. E. Hughes and S. G. Lias, Vapor pressures of organic com-
pounds in the range below one millimeter of mercury, NBS Tech.
Note No. 70., Washington, D. C. (Oct., I960).
[37] J. G. Hust, A compilation and historical review of temperature
scale differences, Cryogenics _9(6), 443 (Dec., 1969).
[38] J. D. Kemp and K. S. Pitzer, The entropy of ethane and the
third law of thermodynamics. Hindered rotation of methyl groups,
J. Am. Chem. Soc. 5 9 , 276 (1937).
[39] G. Klipping and F. Schmidt, Dampfdrucktabellen tief siedender
gase (V), Kaltetechnik _18_( 1 1 ), (Nov. 1966).
[40] J. Klosek and C. McKinley, Densities of liquified natural gas and
of low molecular weight hydrocarbons, paper 22, Session 5, Proc.
First Internat. Conf. on LNG, Chicago, April (1968).
[41] J. D. Lambert, G. A. H. Roberts, J. S. Rowlinson and V. J.
Wilkinson, Proc. Roy. Soc., (London) A 1 96 , 113 (1949). (Virial
coefficients, quoted by Tester [70]. )
[42] A. G. Loomis and J. E. Walters, The vapor pressure of ethane
near the normal boiling point, J. Amer. Chem. Soc. 48 , 2051
(1926).
[43] O. Maass and C. H. Wright, J. Am. Chem. Soc. 43 , 1098 (1921).
Vapor pressures, quoted by Tester [70]. )
[44] E. A. Mason and T. H. Spurling, The virial equation of state,
Pergamon Press, Oxford (England), (1969k
27
[45] R. D. McCarty, Least-squares computer subroutine, Unpublished
report, Nat. Bur. Stand. , Boulder, Colorado, (3 Jan., 1972).
[46] M. L. McGlashan and D. J. B. Potter, An apparatus for the
measurement of the second virial coefficients of vapors; the
second virial coefficients of some n-alkanes and of some mix-
tures of n-alkanes, Proc. Roy. Soc. (London) A267 , 478 (1962).
[47] A. Michels, W. van Straaten and J. Dawson, Isotherms and
thermodynamic functions of ethane at temperatures between O 0 C
and 150°C and pressures up to 200 atm, Physica XX, 17 (1954).
[48] J. B. Rodosevich and R. C. Miller, Experimental liquid mixture
densities for testing and improving correlations for liquefied
natural gas, A I Ch E Journal 12(4), 729 (1973).
[49] V. M. Minovich and G. A. Sorina, P-V-T relations in dilute solu-
tions of propane in ethane in the vicinity of the cirtical point of
ethane. 1. P-V-T relations for ethane in the vicinity of its
critical point, Russian J. Phys. Chem. 45 , (3) 306 (1971).
[50] T. Miyazaki, (Cpmeasurements near the critial point), Ph. D.
Thesis, Dept. Chem. Eng., Univ. Michigan, (1974).
[51] J. Mollerup and J. S. Rowlinson, The prediction of the densities
of liquified natural gas and of lower molecular weight hydrocarbons.
Chem. Eng. Sci. 2_9, 1373 (1974).
[52] Plank and Kambeitz, Z. Ges. KSlte Ind. 1 0 , 209 (1936), (Satur-
ated vapor densities formula, quoted by Tester [70].
[53] G. R. Poole and R. A. Aziz, The law of corresponding states as
applied to sound velocity in liquids consisting of elliptical mole-
cules, Canadian J. Phys. 5 0 , 721 (1972).
[54] G. A. Pope, Calculation of argon, methane, and ethane virial co-
efficients at low reduced temperature based on data obtained by
isochorically coupled Burnett experiments, Thesis, Dept. Chemi-
cal Engineering, Rice University, Houston, Texas (July, 1971).
(Includes vapor pressure data, also vapor pressures and PVT
data of A. K. Pal. )
28
[55] G. A. Pope, P. S„ Chappelear, and R. Kobayashi, Virial coeffi-
cients of argon, methane, and ethane at low reduced temperatures.
J. Chem. Phys. 5_9 (1), 423 (1973).
[56] Frank Porter, The vapor pressures and specific volumes of the
saturated vapor of ethane, J. Am. Chem. Soc. 48, 2055 (1926).
[57] H. H. Reamer, R. H. Olds, B. H. Sage, and W. N. Lacey,
Phase equilbria in hydrocarbon systems: Volumetric behavior
of ethane, Ind. Eng. Chem. 36 , 956 (1944).
[58] J. Regnier, Vapor pressure of ethane between 80 and 135°K, J.
Chim. Phys. 69 (6), 942-4 (June, 1972).
[59] F. D. Rossini, Report on international practical temperature
scale of 1968, J. Chem. Thermodynamics 2_, 447 (1970).
[60] J. S. Rowlinson, Molecular theories of liquids and mixtures,
Ind. Eng. Chem. 5_9(12), 28 (1967).
[61] J. S. Rowlinson, Liquids and liquid mixtures, Plenum Press,
New York, N. Y. , (1969).
[62] H. Sackmann and F. Sauerwald, The volume change upon melting
of organic substances, especially in homologous series, Z, Physik.
Chem. (Leipzig) A1 95 , 295 (1950).
[63] B. H. Sage and W. N. Lacey, Thermodynamic Properties of the
Lighter Paraffin Hydrocarbons and Nitrogen , American Petroleum
Institute, New York (1950).
[64] C. T. Science, C. P. Colver and C. M. Sliepcevich, Bring your
C^-C^ up to date, Hydrocarbon Process, 46(9), 173 (1967).
[65] M. Y. Shana'a and F. B. Canfield, Liquid density and excess
volume of light hydrocarbon mixtures at -165° C, Trans. Faraday
Soc. 64, 2281 (1968).
[66] P. Sliwinski, The Lorenz -Lorenz function of gaseous and liquid
ethane, propane and butane, Zeit, Phys. Chem. Neue F olge 63,
263 (1969).
[67] N. E. Sondak and G. Thodos, Vapor pressures, the aliphatic hydro-
carbons, A. I. Ch. E. Journal_2, 347 (1956).
29
[68] K. E. Starling, Fluid thermodynamic properties for light petro -
leum systems, Gulf Publishing Co. , Houston, Texas (1973).
[68a] H. J. Strumpf, A. F. Collings and C. J. Pings, Viscosity of
Xenon and Ethane in the Critical Region, J. Chem Phys. 60(8),
3109 (1974).
[69] A. S. Teja and J. S. Rowlinson, The prediction of the thermo-
dynamic properties of fluids and fluid mixtures - -IV. Critical and
azeotropic states, Chem. Eng. Sci. 2_8, 529 (1973).
[70] H. E. Tester, Ethane, in Thermodynamic Functions of Gases,
V ol 3, F. Din, Editor, (Butterworths Scientific Publications,
London, 1961).
[71] A. W. Tickner and F. P. Lossing, The measurement of low vapor
pressures by means of a mass spectrometer, J. Phys. Colloid
Chem. 5_5 , 733 (1951).
[72] J. R. Tomlinson (Gulf Research and Development Co. , Pittsburgh,
Pa. ), Liquid densities of ethane, propane and ethane-propane
mixtures, Tech. Pub. TP-1, Natural Gas Processors Assoc.,
(808 Home Federal Bldg. , Tulsa, Okla. 74103, Feb. 1971).
[73] R. Wiebe, K. H. Hubbard and M. J. Brevoort, The heat capacity
of saturated liquid ethane from the boiling point to the critical
temperature and heat of fusion of the solid, J. Am. Chem. Soc.
52_, 61 1 (1930).
[74] G. M. Wilson, R. G. Clark and F. L. Hyman, Thermodynamic
properties of cryogenic fluids, Ind. Eng. Chem. 6_0(6), 58 (1968).
[75] R. K. Witt and J. D. Kemp, The heat capacity of ethane from 15° K
to the boiling point. The heat of fusion and the heat of vaporization,
J. Am. Chem. Soc. _5_9 , 273 (1937).
[76] W. T. Ziegler, The vapor pressures of some hydrocarbons in the
liquid and solid state at low temperatures, NBS Tech. Note 4,
(May, 1959).
[77] W. T. Ziegler, B. S. Kirk, J. C. Mullins and A. R. Berquist,
Calculation of the vapor pressure and heats of vaporization and
sublimation of liquids and solids below one atmosphere pressure.
VII Ethane, Tech. Report No. 2, Proj. A-764, Eng. Expt. Sta.,
Georgia Inst. Tech., Atlanta, Georgia, (Dec. , 1964).
30
APPENDIX A. Symbols and Units
Subscripts c and t refer to critical and liquid triple points.
Subscripts g and & refer to saturated vapor and liquid.
Subscript a refers to liquid-vapor coexistence (usually the liquid).
Superscript o refers to ideal gas states.
a, b, y, e,
non-linear constants in the equation of state
B(p),C(p),
density-dependent coefficients in the equation of state
C v (p,T),
C (p, T),
P
c a ( T ),
d.
molal heat capacity at constant volume, J/ (mol* K)
molal heat capacitu at constant pressure, J/ (mol* K)
molal heat capacity for saturated liquid, J/(mol*K)
density, mol/ £
E(p,T),
the internal energy, J / mol
H(p, T),
the enthalpy, J / mol
J.
the joule, 1 N-m,
1,
-3 -3
the liter, 10 m ,
mol,
30. 07 grams of ethane (C^ = 12 scale)
P,
5 2
pressure in bars, 1 bar = 10 N/m
(1 atm = 1. 01325 bar)
P CT (p),
the vapor pressure, bar
§(p, T),
function in the equation of state
ilr(p, T),
function in the equation of state
Q ,
vap
R,
AH , the heat of vaporization
vap
the gas constant, 8. 31434 (J/mol)/K, 0. 0831434
(bar - jj/mol) /K
P.
d/d^_, density reduced at the liquid triple point
CT»
d/d , density reduced at the critical point
c
S(P, T),
the entropy, (J/mol)/K
T,
temperature, K, (IPTS-68.) [59]
T>),
0(p).
liquid-vapor coexistence temperature, K
defined locus of temperatures, Fig. 4
31
APPENDIX A. (Continued)
U (ct),
defined function for eq (3-c)
v,
1/d, molal volume, £/mol
oi(p, T),
6* [T / 9-1], for the equation of state
W(ct),
defined function for eq (3-d)
W(p, T),
the speed of sound, meter s / s econd
x(T),
T/T , for the equation of state
c
Y,
variously defined functions
z,
Pv/RT, the "compressibility factor
APPENDIX B. Fixed-Point Values
Triple Point
Density Mol/'t
V apor
Liquid
Temperature, K
Pressure, bar
Critical Point
Density, mol/'t
Temperature, K
Pressure, bar
Methane
-2
1 . 567 865 • 10
28. 1470
90.680
0 . 1174 35675
10.0
190. 555
45.988
Ethane
1.35114* 10
21.680
89.899
1 . 009 906- 10
6.74
305.37
48.755
32
APPENDIX C. Exposition of the Equation of State
Equation (5) may be written explicitly- -
P = P (P) + pR*[T -T (p)J
CT O'
+ P 2 RT . [B(p). §(p, T) + C(p).¥(p,T)]. (5-1)
c '
This has only two temperature -dependent terms (in addition to pRT),
which is the minimum number needed to describe the sigmoid shape of
isochores [ 6 1 ] in the range p^<o<2* p^, Figure 2. Each of these terms
is zero on the coexistence boundary at T = T (p).
a
The first term, §(p, T), is shown by Figure 5. It is linear
2 . 2
(3 $/3 T = 0) on the coexistence boundary. It gives a critical isochore
which is linear at the critical point because C(p) = 0 along this isochore.
The second term, Y(p, T), is shown by Figure 6. It starts with
2 . 2
infinite curvature (3 Y/3T ) on the locus of temperatures, 0(p), inside
the coexistence envelope of Figure 4. Sufficiently far away from the
2
critical point it behaves like 1/T , found in the well-known Beattie-
Bridgeman equation.
2 2
The sign of the curvature (3 P/BT ) of isochores at the coexist-
ence boundary is determined uniquely by the sign of C(p). Figure 7
shows the behavior of B(p) and of C(p) for methane. The root in C(p)
at p/p =1.9 was found by least squares both for methane and for
ethane. It then was introduced as the non-linear constant, C , in the
o
equation of state. This constraint is valuable. In its absence we quite
often have failed to obtain any such root from P-p-T data by least
squares. Figure 8 shows the presumed behavior of C(p) for hydrogen
(a double root near p/p = 1. 9), needed to give the observed positive
curvature of isochores in the compressed liquid at the lowest tempera-
tures [13, 21],
33
APPENDIX C. (Continued)
The critical isotherm from eq. (5) necessarily has zero slope,
dP/dp = 0, at the critical point, Figure 3. This follows from our
definitions of T rr (p), 0(p), $(p, T) and Y(p, T). The second derivative,
2 , 2
3 P/dp , also is zero because the vapor pressure here is expressed
as a function of T rj (p). Our detailed examinations of this isotherm
show however, that small changes in the assigned critical point (q , T )
c c
give rise to irregularities nearby at p § p . Adjusting the critical
density to p =6. 74 mol / H yields a well-behaved critical isotherm
c
having no negative slopes, i. e. dP/dp^O.
Specific heats along the critical isotherm of Figure 4 are comput-
2 2
ed by integrating the curvatures of isochores, (d P/dT ), in eq. (11),
starting at p = 0. Curvatures from the term C(p)‘ Y(p, T) in the equa-
tion of state at first increase sharply (with negative sign) as p-*p , be-
c
come zero at p = p , then strongly positive at first for p>p , finally
c c
diminishing at still higher densities. This behavior is seen along the
critical isotherm in Table 24. It gives a maximum in C (p, T) at the
v
critical point via eq 0 (11).
34
APPENDIX D.
Cryogenics Drmion - NSS Institute tor Ink Standards
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-3
PAGE
1
SUBJECT
The Vapor Pressures of Ethane
NAME /- J
R . D . Goodwin
DATE
Julv 7 , 1773
This is the first of several reports planned on the physical properties of ethane.
Our ultimate purpose is to compute tables of thermodynamic functions over the entire
range of fluid states. We first will discover regions where data are inadequate or
lacking by attempting to compute provisional tables based on existing data.
Accurate vapor pre s sure s, and a proper analytical representation of these data,
are essential for computing heats of vaporization via the Clapeyron equation.
In this note we give a limited bibliography. Not all of these references were
available at this writing. We compare several sets of data by use of our newton-
analytic vapor pressure equation. We make a choice of the best for least squares, and
we give deviations from this selected equation.
At the triple point near 90 K the vapor pressure of ethane is about 0.00001 atm
(10 LL-atm). Experimental methods therefore differ for the range below one atm
( 184 . 5K) and for the range of higher pressures to 48 atm at T = 305 K.
Data to about I960 are reviewed by Tester [19], who selected the representa-
tion of Barkelew et al. [3] for the entire range from triple- to critical point.
Below one atm the data to 1964 are reviewed by Ziegler et al. , who give their
own, high quality set of data computed for thermodynamic consistency with all related
or derived data, in a work for the National Standard Reference Data Program [23],
More recently we have the measurements of Carruth, obtained by the gas saturation
flow technique, employing a flame ionization detector for analysis of the gas mix-
ture [4]. See also J. J. Chen et al. (Rice University), paper G-l, 1972 Cryogenic
Engineering Conference, on the same technique.
For high pressures the only new data of which we presently are aware are those
of Pope (Table 25) [ 13 ], and those attributed to Dr. A. K. Pal by Pope [13] in Table 31.
For these latter data there is no description of experimental method.
After this note was written we received the new precise measurements of
Douslin and Harrison [24], and therefore have recomputed our results including these
data. Douslin and Harrison note especially the new, precise measurements of
Miniovich and Sorina [25], which were not available to us at this writing.
sp ii34? a
35
APPENDIX D. (Continued)
Cryogenics Division - N®S Institute for Bosk Stamfords
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-3
PAGE
2
SUBJECT
The Vapor Pressures of Ethane
NAME R. D. Goodwin
DATE July 9, 1973
Our vapor pressure equation [6] uses the reduced argument,
x(T) = ( 1 -T /T)/ ( 1 -T /T ) ,
t t c
where subscripts t and c refer to triple- and critical points,
2 3 4 £
In (P /P ) = a« x + b* x + c • x + d • x + e • x. ( 1 -x) ( 1 )
and the exponent is e = 1 . 3 for methane [ 1 5] and for oxygen [ 16] . Originally the term
4 i
d-x was absent. It has been added here to improve representation of the ethane data.
The following discoveries are found with the original equation of four terms.
Optimum exponents in the range 1 . 1 < e ^ 1.9 are obtained merely by changing the
sets of data used for least squares. Hence we must rely on the more precise methane
and oxygen data to select e =1.5. Varying the critical-point temperature within
reasonable limits has no significant effect on the overall, rms relative pressure devia-
tion s .
By examining numerous results we have selected for least squares only the data
of Ziegler at P < 1 atm [ 23], and the data of Pope, Pal [13] and Douslin [24] at P > 1.9 atm.
Whereas the temperature scale of Ziegler may be thermodynamic (the report is not
clear), we nevertheless find that deviations (rms in relative P) are minimized by
converting both sets of data to T-1968 as if they had been on T-1948 [ 1 ] . All T used
in the following are T-68.
The triple-point temperature was reviewed by Ziegler et al. Their selection
of 69.89 K becomes 89.899 on the 1968 scale. The critical-point temperature 305.42 K
of Pope has been changed to 305.33 K for consistency with the data of Douslin ( 24] . A
value T = 305.33 r 0.005 K is given by P. Sliwinski, Zeit. Phys. Chem. b_8, 91
c
( 19'; t) based on analysis of dielectric constants. This was kindly pointed out by
D. E. Diller. We obtain pressures at these end points from the vapor pressure
equation:
T , K (1968) P, atm
Triple point 89.899 9,61b. 10
Criticalpoint 305.33 48.07695
$P 1 134? A
36
APPENDIX D. (Continued)
PACE
3
Cryogenics Division - NftS Institute for Bosk Standards
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-3
SUBJECT
NAME
The Vapor Pressures of Ethane
R. D. Goodwin
DATE
July 9, 1973
The constants for eq (1) were obtained via the data of Ziegler, Pope, Pal and
Douslin. They include e = 1.6 as shown at the head of table 1.
a = 8.4549 8734 d =
b = 12.4880 3978 e =
c = -4. 1042 8155
-1.4138 6053
8.5265 2253
In the following tables we give the author^ ID, his temperature and as con-
verted to T-68 , and the published and calculated pressures. Next is the deviation of
his temperature from our calculated value,
DT = T -T = _ (p -P 1/ldP/dTl
xpt calc ' xpt calc m '
and finally his relative pressure deviation,
P, PC T = 100- (P -P )/P
xpt calc calc
At the bottom of each table we give the number of datum pairs, NP, and the rms of
relative pressure deviations in percent.
The source of data in each table is identified by the numerical code, ID, in the
first column--
Table No
I.D.
Author s
Referen<
1
4
A. K. Pal
[13]
7
Ziegler et al.
[23]
9
G. A. Pope
[13]
10
Douslin, Harrison
[24]
2
1
Tickner, Lossing
[20]
2
API Proj . 44
[2]
3
Carruth
[4]
3
5
Loomis, Walters
[11]
4
6
F. Porter
[14]
8
Barkelew et al
[3]
5
Calculated vapor pressures
(this report)
6
Reduced v.p. functions (this
report)
JP 11347 *
37
APPENDIX D . (Continued)
Cryogenics Division - NBS Institute tor Bask Standards
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-3
PAGE
4
SUBJECT
The Vapor Pressures of Ethane
name D. Goodwin
July 9, 1973
As additional data may be found, we reserve comment on the deviations of
individual authors, and omit the labor of preparing deviation plots.
Calculated pressures, slopes and curvatures are given at uniform temperatures
by Table 5.
For comparison with functions in our original vapor pressure publication [6],
we give these functions in Table 6, as computed via eq (1) namely
x(T ) 5 (T-T /T ) /( 1 - T / T ),
t t c
Y (P ) s tn(P/P )/tn(P /P ). (2)
These variables range from zero to unity. The equation
Y = x (3)
represents the basic vapor pressure equation
£n(P) = a - b/T (4)
when this is constrained to the end-points (triple and critical). Hence (Y-x) is the
deviation of data from (4).
Finally, we give the computer programs used in this work as a means to check
for errors, and to facilitate resumption of this research.
Addendum. Following work shows that the second virial coefficient used by Ziegler
et al. to obtain vapor pressures is not consistent with our selection. At 200°K his
B(T) = - 455 cc /mol, whereas our B(T) = - 417.5. We therefore have recomputed our
apor pressure constants using Ziegler's vapor pressure data from his Table IX for
"Curve B” of his Figure 1, for which B(T) = - 410 cc/mol at 200 K. The difference in
his vapor pressures at 90 K is (7.80-7.33)/7.33 = 6.4 percent, the new values being
the greater. Our new results for eq (1) are given in Table 7, (pages 20, 21) and tables
8 , q on pages 22, 23 of this report. We prefer these constants for future use.
SP 11147*
38
APPENDIX D. (Continued)
Cryogenics Division - NIS Institute for Bosk Standards
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-3
PAGE
5
SUBJECT
NAME
The Vapor Pressures of Ethane
R. D. Goodwin
DATE July 9, 1973
Bibliography
[1] The International Practical Temperature Scale of 1968, Metrologia 5(2), 35 (1969).
[2] Amer. Petrol. Inst. Res. Proj. 44, Selected Values of Properties of Hydro-
carbons and Related Compounds (loose-leaf), Table 20 k, (Part 1), p. 1,
Dec. 31 (1952).
[3] C. H. Barkelew, J. L. Valentine and C. O. Hurd, Thermodynamic properties
of ethane, Trans. Amer. Inst. Chem. Eng. 43, 25 (1947).
[4] F. G. Carruth, Determination of the vapor pressure of n-paraffins and extension
of a corresponding states correlation to low reduced temperatures, Thesis,
Dept. Chemical Engineering, Rice University, Houston, Texas, (Nov. 1970).
[5] N. M. Dykhno, M. V. Tsyrulnikova and M. V. Mochalova, Hyd rocarbon vapor
pressures at low temperatures, Zh. Fiz. Khim. 42 (9), 2310-1 (1968).
[6] R. D. Goodwin, Nonanalytic vapor pressure equation with data for nitrogen and
oxygen, J. Res. NBS 73A (5), 487 (1969).
[7] A. S. Holmes, W. G. Braun and M. R. Fenske, Bibliography of Vapor Pressure
Data for Hydrocarbons , Amer. Petrol. Inst., New York, Bibliog. No. 2, (1964).
[8] E. E. Hughes and S. G. Lias, Vapor Pressures of Organic Compounds in the
Range Below one Millimeter of Mercury, NBS Tech. Note 70, Washington, D. C.
(Oct., 1960).
[9] J. G. Hust, A compilation and historical review of temperature scale differences,
Cryogenics 9(6), 443 (Dec., 1969).
[10] G. Klipping and F. Schmidt, Dampfd r ucktabellen Tiefsiedender Case (V),
Kaltetechnik 18(11), (Nov. 1966).
[11] A. G. Loomis and J. E. Walters, The vapor pressure of ethane near the normal
boiling point, J. Amer. Chem. Soc. 48, 2051 (1926).
[12] R. E. Perry and G. Thodos, Vapor pressures of the light normal saturated
hydrocarbons, Ind. Eng. Chem. 44(7), 1649 (1952).
[13] G. A. Pope (quotes v.p. of Dr. A. K. Pal), Calculation of Argon, Methane, and
Ethane Virial Coefficients at Low Reduced Temperature Based on Data Obtained
by Isochor ically Coupled Burnett Experiments, Thesis, Dept. Chemical Engineer-
ing, Rice University, Houston, Texas (July, 1971).
[14] F. Porter, The vapor pressures and specific volumes of the saturated vapor of
ethane, J. Amer. Chem. Soc. 48, 2055 (1926).
[15] R. Prydz and R. D. Goodwin, Experimental melting and vapor pressures of
methane, J. Chem. Thermodynamics 4. 127 (1972).
[16] Rolf Prydz, An improved oxygen vapor pre s sure representation, Metrologia 8 ( 1 ),
1 (1972).
if 11342 A
39
APPENDIX D . (Continued)
Cryogenics Division - MBS Institute for Bosk Standards
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-3
PAGE
6
SUBJECT
The Vapor Pressures of Ethane
NAME
R. D. Goodwin
DATE July 9, 1973
[17] C. T. Sciance, C. P. Colver and C. M. Sliepcevich, Bring your Cj-C, up to
date, Hydrocarbon Process. 46(9), 173 (1967).
[18] N. E. Sondak, and G. Thodos, Vapor pressures, the saturated aliphatic hydro-
carbons, A.I.Ch.E. Journal 2, 347 (1956).
[19] H. E. Tester, ETHANE, in Thermodynamic Functions of Gases, F. Din, Editor,
Butte rworths , London (1961).
[20] A. W. Tickner and F. P. Lossing, The measurement of low vapor pressures by
means of a mass spectrometer, J. Phys . Colloid Chem. 55, 733 (1951).
[21] G. M. Wilson, R. G. Clark and F. L. Hyman, Thermodynamic properties of
cryogenic fluids, Ind. Eng. Chem. 60(6), 58 (1968).
[22] W. T. Ziegler, The Vapor Pressures of Some Hydrocarbons in the liquid and
solid state at low temperatures, NBS Tech. Note 4, (May, 1959).
[23] W. T. Ziegler, B. S. Kirk, J. C. Mullins and A. R. Berquist, Calculation of
the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and
Solids below One Atmosphere Pressure. VII Ethane, Tech. Rpt. No. 2 Proj.
A-764, Eng. Expt. Sta., Georgia Inst. Tech.; Atlanta, Georgia, Dec., 1964.
[24] D.R. Douslin and R. H. Harrison, Pressure-Volume-Temperature Relations
of Ethane (manuscript for the Journal of Chemical Thermodynamics), 1973.
[25] V. M. Miniovich and G. A. Sorina, Russian J. Phys. Chem. 4^5, 306 (1971).
st ii34? a
40
APPENDIX D . (Continued)
Cryogenics Division - NSS bwtitute lor hac Standords
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-3
PAGE
7
suuect The Vapor Pressures of Ethane
Table 1 . Data of Pal (4), Ziegler (7), Pope (9), and Douslin ( 10) .
NAME
R. I
0. Goodw
in
DATE July 9, 1973
ETHANE VAPOR PRESSURES, E = 1.60
TTRP = 89.899, TCRT = 305.330
PTRP, MUATM = 9.61600, PORT, ATM = 48.07695
8 . 454 987341+ 12.488039775 -4.104281551
-1 . 41 3 86 j 5 3 3 8.526522526 O.OOOUGCCOG
ID
T . XPT L
T-68
P, ATM
CALCC
DEL T
P» PCT
7
94. 000
94. 013
0. 00 00274
0. C0G0 274
-0. 00 1
0 .02
7
98. CCC
98. 012
0.0000693
0. 00C0694
0. 00 2
-0.05
7
1J2.0CG
102. 00 8
0. 00 C1616
0. C0C1619
0 • GO 2
-0.05
7
106. uOC
1C o. 00 2
0.0003526
0. 0003522
-0 . 00 6
0 . 11
7
110. J00
109. 998
0. 0007207
0. 0GG7 205
-0. 00 2
0 .03
7
114. COO
113. 995
0.0013947
0. 0C13947
-C. 000
O.OC
7
11 3. C G 0
117. 991
0.0025697
G . G 025 698
0 . 00 0 .
-0 . 00
7
122. 300
121. 988
0.0345303
C. CC45293
-a . GO 2
0.02
7
1 2 6 « j u u
125. 987
0. 0076737
0. 0076734
-0. 000
0.00
7
1 3 0 • C Q 0
129. 987
0.012538
0 .G1254G
G.001
-0.01
7
1 3 4. j u 0
133. 988
G .G1983C
0 .019834
0 . 00 2
-0.02
7
138. dGO
137. 990
G .0 30447
0.0 30 460
0 . 004
-0.04
7
142. COO
141. 993
0 .0 45504
0 .045527
0. 005
-0.05
7
146. JOG
145. 996
0 .066355
0 .066389
0. 006
-0.05
7
150. OCC
150. 00D
0 .094606
0 .094657
0. 006
-G .05
7
15 4. C 0 0
154. 0C 4
0. 13213
G.1322G
0 . 00 7
-0.35
7
1 5 8 . J 0 0
158. uG 8
J. 181 39
0.18117
0.005
-0.04
7
162. COO
162. 012
0. 24392
0.24 39 7
0. 00 3
-0.02
7
16 6. j C 0
166. 015
0. 32333
C .32 33 0
-0 . 00 1
0.01
7
1 7 C • COG
170. 01 9
0. 422 3 C
D. 42214
-0 . 00 6
0 .04
7
1 7 4. C 0 0
174. 023
0.54409
G. 54371
-0.011
0 .C7
7
17 3. CO G
178. 026
0.69224
C. 69145
-0. 020
0 . 11
7
18 2. w 0 v
18 2. 026
0. 870 47
0 .66905
-0. 329
0.16
7
184. 520
164. 550
1. 0 0 3 OC
0.9980 3
-0 . 036
0.20
9
196.181
193. 216
1.9737
1.9758
0 .023
-0 . 11
4
214. 3D 2
214. 334
3.9209
3.9176
-0. 021
0 . 08
4
224. ID 2
224. 130
5.6367
5.6429
G. C31
-0.11
4
229. 755
229. 762
6.8569
. 6.8629
0 . 026
-0 . 09
4
234. 556
234. 581
8.0335
8.0 42 3
0 . 034
-0 . 11
9
234.092
234.715
8.0741
8.0772
0 . 312
-0 . 04
10
233. 150
238. 15 G
9.00 97
9.0 10 8
0 . 004
-G . G 1
9
23 3. 77 1
238. 792
9.1843
9.1935
0 . 032
-0 . 10
4
239. 644
239. 364
9.4959
9.5049
0.030
-0 .09
4
24C. 514
240. 534
9.696C
9.7032
0 . 024
-0 . 07
1C
243. 15 C
243. 150
10 .5063
1C.5C71
0.00 3
-0 . 01
4
243. 359
243. 377
10 .5761
10.579C
0. 009
-0.03
4
246. 314
246. 830
11 .7137
11.7183
0.014
-0 .04
4
247. 816
247. 831
12 .0502
12.0648
0.042
-0 .12
1C
2 48. 15 G
248. I5u
12.1756
12.1766
0. 30 3
-0 .Cl
4
249. 741
249. 755
12.7520
12.7512
-0.030
a . os
4
250.146
250. 160
12.8985
12.8991
3. 00 2
-0 .01
4
251. 567
251.600
13.4425
13.4356
-0.018
0.05
4
252. 544
252. 556
13.8065
13.800 6
-0. 015
0.04
li.
253. 15 Z
253. 150
14.031C
14. J 31 C
-0.000
0 . 00
4
25 4. 29 u
254. 3C 1
14.4396
14.4854
-0.011
0 . C 3
4
257. 543
257. 552
15 .8252
15.8264
0. 0C 3
-0 . 01
1C
25 3. 150
258. 15 J
16 .03 36
16.0 823
-0. CO 3
0 .01
IP 1134? «
41
APPENDIX D. (Continued)
Cryoganks Drmton - MBS InaMuta for Bosk Standards
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-3
PAGE
a
SU,JECT The Vapor Pressures
Table 1 - -continued .
of Ethane
NAME R. D. Goodwin
DATE July 9 ,
1973
ID
T ,XPTL
T-68
P ♦ A T M
CALCO
DEL T
P.PCT ~
10
2 6 3. 15 C
263. 153
18 .3464
18.3433
-0. 007
0.32
4
253.380
263.386
18 .4543
18.4553
0. 002
-0.01
4
267. 536
267. 539
20 .5197
20.5113
-0. 016
0 . 04
If;
268.150
268. 15 u
20 .63 16
20.8274
-0.309
0.02
4
271. 749
271. 753
22 .7661
22.7618
-0.008
0.02
9
272. 949
272. 949
23.4515
23.4347
-0.030
0.07
10
27 3. 15 C
273. 150
23.5549
23.5488
-0. Oil
0.03
4
275. 922
275. 921
25.1584
25,1648
3. 01 1
-0 . 03
4
276. 363
276. 362
25 .4558
25.4293
-0 . 044
0.10
4
276. 385
276. 384
25 .4491
25.4425
-0 . 011
0.03
4
276.514
276. 513
25.5472
25.520 3
-0 . 044
0 . 11
4
277. 813
277. 811
26.3185
26.3133
-0 . 00 8
0 • 02
lo
278. 150
278. 150
26.5309
26.5233
-0 . 012
0.03
4
2 8 u • - 4 1
280. 038
27 .7J 39
27.7158
0 . 019
-0 . 04
4
282. 247
282. 243
29.1537
29.1588
0. 00 6
-0.02
1C
283.150
283. 153
29.7763
29.7681
-0. 012
0.03
4
284,635
284. 633
30 .7664
30.7836
0. 02 5
-0.06
9
284. 345
284. 840
30 .9555
30.9296
-0 . 037
0.08
4
287. 653
287. 648
32 . 92 89
32.9340 .
0. 007
-0.02
10
28 8. 15 C
286. 15 C
33.3110
33.3030
-0. Oil
0.32
4
283.263
268. 257
33 .3899
33.3822
-0.010
0 . 02
4
290. 0 40
290. 034
34.6873
34.7148
0 . 036
-0.08
9
290.214
290. 208
34.8746
34.8474
-0 . 036
0.08
4
292.236
292. 229
36 .4440
36.4182
-0. 033
0.C7
H
293. 066
293. 091
37 .08 16
37.1044
0 . 028
-0.36
10
293. 15 C
293. 150
37.1583
37.1 51 e
-3. 008
0.02
9
293. 266
293, 259
37 .2672
37.2 39 4
-0.035
3.07
4
296. J47
296. 339
39 .7596
39.7842
0. 029
-0.06
1C
296. 153
296. 153
41 . 3494
41.345C
-0. 005
0 . 31
4
299. o65
299. 657
42 .6543
42.6822
3. 031
-0.37
G
299.363
299. 855
42 .8863
42.860 6
-3 . C2 8
0.06
4
3 C 0. 20 5
303. 196
43 .16 51
43.170 3
j . C 0 6
-0 . 31
4
30 1. 251
3G1. 242
44 .10 8 5
44.1297
0 . 02 3
-0 . 05
1 l
3u 2. 15 0
302. 153
44 .98 05
44.9776
-0. 00 3
0.01
1 0
33 3. 15 0
30 3. 150
45 .9327
45.9295
-0 . 00 3
0.01
4
30 3.471
30 3. 46 2
46 . 20 32
46.230 Q
0 . 028
-C . 06
4
j j 3 ♦ 4/7
303. 468
46 .2796
46,2358
-0 . G46
0 • 1C
G
304.012
304. 002
46.7736
46.7558
-3 . 018
0 . 04
4
3 3 4 . 1 . 4 9
304. 039
*6.7696
46.7920
0.023
-0.05
1 0
3 C 4. 150
304. 150
46.904C
46.901G
-0. 00 3
0.01
u
3u 4 , 36 j
30 4. 35 3
47 .0931
47.0 974
0 . 00 4
-0 . 01
4
3u 4, *4 6
304. 435
47 . 21 96
47.1 822
-0.038
0.08
4
3 0 4 . 5 1 9
304. 50 8
47.2025
47.2544
0. 35 2
-0 . 11
4
3 u 4. 734
3 0 4 , 723
47 .431 0
47.4677
0. 037
-0 . 08
4
3u 4, 796
304. 785
47.51 85
47.5294
3.011
-0.02
4
334. 524
304. 91 3
47 .6846
47.6572
-0 . 027
0 . 36
4
33 4. 963
3C4. 969
47 .71 31
47.7132
0 • 00 0
— 0 . 0 u
4
305. 121
305. 110
*7,8496
47.8547
0 . 00 5
-c . 01
4
335. 135
3C5. 124
47 .8251
47.3688
0. 34 3
-3 . G9
i :
306* 150
30 5. 15 0
47 .8992
47.8950
-0 . 03 4
0.01
4
305. 153
30 5. 142
47.8807
47.8869
a . 006
-0.01
1C
305. 253
305. 250
47 .9994
47.9959
- 0. 00 3
0.01
NP -
9 9 ♦ RMS
PC T = 0.061
. 42
JP 1134? A
APPENDIX D. (Continued)
Cryogenics Division - NBS institute for Basic Standards
LABORATORY NOTE
PftOJECT NO.
2750364
FILE NO.
73-3
PAGE
7
SUBJECT
The Vapor Pressures of Ethane
NAME -p.
K .
D. Goodwin
T able
2. Data of
Tickner ( 1 ) ,
API (2), and
Carruth ( 3) .
DATE July 9, 1973
ID
T ,XPTL
T - 6 8
P, ATM
CALCD
DEL T
P, PCT
1
91. 35 U
91. 361
G.Q0G0132
0. G0C0 141
Q. 26 5
-6.
86
1
94. <+5 0
94. 463
0. 0000263
U. GOTO 306
0. 58 2
-13.
98
1
98. 55G
98. 562
0.0000658
0. 0CC0 783
0 . 73 0
-15.
98
1
101. 35 C
1C1. 858
0. 00 0 13 16
0. 0 uol 57 1
0 . 79 7
-16.
23
1
105.350
105. 353
G. 00 C 26 32
0. 0 0 03 11 8
0. 825
-15.
60
1
110.550
110. 548
0. 0006579
C. GCG7914
0. 99 2
-16.
87
1
1 1 4. 65 G
114. 644
0.00 131 56
0 . 00 15 453
0 . 94 7
-14.
85
1
119.050
119. 040
0.0026316
C. 0029942
0 . 83 9
-12.
11
1
125. 650
125. 537
3.00 657 89
0 . C072450
0.717
-9.
19
1
130.650
130. 637
0.0 13158
0 .013539
0. 24 0
-2.
81
NP =
10, RMS PC T = 13.226
ID
T » X PTL
T-68
P , A T M
CALCD
DEL T
P, PCT
2
130.270
130. 257
0 .0 131 56
0 .012947
-0 . 13 8
1 .
63
2
136.460
136. 449
0.026316
0 .02590 9
-0. 148
1 •
57
2
140.410
14 0. 4C 2
C .0 39474
0 .038925
-0. 141
1 .
41
2
143. 370
143. 364
0.052632
0 .051 945
-0. 139
1.
32
2
14 5. 76G
145. 756
0 .0 657 89
0.064946
-0. 14 2
1 .
30
2
147. 790
147. 78 8
0 .078947
0.073018
-0. 134
1.
19
2
151. 12 G
151. 121
0. 10526
0.10 415
-0. 127
1 •
07
2
153. o20
153. 824
0. 13158
0.13028
-0. 12 2
0 .
99
2
15 9. j 3 0
159. G39
0. 19737
C. 19591
-0. 099
0 .
74
2
162. 96 u
162. 973
0. 26316
0.26140
-0. 094
0 .
67
2
166. 17G
166. 185
0. 32895
C .3270 8
»0. 084
0 .
57
2
168. 500
168. 918
0. 39474
0.39284
-0. 074
0 .
48
2
173.410
173. 432
0.52632
0.52422
-0.064
0 .
40
2
177. 100
177. 125
0. 657 89
0 • 65 57 4
-0 . 356
0.
33
2
18 0. 250
180. 277
0.78947
0.78743
— 0 . j 4 6
u •
26
2
183. Cl C
183.039
0. 921 0 5
0 .91908
-0 . 039
0 .
21
2
184. 520
18 4. 55 j
1. 00 j 31
0.998Q 3
-0 . 036
0 .
20
2
185. 480
185.510
1.0526
1.0509
-0 . 031
c .
16
r>
c
187.710
187. 74 1
1.1842
1.1821
-0. 034
0 .
18
2
189. 770
189. 8C 2
1.3156
1.3143
-0.023
0 .
11
2
193. 44 1
193. 473
1.5739
1.5777
-0.017
0 .
38
2
198. 15 C
198.185
1 .97 37
1.9729
-0.008
0 .
04
NP =
22, RMS PC T = 0.857
ID
T , X PT L
T - 6 6
P, A T M
CALCD
DEL T
P, PCT
3
9 1. 340
91. 351
0. 00 C 0 1 5 2
0. COCO 141
-0 . 315
8.
14
3
93. 700
93. 712
G • 00 00 27 1
0. G0C0 25 5
-0. 237
5.
80
3
96. 240
96. 253
0. 00 00491
C . 0CC0466
-0 . 235
5.
42
3
1 0 & . 7 0 0
ICO. 710
0. 00 012 97
0. C0G1239
-0.2 22
4.
64
z
105. 600
105. 6G 3
C. 00 C3263
3. 0CC3268
0. 009
-G .
16
3
1 1 4. 240
114. 235
0.00 14461
0. 0014487
a . 012
-0 .
19
3
12 0. 380
120. 369
0. 00 363 66
0. 0036185
0.023
-0 .
33
3
129. 610
129. 797
C .0 12312
0 .012260
- 0 • 036
0 .
42
3
135. 77G
135. 759
0 .0 241 97
0 .024065
-0. 051
0 .
55
3
140. 551
140. 542
0 . 0 40211
0 .039472
-0 . 188
1 .
87
3
144. 140
144, 135
0 .0 562 89
0 .055 871
-0. 080
0 .
75
NP =
11, RMS!
3 CT = 3.759
SP 11142*
43
APPENDIX D. (Continued)
Cryogenics Drmron - N®$ Intfitate ter Bosk Standards
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-3
PAGE
ID
subject ^ „
The Vapor Pressures of Ethane
Table 3. Data (5) of Loomis, Walters [llj.
NAME
). Goodw
in
DATE July 9, 197 3
ID
T ,XPTL
T-68
P » A TM
CALCD
DEL T
P, PCT
5
135. 736
135. 725
0.0245CC
0 .023977
-0 . 20 3
2.18
5
143. 267
143. 261
0.052200
0 .051437
-0 . 156
1.48
5
147. 324
147. 321
0 .0 7590 0
0 .074840
-0 . 158
1.42
5
154. 546
154. 550
0. 1 4 J 0 t
0.13816
-0. 16 6
1 . 33
5
158.335
158. 393
Q. 18961
0.18657
-0 . 14 3
1.09
5
162. 629
162. 641
G. 257 3 0
0 .2552 e
-0.110
0.79
r
165.529
165. 544
0. 31600
0.31300
-0 . 139
0.96
’ 5
167. 336
167. 853
0. 36930
0.36606
-0. 13 3
0.89
5
169. 175
169. 193
3 • 40 3 3 u
0.40000
-0 . 126
0 .82
c
171. 7G0
171. 721
3. 47430
0.47084
-0. 116
0 . 74
6
1 7 J . 6C 2
170. 622
0. 443 JC
o .43890
-0 . 145
0.93
5
174. 062
174. 085
0. 549 8 C
0.54579
-0. 119
0.73
c.
175. 7 u 8
175. 732
J.6073C
0.60 338
- j. 10 8
0.65
5
177. 623
177. 649
0. 680 40
0.67631
-0. 10 3
0.61
r
178. 621
178. 647
0. 7210C
0.71696
-0 . 097
0.56
c
179. 750
179. 777
0. 76960
0.76525
-0. 099
3.57
5
181.506
181. 534
3.84990
C .64537
-0 . 096
0.54
5
182. +63
182. 492
3. 896 3C
0.89172
-0 . 093
0.51
5
183.773
183. 8b 7
0. 9634L
o.95 860
-0.092
0.50
5
184.539
184. 569
1. 0 040b
0.99906
-0. 091
0.49
t;
135. 137
185. 167
1.0366
1.0 318
-0. J87
0.47
9
185.514
165. 94+
1 . 08 3 0
1.0755
-0.078
0.42
5
186.609
166. 640
1.12Gb
1.1158
-0 . G84
G . 44
5
187. 30 2
187. 3 33
1.1619
1.1572
-0. 37 7
0.40
5
137.726
167. 757
1.1881
1.1831
-0. 08 1
0.42
5
18 3. 879
163. 4L
1 .22 89
1.2239
- 0 • j 8 0
G . 41
r
139. 114
169.146
1.2757
1.271 j
-C . 072
0. 37
5
189. 658
189. 690
1 . 32 48
1.32C 2
-0 . 069
0 . 35
5
190. 731
190. 823
1.3865
1.3839
-G . 057
0 . 33
9
1 9 1 • + 3 C
191. 463
1.4334
1.4268
-0 . G64
0 . 32
9
192.266
192. 319
1.4953
1.490 8
-0.061
0 . 3b
c
192. 7 77
192. 810
1.5318
1.5273
-0 . C60
0 . 29
9
196. 244
196. 27 3
1.8086
1.8049
- 0 . 04 6
0.22
6
199. 90 9
199. 944
2.1417
2.1 384
— u . u 3 4
0.15
NP = 34, RMSPCT = 0.789
» 1 1M? A
44
APPENDIX D. (Continued)
Cryoganici Dtvnion - NSS Imtituta for link Standards
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-3
PAGE
ii
The Vapor Pressures of Ethane
Table 4. Data of Porter (6), and Barkelew (8).
NAME R. D. Goodwin
DATE July 9, 1973
ID
T ,XPTL
T-68
P, ATM
CALCD
DEL T
P, PCT
6
184. 4 7 0
184. 500
0. 9994G
C .99534
-0. 075
0 • 41
6
23 3.493
20 3. 524
2 .4960
2,5076
3.10 6
-0.46
6
205. 62C
205. 653
2.733C
2.7489
0.135
-0 .58
6
210.960
210. 992
3.4140
3.430 8
0.121
-0.49
6
216. 310
216. 341
4.2250
4.2338
0. 05 4
-0.21
6
221. 86 u
221. 910
5.2070
5.2104
0. 018
-0.06
6
225.100
225. 128
5 .8380
5.8456
0 . 037
-0 . 13
6
226. 180
226. 20 7
6,0730
6.0709
-0.010
0 .03
6
234.580
234.603
8.0440
8.0481
0. 016
-0.05
6
238. 900
238. 921
9.2290
9.2305
C. 005
-0.02
6
243.220
243. 238
10 .5360
10.535G
-0. 00 3
0 . 01
6
248. 65G
243. 665
12.3540
12.3588
0 . 01 3
-0.04
6
253. 0 3 G
253.042
14.0430
13.9889
-0. 139
0 . 39
6
258.600
258. 8C9
16.4210
16.3679
-0. 122
0.32
6
263.260
263. 286
18.4481
18.4078
-0 . 085
0.22
6
263. 73 G
268. 732
21.1850
21.1317
-0. 10 1
0.25
6
273.090
273. 090
23.5440
23.5147
-0.051
0.12
6
278. b 40
278. 638
26 .8370
26.8276
-0. 015
0.04
6
283.580
283. 576
30 .13 60
30.0575
-0. 071
0 . 16
6
288. 260
268. 254
33.4680
33.380 0
-3 . 119
0.26
NP -
20. RMSPCT = 0.274
ID
t.xftl
T-68
P , A TM
CALCD
DEL T
P, PCT
8
1 1 3 . j 0 w
lu 9. 99 3 C
. 00 076 0t
0. CGC72G5
-0. 319
5.49
6
1 2 a . 6 c c
119. 989 0
. 00 346 0 C
0. 00 34 29 5
-0.063
3 . 89
6
1 3 0 . J 0 0
129. 987
0.0127 2 G
0 .012540
-0. 121
1.44
8
14 0. j o 0
139. 992
0 .0 3785C
0 .037359
-0. 131
1.31
8
1 5 G . 00 G
150. JO j
0 .395600
0 • G 94 65 7
-0. 116
1.00
8
1 6 G • G C 0
160. 010
0. 2120C
0.21068
-0.084
0.63
8
170.000
170. C19
0. 4236G
0.42214
-0.053
0 . 35
8
ISO. 0 G 0
180. 027
3. 77780
C. 77 62 8
-0.034
C .20
8
190. JOC
190. 032
1 .33 0 0
1.3297
-0. 004
0 . 02
8
2 0 0 . «j 3 u
200. 035
2.1462
2.1472
0. 011
-0 . 35
8
2 1 u . u 0 C
210. 033
3 . 29 7 1
3.2998
0.020
-0.08
8
2 2 o . l 0 0
22 0. 03 C
4.8580
4.8639
0. 033
-0.12
6
23 3. JOC
230.025
6. 9120
6.9196
0. 032
-0.11
8
2 4 0 . * 0 0
240. 020
9.551C
9.5508
-0. GO 1
0 . 00
8
250. u00
250. 014
12 . 85 0c
12.8456
- U.C12
0 .03
8
2feu. JOG
26u. 00 8
16.910C
16.8973
-0.028
0.08
8
270. JOG
270. 001
21 .83 01
21.8066
0. C12
-0.03
8
280. «G0
279. 997
27 . 65 0 0
27.6895
3. 06 2
-0 . 14
8
290. CC0
289. 994
34.6500
34.6843
3. 04 5
-0 . 1G
NP
= 19, RMSPCT = 1.383
V 11142 A
45
APPENDIX D. (Continued)
Cryoganics Division - NBS birtitate for Rowe Standards
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-3
PAGE
12
The Vapor Pressures of Ethane
Table 5. Calculated Ethane Vapo.r Pressures.
***** R. D. Goodwin
DATE
July 9. 1973
ETHANE VAPOR PRESSURES
T i K
P , A T M
OP/DT
02P/DT2
89.399
C.GGG0096
G. 00 00 C26
0.Q0000C63
9 c . a o c
C.GQJ0099
0.0000026
C.0CG0 0 C 6 4
95.300
C. 0 03 334e
u. 00 00 083
C. 0 000 0 177
1 0 G . 0 0 0
C. U3Q1067
0 . 30 0G226
0.00000430
135. a 0 c
C. 0002915
3 . 00 0 C 555
G .0 G0C G942
lie .3 OC
G.0DJ7207
G. 0001239
G .QC03 1881
115. DOG
C.0016337
0.0002545
0 .0000 3475
12 0 .DOG
0.0334347
G. 0004868
G. 0 000 5997
125.0 OG
0.0 06760e
0. 00 08749
0.0 000 9759
1 3 C . 0 G C
G. 312559
0.0 31 489
0 . C 0 0 1 5C 8
135.300
0. 022167
0 .302414
0. CG0 2228
1 4 G . 0 0 G
C. J3739C
G .0 03753
0. COO 3164
145. DOG
0. CbQ57«+
0.005618
3. G03 4339
15l.DOC
3 • 39465 3
0 .0 08135
3 . 0 C 3 5 77 1
155.3 OC
C .14323
0. 01143
0 .GO 0 747
1 6 C .300
0 .21052
3. G 1565
0 .GO C944
165.300
G .30146
0. G2G91
0 .00 1167
17 u . G 0 C
G .42162
3. 02736
0 .031415
175.30C
u .57722
0. 03511
0 .03 1688
1 8 u . 0 0 0
0.77507
0. 0 4428
0 .03 1984
185. GCC
1. C 226
0 .0550
G. J 3 23 0
1 9 G • j 0 u
1. 3276
3 .0673
0 . 0 0 26 3
195. 30 :
1.6984
0.0813
C.3 U29 8
2 0 u . 3 0 l
2. 1439
J .0 972
G. 3 0 335
205.303
2. c73 1
J .1148
0.0 0 37 2
21C .0 0 D
3. 2954
3 .1344
G .(J 0 411
215.300
4.0205
0.1560
C .0 G451
22 3. 3 CC
4. 3585
3.1795
G .3 0492
225. 000
5.8194
0 .2352
C . 3 0 53 3
231 . 3 G C
6.9136
J .2 329
3 . 0 3 57 6
2 35 . JOG
5. 1519
0 .2628
C . 3 0 61 5
2 4 C . 0 0 0
9.5450
0 .2 948
G .0 0664
245.300
11. 1G4C
0.3292
G.O 071G
25G.30G
12. 8406
3 .3653
G. 3 3757
2 5 5 . 3 0 C
14. 7664
0.4349
G.O 3 606
2 6 0 . 3 0 G
16. 8936
0 . 4465
0 .0 065 8
265.300
19.2357
3 .4907
0 . 0 0 91 3
2 7 C • J u 0
21. 8G56
3 .5378
C . o J 97 2
275. a C C
24. 6190
0 .5880
C . J 1C36
2 8 0 . 3 C 3
2 7. fc914
0.6416
G .3 noe
2 8 5 . 3 C C
31. J 4 1 C
3 .6990
0.31192
2 9 J . J 0 0
34.0895
0.7610
0.01294
2 9 5 . 3 G D
33.6612
0.8289
0.31429
3 0 u . J 0 0
42.9922
0 .9,153
C . 3 1649
3 J5.0G0
47. 7442
1 .G 029
0 .0 2694
305.330
48. 0770
1.0160
0 . J 0 c 0 -j
JP 11342 A
46
APPENDIX D. (Continued)
Cryoganics Drnaron - NBS Institute for italic Standard*
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-3
PACE
13
SUBJECT The Vapor Pressures of Ethane
Table 6. Reduced Vapor Pressure Functions.
NAMi R. D. Goodwin
DATE
July 9. 1973
ETHANE REDUCE? VAPOR PRESSURE FUNCTIONS
T,K
X
Y
(Y-X )
39.399
0 . 0 vj
0 . G 0 00 G
0. 30 00 C
91.186
0.02
0.G2199
0 .00 199
92.510
0.44
0. 04392
0.00 392
93.373
0.06
G .06578
0.00 57 8
96.277
0 .08
0. 08759
0.00759
96.723
0 .14
3. 1C 93 4
0.00934
98.215
0.12
G. 13102
0.0110 2
99.753
0 .14
0.15264
0.01264
101.339
0.1b
0.17419
0.C1419
10 2.977
0.18
C . 19568
0.31568
10 4.569
C .20
u.2171 0
0.3171C
106.418
G .22
0.23845
0.01345
108.226
0.24
0.25972
0.01972
11C .3 96
0.26
0. 28093
0.02093
112. J 32
0 .28
0. 3G20 5
0 .02 20 5
114.037
0.3 0
0. 32310
0. 0231 G
116.116
0.32
G. 3440 6
0.02406
118.272
0.34
G. 36495
0.02495
12C .509
0.36
0.38574
0.02574
122.332
0.38
0. 40 645
0 .02645
125.247
0 .40
4 .42706
0.02706
127.759
0 .42
0.44758
0.0275 8
13C .373
3 .44
4 • 46 90 o
C .02 80 G
133.397
0.46
C. 48832
0 .32332
135.337
0 .43
0.50854
0 .02854
138.301
Q .50
G . 52 856
0.02866
141.997
0.52
0.54866
0.32856
145.234
C . 5 4
0.56855
0. 32 35 5
148.522
0.56
G. 56833
0 .02 83 3
152.172
0.56
G. 60 83 0
0 . G280 0
155.396
0 . 6 u
0.62755
0.G2755
155.307
C .62
G. 6469 8
0.02698
163.919
0.64
C. 66629
0 .02 62 9
168.248
0.66
0,68548
0.3254 8
172.312
0.53
3.70 45 5
0.02455
1 7 7 . 6 3 C
0.70
3.7235 4
0 .32 35 G
182.725
0.72
0. 74233
G.32233
188.121
0 .74
4.76135
0.02105
193.345
0 .76
C . 77965
0 . 0 1 96 5
196.928
0 .7o
0.79815
0.41315
206.405
C .3 J
3.31655
0.41655
213.317
0.82
G. 8343 6
0.01486
2 2 C . 7 3 7
G .84
3.8530 9
0 .31309
228.527
C . 8 6
0.67126
0.01126
237.138
0.39
3.88938
0 . 00 93 8
246.306
G .90
3.90749
0 . J 0 74 9
256.212
u .92
G .92552
0.30562
266.948
0.94
3 .94381
0.00 381
278.523
0.9b
C. 96216
0 . 3C 216
291.366
0 .98
G. 98076
3. 3 C 37 8
30 5.33G
1.30
1 . 0 G 0 0 0
0 . 3 0 0 0 C
SP 1134? A
47
APPENDIX D. (Continued)
Cryogmks Drvnton - NSS MiMe for towc Stondords
LABORATORY NOTE
PROJECT NO.
275Q364
FILE NO.
73-3
PAGE
/4-
SUBJECT The Vapor Pressures of Ethane
NAMe R. D. Goodwin
DATE July 9, 1973
PROS RAM PSATFIT
ETHANE VAPOR PRESSURES* X = ( 1-TT/ T )/ (1-T T/TC > ,
LN(PXPTRP) = A 1* X + A2*X2 + A3*X3 + A4*X4 + A 5*X * ( 1-X ) ** E .
AUTHORS ID = (I)TICKNER* ( 2 ) ROSS IN I * ( 3) CA RR UTH, (4)PAL/P0PE*
( 5 ) L 00 MI S * ( 6 ) PORTER » (7)ZIEGL£R* ( 8 ) 8 ARKE LE W/ TE ST ER
( 9 ) POPE, (10 ) DOUSL IN, PREPRINT (1973 ) ,
COMMON TTRP ,TCRT ,PTRP, E,A(9), FZ,F1,F2, DL PDT, D2 LPDT2
C0MM0N/999/NFUN ,Y , F (30)
DIMENSION TEMP(13Q) ,DELT(13G)
D IMENSION 10(999) ,T (999 ) , TX ( 999 ) , P (9 99)
DIMENSION G (30)
1 F ORM A T ( I 5 , 2F10.C)
2 F 0PM A T ( 1 HI 17 X *E THANE VAPOR PRESSURES,
1 18X 6 HTTRP =F7 . 3 , 8 H, TCRT =F8.3//
E = * F5 • 2 //
2
1 8 < 12 M PT RP, MUA TM =F9.
5, 12H,
PCRT,
ATM =F9 .5// 2 (15X 3F16.
3
FCPMAT (
iax
2H I D 4X6HT ,XPTL
6X4HT
-68 7X5HP,ATM 7X5HCALC0
1
5X5 H DEL T
5X5HP ,PCT)
4
F GRM A T( 1 HI
17X
2HID 4X6 H T , XP TL
6X4HT
-68 7X5HP,ATM 7X5HCAL CD
1
5X5 H DEL T
5 X5 HP , PCT )
5
FCRMAT(15X
15,
2F10.3,
2F12.7,
F10.3
, F10.2)
6
F ORMA T ( 1 5X
15,
2F1C .3,
2F12.6,
FI C • 3
, F10.2)
7
F OR M A T ( 1 5X
15,
2F10 .3 ,
2F12.5,
FIG, 3
, F10.2)
8
F ORMA T ( 1 EX
15,
2F10 .3,
2F12.4,
F10.3
, F10.2)
9
P ORMA T ( 1 HO
17 X
4HNP =14
, 10H,
RMS PCT
=F 7. 3)
10 FORMAT(F8#3, F9.t, 63X)
11 F OR.MA T ( 1 HI 16 X *E THANE VAPOR PRESSURES* // 17X3HT,K 6X5HP,ATM
1 6X5HDP/DT 5X^HD2P/DT2 )
12 F OPM A T ( 1 CX FI j , 3 , 2F11.7, F12.8)
13 FCRMATdlX FIG. 3, 2F11.6* F12.7)
14 FORMATdCX Flu. 3, 2F11.5, F12.6)
19 FORMATdCX FIS. 3, 2F11.4, F12.5)
16 FOPMATdHl 16 X * E TH ANE REDUCED VAPOR PRESSURE FUNCTIONS* //
1 17X 3HT,K 7X1HX 9X1HY 5X5H(Y-X) )
17 FORMATdCX F 1 0 . 3 , F8.2, 2F10.5)
13 F0RMAT(16X 2HEP b X2HSS)
19 FORMATdCX 2F10.4)
RE AD- IN THE T4 3 - Tb 8 TEMP. CONVERSION TABLE.
20 ? F AO IQ, (( TEMP (J ) ,OELT (J) ) ,J = 1 ,130)
21 TT po =89. 899 5 TCKT=305.33 $ PTRP= 9. 6 3 8E-6 $ E=1 .5
N =0
IF ( I DO ) 23,25
$ T X ( N) = T T
READ (7) ZIEGLER, <ELVIN, MM HG.
22 DC 24 J=l,99 B READ 1, IOD,TT,PP $
23 N = N+l $ IO(N)=IDD $ P(N)=PP/75G
24 T(N) = T 68 (TT, BELT, TEMP)
25 NF1 = N
read MIXEC (MPAL, ( 9 ) PO PE , (ldDOUSLlN DATA.
( 4 ) KELVIN, PSIA, ( 9 ) KELV I N , ATMOS , ( 1 0 ) CEN T I G . , A TM OS .
26 OC 35 J= 1, 2 G d S READ 1, IDO,TT,FP $ I F ( I DC) 27,36
27 N = N + l 5 1 0 ( N ) = IDD $ IF(ID0-4) 28,30
28 IFQDD-9) 34,32
30 P(N> = PP/14. 69595 $ T ( N) = T 68 ( TT , CELT , T EMP )
31 T X ( N ) = TT 5 GO TO 35
3? P ( N) = PF f T ( N ) = T 68 (TT, DELT, TEMP)
33 TX(N> - TT S GO TO 35
JP 11942 fl
48
Cryogenics Division - NBS Institute for Bosk Standards
LABORATORY NOTE
PROJECT NO.
2751364
FILE NO.
73-3
PAGE
15
SUBJECT
The Vapor Pressures of Ethane
NAME
D. Goodv.
dn
DATE
Tnlv 9. 1973
APPENDIX D. (Continued)
PSATFIT
G7/23/7 3
T (N) = TX (N) = TT + 273.15
IF(IOD) 39,41
$ I X ( N ) - 273.15 + TT
34 P ( N) = PP
35 CONTINUE
36 NP = N ? NF = 5
READ (1) DATA, CENTIGRADE, MM HG .
3d 00 +3 J= 1 , 9 9 S READ 1, IDO,TT,PP $
39 N = N+l $ IO(N) = I DD S P(N) = PP/76Q
43 T ( N) = T66 ( TX <N) , OELT ,TEMP)
41 NP2 = N
READ (2) DATA, CENTIGRADE, MM HG .
42 DO + 4 J= 1, 9 9 $ RE AO 1, ID0,TT,PP $ IF(IDO) 43,45
43 N - N +1 5 1 0 { N ) = I DD $ P ( N ) = P P/760 $ TXCN) = 273 .15 + TT
44 T ( N) = T68 (TX (N) , CELT, TEMP)
45 N P 3 = N
READ (3) DATA, KELVIN, MM HG.
46 DO -,6 J = 1, 99 t READ 1, IDD,TT,PP $ IF(IDD) 47,49
$ P(N) = P P/763 $ T X ( N) = TT
47 N = N+l $ I D ( N) = I DD
48 T ( N) = T68(TT,DELT,TEMP)
49 N P4 = N
READ (5) DATA, KELVIN, ATMOS.
53 DC 52 J= 1 , 9 9 5 READ 1, IOD,TT,PP
S
s
PP
51 N = N + l $ ID ( N) = I DD % P(N) = PP
52 T(N> = T68( TT,DELT,TEMP)
53 NP5 = N
READ (6) DATA, KELVIN, ATMOS.
54 DC 56 J=l,99 t READ 1, IOD,TT,PP
55 N = N+l 5 I D ( N ) = IOD ? P(N) =
56 T(N) = T68(TT,DELT,TEMP)
57 NP6 = N
READ (6) DATA, KELVIN, ATMOS,
63 DO 52 J= 1 , 9 9 $ READ 1, IOD,TT,PP
61 N = N+l f ID ( N) =100 S P(N)=PP S
62 T ( N) = T68 ( TT ,DEl_T ,TEMP)
63 N PP = NP7 = N
IF(IDD) 51,53
$ T X ( N) = TT
IF(IDD) 55,57
$ T X ( N ) = TT
$ IF(IDD)
TX (N)=TT
61,63
9.600
EXPLORE VALUES FOP PTPP.
79 E = 1.5 $ PRINT 18 S
80 XK = 1 - TTRP/TC°T
81 DO 32 I P=1 , 26 S PTP =
82 N F UN = NF S DO 85 J = 1,NF $
83 F ( 1 ) = X $ F(2)=X**2 $ F(3)=X**3
Y = L OGF (P ( J) /PT C P)
CALL FIT $ CALL COEFF $ SS
A (K) = F (K)
DO 88 J = 1 , N P S PC = PSA TF (T ( J) )
CONTINUE S SS=1j3*SQRTF (SS/NP)
SSK = l.CE+010
0 • 3 u 1* IP $ PTRP = PTR*l.QE-6
- ( 1-TTRP/ T ( J) ) /XK
F ( 4 ) =X ** 4 $ F( 5) =X+ (1-X ) **E
84
8 5
86
o7
88
89
90
91
92
9 3
94
95
= n
%
$
« T CK = TCRT $ TTK-TTRP
B DD 8 6 K=l,9
SS = SS + ( P < J) /FC-1 ) **2
IF (SS. LT.SSK ) 89,92
$ PTK =P TRP
SSK=SS 3 EK=E
DO 91 K=l,9
G (K) = F ( K )
PPINT 19, PTR, SS
E = E< l T CRT =TCK t TTRP=TTK $ PTRP = PTK $ DO 94 K = 1 ,9
A ( K) = G(K) 5 PORT = P T FP + EXPF ( A ( 1 ) +A (2 ) + A ( 3) +A (4 )»
PTR = l.CE6*PTRP
IF 11342 k
49
APPENDIX D. (Continued)
CryogwHcs Drmtofi - NCS MIM, ter Beak Stondordi
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-3
CnS
SUBJECT
The Vapor Pressures of Ethane
NAME R. D. Goodwin
DATE July 9, 1973
c
PRINT DEVIATIONS, INCLUDING DT = -DP/CCP/DT).
C
C
C
C
105 L = 9 5 SS = 0
1G6 PRINT 2, E,TTRP,TCRT»PTR»PCRT, (A(K),K=1,6) J PRINT 3
107 DO 125 J = 1 » NP S L = L*1 $ IF(L-57) 112,106
108 L = u S PRINT 4
112 PC = PS A TF ( T ( J) ) $ DP OT = PC'DLPOT
113 OP = P(J)-PC t DT = -OP/OPOT
114 PCT = 1 3 C’DP/PC B SS = SS * PCT**2
117 IF ( 3 C -0.01) 120,118,118
118 IF(PC-O.l) 121,119,119
119 IF(PC-l.O) 122,123,123
120 PRINT 5, ID(J),TX(J),T( J) , P ( J) , PC , DT , PC T S GOTO 125
121 PRINT 6, ID (J) ,TX ( J) , T( J) ,P( J) , PC ,OT , PCT $ GOTO 125
122 PRINT 7, ID(J),TX (J) ,T( J) ,P< J) ,PC,DT,PCT $ GOTO 125
123 PFINT 3, ID (J) ,TX (J) , T< J) ,P( J) ,PC,DT ,PCT
125 CONTINUE
126 SS = SQRTF ( SS/NP) $ PRINT 9, NP,SS
PRINT OTHER DATA DEVIATIONS.
140 K = NP+1 ? SS = N = 0 $ PRINT 4
141 DC 157 J = K» NPP S IF(J-NPP) 143,142
142 SS = SQRTF ( SS/N) B PRINT 9, N,SS $ GO TO 158
143 N = N+l B PC=PSATF(T< J) ) B DPDT = PC*DLPDT
144 DP = P ( J ) -P C 5 DT = - DP /DPDT
145 PCT = 1CC*DP/PC * SS = SS + PCT**2
146 I F ( 3 C-J • Cl ) 150,147,147
147 IF(PC-O.l) 151,148,148
143 IF(PC-l.O) 152,153,153
150 PRINT 5, ID (J > , TX ( J) , T< J) ,P( J) , PC , OT , PCT $ GO TO 155
151 PRINT 6, ID(J» ,TX(J) ,T( J) ,P(J) ,PC,OT,PCT $ GO TO 155
152 P c I N T 7, ID (J) , TX ( J) , T( J) ,P ( J) , PC ,DT , PCT $ GO TO 155
153 PCINT 3, ID (J) , TX ( J) , T( J) ,P( J) , PC ,OT ,PCT
155 IF(ID(J*l)“IO(J) ) 156,157
156 SS = SQRTF ( SS/N) B PRINT 9, N,SS B SS=N=G B PRINT 4
157 CONTINUE
158 CONTINUE
3 R INTOUT UNIFORM TABLE p Oft PUBLICATION.
230 P p INT 11 B DO 220 J = l,46 B IF(J-l) 202, 201
2L1TT=TT-P B GO TO 235
202 IF(J-46) 204,203
203 TT = TCRT B GO TO 205
204 T T = 8 j ♦ 5*J
2 05 PS = PSATF(TT) B DPDT = PS* DL POT B 02 PD T 2 =P S* ( O LPDT ** 2 * 02LPDT2)
2 0 7 IF(°S-0.C1) 210,208,208
2 08
IF (PS
-d •
1)
211, 209, 209
2C9
I F ( 3 S
-1 .
C)
212,215,213
210
P^INT
12
t
TT,PS,DPDT,D2PDT2
B
GOTO
22 G
211
PRINT
13
TT,PS,0PDT,D2P0T2
S
GOTO
22 0
212
PFINT
14
*
TT,PS,DPOT,D2PDT2
B
GOTO
22 0
213
IF ( J-
46)
215, 214
214
D 2 POT 2 =
0
215
PRINT
1 5
*
T T, PS, DPDT, D2PDT2
220 CONTINUE
JP I1J4JI
50
APPENDIX D . (Continued)
Cryogw>icj Drmron - NBS InsMuto for Bosk Standards
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-3
Ul
5?^
.
SUBJECT
The Vapor Pressures of Ethane
NAME „
R .
D. Good)
*un
DATi July 9, 1973
PS A TF I T 07/23/73
C PRINT UNIFORM REDUCEO TABLE.
C Y = LN (P/FTRP) /YN, YN = LN ( PORT/ PTR P ) .
C YC = ( A ( 1 ) *X ♦ . . . ♦ A (5 ) *X*(1-X ) **E)/YN.
253 XN = 1-T TRP/T CRT $ YN = A«l) + A<2> + A(3) + A(4)
251 PRINT 16 S 00 270 J=l,51 t X = Q.L2*(J-1)
252 IF(J-l) 254,253
253 TT = TTRP S GOTO 257
254 IF ( J-51 ) 256,255
255 TT = TORT ? GOTO 257
256 TT = TTRP/ ( 1-X*XN)
257 IF ( J - 51 ) 259, 256
258 Z = 0 S GO TO 260
259 Z = X* ( 1-X )
260 YC = A ( 5 ) * Z S DO 261 K=l,4
261 YC = YC + A(K»*X»*K
262 YC = YC/YN $ YX = YC - X
270 PRINT 17, TT, X, YC, YX
999 CONTINUE $ STOP t ENO
SINGLE-BANK COMPILATION.
FUNCTION PSATF(T)
C LN(P/PTRP) = A 1* X + A2*X2 ♦ A3*X3 + A4*X4 + A5 *X * ( 1 -X ) * * E .
C ARGUMENT, X = ( 1- TT/T ) / ( 1 -TT/TC ) .
C YIELDS ALSO OLPDT = (DP/OT)/P, AND D2LPT = (D2P/0T2)/P.
COMMON TTRP ,TCRT ,PTRP , E, A ( 9 ) , FZ,F1,F2, DL POT, 02 LP0T2
1 FORMATdHO 9X *PSATF = 0, T EXCEEDS TCRT. * / )
2 X N = 1 - TT R P/ T CR T $ X= (1-TTRP/T) /XN $ X2=X**2 S X3=X**3 $ X4=X**4
3 OXDT = TTRP/XN/T**2 $ D2XOT2 - -2*DX0T/T
4 0 = 1 -X $ I F « Q) 5,5,7
5 PS AT F = DLPDT = C2LPDT2 = 0 $ PRINT 1 S RETURN
SZ=71=Z2=Q % GOTO 9
7 W = Q**£ $ W1 = -E*W/Q $ W2 = <i-E)*Wl/Q
8 Z = X*H S Zi = X*Wi ♦ W $ Z 2 = X * K2 ♦ 2* W1
9 FZ = A ( 1 ) *X ♦ A(2)*X2 + A(3)*X3 + A(4)*X4 ♦ A(5)*Z
10 PSATF = PTRP*cXPF (FZ)
11 FI = A ( 1 ) + 2* A { 2 ) * X f 3*A(3)*X2 ♦ 4*A<4>»X3 + A(5)*Z1
12 OlPOT = FI * OX DT
13 F2 = 2* A (2 ) + 6 * A ( 3 ) # X + 12*A(4)*X2 + A(5)*Z2
15 D2LPDT2 = Fl*O2X0T2 ♦ F2*DXDT»*2 S RETURN $ ENO
SP 11342 A
51
APPENDIX D. (Continued)
Cryogenics Divnfon - MBS Inditute for Bone Standards
LABORATORY NOTE
PROJECT NO.
FILE NO.
73 -3
PAOE
\8
SUBJECT
The Vapor Pressures of Ethane
wms r. I
3. Goo'dw
in
DATE _ , . ^ .
July 9, 1973
FUNCTION T68(X,YMAT,XMAT)
THIS PROGRAM HAS SEEN CHANGED SO THAT THE OSCILLATING NATURE OF
THE MATRIX TO 8E INTERPOLATED EXISTS ONLY AT THE UPPER ENO OF THE
TABLE
THIS ROUTINE WILL TAKE INPUT MATRICES OF UP TO 999 ELEMENTS EACH,
ARRANGEO SO THAT THE X MATRIX(XMAT) IS IN EITHER ASCENDING OR
DESCENDING ORDER, SELECT NMAX OF THESE POINTS, CHOSEN SO THAT
SUCESSIVE X VALUES OSCILATE ABOUT THE VALUE OF THE ARGUMENT X
UNLESS THE ENDS OF THE XMATRIX INTERFERE (IN THIS CASE THE
OSCILATORY NATURE IS LOST BUT THE PROGRAM WILL STILL PERFORM AN
INTERPOLATION), INTERPOLATE ON THESE NMAX PAIRS OF DATA PY
AN OSCILATI NG VARIABLE POINT AITKEN INTERPOLATION ALGORITHM
EITHER UNTIL THE PERCENTAGE CHANGE IN THE INTERPOLANT IS LESS
THAN THE ACRCY ARGUMENT ( THE ARGUMENT NESSY INDICATES THE
NUMBER OF THE POINT JUST BEFORE THE LAST ONE CHECKED) OR UNTIL
THE NMAX POINTS ARE ALL USED. IT IS SUGGESTED THAT NMAX
BE LESS THAN 10, AND OF COURSE LESS THAN NELMTS. NELMTS
INDICATES THE NUMBER OF ELEMENTS IN XMAT OR YMAT.
IF NESSY IS ZERO IT INDICATES THAT THE INTERPOLATION REQUIREMENT
HAS NOT BEEN SATISFIED. IF NESSY IS 1 IT MEANS THAT THE VALUE OF
X LIES OUT SIDE THE RANGE OF XMAT.
DIMENSION Y M AT ( 999) , X MAT ( 999) , A ( 21 , 2 0 )
1L0 FORMATC42HINTERPOLATION REQUIREMENT NOT SATISFIED (X= ,E16. 8, 1H)/33H
1 L AST 2 APPROXIMATIONS OF Y A RE ( Y= , E 1 6 . 8 , 1 H, , E 16 . 6 , 1H ) )
2C0 FORMAT ( 55HTHI S REPRESENTS AN EXTRAPOLATION OF THF XMAT MATRIX(X=,
lElo. 3,lH)/3 3HNO CALCULATION HAS BEEN PERFORMED)
3CU FORMAT( 24HNELMTS IS LESS THAN NMAX)
ACC FORMATC 22HNMAX IS LARGER THAN 23)
NELMTS=13G S NMAX=9 I ACRCY=0,01
IF (NMAX -21) 71,71,69
69 WRITE OUTPUT TAPE 6,4)0
To 3 - X $ RfcTURN
71 IF (NMAX-NELMTS) 75,75 ,7 3
73 WRITE OUTPUT TAPE 6,3J&
T 6 3 = X $ RETURN
75
CONTINUE
FIRST TWO
SUCCESSIVE VALUES OF THE XMATRIX THAT STRAODLE THE
VALUE X
WIL
L BE
SOUGHT
J J 1 = NEL
MTS-
1
DO 2 J I
= 1, J
J1
D I F 1 = X-
XMAT
(I )
DIF2=XM
A T ( I
♦ 1 >-
X
IF (OIFi
) 16,
15,1
6
15
To 8 = X
+ Y
MA T (
I)
NESSY =
NMAX
RETURN
16
IF ( DIF2
) 18,
17,1
8
17
Tb 8 = X
♦ Y
M A T (
1*1)
NESSY =
NMAX
KoTURN
18
R A T 1 0 =0
I FI /
DIF
2
IF ( RATI
0)20
, 2 C ,
19
19
I MI 0= I
GO TO 3
2
2 <3
CONTINU
E
v n
52
APPENDIX D. (Continued)
SUBJECT
32
98
201
1 C 2
33
34
35
36
3 7
4u
41
2 C 3
l'
1
2
3
5
6
7
Cryogenics Division - NBS Institute tor Bosic Standards
LABORATORY NOTE
The Vapor Pressures of Ethane
PROJECT NO.
FILE NO.
PAGE
NAME
DATE
73-3
19
R. D. Goodwin
_ I
AT THIS POINT ONE COULD PRINT THE FOLLOWING STATEMENT
WRITE OUTPUT TAPE 6 , 2 ) 0 , X
N£SSY=1
T68 = X $ RETURN
CONTINUE
NOTE THAT RATIO IS POSITIVE IF THE TWO POINTS STRADDLE X
REGARDLESS WHICH IS LARGER
J J J= I MI D
JUP = I MI D
JDN = I MI D
IF( JJJfNMAX-N EL MTS+1) 98,93,102
DO 2 J 1 J = 1 , NM AX
JUJ=IMI0+J-1
A (1 , J)=XMAT (J JJ)
A (2 , J )= YMAT (JJJ)
GO TO 2 J 3
DO *1 J=i,NMAX
JJ=J/2
J0E=J-2*JJ
JOE IS ) IF J IS EVEN AND 1 IF J IS ODD
IF ( J-l) 33,4 3 , 33
IF(J0N-l)34,3o,34
I F ( JUP-NELMTS> 35 ,37 ,35
IF (JOE) 37,36, 37
JUP= JUP+i
JJJ= JUP
GO TO 43
J0N= JDN-1
JJ J= JDN
GO TO 43
A (1, J)=XMAT (JJJ)
A (2 , J )= YMAT (JJJ)
CONTI NJ E
Thi
L
Rdf T M^c/i
NNN=NMA X+l
DO o J= 3 ,NN N
L = J-1
DO 5 K=L ,NM AX
J IS THE COLUMN NUM3ER
K IS THE ROW NUMBER
A(J,K)=(A(J-1,K)-A(J-1,J“2)) MX-A(l,J-2) )/(A(l,K)-A(l,J-2))
+A (J-l , J-2)
IF (<-L) 3,2,3
IF ( A 3 SF ( (A(J,L)-A(J-1,L-1) ) / A ( J , L ) ) - A CRC Y /l C 0 . 0 ) 7 ,7, 3
CONTINUE
CONTINUE
CONTINUE
NESS Y =3
AT THIS POINT ONE COULD PRINT OUT THE FOLLOWING STATEMENT,
WRITE OUTPUT TAPE 6 , 1 J 0 , X , A ( NNN , NMA X ) , A ( NNN - 1 ,N M AX-1 )
T 6 3 = X + A (NNN , NMA X )
RETURN
NE33Y =J- 1
Tod = X + A(J,L) S RETURN 2 END
V 1134? A
53
APPENDIX D. (Continued)
Cryogmtcs Drvnion - NBS Institute tor Bosk Standards
PROJECT NO.
FILE NO.
PAGE
LABORATORY NOTE
2750364
73-3
20
SUBJECT
NAME
The Vapor Pressures of Ethane
R. D. Goodwin
DATE July 9, 1973
ETHANE VAPOR PRESSURES, E = 1.50
TTRP = 89.899, TCRT = 305.330
PTRP.MUATM = 9.96700, PCRT, ATM = 48.07723 . ,
J/y/73
10,806922651 8.344715938 - 3.119603823
- 0.642995191 6.059966098 0.000000000
ID
T » XPTL
T -6 8
P » ATM
CALCD
DEL T
P * PCT
7
90.000
90.010
0 . 00 00103
0 . 0 0 00 103
0.000
- 0.01
7
100.000
100.010
0. 0001096
0. 0001098
- 0.001
0.01
7
110.000
109.998
0. 0007364
0. 0007363
- 0.001
0.02
7
120.000
119.989
0 . 00 34934
0. 0034939
0.001
- 0.01
7
130.000
129.987
0.012728
0 .012732
0.00 3
- 0.04
7
140.000
139.992
0.037792
0 .03780 3
0.003
- 0.03
7
150.000
150.000
0.095474
0 .095476
0.000
- 0.00
7
160. 000
160.010
0.21196
0. 21192
- 0.003
0.02
7
170.000
170.019
0. 42387
0.42 369
- 0.007
0.04
7
180.000
180.027
0. 77824
0.77783
- 0.009
0.05
7
184.520
184.550
1.00000
0.99944
- 0.010
0.06
9
198.181
198.216
1.9737
1.9761
0.027
- 0.12
4
214. 302
214.334
3.9209
3.9159
- 0.032
0.13
4
224.102
224.130
5.6367
5.6402
0.017
- 0.06
4
229.756
229.782
6.8569
6.8598
0.012
- 0.04
4
234. 558
234.581
8.0335
8.0 392
0.022
- 0.07
9
234.692
234.715
8.0741
8.0741
- 0.000
0.00
10
238.150
238.150
9.0097
9.0077
- 0.007
0.02
9
238. 771
238.792
9.1843
9.1905
0.021
- 0.07
4
239. 844
239.864
9.4959
9.5019
0.020
- 0.06
4
240.514
240.534
9.6960
9.7003
0.014
-0 • 04
10
243.150
243.150
10.5063
10 .5045
- 0.006
0.02
4
243. 359
243.377
10.5760
10.5764
0.001
- 0.00
4
246.814
246.830
11.7137
11.7162
0.007
- 0.02
4
247. 816
247.831
12.0502
12.0628
0.036
- 0 . 10
10
248.150
248.150
12.1756
12.1747
- 0.003
0.01
4
249.741
249.755
12.7620
12.7496
- 0.034
0. 10
4
250.146
250.160
12.8985
12.8976
- 0.002
0.01
4
251.587
251.600
13.4425
13.4344
- 0.022
0.06
4
252. 544
252.556
13.8065
13.7997
- 0.018
0.05
10
253 . 150
253.150
14.0310
14.0 30 1
- 0.002
0.01
4
254.290
254.301
14.4898
14.4848
- 0.012
0.03
4
257. 543
257.552
15.8252
15.8266
0.003
- 0.01
10
258 . 150
258.150
16.0835
16.0827
- 0.002
0.00
10
263. 150
263.150
18.3464
18.3452
- 0.003
0.01
4
263.380
263.386
18.4543
18.4573
0 .006
- 0.02
4
267 . 536
267.539
20 .5197
20.5145
- 0.010
0.03
10
268. 150
268.150
20.8318
20.8308
- 0.002
0.00
4
271. 749
271.750
22.7661
22.7662
0.000
- 0. 00
9
272. 949
272.949
23.4515
23.4394
- 0.021
0.05
10
273. 150
273.150
23.5549
23.5536
- 0.002
0.01
4
275.922
275.921
25.1584
25.1702
0.020
- 0.05
4
276. 363
276. 362
25.4558
25.4347
- 0.035
0.08
4
276.385
276.384
25.4491
25.4479
- 0.002
0.00
4
276.514
276.513
25.5472
25.5257
- 0.036
0.08
4
277.813
277.811
26.3185
26.3189
0.001
- 0.00
10
278. 150
278.150
26.5309
26.5290
- 0.003
0. 01
sr HM? <
54
Oyogantci Division - MBS bsMvte for Bose Stamfords
LABORATORY NOTE
PROJECT NO.
27'50364
FILE NO.
73-3
PAGE
2/
SUBJECT
The Vapor Pressure of Ethane
NAME
B
D n onrlv
An
DATE July 9, 1973
APPENDIX D . (Continued)
10
T.XPTL
T -68
P , ATM
CA LCD
DEL T
P , PCT
4
280.041
280.038
27.7039
27.7217
0.028
- 0. 06
4
202.247
282.243
29.1537
29.1647
0.016
- 0.04
10
283 . 150
283.150
29.7763
29.7739
- 0.003
0.01
4
284.635
284.630
30 .7664
30.7893
0.033
- 0.07
9
284.845
284.840
30.9555
30.9353
- 0.029
0.07
4
287. 653
287.648
32.9289
32.9392
0.014
- 0.03
10
288.150
288.150
33.3110
33.3080
- 0.004
0.01
4
288.263
288.257
33.3899
33.3872
- 0 . 00 %
0.01
4
290.040
290.034
34.6873
34.7192
0.042
- 0,09
9
290.214
290.208
34.8748
34.8518
- 0.030
0.07
4
292.236
292.229
36.4440
36.4216
- 0.028
0.06
4
293.098
293.091
37.0816
37.1074
0.032
- 0.07
10
293. 150
293.150
37.1583
37.1547
- 0.005
0.01
9
293 . 266
293.259
37.2672
37.2422
- 0.031
0.07
4
296.347
296.339
39.7598
39.7852
0.030
- 0.06
10
298.150
298.150
41.3494
41.3446
- 0.005
0.01
4
299.665
299.657
42.6543
42.6808
0.030
- 0.06
9
299.863
299.855
42.8863
42.8591
- 0.030
0.06
4
300.205
300.196
43.1650
43.1686
0.004
- 0.01
4
301.251
301.242
44.1085
44.1274
0.020
- 0.04
10
302.150
302.150
44.9809
44.9751
- 0.006
0.01
10
303. 150
303. 150
45.9327
45.9268
- 0.006
0.01
4
303.471
303.462
46.2032
46.2273
0.025
- 0.05
4
303.477
303.468
46.2798
46.2331
- 0.048
0.10
9
304.012
304.002
46.7736
46.7533
- 0.021
0.04
4
304.049
304.039
46.7698
46.7896
0.020
- 0.04
10
304. 150
304. 150
46.9040
46.8907
- 0.005
0.01
4
304. 360
304.350
47.0931
47.0953
0.002
- 0.00
4
304.446
304.435
47.2198
47.1802
- 0.040
0.08
4
304.519
304.508
47.2025
47.2525
0.050
- 0.11
4
304. 734
304.723
47.4310
47.4661
0.035
- 0.07
4
304. 796
304.785
47.5185
47.5280
0.009
- 0.02
4
304.924
304.913
47.6846
47.6560
- 0.028
0.06
4
304. 980
304.969
47.7131
47.7122
- 0.001
0.00
4
305.121
305.110
47.8496
47.8541
0.004
- 0.01
10
305.150
305.150
47.8992
47.8945
- 0.005
0.01
4
305. 153
305.142
47.8807
47.8864
0.006
- 0.01
10
305.250
305.250
47.9994
47.9958
- 0.004
0.01
NP =
85 , RMSPCT = 0.050
e = 1.5 7/31/73
» 1134? A
55
APPENDIX D. (Continued)
Cryogenics Division - NSS Institute for Bosk Standards
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-3
FAGE
SUBJECT
The Vapor Pressures of Ethane
NAME
R .
D. Goodwin
DATE July 9, 1973
ETHANE VAPOR PRESSURES
T,K
P* ATM
DP/DT
D2P/0T2
89,899
0.0000100
0.0000027
0.00000064
90*000
0.0000102
0.0000027
0.00000066
95*000
0,0000358
0.0000065
0.00000161
100.000
0.0001095
0.0000232
0.00000439
105,000
0.0002985
0.0000567
0.00000960
110.000
0.000736$
0.0001264
0.0000 1915
115.000
0.0016670
0.0002592
0.00003529
120.000
0.0034991
0.0004948
0.00006077
125.000
0.0068762
0.0008875
0.00009864
130.000
0.012752
0.001507
0. 0001521
135.000
0.022468
0.002439
0. 0002242
140.000
0.037834
0.003785
0. 0003177
145.000
0.061192
0.005656
0. 0004350
150.000
0.095478
0.008177
0.0005776
155.000
0.14426
0.01148
0.000747
160.000
0.21176
0.01569
0.000942
165.000
0.30288
0.02095
0.001165
170.000
0.42317
0,02738
0.001412
175.000
0.57882
0.03511
0.001684
180.000
0.77662
0.04426
0.001979
185.000
1.0239
0.0549
0.00229
190.000
1.3287
0,0672
0.00263
195.000
1.6991
0,0812
0.00298
200.000
2.1440
0.0970
0.00334
205.000
2.6726
0.1147
0.00372
210.000
3.2943
0.1343
0.00411
215.000
4.0188
0.1558
0.00451
220.000
4. 8561
0.1794
0.00492
225.000
5. 8165
0.2051
0.00534
230.000
6.9105
0.2329
0. 00577
235.000
8.1487
0.2628
0.00620
240.000
9. 5420
0.2949
0.00665
245.000
11.1016
0.3293
0.00711
250.000
12. 8390
0.3660
0.00758
255.000
14.7659
0.4052
0.00807
260.000
16.8947
0.4468
0.00858
265.000
19.2381
0.4910
0.00913
270.000
21.8098
0.5381
0.00971
275.000
24.6242
0.5882
0.01034
280.000
27.6972
0.6416
0.01105
285.000
31.0467
0.6989
0.01187
290.000
34.6934
0.7607
0.01288
295.000
38.6630
0.8283
0.01425
300.000
42.9905
0.9046
0.01657
305.000
47. 7433
1.0055
0.03283
305.330
48.0772
1.0228
0.00000
7/31/73, Via Ziegler "Type B " data
if 1134? A
56
APPENDIX D. (Continued)
Cryoganks Division - N8S Institute for Souk Standards
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-3
PAGE
23
suwecT The Vapor Pressures of Ethane
name _ ^ „ , .
R. D. Goodwin
DATE July 9, 1973
ETHANE
REDUCED
VAPOR PRESSURE FUNCTIONS
T,K
X
Y
CY-X )
69.899
0.00
0.00000
0.00000
91.186
0.02
0.02190
0.00190
92.510
0.04
0.04376
0.00376
93.873
0.06
0.06558
0.00550
95.277
0.08
0.08734
0.00 734
96.723
0.10
0,10906
0.00906
98.215
0.12
0. 13073
0.01073
99.753
0.14
0.15234
0.01234
101.339
0.16
0.17389
0.01389
102.977
0.18
0.19538
0.01538
10 4.669
0.20
0.21680
0.01680
106.418
0.22
0.23816
0.01816
108.226
0.24
0.25945
0.01945
110.096
0.26
0.28066
0.02066
112.032
0.28
0.30180
0.02180
114.037
0.30
0, 32285
0.02285
116.116
0.32
0. 34382
0,02382
118.272
0.34
0.36471
0.02471
120.509
0.36
0.38551
0.02551
122.832
0.33
0.40621
0.02621
125.247
0.40
0.42682
0.02682
127.759
0.42
0.44733
0.02733
130.373
0.44
0. 46774
0.02774
133.097
0.46
0. 48805
0.02805
135.937
0.48
0.50825
0.02825
L38.901
0.50
0.52835
0.02835
141.997
0.52
0.54833
0.02833
145.234
0.54
0.56820
0.02820
148.622
0.56
0.58796
0.02796
152.172
0.58
0.60760
0.02760
155.896
0.60
0.62713
0.02713
159.807
0.62
0.64654
0.02654
163.919
0.64
0.66583
0.02583
168.248
0.66
0.68501
0.02501
172.812
0.68
0. 70406
0.02406
177.630
0.70
0.72301
0.02301
182.725
0.72
0.74184
0.02184
188.121
0.74
0.76056
0.02056
193.845
0.76
0.77917
0,01917
199.928
0.78
0.79769
0.01769
206.405
0.80
0,81611
0.01611
213.317
0.82
0.83445
0.01445
220.707
0.84
0.85272
0.01272
228.627
0.86
0.87093
0.01093
237.138
0.68
0.88910
0.00910
246.306
0 • 90
0.90726
0.00726
256.212
0.92
0.92544
0.00544
266.948
0.94
0.94369
0.00369
278.623
0,96
0.96208
0,00 208 7/31/73, Via
291.366
0.98
0.98074
0.00074 Ziegler "Type B"
0. 00 00 0 data
305.330
1.00
1.00000
SF 1134? A
57
APPENDIX E.
Oyo9«nic> Division - NBS fratihite for loir Standordi
LABORATORY NOTE
HtOJBCT NO.
2750364
nu no.
73-4
PAoa
1
SUHJECT
Ethane Virial Coefficients and Saturated Vapor Densities
NAMB R. D. Goodwin
DATE
Aueust 14. 1973
1 . Introduction
The virial equation of state for low densities is needed for thermal computations
to generate P-C-T data, and to obtain saturated vapor densities via the vapor pressure
equation .
In this report we develop analytical representations for the virial coefficients
of ethane and obtain the corresponding saturated vapor densities.
In the truncated virial equation,
2 3
Z ( T , d ) = P /( R • T • d) = 1 + B(x) • o + C(x).o + D(x)-a , (1)
P is pressure, R the gas constant, T the absolute temperature, d the density, and
a^d/d c is reduced density. The second, third, and fourth coefficients B(x), C(x),
D(x) are dimensionless functions of reduced temperature x =® T/T . We use T
c c
s 305.33 K, andV = 1/d = 145.56 cc /mol from Douslin f 2] . In the table s we use
c c
symbols B :: , C' and D' r for the coefficients of (1).
2. The Second Virial Coefficient
Data for B(x) through about I960 are reviewed by Tester [ 16]. Since then we
have data from Gunn [8], Hoover [9], Pope [15], McGlashan [12], and Douslin [2],
Data of Gunn and of Douslin extend from 273 K upwards to 623 K. McGlashan gives
outstanding experimental work on the hydrocarbon series (but not on ethane) down to
T/T = 0.5. From his formulations he concludes that the low-temperature data of
c
Eucken and Parts [ 4] are wrong. This suspicion also was expressed by Ziegler et
al. [17],
For least squares we have selected for low temperatures only the data from
McGlashan's formula because all other data diverge widely therefrom (Table 2). For
high temperatures we have selected Douslin' s recent data because the experimental
work [ 2J was executed with great care. Table 2 shows that Michels (1D = 3) and Gunn
(1D=8) are in substantial agreement with Douslin. For consistency with Douslin,
we have increased the absolute values of McGlashan's data by one percent, well within
the uncertainty of his V 148 cc/mol.
V I1KM
58
APPENDIX E, (Continued)
Cryogenics Division - NBS InfMwt* for Basic Standards
LABORATORY NOTE
MtOJECT HO.
2750364
cite ho.
73-4
PAOt
,.2
SUBJECT
Ethane Virial Coefficients and Saturated Vapor Densities
NAMe R. D. Goodwin
DATE August 14, 1973
Our formula for B(x), selected from many variations, finally is similar to that
developed for methane [6],
B(x) =!"b + B /x 1/4 + B /x + B /x Z + B /x 3 1 • [l-(T /T)
Liz i 4 5Ji_o
1/41
( 2 )
T = 740. 0 K,
o
B = 7.99 3156,
B 2 = -10.67 2497,
B 3 = 9. 21 7322,
B = -2.48 1668,
4
B = 0.84 2328.
5
Table 1 gives results for (2) with the data used for least squares: (6) McGlashan;
(10) Douslin. Data not used for l. s . are compared with (2) in Table 2: (1) Eucken;
(2) Lambert; (3) Michels: (4) Hoover; (5) Pope; (8) Gunn.
The Third Virial Coefficient
For C(x) relatively few data are known to us. The data of Michels [13] and
Hoover [9] were generalized in 1967 by Chueh [1], using a formula similar to that de-
veloped by Goodwin [5]. In 1971 Pope [15] gave five low-temperature values from 210
to 306 K. For temperatures above 273 K we are fortunate to have the recent, carefully-
derived data of Douslin [2].
A comparison of Chueh' s generalized function with Douslin' s data at T/T =2
c
shows C =0.20 (Chueh), and C =0.15 (Douslin). Whereas the Chueh formula gives
nearly constant values at high temperatures, the Douslin data are trending asymptoti-
cally toward zero.
For least squares we have selected the data of Douslin at high temperature s , and
data generated by Chueh's formula at low temperatures. For consistency we have
diminished these latter values by two percent. (Chueh fails to give his critical densities.
At low temperatures the third virial coefficient is not important in the computation of
sq (1) because the maximum possible density (saturated vapor) is diminishing exponen-
-ry / T
fcially with temperature, e , (see Table 4).
SP 11142 A
59
APPENDIX E. (Continued)
C/yogarncs Divnion - NAS IntMute for Banc Standards
LABORATORY NOTE
PROJECT NO.
2750364
Pill NO.
73-4
PAOE
3
SUBJECT
Ethane Virial Coefficients and Saturated Vapor Densities
NAMI R . D. Goodwin
DAT£ August 14, 1973
Our formula for Cfxl is much simpler than that of Chueh, and is similar to that
developed for methane [6],
C (x )
O
!~C /x + C „ /x + C /x
51
1-T IT),
o
(3)
T = 217. 80 K,
o
C
0. 253 773,
C 2 = 0.865 299 :
C = 0.556 075 ,
3
Least squares results are in the upper part of Table 3: (7) Chueh; (10) Douslin.
Other data in the lower part are: (4) Hoover; (5) Pope.
4. The Fourth Virial Coefficient
Recent data of Douslin [2] are plotted in Figure 1. The general behavior ex-
pected for D is shown in the book by Mason and Spurling [11]. As present data exist
only at T > T » we use the simple formula,
’ c
100-D ;,: =x • exp^a-b/(x- 1 )~| , (4)
where x “ T/T , and a = 4.00, b = 1.84 from Figure 1.
c
5. Examination of the Virial Equation
It is valuable to know the relative importance of the terms of eq (1). In Table 4
we compute these for the saturated vapor, using densities from the formula of Plank
and Kambe i tz quoted by Tester [16], We have increased the P.K. den s itie s by 0 . 088%
to agree with the virial equation at 90 K. Pressures are from our vapor pressure
equation [ 7] .
In the fourth column of Table 4 we give the ratio DI/DN of ideal gas density to
2
the P.K calculated densities. Fifth and sixth columns give B(x).a and C(x).o . If all
data were accurate, we should expect Z(T,d) in the last column to be the same as
DI/DN.
The vapor pressures of Ziegler [17] were based on second virial coefficients
of Eucken and Parts [4], the accuracy of which Ziegler questioned. Our selection for
B :|: also disagrees with Eucken and Parts. We therefore have recomputed our vapor
U 11)4? A
60
APPENDIX E. (Continued)
Cryogenics Division - N8S Institute for Bask Standards
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-4
PA@g
4
SUBJECT
Ethane Virial Coefficients and Saturated Vapor Densities
NAM * R . D. Goodwin
DATE August 14, 1973
pressure constants using alternate vapor pressure data of Ziegler, as shown in the
addendum to our Laboratory Note [7], This revised vapor pressure equation is used
in the following to obtain the densities of saturated vapor.
6, Derivation of the Saturated Vapor Densities
For a given temperature we iterate density in the virial equation to obtain a
pressure therefrom which is the same as the vapor pressure. Results are in Table 5.
In previous work we have found that this method gives acceptable results at densities
up to about D / 3 , which for ethane occurs near T = 286 K. We see that data from the
c
Plank-Kambeitz formula diverge increasingly from our results on approach to T .
c
The highest temperature at which our results are accurate remains to be seen by com-
parison with data from other sources. Figure 2 shows ,howeve r , that in the region of
overlap with Douslin's vapor densities [2], our results (the filled circles) appear
reasonable .
Figure 8 shows the results at lower temperatures. We see that powers of
(1/T) greater U an the first will be needed to describe these data.
7. Discussion of Uncertainties
Experimental uncertainties for virial coefficients vary inversely as the signifi-
cance of these coefficients in giving departure from ideal gas behavior, see Table 4.
For the second coefficient only, for example,
6B/B
6 Z _ Z
Z ’ Z-l ’
where 6B and 6Z are small variations in B and Z. Assume a tolerable error of 0.0 1
percent in Z. From Table 4 we compute the approximate tolerable uncertainty in B,
neglecting the effect of C(T),
» mm
hi
APPENDIX E. (Continued)
SUi
Cryogenics Division - NBS hwtitatle lor Bosk Standards
LABORATORY NOTE
PtOJECT NO.
2750364
PILE NO.
73-4
PAOf
5
SUBJECT
Ethant V irial Coefficients and Saturated Vapor Densities
****** R. D. Goodwin
DATE
Au£ust 14. 1973
T, K
mol/-6
6 B/B, %
100
0.000013
357.0
1 20
0.000349
21.6
1 40
0.00327
3.37
160
0.01626
0.915
1 80
0.05434
0.352
200
0.1401
0. 170
220
0.3035
0.096
240
0. 5864
0.060
2b 0
1.057
0.040
autho r s
give estimates of unce
;rtainty for experi
however
, give these estimates
for ethane,
T, K
6B/B, %
6C/C, %
215
1 . 0
10.0
240
0.4
4.0
F
273
0 . 1
1 . 0
and we believe these to be reasonable estimates for very careful work. In Table 2,
however, we see that Hoover's data, ID=4, differ from our selection by up to five per-
cent at low temperatures (215 and 240 K).
Our derived densities depend on the vapor pressure equation. This we estimate
to be uncertain by several percent at the lowest temperatures approaching the triple
point. The virial equation, on the other hand, approaches ideal gas behavior at these
low temperatures. At the higher temperatures above 270 K, we believe the virial coef-
ficients and vapor pressures of Douslin to be accurate as can be derived from the best
of PVT measurements.
62
$ 1 * 11347 *
APPENDIX E. (Continued)
Cryoganks Drvitron - NBS Institute for Bosk Stamfords
LABORATORY NOTE
PtOJECT NO.
2750364
Ft IE NO.
73-4
PAOB
6
SUBJECT
Ethane Virial Coefficients and Saturated Vapor Densities
NAME r.
0. Goodw
r in
DATE
August 14. 1973
8. Bibliography
[ 1] P, L. Chueh and J. M. Prausnitz, Third virial coefficients of non polar gases
and their mixtures, AlChE Journal 13 (5) 896 (1967).
[2] D. R. Douslin and R. H. Harrison, Pressure-volume-temperature relations
of ethane, (U.S. Bureau of Mines, Bartlesville, Okla. 74003). Manuscript for
J. Cbem. Thermodynamics, July, 1973.
[3] J. H. Dymond and E. B. Smith, The Virial Coefficients of Gases, Oxford
Science Research Papers 2, Clarendon Press, Oxford, England, (1969).
[4] A. Eucken and A. Parts, Z. Phys. Chem. B20, 184 (1933).
[5] R, D. Goodwin, D. E. Diller, H. M. Roder, L. A. Weber, Second and third
virial coefficients for hydrogen, J. Res. NBS 68A (1), 121 (1964).
[6] R. D. Goodwin, Thermophysical Properties of Methane from 90 to 500 K at
Pressures to 700 Bar, NBS Tech. Note, manuscript, April, 1973.
[7] The Vapor Pressures of Ethane, Laboratory Note 73-3, July 9, 1973.
[8] R. D. Gunn, M. S. Thesis, University. Calif. (Berkeley), 1958, quoted by
J. A. Huff and T. M. Reed, J. Chem. Eng. Data 8, 306 (1963).
[9] A. E. Hoover, I. Nagata, T. W. Leland, R. Kobayashi, Virial coefficients
of methane, ethane, and their mixtures at low temperatures, J. Chem.
Phys. 48 (6), 2633 (1968).
[10] J. D. Lambert, G. A. H. Roberts, J. S. Rowlinson, V. J. Wilkinson, Proc.
Roy. Soc . (London) A 196, 1 13 (1949).
[11] E. A. Mason and T. H. Spurling, The Virial Equation of State, Pergamon Press,
Oxford (England), 1969.
[12] M. L. McGlashan and D. J. B. Potter, An apparatus for the measurement of
the second virial coefficients of some n-alkanes and of some mixtures of
n-alkanes, Proc. Roy. Soc. (London) A267, 478 (1962).
[13] A. Michels, W. van Straaten and J. Dawson, Physica 2C[, 17 (1954).
[14] Plank and Kambeitz, Z. Ges. Kalte Ind . 1 0 , 209 (1936), quoted by Tester.
[15] G. A. Pope, Calculation of Argon, Methane and Ethane Virial Coefficients, etc.,
Thesis, Rice Univ. , July 1971.
[16] H. E. Tester, ETHANE, in Thermodynamic Functions of Gases, F. Din,
Editor, vol. 3, Butte rworths , London, 1961.
tf 11342 IS
¥3
APPENDIX E. (Continued)
Cryogenics Division - MBS Institute for Bosk Standards
LABORATORY NOTE
PROJECT NO.
2750364
PILE NO.
73-4
PAOC
7
SUBJECT
Ethane Virial Coefficients and Saturated Vapor Densities
NAME
R. D. Goodwin
DATt August 14, 1973
[]7j Ziegler, Kirk, Mullins, Berquist, Calculation of the vapor pressures, etc.,
VII Ethane, Eng. Expt. Sta. , Georgia Inst. Tech . .Atlanta, Ga. , Dec. 1964.
[ 18) F. Porter, J. Am. Chem. Soc. 4_8, 2055 (1926).
(19) P. Sliwinski, Z. Phys. Chem. 63 263 (1969).
[20] K. R. Hall and P. T. Eubank, Experimental technique for direct measurement
of interaction second virial coefficients, J. Chem. Phys. _59(2), 709 (1973).
[ 21] R. D. Goodwin, Estimation of critical constants T , 0 C from the p(T) and T(p)
relations at coexistence, J. Res. NBS 74A(2), 221 1970).
T able 1 .
Table 2.
T able 3 .
Table 4.
Table 5.
Table Captions
Second virial data of (6) McGlashan, (10) Douslin.
Second virial, (1) Eucken, (2) Lambert, (3) Michels, (4) Hoover,
( 8 ) Gunn.
Third virial, (7) Chueh, (10) Douslin, (4) Hoover, (5) Pope.
Terms of the virial equation for saturated vapor.
Saturated vapor densities derived via V.P. and virial equations.
( 5) Pope ,
» ItMJ I
64
APPENDIX E. (Continued)
Oyog»nici Divnion - MBS Nflvto for Bosk Stondords
LABORATORY NOTE
rtOICCT NO.
2750364
me no.
73-4
PAW 1
8 1
Ethane Virial Coefficients and Saturated Vapor Densities
NAME
D- Good-w.
dn
DATE August 14, 1973
Figure 1. Ethane fourth virial coefficients of Douslin [2],
100. D 1 ' = x ^^.exp[4.0 - 1.84/(x-l)].
I134JI
65
APPENDIX E. (Continued;
Lab. Note 73-4 p. 9
66
Figure 2. Ethane saturated vapor densities. Open circles from
Douslin [2]; filled circles from Table 5, this report.
APPENDIX E. (Continued)
Figure 3, Ethane saturated vapor densities from Table 5, this report,
67
APPENDIX E. (Continued)
Cryogmics DMwon-NK hwdtaM for Saue Standard*
LABORATORY NOTE
Htojecr MO.
2750364
nu no.
73-4
PAM
1 1
SUIJfCT
Ethane Virial Coefficients and Saturated Vapor Densities
NAM * R. D. Goodwin
DATE
August 14, 1973
Table 1. Second virial data of (6) McGlashan, (10) Douslin.
ETHANE SECOND VIRIAL COEFFICIENT
EB = 0.250, TZ = 71*0.0
7.
993156 -10
.672497
9.217322
-2.481668 0.
842328
ID
T, K
T/TC
B*
CALC
0 IFF
PC NT
6
150. 000
0.4913
-5. 309
-5.310
0.001
0. 01
6
160.000
0.5240
-4.598
-4.597
-0.001
-0.01
6
170.000
0.5566
-4. 031
-4.3 30
-0.001
-0.02
6
180.000
C . 58 95
-3.569
-3.5 69
-0.000
-0.01
6
190.000
0.6223
-3. 188
-3.188
0.000
0.01
6
200.000
0.6550
-2. 868
-2.869
0.001
0. 02
6
210.000
0.6878
-2.597
-2.597
0.001
0.03
6
220.000
0.7205
-2. 353
-2.364
0. 001
0.03
6
230.000
0.7533
-2.161
-2.162
0. 000
0.02
6
240.000
0.7960
-1. 984
-1.984
-0.000
-0.00
6
250.000
0.8188
-1.828
-1.828
-0.001
-0. 04
&
260.000
0.8515
-1.690
-1.688
-0. 002
-0. 09
10
27 3. 150
0.8946
-1. 527
-1.527
0.001
0.06
10
298. 150
0.9765
-1.276
-1.275
-0. 001
-0.08
10
30 3. 150
0.9929
-1.232
-1.232
-0. 001
- 0. 05
10
323. 150
1.0584
-1.077
-1.076
-0. 001
-0.06
10
348.150
1. 1402
-0.914
-0.914
0.001
0.08
10
373. 150
1. 2221
-0.780
-0.781
0. 001
0.10
10
398. 150
1. 30 40
-0.668
-0.670
0. 001
0. 16
10
423. 150
1.3859
-0. 574
-0.575
0.000
0.06
10
448.150
1.4678
-0. 493
-0.493
0.000
0. 10
10
473.150
1.5496
-0. 423
-0.422
•0. 000
-0.08
10
498. 150
1.6315
•0.360
-0.360
-0. 000
-0.01
10
523. 150
1.7134
-0. 306
-0.305
-0. 001
-0.27
10
548.150
1.7953
-0.256
-0.256
-0. 000
-0. 19
10
573. 150
1.8771
-0.212
-0.212
-0.001
— 0.30
10
598.150
1.9590
-0. 172
-0.172
-o. 000
-0.02
10
NP
623. 150 2. 0409
= 23, HEA^PCT = 0.
-0.135
088
-0.135
0. 001
0.53
v ItWI
68
APPENDIX E. (Continued)
Oy°9*nic$ Dwmon - NK 1 mMiM it tak Scnckirdt
LABORATORY NOTE
MKJJfCT NO.
2750364
nLnSo" 1 "
73-4
fAOt
12
Ethane Virial Coefficients and Saturated Vapor Densities
NAME
R •
D. Good-\
vin
DATE August 14 , 1973
Table 2. Second Virial, (l)Eucken, (2) Lambert, (3) Michels, (4) Hoover
(5) Pope, (8) Gunn.
ID
T,K
me
3 *
CALC
DIFF
PC NT
1
2 0 U • 0 C Ci
0.6550
- 3. 112
- 2.869
- 0.243
- 8.48
2
200.000
C .6550
- 3 . 119
- 2.869
- 0. 250
- 8 . 72
5
209.534
0.6863
- 2. 533
- 2.609
0.076
2 . 93
1
210.000
0.68 78
- 2.817
- 2.597
- 0. 219
- 8.44
2
210.000
0.6378
- 2.817
- 2.597
- 0.219
- 8 . 44
4
215.000
0.7042
- 2 . 340
- 2.477
0.137
5.52
1
220.000
0.7205
- 2.542
- 2.364
- 0 . 178
- 7 . 52
2
220.030
0. 7205
- 2.576
- 2.364
- 0.212
- 8.97
1
230.000
0. 7533
- 2.288
- 2.162
- 0 . 126
- 5*84
2
230.000
0.7533
- 2. 343
- 2.162
- 0 . 181
- 8 . 38
5
238.759
0.7320
- 1.972
- 2.005
0.033
1.63
1
240.000
0.7860
- 2.095
- 1.984
- 0.111
- 5 . 61
2
240.000
0.7860
- 2. 116
- 1.984
- 0.132
- 6.65
4
240.000
0.7860
- 1.90 0
- 1.984
0 . 085
4.26
1
250.030
0.8188
- 1.924
- 1.828
- 0.096
- 5 . 26
2
250.000
0.8188
- 1. 944
- 1.828
- 0.117
- 6 . 39
5
254.607
0.8345
- 1.733
- 1.759
0.026
1.45
1
250.000
0.8515
- 1.759
- 1.688
- 0.070
- 4 . 17
2
250.000
0.8515
- 1.786
- 1.688
- 0.098
- 5 . 80
1
270 . JO j
0.8343
- 1 . 614
- 1.564
- 0.051
- 3 . 23
2
270.000
0.8843
- 1. 649
- 1.564
- 0.085
- 5 . 43
3
273.150
0.8946
- 1.521
- 1.527
0.006
0 . 39
4
27 3 . 150
0.8946
- 1. 535
- 1.527
- 0. 007
- 0.48
5
273. 150
0.8946
- 1.507
- 1.527
0.020
1 . 33
8
273.200
0.8948
- 1.527
- 1.527
0 . 000
0 . 02
1
280.000
0.9170
- 1.470
- 1.452
- 0.018
- 1.25
2
280. 000
0.9170
- 1.511
- 1.452
- 0.059
- 4 . 09
2
290.000
0.9498
- 1.408
- 1.351
- 0. 058
- 4 . 26
3
298. 138
0.9764
- 1.275
- 1.275
0 . 000
0.03
8
298.200
0.9766
- 1.284
- 1.275
- 0 . 009
- 0.71
2
300.000
u • 93 25
- 1 . 305
- 1.259
- 0.046
- 3.68
5
336.052
1 . 03 24
- 1.204
- 1.207
0 . 003
0 . 27
3
322.748
1.0570
- 1. 078
- 1.079
0 . 001
0 . 07
8
323.200
1.0585
- 1. 082
- 1.076
- 0.006
- 0. 60
3
347.652
1.1386
- 0.916
- 0.917
0.002
0 . 19
3
372.522
1.2201
- 0.784
- 0.784
0.001
0 . 09
8
377.500
1.2367
- 0.752
- 0.760
0.008
1 . 10
3
397.844
1.3030
- 0.671
- 0.671
- 0. 001
• 0.08
8
410. 900
1.3458
- 0.616
-0 .619
0 . 004
Q . 61
3
422.700
1.3844
- 0.576
- 0.576
- 0.000
- Q . 04
8
444.300
1.4551
- 0.508
- 8.505
- 0.003
- 0.69
6
477.600
1.56 42
- 0.423
- 0.411
- 0.013
- 3.09
8
510.900
1.6733
- 0. 350
- 0.331
- 0. 019
- 5 . 83
» 1TJOI
69
APPENDIX E. (Continued)
Cryogenics Division - NCS Institute for Bosk Stondords
LABORATORY NOTE
PROJECT NO.
2750364
Fill NO.
73-4
PAM
1 3
SUBJECT
Ethane Virial Coefficients and Saturated Vapor Densities
NAME
R . D. Goodwin
DATE August 14, 1973
Table 3. Third virial, (7) Chueh, (10) Douslin, (4) Hoover, (5) Pope.
THIRD VIRIAL*
217
•800 0.
253773 0
.865299
C. 556075
0.000000
ID
T.K
T/TCRT
C*
CA LCD
DIFF
7
210.000
0 ,5878
-0. 251
-0. 247
-0.004
7
220.000
0.7205
0.055
0.055
0.000
7
230. U 0 0
0.7533
0. 249
0.247
0.002
7
240. uQO
0 .7860
0. 367
0.366
0.001
7
230.000
0.8188
0. 436
0.438
-0.002
7
280.000
0.3515
0. 472
0. 477
-0.006
10
273.150
0.3946
0. 489
0. 499
-0.010
10
298. 150
0.9765
0. 500
0 . 489
0.011
10
30 3. 150
0.9929
0. 491
0.483
0.008
10
323.150
1.0584
0. 455
0. 453
0.003
10
343.150
1.1402
0. 409
0. 410
-0.001
10
373. I5u
1.2 221
0. 364
0 . 369
-0.004
10
398. 150
1.3040
0. 328
0 . 332
-0.003
10
423. 150
1.3859
0. 295
0.299
-0.004
10
448. 150
1.4678
0.268
0. 271
-0.003
10
47 3. 150
1.5496
0. 250
0.247
0.002
10
498. 150
1.5315
0. 228
0.227
0.002
1C
523.150
1.7134
0.212
0.209
0.004
10
548. 150
1.7953
0. 195
0 .193
0.002
10
573. 150
1.8771
0. 182
0 • 180
0.002
10
598. 150
1.9590
0.167
0.168
•0.001
10
623. 150
2.3409
0. 154
0.157
-0.003
NP =
22. ME ANDIFF = 0.
004
ID
T , <
T/TCRT
C*
CALCD
DIFF
5
209.534
0.5863
-2. 770
-0.264
-2.505
4
215. 000
0.7042
-3. 356
-0.079
-3.277
5
238.769
0.7820
0.175
0. 354
-0.180
4
240. 000
0.7860
-0. 121
0. 366
-0.487
5
254.807
0.8345
0. 401
0. 460
-0.059
5
273. 150
0.8946
0. 489
0 . 499
-0.010
4
273. 150
0.8946
0. 501
0. 499
0.002
4
273. 150
0 .8 94 6
0. 537
0. 499
0.038
4
298. 138
0.9764
0. 507
0.489
0.017
5
306.062
1.3024
0. 473
0.479
-0.006
4
322. 748
1.0570
0. 456
0. 453
0.003
4
347. 652
1.1386
0. 405
0.411
-0.006
4
372.522
1.2201
0. 364
0. 370
-0.006
4
397.844
1.3030
0.330
0. 332
-0.002
4
422.700
1.3844
0. 301
0 . 300
0.001
ff 11142 A
70
APPENDIX E. (Continued)
Cryogenics Division - NBS InsMtvte for Bosk Standards
LABORATORY NOTE
PROJECT NO.
MM
HIE NO.
SUBJECT
NAME
Ethane Virial Coefficients and Saturated Vapor Densities
R. D. Goodwin
DATE
August 14, 1973
Table 4. Terms of the virial equation for saturated vapor,
TERMS OF THE VIRIAL EQUATION FOR SATURATED VAPOR
T * K
P, ATM
MQl/t
DI/ON 6* S
C*S2
2 CT, 05
90
0. 0000099
0. 0000013
0.999996 -Q.QGG004
-0.000000
0.999996
95
0 • 0000346
0. 0000045
0 .999987 -0 .000011
-0.000 000
0 » 999989
100
0. 0001067
0. 0000130
0.999966 -0.000028
-0.000000
0.999972
105
0.0002916
0. 0000338
0.999920 “0 .000 064
-0.000 000
0.999936
110
0. 0007207
0.0000799
0.999831 -0.QC0133
-0.000 00 0
0.999867
115
0.0016337
J. 00O1732
0.999670 -0.000256
-0.000 00 0
0 .999744
120
0. 0034347
0. 0003490
0.999398 -0.000462
-0.000 000
0.999538
125
0.0067608
0. 0006596
0.998969 -0.000787
-0.000 0Q0
0.999213
130
0 . 0125592
0. Ou 11793
0.998323 -0.001276
-0.000001
0.998723
135
0. 0221670
0. 0020063
0.997397 -0 • 0ui982
-0.000002
0.998016
140
0.0373903
0. 00 32674
0.996119 -0.002961
-0.000 005
0 .997034
145
0 • 0605738
0. 0051196
0.994420 -0 .00427 6
-0.000 009
Q ,995715
150
0 . 0946592
0.0077508
0.992228 -0 .005991
-0.000016
0.993994
L 5 5
0. 1432275
0. 0113809
0 .989479 -0 .008171
-0.000026
0.991803
1 60
0. 2105236
0. 0162608
0 .936113 -0 .010 882
-0.000 042
0.989077
165
0. 30 14633
3. 0226721
0.982082 -0.014185
-0.000063
0.98575?
170
0. 4216243
0. 0309256
0 .97 7343 -0 .018141
-0. 000 090
0 .981769
175
0,5772221
J. 0413607
0 .971866 -0.022806
-0.000124
0 .977070
1 8 C
0. 7750743
J. 0543439
0.965625 -0.028233
-0.000164
0.971603
185
1. 0225573
0. 0702692
0.958606 -0 .034470
-0.000206
0.965324
190
1. 3275553
0. 0695573
0.950796 -0.041563
-0.000248
0.958189
L 9 5
1. 6984137
0. 1126577
0.942186 -0 .049554
-0.00 0 281
0.950164
2 0 0
2.1438785
0. 14Q0503
0 .932771 -0 .058485
-0.0 00 299
0.941217
205
2.6730575
0. 1722494
0.922541 -0.068395
-0.000287
0.931318
210
3.2953721
J. 2098093
0 .911484 -0 .079325
-0.000230
Q. 920445
215
4.0205218
0.2533319
0.899587 -0.091321
-0.000 107
0 .908571
220
4. 85845? 3
0. 3034770
0.886826 -0.104432
0.000108
3.895676
225
5.8193516
0. 3609763
0.873177 -0.118715
0.000 440
0.681732
2 3u
6. 913610 8
0. 4266509
0.858605 -0.134238
0.000 952
Q .866714
235
8. 1518573
0. 5014347
0.843069 -0.151085
0.001 671
0 . 850586
240
9 • 54495 5 1
0. 5864036
0 .826523 -0 .169358
0.002667
0.833309
245
11. 1040386
0.6828144
0 .80 8912 -0 .189185
0.004017
0.814032
250
12.8405603
0. 7921552
0 . 79 0 174 -0 .210 72 5
0.005318
0,795093
255
14. 7663588
0. 9162120
0.770240 -0.234180
0 .008194
0,774014
260
15. 8937542
1. 0571595
0.749033 -0.259804
0.01130 5
0.751500
265
19. 2356771
i. 2176851
0.726466 -0.287925
0.01536 1
0.727436
270
21. 8058475
1. 40 11641
0.702440 -0.318963
0.020 642
0.701679
275
24. 6190249
1. 6119133
0 .676839 -0 .353469
0.027531
3 .674063
280
27. 6913739
1. 8555713
S .649528 -0 .392177
0.036563
0.644386
285
31.0410283
2. 1396981
0.620339 -B. 436086
0.048505
0 .612418
290
34.6890345
2. 4747097
8 .589059 -0 .48660 0
0.0 6449 8
0.577898
295
38.6611522
2. 8756823
0.555393 -Q. 545771
0.086320
0.540549
300
42.9921502
3. 3657409
0.518891 -0.616818
0.116916
0.500098
305
47. 7441963
3. 9859334
0.478608 -0.705645
0.161805
0 .456160
W 1134? A
71
APPENDIX E. (Continued)
Cryogenics Ovnion - MBS Imtitvte for Bosk Stondords
S LABORATORY NOTE
«o*ct NO.
2750364
NU NO.
73-4
PAOC
15
| SUBJECT " "
Ethane Virial Coefficients and Saturated Vapor Densities
MAME R . C
). Goodw
in
DATE August 14, 1973
Table 5. Saturated vapor densities derived via \7.P. and virial equations
ETHANE SATO. VAPOR DENSITIES VIA V.P. AND VIRIAL EQNS.
ID
T,K
P. ATM
PLANK/KAMB
MOL/L
PCT
1
69. 699
9.9670-006
1.3511-006
1.3511-006
0.00
1
90.000
1.0238-005
1.3863-006
1 .3863-006
0.00
1
95.000
3.5808-005
4.5936-006
4.5936-006
0.00
1
100.000
1.0952-004
1.3347-005
1.3347-005
0.00
1
105.000
2.9651-004
3.4649-005
3 .4648-005
0.00
1
110.000
7.3654-004
8.1615-005
8.1612-005
0 .00
1
115.000
1,6670-003
1.7671-004
1.7670-004
0.01
1
120.000
3.4991-003
3.5558-004
3.5552-004
0.01
1
125. 000
6.8762-003
6.7110-004
6.7093-004
0.02
1
130.000
1.2752-002
1.1974-003
1.197 0-003
0.04
1
135.000
2.2468-002
2.0336-003
2.032 3-00 3
0.06
1
140.000
3.7834-002
3.3064-003
3.3033-003
0.09
1
145.000
6.1192-002
5.1721-003
5.1653-003
0.13
1
150. 000
9.5478-002
7.8184-003
7.8043-003
0.18
1
155.000
1.4426-001
1.1464-002
1 .1436-002
0.24
1
160.000
2.1176-001
1.6358-002
1.6308-002
0.31
1
165. 000
3.0288-001
2.2781-002
2.2694-002
0.38
1
170.000
4.2317-001
3.1042-002
3.0899-002
0.46
1
175.000
5.7882-001
4.1479-002
4.1252-002
0.55
1
180.000
7.7662-001
5.4457-002
5 .411 1-002
0.64
1
185.000
1.0239+000
7.0369-002
6.9860-002
0.73
1
190.000
1.3287+000
8.9635-002
8.8911-002
0.81
1
195.000
1.6991+000
1.1271-001
1 .1171-001
0.89
1
200.000
2.1440+000
1.4006-001
1.3872-001
0.97
1
205.000
2.6726+000
1.7222-001
1 .704 7- 001
1.03
1
21 0. 0D 0
3.2943+000
2.0973-001
2 .075 0-001
1.08
1
215.003
4.0166+000
2.5321-001
2.5043-001
1.11
1
22 0. 00 0
4.8561+000
3.0 331-001
2 .9993-001
1.13
1
225.000
5.6165+000
3.6077-001
3.5674-001
1.13
1
230.000
6.9105+000
4.2642-001
4.2173-001
1.11
1
235.000
8.1487+000
5.0120-001
4.9585-001
1.08
1
240. 000
9.5420+000
5.8618-001
5.8025-001
1.02
1
245. 000
1.1102+001
6.8262-001
6.7626-001
0.94
1
250. 000
1.2839+001
7.9203-001
7 .8551- 001
0.83
1
255.000
1.4766+001
9.1618-001
9.0997-001
0.68
1
260.000
1.6695+001
1.0572+000
1.0522+000
0.48
1
265.000
1.9238+001
1.2179+000
1.2154+000
0.21
1
270.000
2.1810+001
1.4016+000
1 .4041+ 000
-0.18
1
275.000
2.4624+001
1.6125+000
1 .6245+000
-0.74
1
280. 000
2.7697+001
1.8563+000
1 .886 1+000
-1.58
1
285.000
3.1047+001
2.1404+000
2.2047+000
-2.91
1
290.000
3.4693+001
2.4754+000
2.6108+000
-5.19
*
V 111471
72
APPENDIX E . (Continued)
Cryogenics Division - NftS bwtrivte for Boik Standards
LABORATORY NOTE
PROJECT NO.
275036^
PIIE NO.
73-4
PAOg
16
NAME
Ethane Virial Coefficients and Saturated Vapor Densities
R. D.
Goodwin
DATE August 14, 1973
PRO SRAM VIRUS : ““ —
ETHANE VIRIAL COEFFICIENTS, X = T/TCRT, Q = X**l/2,
C 3 V - ( B1 ♦ 32/X**E3 ♦ 133/X ♦ 84/X2 *■ 05/ X3 ) * ( 1* ( TZ / T ) **1/ 4 ) .
C S V = (C1/X**EC *• C2/X3 f C3/X5)* (1-TZ/T) •
C ID, (L)EUCKEN, (2 ) - AMBERT » (3)MICHELS, (4)H00VER, (5)POPE,
C ( 6 ) MCGLASHAN, (7)CHUEH, <8)GUNN, (10) OOUSLIN»P RE PRINT*
C V CRT, CC/ MOL , ROSSINI (195 3) /MCGLASH AM= 148 , EU 8ANK/P0PE=146. 2,
C TESTER(1961) =141.7, OOUSLIN (197 3) =1 45 .56.
COMMON/ 1/M, EB,EC»TZB,TZC, BVS,CVS, B(5),C(4)
COMMON/3/ OPSOT
COMMON/999/NP,NF,H(l5) , Y ( 20 0 ) , G ( 2 0 0 , 1 5)
DIMENSION 10(20 0 ) , T ( 2 30 ) , BV ( 20 0 ) , CV ( 2 CO ) , X ( 20 G ) ,XQ(2QQ)
1 F ORMA T ( 15, 2F10.0)
2 F ORM A T ( 1 HI 13X 1HM 5X5HE(BC) 8X2HTZ 8X2HSS)
3 FORMAT(10X 15, 2F10.3, F13.4)
4 F ORMAT ( 1H1 1 7X *E THANE SECOND VIRIAL COEFFICIENT*//
1 18X4HEB = F 6. 3 » EH, TZ =F6.1// 15 X 5F12.6//
2 18X2HID 7 X 3HT » K 5X4HT/TC 7X2HB* 5X4HCALC 5X4HDIFF 5X4HPC NT )
5 F ORMAT (15X 15, F1L.3, r 9.4, 3F9.3, F9.2)
6 FORMAT(lH117X*THIRD VIRIAL, M =*I2, 6H, EC =F6.3// 16X F10.3,
1 4FL1.6// 18X2HI0 7X3HT , K 4X6HT / T CRT 6X2MC* 5X5HCALCD 6X4HD IFF )
7 F ORMA T( 15X 15, F1j.3, F1Q.4, 3F10.3)
8 F ORMAT ( 1 8X 4HNP =13, 12H, MEANDIFF = F7.3)
9 F ORMA T ( 1 8X 4HNP =13, 11H, MEANPCT =F6.3)
10 F ORM A T ( 1 HI 15X* TERMS OF THE VIRIAL EQUATION FOR SATURATED VAPOR*//
1 1 7X 3 HT , K 7X5HP,ATM 7X5HMOL/L 5X5HDI/DN
2 7X 3 H B* S 5X4HC*S2 4X6HZ(T,0) )
11 F ORMAT ( 1 OX F10.G, 2F12.7, 4F10.6)
12 F ORMAT ( 1H1 17X 2MID 7X3HT,K 5X4HT/TC 7X2HB* 5X4HCALC
1 5X4HDIFF 5X4HPCNT)
13 F0RMAT(1H117X2HID 7X3HT,K 4X6HT /T CRT 6X2HC* 5X5HCALCD 6X 4 HD IFF)
15 T TR 3 = 89 • 899 5 TCRT=305. 33 $ DCRT= 1 . 0 / 145. 56
C GENERATE MCGLASH AM DATA FOR BV(T), CC/MOL.
C INCREASE ABS (MCGLASHAM) BY ONE PERCENT (148/145.56 = 1.017).
16 N = 0 $ DO 19 J = 1 , 12 B N = N* 1 $ TT = T ( N) = 140 ♦ 10 *J
17 X(N)=TT/TCRT B X3 (N) =SQRTF(X (N) ) $ IO (N ) = 6
18 3 V ( M ) = 1. 0 1*GL ABF ( TT ) B Y (N) = 8V(N)*DCRT
19 CONTINUE
C READ DOUSLIN (1973) DATA, CC/MOL.
20 DO 23 J=l, 99 B READ 1, IOD»TT ,BB B IF(IDD) 21,24
21 N = N+l B ID(N) =IOD B T (N) =TT S BV ( N) =BB
22 X ( N) =TT/ TCR T B X 3 (N> =SiRTF(X (N) ) B Y(N)=BB*OCRT
23 CONTINUE
24 NP = N $ NF = 5 B SSK = 1.0E+Q10
C READ SECOND VIRIAL DATA.
25 DO 28 J = 1 , 9 9 B READ 1, IDD,TT ,BB $ IF(IDD) 26,29
26 N = N+l B I D ( N) = I OD B T ( N) =TT B BV(N)=BB
27 X ( N) =TT/ TCRT B X Q ( N) = SQRTF ( X ( N) ) B Y ( N) =3B* DCRT
28 CONTINUE / /
29 NPP = N B M = 0 7 / 2 6 / 23
C EXPLORE VALUES FOR EB AND FOR TZ B.
C MCGLASHAM TZB NEAR 2.7*TCRT = 824 K.
30 EB = 0.25 B TZ = TZB = 740 B PRINT 2
C 31 DO 44 IE*1,3 B EB = 3.25*IE
C 32 DO »4 I T=1 , 17 % TZ = 640 ♦ 1Q*IT
V 1194? t
73
APPENDIX E . (Continued)
Cryogenics Ownion - NBS bwtihrt. tor Bomc Stondords
LABORATORY NOTE
HK5JECT NO.
2750364
FILE NO.
73-4
PAOC
17
; SUBJECT '
Ethane Virtal Coefficients and Saturated Vapor Densities
R. ■
3. Good-w
in
DATI August 14, 1973
33 DO 36 J=1,NP B U=X ( U) $ Q=XQ(J) $ W = 1- ( TZ /T ( J) ) ** 0 . 25
34 G«J,1)=W $ G ( J, 2 ) =W/U**E0 $ G ( J , 3 ) = W / U £ G ( J , 4 ) =W /U**2
35 G ( J, 5 )=H/U**3
36 CONTINUE l CALL EGLNFT £ SS = 0
37 DO 39 J=1,NP £ YC = 3 J DO 38 K=1,N C
38 YC = YC ♦ H <K) *G< U,K>
39 SS = SS ♦ A8SF(Y( JT/YC-l) $ SS = 100*SS/NP
40 IF (SS.LT.SSK) 41,44
41 S SK= S S S EK-E3 £ TK = T Z S DO 42 K = l,5
42 B(K) = H (K)
44 PRINT 3, M , E8 » T Z * SS $ E 8=EK $ T Z = T ZB=TK $ SS = 0
|i C USE SAVED CONSTANTS FOR DEVIATIONS.
45 PRINT 4, EB, TZ, (B(K),K=1,5)
46 DO 51 J=1,NPP £ U=X(J) £ Q=XQ(J) $ M = 1- ( TZ /T < J) ) ** 0 . 25
47 YC = W* ( B ( 1 ) B(2)/U**EB ♦ B(3»/U ♦ B(4)/U**2 ♦ B(5)/U**3)
48 D I F = Y ( J ) - Y C £ PCT=-1GO*OIF/YC $ S S = S S +A BS F < PCT)
49 PRINT 5, ID (J) , T ( J) ,X ( J ) , Y( J) ,YC, OIF , PCT $ IF(J-NP) 51*50
50 SS = SS/NP £ PRINT 9, NP,SS $ PRINT 12
51 CONTINUE £ N = U
C SENERATE THIRD VIRIAL DATA VIA CHUEH(1967), ID = 7.
C DIMINISH CHUEH DATA 8Y 2 PERCENT.
52 DO 55 J= 1, 6 £ N = N + l $ TT = T (N ) = 200 + 10*J
53 X <N> =TT/TCRT £ X Q ( N ) = SORT F i X < N> ) $ ID(N) = 7
54 C V ( N ) = G.98*CHUCF(TT) $ Y ( N) = CV ( N) *DCR 1**2
55 CONTINUE £ K = N + 1
C READ DOUSLIN (1973) DATA, (CC/M0L)**2.
56 DO 58 U = K, 9 9 £ READ 1, 10 ( J) , T( J) , C V( J) $ I F ( ID ( J> > 57,59
57 X (J) =T( J)/TCRT £ X Q ( J ) = SQRTF ( X ( U) ) £ Y ( J) = C V ( J) *DCRT**2
58 CONTINUE
59 NP = U-l £ NF = 3 £ SSK = 1.0E+31G
C READ THIRD VIRIAL DATA. TZC NEAR 220 K.
60 K = NP+1 £ DO 63 U=K, 99
61 RE A3 1, ID ( U) , T ( J ) , C V ( J ) £ IF ( I D ( J ) ) 62,64
62 X(J> = T ( U ) / T C R T £ XD ( J ) =SQRTF< X ( J ) ) $ Y ( J) =C V ( J) *DCR T* *2
63 CONTINUE
64 NPP = J-l 5 EC = 1.0 $ PRINT 2
C EXPLORE VALUES FOR EC AND FOR TZ.
C 65 00 76 I E = 1 , 4 £ EC = }.5’IE
66 00 7 6 I T = 1 , 11 £ TZ = 217.60 ♦ 0.05*IT
67 00 59 J=1,NP £ U = X(J) £ W = 1-TZ/TCJ)
68 G (J»1)=W/U**EC £ G(U, 2) =W/U**3 £ G( J, 3 ) =W/U** 5
69 CONTINUE £ CALL EGENFT £ SS = 0
70 DO 72 J= 1, NP £ YC = 3 £ 00 71 K=1,NF
71 YC = YC ♦ H(K)*G(U»K) ?/26/V3
72 SS = SS ♦ ABSF < Y < J) -YC) £ SS = SS/NP
73 IF (SS.LT.SSK) 7N,76
74 SSK=SS $ TK = T Z £ EK = EC $ MK=M £ DO 75 K*l,4
75 C (K) = H (K)
76 PRINT 3, M » EC » T Z » SS £ M = MK
77 TZC = TZ = TK $ EC s EK $ SS = C
C USE SAVED CONSTANTS FOR DEVIATIONS.
79 PRINT 6, M,EC,TZ, (C(K),K=1,4)
80 DO 35 J s 1, NPP £ U = X(J> S W = 1-TZ/TCJ)
81 YC * W* (C(1)/U**EC ♦ C(2)/U**3 ♦ CC3)/U**5) __
82 PCT = Y ( J) - YC £ ^ a SS ♦ ABSF(PCT)
» 1114? I
74
APPENDIX E. (Continued)
Cryogenics Division - MRS Institute for Bostc StondoHs
LABORATORY NOTE
MtOJICT NO.
2750364
me no.
73-4
BAOE
18
SUBJECT
Ethane V irial Coefficients and Saturated Vapor Densities
NAME R. D. Goodwin
August 14, 1973
VIRUS 0 7/26/7 3
83 PRINT 7, ID ( J) , T ( J) ,X ( J) , Y< J) , YC, PCT $ IF(J-NP) 85,84
84 SS = SS/NP 5 PRINT 8, NP,SS $ PRINT 13
85 CONTINUE
j C NOW EXAMINE TERMS OF THE VIRIAL EQUATION AT SATURATION.
: C THE IDEAL GAS DENSITY IS DI = P/(R*T>,
90 PRINT 10 B DO 95 J=l,44 $ TT = 85 ♦ 5*J
91 PS= 3 SATF (TT ) B ON=DNGSF (TT ) $ Z = ZIPF(TT,DN)
92 01 = PS/TT/0. «923 56156 $ DR = D I/D N
95 PRINT It, TT,PS»DN» DR, BVS,CVS, Z
99 STOP S ENO
SINGLE-BANK COMPILATION.
FUNCTION CMUCF(T)
C ETHANE THIRD VIRIAL VIA CHUEH FORM ULA ( 1967 > , <CC/M0L)**2.
C CV ( T) /VCRT**2 = F A *F B ♦ FC, FA = A/Q + B/X5,
C -B = 1 - EXP (1 - A l * X2 ) , FC = EXP (- C ♦ 0* X - E»X2), X = T/TCRT.
OATA (TCRT=305. 33 ) , < VCR T= 145 . 56 ) , <AL=1.89>
DATA ( A = G • 2 321 , (8 = 0.463 ) , (C=2. 49) , (0 = 2.30 ) , (E=2.7 0)
1 X=T/TCRT $ Q=SQRTF ( SQRTF ( X) ) $ X2=X**2 $ X5=X**5
2 FA = A/Q *■ 3/ X 5 S FB = 1 - EXPF (1- AL*X2 )
3 FC = EX PF ( - C D*X - E*X2)
4 CHUCF = (FA*FBfFC> *VCRT**2 S RETURN $ END
FUNCTION DNGSF(T)
C 3 L AN</KA MBEI TZ VIA TESTER (P.17D/0IN. VALID 17 0 TO 305 K.
C V = R*T/P - C1/K**A - C2*P**2/X**B , X = T/100,
C V IN CC/GRAM, T IN KELVINS, P IN KG/CM**2,
C l ATI = 1.03323 KS/CM**2, R=2.822, Cl = 69 .0 ♦ C 2=2 7. 9, A = 2.4, 8=9.0
DATA (R = 2.822> , ( C 1 = 89. 3 ) , (C2 =27 . 9 ) , ( A =2 .4 ) , (8=9.0 ) , <WM=3 0 .0 7)
1 P = PSATF(T) B P = 1. Q3323*P $ P2 = P**2
2 X = T/100 S XA = X**A B XB = X**B
3 V = R*T/P - Ci'XA - C2*P2/XB
4 DNGSF = 100 0.88/V/WM $ RETURN $ ENO
» 113 - 4 ? «
75
APPENDIX E. (Continued)
CryogwHcs Oviwofi - MBS bMMut. for Bmk Stondordt
LABORATORY NOTE
MtOXCT NO.
275036^
me no.
73-4
BAO«
19
Ethane Virial Coefficients and Saturated Vapor Densities
NAMB J-
). Goodw
in
DATl August 14, 1973
FUNCTION GLABF(T)
C ETHANE SECOND VIRIAL COEFF. VIA MC GLASHAM FORMULA (1962),
C 1C G. BELIEVES EUCKEN/PARTS ARE WRONG.
0 3 V ( T) / VC R T = 31 - B2/X - B3/X2 - B4/X**4.5, X = T/TCRT.
DATA (TCRT =335.4) * (VC RT =148.0)
DATA (B 1=0.433) , (B2=0.886), (B 3= 0.694) *(04=0.0375)
1 X=T'TCRT S X2=K**2 S XN = X**4.5
2 F = 31 - 3 2 / X - 93/X2 - B4/XN
9 GLA3F = VCRT*F $ RETURN $ ENO
07/26/73
FUNCTION PSATF(T)
LN(P'PTRP) = A*K «• 8*X 2 ♦ C*X3 ♦ 0*X4 ♦ E* X* ( 1-X ) ♦ *EP .
COMION/3/ OPSOT
DATA (TTRP =89.899) * (TCRT=305.33), (PT RP=9. 61 6E-6) * (EP = 1.6)
DATA ( A = 8. 454987344 ), (3 = 12.4880 39 775 ) ,(C=-4. 10428 1551) *
1 (D=-l. 413860533) * (£= 8. 526522526)
1 F OR1 A T ( 1 H3 9X *PSATF = 0* T EXCEEDS TCRT. * / )
2 XN=1-TTRP/TCRT $ X= (l-TTRP/TJ/XN $ X2=X**2 $ X3=X**3 $ X4=X**4
3 DXDr = TTRP/XN^T**2 $ Q a 1-X $ IF(Q) 4,5,6
4 PSATF = DPS DT = 3 $ 3 R I NT 1 $ RETURN
5 Z = Z 1 = 0 B GO TO 7
6 W = Q**EP $ HI = -EP*W/Q $ Z = X*H $ Z1 = W + X*W1
7 F = A*X ♦ B*X2 «• C*X3 ♦ 0*X4 + E*Z
8 FI = A ♦ 2*B*X f 3*C*X2 ♦ 4*D*X3 ♦ E * Z1
9 PSATF=PTRP*EXPF(F) $ DP SO T=F 1*P SA TF* O XO T S RETURN $ END
07/26/73
FUNCTION ZIPF(T,0)
C Z ( T , 0 ) a 1 ♦ BV ( T) *S ♦ CV(T)*S**2, S = D/OCRT, X = T/TCRT •
C 3 V = ( B1 ♦ B2/X**EB ♦ B3/X ♦ B4/X2 ♦ B5/X3 ) * ( 1- ( TZ/T) **1/4 ) .
C CV = ( Cl/ X* * EC f C2/X3 ♦ C3/X5) * (1-TZ/T) .
C0M10N/l/i,EB,EC,TZB,TZC, BVS,CVS, B(5),C<4)
DATA (TCRT=305. 33) , ( VCRT = 0 . 1 4556)
1 S = D* VCRT B X= T/ TCRT S Q=SQRTF(X) $ R=X**EC
2 X2=X**2 $ X3=X**3 $ X4=X**4 $ X5=X**5
3 ZB = 1 - (TZB/T) **0.25 S ZC = 1 - TZC/T
4 BV = ZB* (B ( 1) * B ( 2 ) / X* *E B ♦ 8(3) /X «• B(4)/X2 ♦ B(5)/X3)
5 CV = ZC*(C(1)/R * C ( 2 ) / X 3 ♦ C(3)/X5)
6 B VS = B V*S B CVS = CV*S**2
7 ZIP ? = 1 ♦ BV S «• CVS $ RETURN $ ENO
tf 1114? I
76
APPENDIX E. (Continued)
Cryoganks DMHon-NK feaMuto ter ink 8*ondord»
LABORATORY NOTE
nOJCCT NO.
2750364
ms mo.
73-4
fk<m
20
SUBJECT
Ethane Virial Coefficients and Saturated Vapor Densities
MAMI R . D. Goodwin
DATf
August 14, 1973
07/26/73
PROG RAM VAPORDEN
C ETHANE SATVAPORDEN V/ 1 A V.P. AND VIRIAL EQNS.
C ON ISOTHERMS, ITERATE OEN IN VIRIAL EQN. TO MINIMIZE (P-PSAT).
COM M3N/3/ DPSOI
1 FOR.MATUHX ♦ETHANE SATO. VAPOR DENSITIES v/ 1 A V.P. AND VIRIAL EQNS ,
1 *//18X2HID 7 X 3 H T , K 7X5HP,ATM 2 X 1 OHPL ANK/KA MB 7 X5HM0L/L 7 X3HPCT )
2 FORMA! ( 1 5 X 15, F10.3, 3E12.4, FI 0.2)
3 F0RMAT(I5, F10.3, 2E15.5)
1 9 10= 1 ft T TR 3 = 30.393 ft PRINT 1
20 DO 30 U= 1 » 4 2 4 IF(J-l) 23,22
22 1 - rrRP ft GO TO 24
23 T = HU 4 5 * J
24 D I = DNGSF(T) * P = PSATF(T) ft OEN = FI NOF ( T , P, 01 )
2b PUNCH 3, ID, T , D E N , P
27 Dir = DI-DEN I PCT = 100*DIF/DEN
23 PRINT 2, ID, T,P, 01, JEN, PCT
30 CONTINUE ft uTDP ft ENO
SINGwE- 3 A N < COMPILATION.
FU OCT ION F I N Q F ( I , P , 0 I )
C ON ISOTHERM I, ITERATE OEN TO MINIMIZE (P-PCALC).
COMMON JZOS
data (3K=0. 082056156), <VC2T=0. 14556)
1 FORMAT ( 1H0 9X *FINDF = 0, FAILS TO CONVERGE.* / )
2 D - JI $ GT = GK* T ft DO 9 J=l,50
3 1 - Z I P r ( T , D ) 4 PC = 0*GT*Z ft DP = P-PC ft AP = ABSF(OP)
4 0 = AP/P-1.0E-6 5 IF ( 0 ) 10,10,5
5 DP DO = 6 T* ( Z 4 D*OZOS* VCRT) ft ADP = ABSFCDPOD)
6 u = AP/ADP/D-i. Cr.-6 ft IF(Q) 10,10,7
7 D = 10 4 OP/DPOD ft IF ( 0 ) 8,8,9
3 D = P/I/GK
3 CONTINUE ft FINDF = 0 ft PRINT 1 ft RETURN
10 FIN JF = U ft RETJRN ft END
» I1MI
77
APPENDIX E . (Continued)
Cryogwncj Drwdon - N>S IndttaN (or Ink Standard,
LABORATORY NOTE
MtOJECT NO.
2750364
nu no.
73-4
TAM
21
subject
Ethane V irial Coefficients and Saturated Vapor Densities
**** R. D. Goodw
in
DAT* .
August 14, 1973
FUNCTION DNGSF(T)
C Pl AiX/KANBEI t z via tested.
DATA (R=2. 822) , (01=39. 0) , (C2=27. 9) , (A=2. 4) , (I8=9),(WM=30.07)
1 P = 1.03323*P5ATF(T) $ °2 = P**2
2 X = T/130 f, XA = X**A 5 X3 = X**IB
3 V = R*T/P - C 1 X X A - C2*P2/XB
4 DNGSF = 1000.88/V/WM t RETURN I FND
08/01/73
FUNCTION PSATF(T)
C lN(P/PTRP) = A*X *■ B*X2 ♦ C*X3 ♦ 0*X4 + E*X* (1-X ) **EP.
C OMMON/ 3/ OPSOT
C CONSTANTS VIA ZIEGLER TYPE B V.P. OATA.
DATA (TTRP=89.899), (TCRT=305.33) » C PTRP=9. 96 7E-6 ) * (EP=1.5)
DATA ( A = 10 • 806922651) ,0=8,344715938) , <C=-3 . 11960 3823)
DATA (D=-0. 642995191) , (6=6.059966098)
1 FORMAT11HO 9X *PSATF = 0, T EXCEEDS TCRT. ♦ / ) 4
2 XN=1-TTRP/TCRT S X= ( 1- T TRP/T ) / X N $ X2=X»*2 $ X3=X**3 $ X4=X*»4
3 DXDT = TTRP/XN7T**2 S Q = t-X $ IF(Q) 4,5,6
4 PSATF = DPSDT =0 $ PRINT 1 $ RETURN
5 Z = Z 1 = 0 l GO TO 7
6 W = Q**EP 5 HI = -EP*W/Q $ Z = X*W $ Z1 = W ♦ X*W1
7 F = A*X ♦ 8*X2 (• C*X3 ♦ D*X4 ♦ E*Z
8 FI : A ♦ 2*8*X ♦ 3*C*X2 ♦ 4*D*X3 ♦ E*Z1
9 PSATF=PTRP»EXPF(F) S DPSD T=F 1*P SA TF* DXD T $ RETURN $ END
FU ACTION ZIPF (T , D)
C Z l T , J ) = 1 f 8 V ( X ) * S + CV(X)*S**2#
C b\l = (81 + 32/J ♦ 33/ X ♦ 34/X2 + 8 5/ X 3 ) * ( 1- ( T Z 8/ T ) ** 1 /4 ) .
0 LV = (Gl/X f C 2 X X 3 +• C3/X5) * ( 1-TZC/T) •
Condon d z d s
data (TCr<T = (0 5. 3 3) , ( V CRT=0 . 1 4556) , (TZ8 = 740. 0 ) ,(TZC=217.8) ,
1 (31 = 7.9 93156), ( 92 = -10. 67249 7), (B3 = 9. 217 322 ) , (B 4 = -2 . 4 8 1 66 8 ) ,
2 ( 35 = 0 . 3 42 328) ,01=0.2 53 773), ( C 2= 0 . 86 5299 ) , (C3= 0 . 556 0 75 )
1 S=U»VGRT J X=T/TCRT $ Q=X**0.25 S X2=X**2 l X3=X**3 t X5=X*»5
2 ZJ = 1 - (TZ3/T ) *+0. 25 I ZC = 1 - TZC/T
3 b\l = ZBMB1 f 82/0 f 3 3/ X + B4/X2 + B5/X3)
4 ^ = ZCMC1/X 4 02/ X 3 + C3/X5)
o ZIPF = 1 + Q\l* S + CJ + S+* 2 $ DZDS = 9V ♦ 2*C\I*S
3 RETURN $ END
» MMil
78
uKom ■ uu.
APPENDIX F.
Cryoyo*ci Dmtton - NBS for laaic Sfcmdords
LABORATORY NOTE
MOJECT NO.
2750364
FILE NO.
73-5
PAGE
1
SUBJECT
The Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
NAME
R . D. Goodwin
DATE Sept. 18, 1973
1 . Introduction.
These densities, and accurate analytical descriptions thereof, are essential
for the computation of thermodynamic functions, in particular to obtain heats of
vaporization via the Clapeyron equation, and to formulate the equation of state which
originates on this locus [4].
We have had difficulties in representing the available ethane data, and there-
fore have returned to fundamentals. For comparison we shall include oxyge n [18],
fluorine [13], and methane [4]. Previous formulations occur in [4, 7], We start with
the saturated liquid densities because their representation is much simpler than that
of the saturated vapor densities.
2. The Saturated Liquids.
It is well known that these densities are described near the critical point by the
form
p = p + a • (T - T) + b • (T - T) e (1)
c c c
wherein the first two terms are the rectilinear diameter, and the exponent is near
s =0.35.
Let us constrain (1) at the boundaries by use of the variables,
x ( T ) = ( T - T)/(T - T ), (2)
c c t
W(p) = (p - p )/(p - p ), (3)
etc
where subscripts c and t refer to critical and triple points. Equation (1) now
become s ,
W(p)=a*x + b*x", (4)
and the constraint requires that a + b = 1. If we solve this for the constant b, we may
expect to obtain a function Y(p,x) which is nearly constant over the entire range
0 < x < 1,
Y(p , x) = [W(p) - x]/(x £ - x). (5)
This sensitive function is useful for examining data.
In past work we found that three arbitrary coefficients are required to describe
saturated liquid densities. We now find the following results via many exploratory
computations. For the smoothed data used here for oxygen and fluorine, the use of
five arbitrary coefficients gives an improvement in the "fit". For the rough experi-
mental data used here for methane and ethane, the use of five arbitrary coefficients
gives virtually no improvement in the "fit" as compared with only three coefficients.
With only three, the first equation used was,
. 79
V 11142 k
APPENDIX F. (Continued)
Cryogenics Drvison - NK IneMute for Basic Stondords
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-5
PAGE
2
SUBJECT
The Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
NAME _ _ ,
K . D. Goodwin
DATE Sept. 18, 1973
Y(P , x) = + A ^ • x + A^ • x 0- , (6)
and we found exponent cc = 4/3 for oxygen, fluorine and methane, but a = 8/3 for
ethane. After much exploration we have selected the following representation,
2/3
Y(P , x) = A i + A 2 • x + A 3 • x (7)
Table 1 gives the fixed-point constants. Table 2A gives the exponent e found
by trial, the least- square s coefficients, the rms of relative density deviations in
percent, and the number of datum pairs, NP.
Tables 3, 4, 5, 6 compare calculated with experimental densities. No
temperature- scale adjustments have been made in present work. Column YX gives
the experimental value of Y(p,x) via (5), whereas column YC gives the value calculated
by the right side of (7). Table 7 compares ethane data not used for least squares.
Tables 8, 9, 10, 11 give saturated liquid densities computed by (7) at uniform
temperatures, and also their slopes and curvatures.
The small deviations for oxygen and fluorine necessarily are systematic be-
cause the data were smoothed by the authors. The overall methane deviation is large
because experimental data from various sources are included in the critical region.
The low-tempe rature ethane data of Miller were used to estimate the triple-
point liquid density. Other data are from Canfield et al. , and from Klosek/McKinley .
The high -tempe rature "data" of Eubank are a correlation of available experimental
data down to the boiling point 184.5 K, (x = 0.561). We estimate uncertainty in our
calculation of these densities to be about 0. 1 percent over the entire range.
Concerning assignment of critical densities, we at first found both P c and
exponent € simultaneously by trial to minimize the overall deviation. The results are
rough because these two parameters are mutually compensating for data in the critical
region. Hence we have adjusted P c one step at a time for both saturated liquid and
saturated vapor, examining the values of e found by trial. We select that value of p c
which yields reasonable exponents £ for both liquid and vapor. For methane it thus
is necessary to select P c = 10. 2 mol/T, at the upper limit of uncertainty in the experi-
mental values [4],
3. The Saturated Vapors
Densities of the ethane vapors range thru a factor of about 10^. We have given
reasons for using the logarithm of vapor densities, with arguments in powers of
(1/T), [7]. Define the normalized variables
z(T) h ( T /T-1)/(T /T - 1),
c c t
(8)
W(p) = In (o /p)/tn(p /P J.
c c t
(9)
V 11947 I
80
APPENDIX^^^^Contimj^d^
Cryo9»nia Dwion- Mt6 for Saak Sfondordt
LABORATORY NOTE
MOJECT NO.
2750364
FILE NO.
73-5
FAOC
3
SUBJECT
The Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
NAMf
R. D. Goodwin
DATI Sept. 18, 1973
We write the vapor densities equation for the critical region as follows,
-W(p) = (b-1) . z - b • z e (10)
wherein the minus sign on the left arises merely from our definition of W(p), Solving
(10) for b yields the dependent variable,
Y(p,z) - [W(0 - z]/(z £ - z) . (11)
For the present work we have explored all kinds of representations, finally
selecting the expression,
5
Y(p , z) = A 1 + ^ A. • z l/3 . (12)
Table 2B gives results for (12), analagous to table 2A for the liquid. Tables
12, 13, 14, 15 compare calculated with experimental vapor densities. Column YX is
the experimental value of Y(p,z) via (11), whereas YC is calculated by the right side
of (12). Table 16 compares ethane data not used for least squares. Tables 17, 18, 19
20 give uniformly computed densities and derivatives via (12).
Computer programs used in this work are attached as an appendix.
» mu i
81
APPENDIX F. (Continued)
Cryotanks DMaon- NH toltoPt to toe Stamtodi
LABORATORY NOTE
PtOJECT NO.
2750364
PILE NO.
73-5
PAOC
4
SUBJECT
The Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
HAMC
R. D. Goodwin
DAn Sept. 18, 1973
4. Bibliography
[1] C.H. Chui and F. B. Canfield, Trans. Faraday Soc. 67, 2933 (1971).
[2] D. R. Douslin and R. H. Harrison, Pressure-volume-temperature relations
for ethane, (U. S. Bureau of Mine s , Bartlesville, Okla. 74003, Manuscript for
J. Chem. Thermodynamics, 1973).
[3] P. T. Eubank, Thermodynamic properties of ethane: vapor-liquid coexistence,
Advances in Cryogenic Engineering 17, 270 (Plenum Pub. Corp. , New York,
N.Y. 10011, 1971).
[4] R. D. Goodwin, The Thermophysical Properties of Methane from 90 to 500 K
at Pressures to 700 Bar, NBS IR 73-342, October, 1973. Also, NBSIR
73-300, February, 1973.
[5] R. D. Goodwin, The Vapor Pressures of Ethane, Laboratory Note 73-3,
July 9, 1973.
[6] R. D. Goodwin, Ethane Virial Coefficients and Saturated Vapor Densities,
Lab. Note 73-4, Aug. 15, 1973.
[7] R. D. Goodwin, Estimation of critical constants T , p c from the p(T) and T(p)
relations at coexistence, J. Res. NBS 74A ( 2), 221 (1970).
[8] A. Harmens, Orthobaric densities of liquefied light hydrocarbons, Chem.
Engrng. Science 20, 813 (1965); 2]_, 725 (1966).
[9] J. Klosek and C. McKinley, Densities of liquefied natural gas and of low
molecular weight hydrocarbons, paper 22, Session 5, Proc. First Internat.
Conf. on LNG, Chicago, April (1968).
[10] O. Maass and C. H. Wright, J. Am. Chem. Soc. 4_3, 1098 (1921).
[11] Reid C. Miller, Ann. Rpt. to AGA, "Experimental Liquid Mixture Densities
for Testing and Improving Correlations of LNG," Proj. BR-76-1, Univ.
Wyoming, July 1, 1972.
[12] Frank Porter, The vapor pressures and specific volumes of the saturated
vapor of ethane, J. Am. Chem. Soc. 48^, 2055 (1926).
[13] Rolf Prydz and G. C. Straty, The Thermodynamic Properties of Compressed
Gaseous and Liquid Fluorine, NBS Tech. Note 392, October, 1970.
[14] M. J. Shana'a and F. B. Canfield, Trans. Faraday Soc. 64, 2281 (1968).
» 11M1J
82
APPENDIX F . (Continued)
Drvaton NBS IimH u N for Beat S to idofds
LABORATORY NOTE
PBOJECT NO.
2750364
FILE NO.
73-5
FACE
5
SUBJECT
The Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
NAME
R. D. Goodwin
DATE
[15] P. Sliwinski, The Lorenz-Lorenz function of gaseous and liquid ethane, propani
and butane, Zeit. Phys. Chem. NeCie Folge 63, 263 (1969).
[16] H. E. Tester, ETHANE, in Thermodynamic Functions of Gases , vol. 3,
F. Din, Editor (Butte rworths , London, 1961).
[17] J. R. Tomlinson (Gulf Res. and Devel. Co., Pittsburgh, Pa.), Liquid
Densities of Ethane, Propane, and Ethane -Propane Mixtures, Tech. Pub.
TP-1, Nat. Gas Processors Assoc. (808 Home Federal Bldg., Tulsa, Okla.
74103, Feb. 1971).
[18] Lloyd A. Weber, P-V-T, thermodynamic and related properties of oxygen
from the triple point to 300 K at pressures to 33 MN/m^, NBS J. Res. 74A
(1), 93 (1970).
[19] David Zudkevitch (Esso Res . & Engrng. Co., Florham Park, N.J.), The
importance of accuracy in physical and thermodynamic data to chemical
plant design, October, 1972. (Offered for publication in the Proceedings
of the NBS. )
V 1134? A
83
APPENDIX F. (Continued)
Cryo9*nics Drmion- NCS huiJiluU for Ask Stondonfs
LABORATORY NOTE
HtOJfCT NO.
2750364
FILE NO.
73-5
PAGE
6
SUWECT
The Orthobaric Densities of Ethane, Methane, Oxygen and
HAMt R . D . Goodwin
DATf Sept. 18, 1973
List of Tables
Table
1 .
Table
2A.
Table
2B .
Table
3.
Table
4.
Table
5.
Table
6.
T able
7.
Table
8.
Table
9.
Table
10.
Table
11.
Table
12.
Table
13.
Table
14.
Table
15.
Table
16.
Table
17.
Table
18.
T able
19.
Table
20.
The fixed-point constants.
Constants for vapor equation (12).
Comparison of oxygen liquid densities.
Comparison of fluorine liquid densities.
Comparison of methane liquid densities.
Comparison of ethane liquid densities.
Ethane liquid data not used for least squares.
Calculated oxygen liquid densities.
Calculated fluorine liquid densities.
Calculated methane liquid densities.
Calculated ethane liquid densities.
Comparison of oxygen vapor densities.
Comparison of fluorine vapor densities.
Comparison of methane vapor densities.
Comparison of ethane vapor densities.
Ethane vapor data not used for least squares.
Calculated oxygen vapor densities.
Calculated fluorine vapor densities.
IP I1M7I
84
APPENDIX F ■ (Continued)
LABORATORY NOTE
nojccr no.
2750364
FILE NO.
73-5
FAOC
7
tu user
The Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
R. Di.GpQdwm
DATS
Sept. 18, 1973
List of Authors for Computer Tables
ID*
Author( s)
Reference
1
Goodwin (V irial + V . P . )
[6]
6
Porter
[12]
9
Tester
[16]
10
Douslin
[2]
11
Sliwinski
[15]
12
Canfield et al.
[1. 14]
13
Klosek
[9]
14
Miller
[11]
15
Eubank
[3]
16
Tomlinson
[it]
98
Prydz
[13]
99
Weber
[18]
* For METHANE, see references in [4],
V llttf *
85
APPENDIX F. (Continued)
Cryof mg Dmm-NK InrilMa tar Seat Standard*
LABORATORY NOTE
PIOJtCT NO.
2750364
nu no.
73-5
PAOC
8
SUtJKT
The Orthobaric Densities of Ethane, Methane, Oxygen and
HAm R . D. Goodwin
BAn Sept.* 18, 1973
Table
1 . The fixed
-point constants.
Oxygen
Fluorine
Methane
Ethane
T t-
K
54. 3507
53.4811
90.680
89. 899
T C'
K .
154.576
144.310
190. 555
305.330
P c'
mol/t
13.63
15. 15
10. 20
6.87
p f
liquid
40. 830
44. 8623
28. 147
21.680
-4
-4
-2
p t’
vapor
3.36122- 10
5.670- 10
1.567865- 10
1.35114- 10
Table 2A.
Constants for liquid equation (7)
Oxygen
Fluorine
Methane
Ethane
e
0.349
0.354
0.361
0.350
A
1
0.758 8805
0.791 3438
0. 837 0910
0.761 7350
A 2
0. 228 3200
0. 112 9132
0.084 1613
0. 298 6535
A 3
-0. 230 4342
-0. 100 6980
-0.074 7858
-0.327 6239
rms , %
0.014
0.010
0.084
0. 142
NP
50
46
49
29
Table 2B.
Constants for
vapor equation (12)
Oxygen
Fluorine
Methane
Ethane
e
0.382
0.362
0.382
0.362
A i
0. 277 3707
0. 257 1572
0.374 1014
0. 192 7743
A 2
-0.338 6621
-0. 227 0644
-0. 261 5731
0.041 5501
A 3
0.769 0708
0.605 3864
0.675 3322
-0 . 789 2263
N
-1.576 1185
-1.391 6332
-1.012 2063
0. 357 6675
A 5
0.939 8713
0.792 5719
0.439 8834
0. 124 5438
rms , %
0.052
0. 134
0. 148
0. 104
NP
50
46
96
29
V 1IIUI
, APPENDIX F. (Continued)
NATIONAL 1UREAU OR STANDARDS, CRYOORNIC RNOINORINO LARORATORT
LABORATORY NOTE
raOJRCT NO.
2750364
fils no.
73-5
PAG6
9
susjict Qrthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
MA *' - R .D .Goodwin
DATI
Saiat. 1ft
Table 3. Comparison of oxygen liquid densities.
TCRT = 154.576, TTRP = 54.3507
□ CRT = 13.63C, DTRP = 40.630 0
7.5868052-001 2.2632003-001 -2.3043415-001
0 . 0000000*000 0 . 0000000*000 0 . 0000000*000
ID
T,K
MOL/L
CALC
PCNT
X
YX
YC
YO IF
99
56.000
40.601
40.603
-C.00
0.98354
0.75202
0.75805
-0.00603
99
58.000
40.323
40.326
-0.01
0.96359
0 . 75397
0.75958
-0.00561
99
63.000
40.048
40.049
-0.00
0.94363
0.76038
0.76109
-0.00072
99
62.000
39.777
39.770
0.02
0.92368
0.76779
0.76258
0.00520
99
64.000
39.494
39.491
0.01
0.90372
0.76630
0.76405
0.00225
99
66.000
39.216
39.210
0.01
0.88377
0.76840
0.76550
0.00291
99
68.000
38.926
38.928
-0.00
0.86381
0.76610
0.76692
-0.00081
99
70.000
38.655
38.644
0.03
0.84366
0.77243
0.76831
0.00411
99
72.000
38.358
38.356
-0.00
0.82390
0.76966
0.76969
-0.00002
99
74.000
38.081
38.071
0.03
0.80395
0.77392
0.77103
0.00289
99
76.000
37.779
37.782
-0.01
0.78399
0.77145
0.77235
-0.00090
99
78.000
37.495
37.491
0.01
0 . 76404
0.77482
0. 77364
0.00118
99
60. J03
37.202
37.197
0.01
0 . 7440 8
0.77614
0.77490
0.00124
99
82.000
36.900
36.901
-0.00
0.72413
0.77599
0.77613
-0.00014
99
84.000
36.603
36.602
0.00
0 . 7041 7
0. 77750
0.77733
0.00017
99
66.000
36.298
36.301
-0. Cl
0 .68422
0.77788
0 . 77850
-0.00061
99
68.000
35.997
35.996
0.00
0.66426
0 . 77979
0.77963
0.00016
99
90.000
3 5 . 6o 9
35.688
0.00
0.64431
0.78081
0 . 78073
0.00007
99
92.000
35.373
35.377
-0.01
0.62435
0.78118
0 . 78 180
-0. 00061
99
94.000
35.063
35.062
0.00
0.60440
0.78335
0 . 78262
0.00023
99
96.000
34. 734
34.742
-0.02
0 .58444
0.78261
0. 78381
-0,00120
99
96.000
34.412
34.418
-0.02
0.56449
0 . 78376
0.78475
-0.00099
99
1 0 0 . 0 00
34.083
34.040
-0.02
0 .5445 3
0.78472
0.78565
-0.00093
99
102. J00
33.750
33. 756
-0.02
0.52458
0.78563
0.78651
-0.00088
99
104.000
33.411
33.417
-0.02
0.50462
0.78659
0.78732
-0.00072
99
106.000
33.069
33.072
-0.01
0 .48467
0. 78772
0.78807
-0.00035
99
1 0 8. 0 00 .
32.712
32.720
-0.02
0 . 46471
0.78780
0.78878
-0.00098
99
1 1 0 . 0 00
32.362
32.361
C.OO
0 . 44476
0.78960
0.78943
0.00017
99
112.000
31.990
31.995
-0.02
0.42480
0 .78946
0.79001
-0.00056
99
114.000
3 1 . 6 1 o
31.620
-0. 01
0 . 40485
0.79005
0.79054
-0.00049
99
11b. 000
3 1 .230
31.236
-0.02
0 . 38489
0.79038
0.79100
-0.00062
99
113. J00
30.845
3C .642
0.01
0 . 36494
0.79169
0.79138
0.00031
99
120.000
30.441
30.438
0.01
0 . 34498
0.79208
0. 79169
0.00039
99
122. 000
30.021
30.021
-0.00
0.3250 3
0 . 79190
0.79192
-0.00001
99
124.000
29.595
29.591
0. Cl
0 . 3050 7
0.79239
0.79205
0.00034
99
126. 000
29.146
29.147
-0.00
0.28512
0.79203
0. 79209
-0.00006
99
12 1.000
28.686
26.685
0.00
0.26516
0. 79210
0.79201
0.00008
99
1 10.000
28.209
28.205
0.01
0.24521
0.79216
0.79182
0.00033
99
1 32 . 0 00
27.709
27. 7C4
0.02
C. 22525
0.79192
0. 79150
0.00042
99
1 3 4 . J 00
27.161
27.179
0.01
0.20530
0.79129
0.79103
0.00026
99
136.000
26.631
26.625
0.02
0.18534
0.79103
0.79039
0.00063
99
133.000
26.042
26.037
0 . 02
0 .16539
0.78999
0.78956
0.00043
99
I** 0 . 0 00
25.413
2 5. 4 1C
0.01
0 . 14543
0.L&M3
0. 78851
0.00032
99
142. 000
24, 734
24.733
0.01
0.1254 8
--UT7 8 73 3
0.78719
0.00014
99
144.000
23.992
23.993
-0.00
0 . 105T2
0.78549
0.78555
-0. 00006
99
1 4 6 . 0 uO
23.164
23.170
-0.C2
0 .08557
0.78287
0.78350
-0.00063
99
143.000
22.227
22.230
-0.C1
C . 06561
0.78057
0.78090
-0.00033
99
150.000
21.106
21.108
-0.01
0.04566
0.77724
0.77753
-0.00029
99
152.000
19.646
19. 6h7
-0.00
0.02570
0.77280
0.77264
-0.00004
99
1 5 *, . j 00
1 7.1C6
17.104
0.01
0.00575
0.76528
0.76488
0.00040
NP =
50, RHSPCT
= 0.C14
OCILVIK PHKM. INC., IW8 IU.TW I*. N. T.
37
APPENDIX F. (Continued)
NATIONAL BUREAU Of STANDARDS, CRYOOENIC ENOINEERINO LABORATORY
LABORATORY NOTE
FBOJICT NO. FlU NO.
RAM
SUBJECT
The Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
NAJNI
DATS
Table 4. Comparison of fluorine liquid densities.
E = 0.354
TCRT = 144 . 311 , TTRP = 53.4811
OCRT = 15 . 150 , DTRP = 44.8623
7 . 9134383-001 1 . 1291315-001 - 1 . 0069804-001
0 . 0000000*000 0 . 0000000*000 0 . 0000000*000
10
T,K
MOl/L
CALC
PCNT
X
YX
YC
YOIF
98
54.000
44.781
44.781
0.00
0.99429
0.80556
0.80 370
0.00186
98
56.000
44.465
44.464
0.00
0.97227
0.80524
0.80425
0.00099
98
58.000
44.146
44.146
0.00
0.95025
0.80553
0.80479
0.00071
98
60.000
43.825
43.825
0.00
0.92823
0.80574
0.80532
0.00042
98
62.000
43.501
43.501
0.00
0.90621
0.8060 3
0.80583
0.00021
98
64.000
43.174
43.174
- 0.00
0 . 88419
0.80632
0.80633
- 0.00000
98
66.000
42.845
42.845
- 0.00
0 . 8621 7
0.80662
0.80661
- 0.00019
98
68.300
42.512
42.513
- 0.00
0.84015
0.80693
0.80728
- 0.00034
98
70.000
42.176
42.177
- 0.00
0.81813
0.80728
0.80773
- 0.00045
98
72.000
41.836
41.838
- 0.01
0.79611
0.80760
0.80817
- 0.00056
98
74.000
41.493
41.496
- 0.01
0.77409
0.80796
0.80859
- 0.00063
98
76.000
41.146
41.149
- 0.01
0 . 7520 7
0.80831
0.80899
- 0.00068
98
78.000
40.795
40.799
- 0.01
0.73005
0.80368
0.80938
- 0.00069
98
60.000
40 .440
40.444
- 0.01
0.70803
0.80903
0.80974
- 0.00071
98
82.000
40.081
40.085
- 0.01
0.68602
0.80941
0.81009
- 0.00068
98
84.000
39. 717
39.720
- 0.01
0 .66400
0.80977
0.81042
- 0.00065
98
86.000
39.347
39.351
- 0.01
0.64198
0.81011
0.81073
- 0.00061
98
88.000
38.973
38.976
- 0.01
0.61996
0.31347
0.81101
- 0.00054
98
90.000
38.592
38.596
o
0
1
0.59794
0.81080
0.81127
- 0.00047
98
92.000
38 .206
38 . 2 C 9
yH
0
CD
1
0.57592
0.81112
0.81151
- 0.00039
98
94.000
37.613
37.815
- 0.01
0.55390
0.31143
0.81172
- 0.00029
98
96.000
37.413
37.415
- 0.00
0.53188
0.31171
* 0.81191
- 0.00019
98
98.000
37.005
37.006
- 0.00
0.50986
0.81197
0 . 812 C 6
- 0.00009
98
100.000
36.590
36.590
0.00
0.48784
0.31220
0.81219
0.00001
98
1 0 2. 0 00
36.165
36.164
0.00
0.46582
0.31240
0.81229
0.00012
98
104.000
35.731
35.729
0.01
0 .44380
0.81256
0.81235
0.00021
98
1 u 6 . 0 00
35.286
35.283
0.01
0.42178
3.31268
0.81238
0.00030
96
1 0 3.0 00
34.829
34.826
0.01
0 . 39976
0.81274
0.81236
0.00036
98
11 0.000
34.361
34.356
0.01
0 . 37774
0.31276
0.81231
0. 00045
98
112.000
33.878
33.873
0.01
0.35572
0.81272
0.61221
3.00050
98
114.000
33.379
33.374
0.02
0.33370
0.81261
0.81206
0.00055
98
116.000
32.864
32.856
0.02
0.31168
0.81243
0.81186
0.00056
98
118.000
32.330
32. 324
0.02
0.28967
0.81218
0.81161
0.00057
98
120.000
31.774
31.768
0 . C 2
0.26765
0.81183
0.81129
0.00055
98
122.000
31.193
31.188
0.02
0.24563
0.31139
0.81090
0.00049
93
124.000
30.584
30.579
0.02
0.22361
0.81086
0.81342
0.00043
98
126.000
29.942
29.939
0.01
C .20159
0.81020
0.80986
0.00034
98
123.000
2 9 . 2 fc >2
29.260
0.01
0 .17957
0.80942
0.80920
0.00022
98
130.000
28.535
28.534
o.co
C .15755
0 .30 850
0.80842
0.00009
98
132.000
27. 750
27.751
- 0.00
0 .13553
0.80742
0.80 749
- 0.00007
98
13 *. 000
26.691
26.894
- 0.01
0.11351
0.30617
0.80638
- 0.00022
98
136.000
25.935
25.939
- 0.01
0.09149
0.30470
0.80506
- 0.00036
98
133.000
24.839
24.843
- C . C 2
0.06947
0.80300
0.80343
- 0.00043
96
140.000
23.521
23.524
- 0.01
0.04745
0.80096 -
0.80137
- 0.00040
98
142.000
21.769
21.770
-o.co
0.02543
0.79843
0.79855
- 0.00012
98
144.000
18.327
18.328
- 0.00
0.00341
0.79340
0.79356
- 0.00016
NP =
46 , RMSPCT
= 0.010
OBILVIS WN, INC.. MMMtkYN tT, N. Y.
88
APPENDIX F. (Continued)
NATIONAL BUREAU OP STANDARDS, CAYOORNIC MOMHttNO LABORATORY
LABORATORY NOTE
PROJKT NO.
275Q3M
FILS NO.
73^5
RASE
11
subject Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
**** R.D .Goodwin
DATI
IS 1Q79
Table 5. Comparison of methane liquid densities.
E
0*361
TCRT =190.555, TTRP = 90.6800
DCRT = 10.200, DTRP = 28.1470
8.370910 3-001 8.4161267-002 -7 .4785753-002
0 . 0000000*000 0 . 0000000*000 0 . 0000000*000
£= 0.361
ID
T,K
MOL/L
CALC
PCNT
X ■
YX
YC
YDIP
1
93.512
27.910
27.912
-0.01
0.97164
0.84050
0.84699
-0.00649
1
97.173
27.605
27.605
0. CO
0.93499
0.84830
0.84764
0.00066
1
10 1.434
27.243
27.240
0.01
0.89233
0.85043
0.84836
0.00207
1
105.165
26.916
26.916
0.00
0.85497
0.84900
0.84896
0.00003
1
109.611
26.527
26.521
0.02
0.81045
0.85231
0.84964
0.00267
1
113.772
26.146
26.144
0.01
0.76879
0.85112
0.85023
0.00089
1
117.746
25.782
25.775
0.03
0.72900
0.85327
0.85074
0.00252
1
121.893
25.388
25.380
0.03
0.68748
0.85373
0.85123
0.00249
1
125.825
24.999
24.995
0.02
0.64811
0.85272
0.85165
0.00107
1
129.657
24.611
24.610
0.01
0.60974
0.85236
0.85201
0.00035
10 1
130.000
24.558
24.575
-0.07
0.60631
0.84803
0.85204
-0.00400
1
13 3. 773
24.186
24.182
0 . 01
0.56853
0.85313
0.85233
0.00080
1
133.678
24.176
24.171
0.02
0.56748
0.85338
0.85234
0.00104
102
135.000
24.041
24.052
-0.05
0.55625
0.85002
0.85242
-0.00240
1
1 39. 352
2 3.578
23.579
-0.C0
0.51267
0.85249
0.85266
-0.00017
103
140.000
23.50C
23.507
-0. C3
0.50618
0.85132
0.85269
-0.00137
104
145.000
22.932
22.934
-0.01
0.45612
0.85255
0.85285
-0.00030
1
145.448
2 2 . 8 b 0
22.881
-0.00
0.45163
0.85272
0.85286
-0.00013
105
150.000
22.329
22.328
0.01
0 . 40606
0.85315
0.85287
0.00027
60 1
15 J. J00
22.332
22.328
0.02
C .40606
0.85357
0.85287
0.00070
1
151.553
22.130
22.132
-0.01
0.39051
0.85255
0.85285
-0.00030
106
155. JC0
21.686
21.682
0.02
0.35599
0.85341
0.85274
0.00067
1
15 7.199
21.375
21.363
-0.02
0.33398
0.85201
0.85263
-0.00062
107
lo J. 000
20.991
20.986
0. C2
C. 30593
0.85311
0.85242
0.00069
1
lb 3.659
20.428
2 0.438
-0.05
0.26930
0.85048
0.85205
-0.00157
108
165.000
20.234
20.227
0.03
0.25587
0.85289
0.85188
0.00102
1
169. 326
19.492
19.502
-0.05
0 .21256
0.84962
0.85117
-0.00155
109
170.000
19.387
1 9 . 3 e2
0.03
0.20581
0.85180
0.85104
0.00076
110
1 75.000
18.417
18.414
0.01
0 . 15574
0.85022
0.84981
0.00042
602
175.000
18.42C
16.414
0.03
C . 15574
0.85080
0.84981
0.00100
1
175.053
18.390
18.403
-0.07
0.15521
0 . 84 777
0.84979
-0.00203
111
16 J. 000
17.249
17.250
-0.00
0 .10568
0.84786
0.84800
-0.00014
bO 3
180.000
17.254
17.250
0.02
0.10568
0.84367
0.84800
0.00067
112
16 4. j u 0
16.054
16.061
-0.04
0.C6563
0.84466
0.84588
-0.00121
604
184.000
16.060
16.061
-0.00
0 . 06563
0.84575
0.84568
-0.00013
6
1 65. J 30
15.710
15.688
0.14
0.05532
0.84922
0.84517
0.00405
113
186.000
15.286
15.299
-0.08
0.04561
0.34203
0.84442
-0.00240
b
1 6 6 . 0 30
15.3C2
15.286
0.11
0 .0453 0
0.84765
0.84440
0.00325
6
1 8 7 . 0 31
14.836
14.826
0.07
0 .03528
0 • d 45 72
0.84351
0.00221
5
187. *89
14.582
14.589
-0.05
0.03070
0.84158
0.84305
-0.00147
114
186.000
14.284
14.298
-0.10
0.02558
0.33922
0.84248
-0.00327
6
18 6.0 31
14.285
14.279
0.04
0.02527
0.84388
0.84245
0.00143
6
189.032
13.578
13.578
0.00
0.01525
0.84114
0.84113
0.00002
5
1 89. 331
13.3Gu
13.315
-0.11
0.01226
0.83640
0.84065
-0.00425
5
189. 7C7
12.879
12.920
-0.31
0 .00849
0.82667
0.83996
-0.01329
6
190.032
12.474
12.477
-0.02
0 .00524
0.83812
0.83924
-0.00111
5
190.066
12.367
12.418
-0.17
0.00488
0.83082
0.83915
-0.00833
7
190.070
12.440
12.415
0.20
0.00466
0.84908
0.83914
0.00994
7
190.170
12.270
12.235
0.28
0.00385
9.85369
0.63887
0.01462
NP -
49, RMSPCT
= 0.084
APPENDIX F. (Continued)
NATIONAL BUREAU Of STANDARDS, CRYOGENIC ENGINEERING LABORATORY
PROJECT NO.
FILE NO.
PAOE
- LABORATORY NOTE
2750364
73-5
12
oubject Orthobaric Densities of Ethane, Methane, Oxygen and
NAM£ R.D, Goodwin
Fluorine
DATE _
SeDt
. 18. 1973
T able
6
9
Comparison of ethane liquid densities
.
u.
OJ
O' lO
o
4 O' fs
ro 4 csj
o m
rH
co rs
4 rs cvi rs
i0
ffl
ro
CVI
(VI
O'
00
K
in
ro
IH
r-4
fv.
to
O' N. «0 4 O' tf\ to
rs n.
lO
rp4
in
U>
UJ CSJ O'
in
O'
u>
ro
fs
O
Q
<M
IfN
R^
4
K a s
oj .u 4 is o'
CO
N.
in
ro
rIN ^
ps
«
30
in
ro
©
o
ro
«
>-
rH
o
o
o
o 0 a
O 0 0
O 0
o
©
O
o
0 0 0
o
o
o
o
e
o
o
G
a
o
O
o
©
©
a o o
O 0 o
o &
o
o
o
o
o o o
0
0
©
0
©
O
a
O
o
o
©
a
©
O
O 0 0
O 0 o
o o
o
©
o
0
o ® ©
©
©
©
©
o
©
a
©
©
o
•
i
l l
1
1 1
1
•
1
•
l
a
ro
ro
CO
h © o> O' oun ir\
O' ®
in
e
O'
4
ro
O'
rs
H
-h in
fs O' OJ
rH
>•
4
fs
ro
4
C\J vD O H tH
o o
CVJ
O' H
o
4 "H CVJ
4-
CVJ
®
U>
cvj n.
«
ro
0J
rH
to
®
ro
ro
4 fs fs
CO T-» J’
rs t-i
ro
UJ
o
ro
ms®
30
CO
uj
ro
N-
rH
4 00
cr»
4
to
to
4 4
4 4 4
4 in in
in ®
co
00
O'
O' O' O'
O'
O'
O'
O'
«
®
rs fs
UJ
u>
fs
fs
rs
is rs rs
fs N> P»
fs rs
N.
rs
Is
K.
is N- rs
N.
N>
IS
N-
rs
rs
is. s-
fs
rs
o
©
©
©
O O 0
0 0 o
o ©
o
o
o
a
o o o
o
o
©
o
o
o
O
o
o
o
X
4
4- *4
4 o
vO
in O' rs
O' ro
VJD
CO
u>
®
fs
vO
O'
V.
o
4
O'
®
ro
O vO
N.
4
>-
ro
O' o- ro
CVJ
4
rl
•rH ®
4
Is
®
CO
o
rs
U>
o
O'
OJ
cvj
fs
N.
UJ
in
O'
H
rH
CVJ
CVJ
rH
CVJ
4 ®
N.
vO
50
in cvj
CO
4
CD
rH
4
in
vD
Is
4
ro
h a>
®
rs
ro
rH
in
4
CVJ
CVJ
CVJ
ro
4 4
ro
4
4
4 in in
UJ
O' O'
O'
O'
O' O' O' O'
O' ®
«
®
«
®
fs fs
rs
N.
rs
N- N. fs
fs
rs
fs
fs rs
rs
fs
rs
rs
fs
rs
rs
rs
N-
fs
fs
fs
rs
rs
N.
rs
fs
N.
N*
0.
0.
o ©
o
©
o
o o
o
o
o
o
o
o
CD
o
o
o
o
0.
o
O
0.
o
CD
0.
o
0 .
X
4
cvj rs ®
O' in
a rH ro
4
rH
in
ro th
O' fs
in ro
rH a>
rs
UJ
4
ro
UJ CVJ
«
4
o
®
O
4 CVJ
ro
CVJ O'
vD ® o
CVJ
O
ro
O' in
CD
vO
CVJ ®
CVI
rs
ro
O' in ro
N* rH
4
®
in
4
ro
m in
cvj ro O'
mom
O'
rH
in
® CVJ
u> o' ro uj
CVJ
in
O'
CVJ
u> ro
CD
in
©
ro
O'
in
r4 H
o
® rs
rs m cvj
O' vO
ro
® 4 O'
4
o in
4
O'
4
CD
in ro
rH r-^
o
©
•
O'
O' O' O' O'
® ®
® ® ®
s
in
in
4 4
ro
ro
ro cvj
CVJ
rH
rH
H
CD
o
a o
©
o
o
o
O
©
o
O
o o
o
a o
0
0
0
CD
O
o
CD O
CD
CD
o o
o
CD
CD
CD
O
CD
o ©
©
CD
II
0
1
o
♦
UJ
4
o
O'
©
•V
ro
o
in
CVJ
o
UJ
O
O
vO
o
hH
O'
o
rs
o
*-
O'
®
CVJ
©
p-
O
rH
rH (\J
ro
CD O
CVJ -rH ro
rs
o
O'
® in
rH
in
ao «
u»
ro
ro
4
in
rH
▼h in
®
to
HH
ao
vO
•
•
z
O
O
o a
CD
o o
CD CD CD
o
CVJ
rH
rH rH
rH
CD
O rH
CVJ
ro
ro
CVJ
rH
CD
© o
©
rH
in
•
•
ro
o
o
z
O'
H
1
CL
O
o
o o
O
o o
0
0
0
CD
CD
CD
a o
o
a
o o
o
o
CD
o
o
CD
CD O
o
O
UJ
®
CVJ
•
1
»
1
i
1 1
1
1
i
(
1
o
H
CD
II
II
o
O
o
o
o
EH
0 .
CL
1
4-
o
o
in
4 CVJ
CVJ
CVJ vO
ricrm
cvj
®
CD
in cvi
s
un
rs 4
CVJ
UJ
UJ
O'
4 ®
ro u>
©
O
=3
(Z
a:
tH
a
_l
4
rH
cvj cvj
CVJ
rs 4
CVJ •H t-(
rH
ro
rH
30 4
rs
<x>
in ®
O'
ro
-O
®
rH G**
4 O' ro
OJ
a
1-
t-
in
o
u>
ro
o o
O' rs s
s in ro
rH
rH
O'
st O
in
CD
in O'
rs
rH
ro
4
ro
4
in .h
IS
®
EH
u-
o
ro
CD
o
_j
in
O
rH
rH
rH rH
CD
O O
CD CD CD
CD
®
s
rs N.
UJ
U)
in 4
4
4
ro
OJ
rH
o
9
9
CO
rs
•*
•*
U)
o
CVJ
CVJ
CVJ CVJ
CVJ
CVJ CVJ
CVJ CVJ CVJ
C'J
rH
rH
rH rH
H
rH
rH rH
•H
rH
rH
rH
rH
rH
Q
CJ
CD
CO
u
UJ
ro
O'
o
r-
ro
GO
•
•
•
t
CVJ
o
ct
in
U3
-I
O'
ro
in v©
in
■H S
rs -h ro
U3
in
4
V© ®
in
ro
in is
ro
O'
cvj
®
fs
O'
4 »H
rs
o
3
Q
V.
ro
CVJ CVJ
S 4
.-4 CVJ CVJ
CVJ
rs
4
rH vXD
O'
O' 4 in
in
®
4
in
O' O'
4 O
ro
ro
>-
ro
H
0
U>
ro 0 o
o' n. rs
n. in ro
rH
rH
O'
in o in
o in O' rs
0
ro
4 CVJ
4
in cvi rs
e
<£
CD
CD
o
in
II
II
o
o
X
H
rH
•H »U
CD
O CD
o a a
o
®
rs
N N
uj in 4
4
4
ro
CVJ
rH
O
6
6
«
rs
1
+
CVJ
CVJ
CVJ CVJ
CVJ
CVJ CVJ
CVJ CVJ CVJ
CVJ
rH
rH rH
rH
rH
■H T-<
rH
rH
rH
H
rH
rH
UJ
E—
k-
ro
o
z
cr
Cfc
o
a
<
o
o
in
o
X
u-
a
ro
o
©
IS
o
V
a
0
o o
«
CD CD
ro o' 4
o
O
©
o a
CD
CD
o o
©
O
o
o
O
o
o o
o
Ul
H
©
•t
.-i cvj •h in
CVJ
in rs
« ro O'
U'
rs
o
O CD
o
O
a o
in in
in
in
in in
in in
in in
UD
a
1-
o
o
r4 rH
O' o s
4 o in
rH
4
O
O 0
O
o
o o
rH
rH
rH
rH
rH rH
rH
rH
rs
CD
rH
a a ®
® in in
uj cvj rs R*
4
CD
o o
o
CD
O CD
ro
ro
ro
ro
ro
ao
oj ro
4 in
O'
o
O ©
H
-1 r-t
«r-l CVJ CVJ
ro
®
O'
O rH
(M
ro
4 in
in
U)
rs
® O'
O' o 0
o
O
t4
H H
rH
•H •H
rH r4 H
rH
rH
CVJ CVJ
CVI
CVI
CVI CVJ
CVJ
CVJ
CVJ
CVJ
CVI 0J
ro ro
ro
ro
a
4
4
4cvjro4cvjrororo
ro
in in
in in
in
in
in in
0
o
0
o
o
a
a o
o
a
M
rH
R^ RH
rH H
H H H
rH
rH
r4 H
rH
rH
H rH
rH
r=4
rH
rH
rH H
rH
•H
oaiLVIE PNBS0. INC.. BROOKLYN 17. N. Y.
STOCK NO. 4 BO
90
APPENDIX F. (Continued)
NATIONAL BUREAU Of STANDARDS, CRYOGENIC ENOINORINO LABORATORY
LABORATORY NOTE
PROJECT NO.
27*50364
PI LB NO.
73.5
PAQf
13
subject Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
HAM£ R . D . Goodwin
DATE
Sent. IB. Km
Table 7. Ethane liquid data not used for least squares,,
u.
©
•H ©
® 4 Ps
in
Ps
CM ©
PO O' 9
9 y-8 y>8 CM
CM
4
po
« CM
CM
s4
©
N-
© © ps
©
<5*4
©
CM
4
O'
CM
O' ©
©
©
p* © cm
4 4©
« 4 in ©
© a
a
Ps K
«H)
©
a
P»
©
©
©
*4
O'
©
Q
*■4
PO
©
© 4
in
©
CM
CM 4
HCPN
*-4 0®
©
in
in cm
©
o
*-t ©
©
in
o
O* Ps
4
CM
94
fs
9=$
>■
CM
80
ro
*-» S3
CM
PO
4
in ss
© © **8
H rl O
a
o
9
o
©
o
e
m
CM
© s.
©
a
S
©
9
o
o
a
© ©
©
©
o
© ©
O ©
9 9©
ra
&
©
O
©
©
©
a
©
o
*4
O
©
©
&
©
©
o
©
©
o
© ©
©
©
©
© o
© © ©
O © ©
©
©
O
m
o
o
©
©
©
©
©
©
a
o
O
©
©
1
1
1
e » «
1
8
1
8
1
8
8
1
8
8
6
8
U
tvj
ro
4
4- ©
©
4
O' © o'
tH O' ©
O' CM ©
4
cm in
m ©
CM
ro
*-i
CM
*-» in
O' CM
S
4
CM
in
m
>•
fs
o ©
•4 ESI O' 9 •H
4 ©
©
©
ro
CM
t4
©
© ro
in O'
+4
is
p-
a
©
©
o
o
© O' ©
PO
P.
® 4 O' ffl M
noN
4
fs
4 CM O'
p-
4
sSl
©
in
fO
©
s.
4
**8 fs
4
PO
© ©
Ps P*.
©
O'
O' O' O' © Ps ©
O' O' ©
© ©
p. p. p.
©
©
©
4
©
fo
O'
O' © ©
C
ps IN.
fs
fs
Ps
fs fs ps
Is
P- fs Ps
P> fs P-
ps p- ps.
Ps
Is fs
P*
n-
fs
N-
fs
fs
Ps
fs
P-
fs
Ps
IN
Ps
o
&
o
© 9
©
©
©
© 9
0.
0.
0.
0 9 0
©
©
©
©
©
O
o
9
©
O
©
©
©
9
©
©
O
©
X
fs
CM
©
©
r<
© O'
© Ps
in
ro
© © O' Y"C IS
CM
©
*-i cm O' 4 in
CM
©
4 ©
4 ©
CM CM
Ps
K
O'
>
lO
O' fo
4
■v-4
in ©
O' O' *-8
4 O' K © © 8s
© © in o' cm
<H1
fs
SS
©
©
PO
a ©
© O' ©
©
vO
CM
4 CM O'
+4 is© ©
*-8 0©
© ©
CM CM *=• O'
«
9
©
CM
4
4
80
80 CM
ro
4 ©
©
▼4 CM
©
o
*■8 cm
ro ©
© Ps
© ©
® ® fs
IV (S.
Ps tv fs. ©
© fs
©
©
© ©
© ©
©
©
©
©
P»
P-
fs
ps
© «
© ©
Si
©
© ps
Ps fs p.
fs
fs
Ps Ps Ps Ps
fs
Ps
K
© ©
fs
N.
fs fs
fs
fs
fs
©
©
©
s
o
© ©
o o
©
©
© ©
9 0 0
©
9
0 9 9 9
9
o
o
©
o
©
o
O 9
O
Q
O
X
1
©
4
9
© n
O' © CM
© ©
4 fs
CM © O
4 4 © Y*c fs ® ©
4
© © © CM ©
o
4
4 ©
^*8
CM
4
© ps
O'
9
CM
4 ©
t 4 fs fO fs © 4
© CM © fs 9 4
*H O' IS
p. ©
4
©
CM ©
Ps
PO
© Ps
4
<H ©
©
PO
©
fs
*-» 4 9 CM O' ©
4PO«44S©POO
© fO O' CM O' ©
4 80
4
©
©
©
Ps
a
Ql!
O' o
H
CM O
9 fs ©
4 fO CM *4 *-l 9
o
« CM © fs
9 Ps
m
4
©
CM
H
O'
<i£>
fs
© ©
4
PO
PO
CM
o
© ©
*-10 9
9 9 9 9 0 0
o
£3
O' O' O'
©
©
©
©
©
©
0.
©
9
©
o
©
©
a
O
©
e
o o
0 0 9
0 9 0 0 9 0
9
©
0<
0 ,
0.
© ©
©
©
©
o,
o
N*
©
rtO'QW
fs
© o
©
©
O CM
O' fO 4 CM
<H © fs CM CM
fO
O'
©
© O'
Ps
©
fs
©
O'
2
CM
CM
4
CM
©
a
4 O
©
fO
O CM
4 4 PO
PO
CM
^3
©
o
©
©
&
©
*H PO
PO
©
©
CM
PO
o
QL
©
©
©
©
©
©
■H CM
PO
(O
4 9
0.
0.
0.
o
©
©
©
©
©
©
o
©
Q>
O O
9
©
©
©
©
©
8
8
1
8 1 1
8
8
8
8
1
8
8
8 8
8
8
9
o
©
fO
O' ©
o ©
fs
Ps
CM
O' CM PO
4 © O'
4’
4 ©
9 CM O
© 9
CM
PO
(O
4
© O'
4
4 © ©
J
O' ©
©
CM
©
fs
© ©
O' CM *-l «
© 4 9
PO
O' ©
4 O' 80
O' CM
CM
CM
CM
u
^ O
PO
O' © 4
o
PO
©
©
PO
4
©
©
PO fs
P- *-( ©
4 O' PO O'
4 ©
© *H fs
PO ©
vH)
PO
©
4
O' ro
O'
4 O' ©
t4
o O'
O'
©
Ps
©
©
4
CM
rlBP
CM *-l *-8
©
9 O'
O' O' ©
© fs
*4
*4
■H CM
H
a
o O' ©
CM
CM
t-4
H
■Y-l
*-c
r4 *4 *4
▼*3
CM
CM
CM
*-4
<H r4
*4
H
9
O' fs
o
p*
©
©
nj
©
PO
CM © O
ro © ©
O' CM P» 4 9 CM
fs
fs
©
© O 4 O'
©
4
CM
9 ©
s.
Ps
4 fs
©
PO
© ©
©
PO
©
CM *-8 9
CM © Ps
O' K po fo a* po
O' CM
O' O' PO 9
O'
CM
© Ps
sJ
ro
© P*
O
PO
©
fs
ps
©
n m vO
4 © CM
© 4 O' © r-8 Ps
ro
©
CM 4 4 S' CM
O' ©
O' ©
s
*4
o O' O'
©
Ps
©
©
4 ro
CM © Ps
CM *N
O 9 O' © O' ©
©
ps
sH
■^=4 ^=4 CVS ^=4
a
9
O' O'
CM
CM <H
v4
■*4
■H
0=4
^■4 <*4
^4 v4 *4
CM
CM CM *H *-)
*4
•H
X
o
O
o
9
o
©
9
9
©
O
9 9 9
©
9
9
o
9
9
9
9
Q
aeiM
Ps
9
=)
O
9
©
O
S'
91
o
®
©
9
©
o
£3
9
S'-
©
0 9©
9 O' © fs Ps ©
© © © ©
© ps
*-8 © 9 O' ©
Ps fs
© ©
p-
o
o
o
O
9
©
©
9
9
9
o a N N *8 N
©
*-8 ©
▼*8
©
*■8 fO
© CM CM
©
©
*-8
o
C3
a
®
o
a
9
©
&
0 9©
80
©
PO
©
S'
O
< M
PO
4
4
©
©
4
80
©
PO
©
©
©
CM
9
CM
4
©
©
©
CM
4
©
©
S' 9 ©
©
©
©
O'
O'
®
®
9
9
®
O*
O'
©
©
O'
O'
O'
©
©
■v-4
^4
*4
CM
CM
CM CM
CM
CM PO PO
CM
CM
CM
CM
CM
80
80
ro
PO
PO
PO
y4
CM
CM
CM
CM
CM PO
80
a
o>
m
O'
C7»
O'
O'
O'
O' O'
®*
9
9
0
*4
*4
■rt
*4
*4
I'v
PO
PO
©
©
©
©
© ©
©
M
*4
*4
*N
f*4
Vi
*4
*-8
<94
‘H
94
*-8
*-8
v4
<rO
t-8
osilvik rime*, me.. Brooklyn it. n. ▼.
STOCK NO. 4*0
91
APPENDIX F. (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-5
PAGE
14
subject Orthobaric Densities of Ethane , Methane, Oxygen and
Fluorine
name r .D. Goodwin
DATE
Sent. 18. 1973
Table 8. Calculated oxygen liquid densities
T,K
R, MOL/L
54.351
40.830
56.300
40.603
58.000
40.326
60.000
40.049
62.000
39.770
64.000
39.491
66.000
39.210
68.000
38.928
70.000
38.644
72. 000
38.358
74.000
38.071
76.000
37.782
78.000
37.491
80.000
37.197
82.000
36.901
84.000
36.602
86.000
36.301
83.000
35.996
90.000
35.688
92.000
35.377
94.000
35.062
96.000
34.742
98.000
34.418
1 0 0.0 00
34.090
102.000
33.756
104.000
33.417
106.000
33.072
108.000
32.720
110.000
32.361
112.000
31.995
114.000
31.620
116.000
31.236
118.000
30.842
120.000
30.438
122 .000
30.021
124.000
29.591
126. 000
29.147
128.000
28.685
130.000
28.205
132.000
27.704
134.000
27.179
136.000
26.625
133.000
26.037
1 4 0 . 0 Q 0
25.410
142.000
24.733
144.000
23.993
146.000
23.170
143.000
22.230
150.000
21.108
152.000
19.647
154.000
17.104
154.576
13.63C
DR/OT
D2R/DT2
-0.1377
-0.00019
-0.1380
-0.00021
-0 .1385
-0.00023
-0 .1390
-0.00026
-0.1395
-0.00029
-0.1401
-0.00032
-C .1408
-0.00035
-0 .1415
-0.00038
-0.1423
-0.00041
-0.1432
-0.00045
-0 .1441
-0.00049
-0.1451
-0.00053
-0 .1462
-0.00057
-0 .1474
-0.00061
-G .1487
-0.G0066
-0 . 1500
-0.00071
-0.1515
-0.00077
-0 .1531
-0.00083
-0.1548
-0.00089
-0 .1567
-0.00096
-0.1586
-0.00103
-0 .1608
-0.00111
-0.1631
-0.00119
-0 .1655
-0.00129
-0 .1682
-0.00139
-0 . 1711
-0.00150
-0 .1742
-0.00162
-C .1776
-0.00176
-0.1813
-0.00191
-0 .1852
-0.00207
-C .1896
-0.00226
-C .1943
-0.00248
-0.1995
-0.00272
-0 .2052
-0.00300
-0.2115
-0.00332
-0.2185
-0.00369
-0.2263
-0.00413
-0.2351
-0 .00466
-0 .2450
-0 .00530
-0.2564
-0.00608
-0.2695
-0.00707
-0.2848
-0.00833
-0 . 30 31
-0.01000
-0 .3253
-0.01229
-0 . 3529
-0.01555
-0 .3886
-0.02051
-C .4370
-0.02869
-0 .5079
-0.04396
-0.6253
-0.07893
-0 .8749
-0.2C084
-2.1732
-2.34479
0 .0000
0.00000
OaiLVIK PRKS®. INC.. BROOKLYN 17. N. Y.
•TOCK NO. 480
92
APPENDIX F . (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
?7RmA4
FILE NO.
73-5
PACE
15
subject O r thobaric Densities of Ethane, Methane, Oxygen and
Fluorine
name q .Goodwin
° ATE Sent. 18. 1973
Table 9. Calculated fluorine liquid densities.
T,<
R, MOL/L
DR/DT
D2R/DT2
53.481
44.862
-0.1573
-0.00054
54.000
44.781
-0.1576
-0.00055
56.000
44.464
-C .1587
-0.0005b
58.000
44.146
-C .1599
-0.00061
60.000
43.825
-0.1612
-0.00065
62.000
43.501
-0.1625
-0.00068
64.000
43.174
-0 .1639
-0.00072
66.000
42.845
-C .1654
-0.00076
68.000
42.513
-0.1670
-0.00081
70.000
42.177
-0 .1686
-0.00085
72.000
41.838
-0.1704
-0.00090
74.000
41.496
-0.1722
-0.00095
76.000
41.149
-0.1742
-0.00101
78.000
40.799
-0 .1763
-0.00107
80.000
40.444
-0 .1785
- C • 0 0 11 4
82.000
40.085
-C . 18 C 8
-0.00121
84.000
39.720
-0.1833
-0.00129
86.000
39.351
-0 .1860
-0.00137
88.000
38.976
-0 .1888
-0.00146
90.000
38.596
-0 .1918
-0.00156
92.000
38.209
-0.1951
-0.00167
94. 000
37.815
-0 .1985
-0.00179
96.000
37.415
-0 .2022
-0.00192
98.000
37.006
-0 .2062
-0.00207
10 0.0 00
36.590
-C . 2105
-0.00223
102.000
36.164
-0 .2151
-0.00242
104.000
35.729
-0 .2202
-0.00262
10 6. JQQ
35.283
-0 .2257
-0.00286
108.000
34.826
-0 . 2316
-0.00313
110.000
34.356
-0 .2382
-0.00344
112. 000
33.873
-0.2454
-0.00380
114.000
3 3 . 3 74
-C .2534
-0.00422
116.000
32.858
-0.2624
-0.00472
118.000
32.324
-0.2724
-0.00533
120.000
31.768
-C .28 38
-0.00606
1 2 2 . J 0 0
31.188
-0 .2967
-0.00696
124.000
30.579
-0 . 3118
-0.00811
126.000
2 9 . 9 3 9
-0 .3294
-0.00959
128.000
29.26G
-0.3505
-0.01156
1 3 J . J 0 0
28.534
-0 .3762
-0.01428
132.000
27. 751
-0.4084
-0.01821
134.000
26.894
- 0 .4504
-0. 02426
13o. 000
25.939
-0.5081
-C .0 3440
138.000
24.843
-0.5939
-0.05377
140.000
23.524
-0.7400
-0.09999
142.000
21.770
-1.0696
-0 .2770 4
144.000
18.328
-3.6894
-7.49794
144. 310
15.150
0 . 0 0 0 0
0.00000
OGILVIE PRESS. INC., BROOKLYN 17. N. Y.
STOCK NO. 480
APPENDIX F. (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-5
PAGE
16
subject Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
name r ,D .Goodwin
DATE Sept. 18, 1973
Table 10. Calculated methane liquid densities
T,K
90.680
92.000
94.000
96.000
98. 000
1 0 0 . 0 00
102.000
104.000
106.000
108.000
11 J . 000
112.000
114.000
116.000
118.000
12 0.300
122.000
124.000
126.000
128.000
1 3 0 . 000
132.000
1 34. 300
136.000
138.000
140.000
142. 0 00
144. 000
146. 000
148.000
15 0. J00
152. 000
154.000
156. 000
153.000
160.000
162.000
164.000
166.000
163.000
170.000
172. 000
174.000
176.000
178. 000
180.000
182 .0 00
184. jCQ
186.000
188.000
190.000
190.555
OGILVIE PRESS. INC.. BROOKLYN 17. N. Y. STOCK NO. 430
R, MOL/L
DR/DT
D2R/DT2
28.147
-C .0825
-0.00031
28.038
-0.0829
-0.00032
27.871
-0 .0836
-0.00033
27.704
-0 .0842
-0.00035
27.534
-0.0849
-0.00036
27.364
-0 .0857
-0.00038
27.192
-0 .0865
-0.00040
27.018
-0.0873
-0.00041
26.843
-0.0881
-0.00043
26.665
-0 .0890
-0.00045
26.486
-C .0899
-0.00048
26.306
-0 .0909
-0.00050
26.123
-0.0919
-0.00052
25.938
-0 .0930
-0.00055
25.751
-0 .0941
-0.00058
25.561
-0.0953
-0.00061
25.369
-0.0966
-0.00064
25.175
-0.0979
-0.00068
24.978
-C .0993
-0.00072
24.778
-C .1008
-0.00076
24.575
-0.1023
-0.00080
24.368
-0.1040
-0.00085
24.158
-0.1057
-0.00090
23.945
-0 .1076
-0.00096
23.728
-0.1096
-0.00103
23.5G7
-0.1117
-0.00110
23.281
-C .1140
-0 .00117
23.051
-0 .1164
-0.00126
22.815
-0.1190
-0.00136
22.574
-0.1219
-0.00147
22.328
-0 .1249
-0.00159
22.0 75
-u .1282
-0.0G173
21.815
-0.1318
-0.00188
21.547
-0 .1358
-0.00207
21.271
-0 . 1401
-0.00228
2G.986
-0 .1449
-0.0C253
20.691
-0.1503
-0.00282
20 .385
-C .1562
-0.00318
20.066
-C .1630
-0.00361
19.732
-0 .1707
-0.00414
19.382
-0.1797
-0.00481
19.012
-0 .1901
-C . 0 0568
18.620
-0.2026
-0.00683
18.200
-0 .2177
-0.00841
1 7.747
-0.2367
-0 .0 1068
17.25G
-0.2612
-0.01415
16.696
-0 .2947
-0.01988
16.061
-0 .3440
-0.03064
15.299
-0 .4261
-0.05538
14.298
-0 .6021
-0.14217
12.527
-1.5385
-1 .72796
1 0.2C 0
0 . 0 0 00
0.00000
94
APPENDIX F. (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-5
PAGE
17
SUBJECT
The Orthobaric Densities of Ethane . Methane, Oxygen and
Fluorine
NAME ,
R.D .Goodwin
DATE
Sept . 18 . 1973
Table 11. Calculated ethane liquid densities.
ETHANE SATURATED LIQUID DENSITIES
T,K
R, MOL/L
DR/DT
D2R/DT2
83.899
21.680
-0.0360
0.00000
90.000
21.676
-0.0360
0.00000
95.000
21.496
-0 .0360
-0 .ocooo
1 0 0 .000
21.316
-0 .0360
-0.00001
105.000
21.136
-C .0361
-0.00001
110.000
20.955
-0 .0362
-0.00002
115.000
20.774
-0.0363
-0 .0000 2
120.000
20.593
-C .0364
-0.00003
125.000
20.411
-0.0365
-0.00003
130.000
20.220
-0.0367
-0.00004
135.000
20.044
-0 .0369
-0.00004
143.000
19.859
-0 .0371
-0.00005
145.000
19.673
-0 .0374
-0.00006
150.000
19.485
-0 .0377
-0.00006
155.000
19.296
-0.0380
-0.00007
1 6 0 . J 0 0
19.105
-0 .0384
-0.00000
lb5.000
18.912
-0 .0388
-0.00009
170.000
18.717
-0 .0392
-0.00010
175.000
18.520
-0 .0398
-0 . 0 0 01 1
180.000
lb. 320
-0 .0403
-0.00012
185.000
18.116
-0.0410
-0.00013
190.000
17.910
-0.0417
-0.00015
195.000
17.700
-0 .0424
-0.00016
200.000
17.405
-0.0433
-0.00018
205.000
17.266
-0.0443
-0.00020
210.000
17.042
-0.0453
-0.00022
215.000
16.813
-0 .0465
-0.00025
22 5.000
16.577
-C .0478
- 0 .00028
225.000
16.335
-0.0493
-0.00031
233.000
16.085
-0 .0509
-0.00035
235. 000
15.826
-0 .0527
-C.0C039
240.000
15.557
-0.0540
-0.00045
245.000
15.277
-0.0572
-0.00051
250.000
14.984
-0 .06GG
-0.00059
255.300
14.676
-0 .0632
-0 .00069
260.300
14.351
-0 . C 6 69
-0.00082
265.000
14.005
-0.0715
-0.00099
270.000
13.635
-0 .077C
- 0 . QC123
275.000
13.233
-0 .0839
-C.0C156
280.300
12.792
-0.0929
-0.00208
285.000
12.299
-0 . 1053
-0.00295
290.000
11.729
-0.1238
-C .00463
295.000
11.040
-C .1554
-0.00871
3 Q 0 . 3 0 0
10.112
-u .2206
-0.02539
305.000
8.048
-1.2696
-2.44167
30 5 . 330
6.870
0.0000
0. OCOOO
T5
OGILVIE PRESS. INC.. BROOKLYN 17. N. Y.
STOCK NO. 490
APPENDIX F . (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-5
PAGE
18
subject TRe Qrthobaric Densities of Ethane, Methane, Oxygen and
NAME R D
.Goodwin
Fluorine
° ATE Sept
. 18, 1973
Table 12. Comparison of oxygen vapor densities.
6. = 0.3e2
T CRT = 154.57b, TTRP = 54. 3507
DCRT . = 13.631, DTRP = 3.36122-004
2.7737066-001 -3.3666205-001 7.6907075-001 -1 . 5761185*000
9.3987130-001 0.0000000+000 0.0000000+000 0.0000000+000
ID
T,K
MOl/L
CAL CD
PCNT
Z
YX
YC
YDIF
99
56.000
5.3300-004
5.3288-004
0.02
0.95458
0.07082
0.07159
-O.OOC77
99
58.000
8.9930-004
8.9941-004
-0.01
0.90296
0.07289
0.07270
0 . 00019
99
60.003
1.4640-003
1.4644-003
-0.03
0 .85479
0.07505
0.07474
0.00031
99
62.000
2.3057-003
2.3068-003
-0.05
0.80972
0.07792
0.07752
0 . 0 0 C 4 3
99
64.000
3.5233-003
3.5251-003
-0.05
0 . 76747
0. 08123
0.08089
0.00034
99
66.000
5.2367-003
5. 2388-003
-0.04
0.72778
0.08497
0.08473
0.00024
99
68.000
7.5880-003
7. 5899-003
-0.02
0 . 69042
0 .08906
0.08893
0.00013
99
70.000
1. 0742-002
1. 0742-0 32
-0.00
0.65520
0.09343
0.09341
0.00001
69
72.000
1 . 4885-002
1.4883-002
0.01
0.62194
0.09804
0.09811
-0.00006
99
74.000
2. 0227-002
2. 0220-002
0.04
0.59048
0.10281
0.10 296
-0.00015
99
76.000
2.6996-002
2.6983-002
0.05
0.56067
0.10773
0.10 792
-0.00019
99
78.000
3 . 5441-002
3.5421-002
0.06
0.53239
0.11275
0.11296
-0.0002 1
99
80.000
4.5831-002
4.5602-002
0.06
0 .50552
0.11781
0.11804
-0.00023
99
82. 000
5.8449-002
5.8412-002
0.06
0.47996
0.12292
0.12314
-0.00022
99
84.000
7.3595-002
7.3552-002
0.06
0.45562
0.12804
0.12823
-0.00019
99
8 6 . J 0 0
9.1589-002
9. 1542-002
0.05
0.43242
0.13313
0.13330
-0.00017
99
88.000
1 . 1276-001
1.1271-001
0.04
0.41026
0.13821
0.13833
-0.00012
99
93.000
1. 3745-001
1. 3741-001
0.0 3
0 .38910
0.14323
0.14331
-0.00C03
99
92.000
1 .6603-001
1. 660 1-C01
0.0 1
0.36885
0.14820
0.14824
-0 .00 00 4
99
94.000
1 . 968 7-00 1
1. 9887-C01
-0.00
0. 34946
0.15311
0 .15 310
0.00000
99
96.000
2. 3637-001
2.3641-001
-0.01
0. 33088
0.15794
0.15790
0.00004
99
98. 000
2. 7894-001
2.7902-001
-3.0 3
0.31306
0.16270
0 .16262
0.00009
99
10 3.0 00
3.2702-001
3.2716-001
-0.04
0.29596
0.16738
0.16726
0 .00 01 2
99
102.000
3. 8108-001
3.6127-001
-0.05
0 .27952
0.17196
0.17182
0 . 0001 +
99
104.000
4.4162-001
4.4186-001
-0.05
0.26372
.0.17645
0.17630
0.00015
99
106.000
5.0914-001
5.0943-001
-0.06
0 .24851
3 .18086
0.18070
0 .00 01 6
99
1 u 8 . 0 00
5.8421-001
5.8455-001
-0.06
0.23387
0.18518
0.185C2
0.00016
99
11 3.000
6. 6747-001
6. b783- 0 0 1
-0.05
0 . 21975
0.18940
0.18925
0.00015
99
1 12. JOU
7. 5953-001
7.5992-0 01
-0.05
0 .20615
0.19355
0.19341
0.00014
99
1 1 4 . J 0 0
8.6121-001
8.6155-001
-0.0 4
0.19302
0.19759
0.19748
0.00011
99
116.000
9. 7325-001
9. 7353-031
-0.03
0.18034
0.20156
0.20148
3.000G3
99
118.000
1. 0965+000
1.0967+000
-0.02
0 . 16809
0.20545
0.20540
0.00005
99
120.000
1.2321+000
1. 2322+ 000
-0.00
0 .15625
0.20926
0.20925
0.00000
99
1 2 2 . 0 0 0
1.3812+000
1.3810+000
0.01
0 .14480
0.21299
0 .21 303
- 0 . C 0 0 0 4
99
124. 000
1 . 5450+000
1.5445+030
3.0 3
0.13372
0.21666
0 .21674
-0.00009
99
126.000
1 . 7250 +00 0
1. 7243+0U0
0.04
0.12299
0.22027
0.22039
-0.00012
99
128.000
1.9230+000
1.9220+0^0
3.05
0.11259
0.22383
0.22398
-0.00015
99
13 .000
2.1411+000
2.1399+030
0.06
C. 10252
0.22735
0.22751
-0.00017
99
1 32.000
2. 3819+000
2. 3e05+000
0.06
0. C9275
0.23083
0.23100
-0.00017
99
1 8 *4 • 0 0 0
2.6483+000
2. 64 70+000
0.05
0.08327
0.23429
0 . 23444
-0.00016
99
1 3 o . 0 0 0
2. 9444+000
2. 9433+000
0.04
0. 07407
0.23773
0.23786
-J.OOC12
99
1 3 8 . 0 0 0
3.2750+000
3 . 27 4 5 + C 30
0.01
0.06514
0. 24119
0 .24124
-0.00005
99
14 3.000
3.6468+000
3.6474+000
-0.02
0.05646
0 . 24466
0.24462
0.00006
9 6
1 2 . 0 0 0
4. 0692+000
4. 0712+000
-0.05
0. 04803
0.24819
0.24801
0.00013
99
1 4 4 . J 0 J
4.5552+000
4.5592+000
-0.09
0.03983
0.25176
0.25143
0.00033
99
1 4 6 . 0 0 0
5 . 1261+000
5.1316+000
-0.11
0.03185
0.25536
0.25493
0 .0 0 04 3
99
1 h 8 . 0 0 0
5.6177+00C
5.6225+CjC
-0.C8
0.02410
0.25892
J .25 857
0.00035
99
1 5 0 . 0 0 0
6 . 7 U56 + 000
6.6967+000
0.13
0.01654
0.26182
0.26247
-0.00065
99
152.000
7 . 9239+000
7.9138+000
0.13
0.00919
0.26616
0.26692
-0.00076
99
1 5 *♦ . J 00
1.C225+001
1.0230+001
-0.05
0. CQ203
0.27367
0.27313
0.00054
NP
= 50, RHSPCT =
0.052
OOILVIK PMtaa. INC.. BROOKLYN 17. N. ▼. STOCK NO. «RO
96
APPENDIX F. (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-5
PAGE
19
subject ,pk e Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
NAME
R .D .Goodwin
DATE
Sent. 18. 1973
Table 13. Comparison of fluorine vapor densities.
E = 0.362
TCRT = 144 . 310 , TTRP = 53.4611
OCRT = 15 . 150 , DTRP = 5 . 67000-004
2 . 5715721-001 - 2 . 270 6443-001 6 . 0538644-001 - 1 . 3916332*000
7 . 9257188-001 0 . 0000000*000 0 . 0000000*000 0 . 0000000*000
ID
T,K
MOL/L
CflLCD
PCNT
z
YX
YC
YDIF
98
54.000
6 . 6000-004
6 . 6001-004
- 0.00
0.98473
0.03779
0.03766
0.00010
98
56.000
1 . 1500-003
1 . 1518-003
- 0.16
0.92853
0.04645
0.04297
0.00348
98
58.000
1 . 9300-003
1 . 9272-003
0.14
0.87621
0.04693
0.04877
- 0.00184
98
60.000
3 . 1100-003
3 . 1038-003
0.20
0.82738
0.05309
0.05493
- 0.00184
98
62.000
4 . 8400-003
4 . 8291-003
0.23
0.78169
0.05968
0.06135
-0 .00167
98
64.000
7 . 2900-003
7 . 2821-003
0.11
0.73887
0.06725
0 .06792
- 0.00067
98
66.000
1 . 0660-002
1 . 0675-002
0.05
0.69063
0.07434
0.07459
- 0.00026
98
68.000
1 . 5250-002
1 . 5253-002
- 0.02
0.66077
0.08139
0.08130
0.00009
98
70.000
2 . 1280-002
2 . 1293-002
- 0.06
0.62507
0.08827
0.08799
0.00028
98
72.000
2 . 9(37 0-002
2 . 9105-002
- 0.12
0.59135
0.09515
0.09464
0.00051
98
74.000
3 . 8970-002
3 . 9029-002
- 0.15
0 .55945
0.10181
0.10121
0.00063
98
76.000
5 . 1350-002
5 . 1434-002
- 0.16
0 .52923
0.10829
0.10769
0.00063
98
76.000
6 . 6600-002
6 . 6713-002
- 0.17
0 .50057
0.11466
0.11406
0.00060
98
80.000
8 . 5150-002
8 . 5291-002
- 0.17
0.47333
0.12086
0.12030
0.00056
98
82.000
1 . 0745-001
1 . 0761-001
- 0.15
0.44742
0.12691
0.12641
0.00053
98
64.000
1 . 3397-001
1 . 3416-001
- 0.14
0.42275
0.13281
0.13238
0.00044
98
86.000
1 . 6523-001
1 . 6541-001
- 0.11
0.39923
0.13854
0.13820
0.00034
98
88.000
2 . 0174-001
2 . 0191-001
- 0.08
0. 37677
0.14413
0.14388
0.00025
98
90.000
2 . 4407-001
2 . 4420-001
- 0.05
0.35532
0 .14956
0.14940
0.00015
98
92.000
2 . 9280-001
2 . 9286-001
- 0.02
0.33479
0.15484
0.15478
0.00006
98
94.000
3 . 4857-001
3 . 4852-001
0.01
0.31514
0.15997
0.16001
-0.00004
98
96.000
4 . 1203-001
4 . 1184-001
0.05
. 0.29631
0.16496
0.16509
- 0.00013
98
98.000
4 . 8389-001
4 . 8352-001
0.08
0 .27824
0.16981
0.17003
- 0.00021
98
10 J . 000
5 . 6491-001
5 . 6432-001
0.10
C . 26090 '
3.17453
0.17482
- 0 .00029
98
102. 0 00
6 . 5591-001
6 . 5507-001
0.13
0 . 24424
0.17912
0 .17947
- 0.00035
98
10 9.000
7 . 5778-001
7 . 5667 - 001
0.15
0.22822
0.18356
0.18398
- 0.00040
96
106.000
8 . 7151-001
8 . 70 1 2 - C 0 1
0.16
0.21281
0.18792
0.18836
- 3.00044
98
1 U 8.000
9 . 9617-001
9 . 6651-001
0.17
0.19796
0.19215
0.19261
- 0.00046
98
110.000
1 . 1390*000
1 . 1371*000
0.17
0.18366
0.19627
0.19673
- 0.00046
98
1 1 2 . 000
1 . 2 ^ 53*000
1 . 2932*000
0.16
0 .16986
0.20028
0.20072
- 0.00044
98
114.000
1 . 4687*000
1 . 4666*000
0.15
0.15655
0.20419
0.20460
- 0.00041
96
116 . 0 CJ
1 . 6610*000
1 . 6590*000
0.12
0. 14370
0.20801
3.20836
- 0.00035
98
118.000
1 . 8743*000
1 . 6725*000
0.09
0.13129
0.21174
0.21200
- 0.00027
98
1 2 0. 0 00
2 . 1111*000
2 . 1099*000
0.06
0.11928
0.21538
0.21554
- 0.00016
98
122.000
2 . 3744*000
2 . 3741*000
0.01
0.10768
0.21894
0.21898
- 0.00004
98
124.000
2 . 6680*000
2 . 6690*000
- 0.04
0.09644
0.22243
0.22232
0.00011
96
1 2 o . 0 0 0
2 . 9965*000
2 . 9992+000
- 0.09
0. 08556
0.22584
0.22556
0.00027
98
126. 000
3 . 3661*000
3 . 3709+000
- 0.14
0.07503
0.22917
0.22873
0.00045
98
130.000
3 . 7 o 48*000
3 . 7921*000
- 0.19
0.06481
0. 23243
0.23181
0.00062
98
1 3 2 . 0 0 0
4 . 2641*000
4 . 2735 +OuO
- 0.23
0.05491
0.23560
0.23484
0.00076
98
1 34 . 0 00
4 . 8207*000
4 . 8319*000
- 0.23
0.04530
0.23862
0.23782
0.00031
98
1 3 b . 0 0 0
5 . 4816*000
5 . 4905*000
- 0.16
0.03598
0.24138
0.24077
3.00061
98
138.000
6 . 2910*000
6 . 2909*000
o.co
0 . C 2692
0.24374
0.24375
- 0.00003
98
140.000
7 . 322 6 * 00 C
7 . 3133*000
0.13
0.01813
0.24625
0.24683
- 0.00058
98
142.000
8 . 7654*000
6 . 7644*000
0.24
0.00958
0.24889
0.25 0 23
- 0.00133
96
144. 000
1 . 1668*001
1 . 1893*001
- 0.04
0.00127
0.25552
0.25509
3.00044
NP
= 4 b , RMSPCT =
0.134
OttlLVII PRKSt. INC.. BROOKLYN 17. N. T.
STOCK NO.
97
APPENDIX F. (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
SUBJECT
The Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
PROJECT NO.
NAME
FILE NO.
73-5
PAGE
ML
R . D . Goodwin
DAT!
Sent. 18. 1973
Table 14„ Comparison of methane vapor densitie:
TCRT s 190.555s TTRP
OORT s i 0 o 20 0 « DTRP
3 . 7410143-001
4 « 3988336=001
• 2 e 61 5 730 9-0 01
0 . 0000000 * 00(2
E = 0 o 382
90.6800
1 . 56787=002
6 . 7533217=001
o . oooooaa+ooo
■ 1 . 0122063*000
0 . 0000000*000
10
T,K
MOL/L
CALCO
PCNT
2
YX
YC
YDXF
2
92.000
1 . 8280=002
1 . 8280-002
0.00
0.97263
0=21853
0 .21874
- 0.00021
2
94.000
2 . 2860-002
2 . 2858-002
0.01
0.93261
0.22329
0.22354
- 0.00025
2
96.000
2 . 8290-002
2 . 8294=002
- 0.01
0.89427
0=22864
0 .22828
0.00036
2
93.060
3 . 4690=002
3 . 4691=002
= 0.00
0.85749
0.23301
0.23295
0.00006
2
100.000
4 . 2160=002
4 . 2159=002
0.00
0.82218
0.23752
0.23755
- 0.00003
2
102. 3 00
5 . 0810-002
5 . C 813-002
- 0.01
0.78826
0.24213
0.24207
0 .0000 7
2
104.000
6 . 0770-002
6 . 0772=002
- 0.00
0.75 564
0. 2465 3
0.24650
0.00003
2
106.000
7 . 2160=002
7 . 2161 = C 02
- 0.00
0.72425
0.25086
0=25084
0.00002
2
106.060
8 . 5110=002
8 . 5110=002
- 0.00
0.69402
0.25510
0 .25510
0.00003
2
110.000
9 . 9750-002
9 . 9753-002
- 0.00
0.66490
0.25928
0.25926
0.00002
2
112.000
1 . 1623-001
1 . 1623-001
0.00
0.63681
0.26332
0.26333
- 0.00000
2
114.000
1 o 3468-001
1 -. 34 6 8 - 0 0 1
- 0.00
0.60971
0 .26732
0.26730
0.00002
2
116.000
1 . 5527-001
1 . 5527-001
3.00
0 .58354
0.27117
0.27119
- 0.00002
2
118. 000
1 . 7814-001
1 . 7813=001
0.00
0.55826
0 .27495
0.27498
- 0.0000 2
2
120.000
2 . 0346-001
2 . 0345-001
0.01
0.53383
0.27864
0.27668
- 0.00004
2
122.000
2 . 3139=001
2 . 3138-001
0.00
0.51019
0.28226
0.28228
= 0.00003
2
124. 000
2 . 6212-001
2 . 6211-001
0.00
0.48732
0.28577
0.28500
- 0.00003
2
126.000
2 . 9583-001
2 . 9582-001
C . Q 0
0 . 46517
0.28921
0.28923
- 0.00002
2
128.000
3 . 3272-001
3 . 3271-001
0.00
0. 44372
0.29255
0.29257
- 0.00002
2
130.000
3 . 7299-00 1
3 . 7299-001
0.00
0 . 42292
0.29582
0.29583
- 0 .0000 1
2
132.000
4 . 1686-001
4 . 1687-001
- 0.00
0.40276
0.29902
0.29900
0.00002
2
134.000
4 . 6457-001
4 . 6461-001
- 0.01
0. 38320
0. 30213
0.30209
0.00004
2
136.000
5 . 1638-001
5 . 1644-001
- 0.0 1
0 . 36421
0.30515
0.30510
0.00006
2
136.000
5 . 7255-001
5 . 7264=001
- 3.02
0 . 34577
0 . 30811
0.30003
0=00003
2
140 .000
6 . 3337-001
6 . 3351=001
- 0.02
0 .32786
0.31099
0.31088
0 = 00011
2
142.000
6 . 9916-001
5 . 9937-001
- 0.03
0. 31046
0.31380
0.31366
0=00014
2
144.000
7 . 7028-001
7 . 7055=001
- 0.04
0.29353
0 . 31654
0.31637
0=00016
2
146.000
8 . 4711-001
8 . 4745-001
- 0.04
0 .27703
3. 31920
0.31901
0.00019
• 2
143 . Q 0 □
9 . 3007-001
9 . 3049-001
- 0.05
0.26106
0.32179
0.32158
0=00021
2
15 0. 000
1 . 0196*000
1 . 0201*000
- 0.05
0.24548
0.32431
0 .32409
0=00022
2
152.000
1 . 1164*000
1 . 1169*000
- 0.05
0.23030
0.32675
0.32653
0.00022
2
154.000
1 . 2209*000
1 . 2214*000
- 0.05
0.21552
0.32912
0.32891
0.00021
2
156.000
1 . 3333*000
1 . 3343*000
-0 o 0 4
0.20111
0.33140
0.33123
0.00017
2
158.000
1 . 4560*000
1 . 4563*000
- 0.02
0.18707
0. 3336 1
0.33350
0.00011
2
160.000
1 . 5884*000
1 . 5884*000
- 0.00
0.17339
0.33571
0.33571
0.00003
2
162.000
1 . 7322*000
1 . 7316*000
0.03
0. 16004
0=33772
0.33788
- 0.00016
2
164.000
1 . 8886*000
1 . 8670*000
0.06
0.14701
0.33981
0 o 34 0 0 0
- 0.00039
2
166.000
2 . 0593*000
2 . 0561*000
0.16
0.13430
0 . 34135
0.34208
- 0.00073
2
163.000
2 . 2465*000
2 . 2408 * 000
0.26
0.12190
0.34291
0=34412
- 0.00121
1616
169.067
2 . 3438*000
2 . 3463*000
0.11
0.11540
3.34469
0,34520
- 0.00051
1614
169.270
2 . 3687*000
2 . 3670*000
0.0 7
0.11417
0.34506
0.34540
- 0.00035
912
169.417
2 . 3858*000
2 . 3821*000
0.16
0.11328
0 . 34480
0.34555
- 0.00075
1612
169.468
2 . 3801*000
2 . 3873*000
0.03
0.11297
0. 34545
0=34560
- 0=00015
910
169.601
2 . 4 C 54*000
2 . 4011*000
0.18
C . 11217
0. 34488
0.34573
-0 .00085
308
169.794
2 . 4236*000
2 . 4213*000
0.10
0.11101
0. 34547
0.34593
- 0.00046
1716
173.088
2 . 7972*000
2 . 7964*000
0.03
0.09162
0.34905
0.34920
- 0.00015
1714
173.290
2 . 6203*000
2 . 8215*000
- 0.04
0=09046
0.34961
0=34940
3=00021
oaiLVIC PMIt. INC., 1MMLTN 17. N. ▼. 9TM* N*. tn
98
APPENDIX F. (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-5
PAGE
21
SUBJECT
The Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
NAME _ .
R . D . Goodwin
DATE
Sent. 18, 1973
Table 14 (Continued) . Methane vapor densities.
ID
T,K
MOL/L
CftLCD
PCNT
z
YX
YC
YOIF
1712
173.469
2.8457+000
2.8465+000
-0.03
0.08931
0.34973
0.34959
0.00014
1012
173.473
2.8480+000
2.8445+000
0.12
0.08940
0.34896
0.34958
-0.00062
1010
1 73.675
2 . 8700+000
2.8701+000
-0.00
0.08824
0.34980
0.34978
0.00002
1006
173.857
2.8935+000
2.8934+000
0.00
0.08720
0.34995
0.34996
-0.00001
161b
1 7 7. 094
3.3501+000
3.3513+000
-0.03
0.06901
0. 35333
0.35315
0.00013
1814
1 77.292
3.3601+000
3.3822+000
-0.06
0.06792
0. 35369
0.35335
0.00034
1114
177.328
3.3863+000
3.3879+000
-0.05
0.06772
0. 35364
0 .35339
0.00025
1612
1 77.485
3.4108+000
3.4128+000
-0.06
0.06686
0. 35386
0 .35354
0.00031
1112
177.509
3.4209+000
3.4166+000
0.12
0.06673
0.35290
0 .35357
-0.00067
1110
177.700
3. 4602+000
3. 44 73+ 0 C C
0.37
0.06568
0.35175
0.35376
-0.00200
1916
181.105
4. 0663+000
4.0686+000
-0.06
0.04738
0.35755
0.35722
0.00033
1914
181.304
4. 1077 + 00 0
4. 1101+000
-0.06
0. 04633
0. 35778
0.35743
0.00034
1213
181.389
4 . 1269+000
4. 1281+000
-0.03
0 .04588
0.35769
0 .35 752
0 .0001 7
1912
181.506
4.1496+000
4.1530+000
-0.08
0.04527
0.35813
0 .35765
0 .00048
1211
181.589
4.1656+000
4. 1708+000
-0.12
0.04483
0 . 35848
0.35774
0.00074
1209
181.763
4.2042+000
4.2097+000
-0.13
0. 04389
0.35870
0 .35793
0.00078
1516
183.117
4 . 5212+000
4. 5240+000
-0.06
0.03688
0.35978
0 .35940
0 .00 0 3 9
1514
18 3. 322
4.5704+000
4. 5754+ 0CC
-0.11
0. 03582
0 . 36032
0.35963
0.00069
1512
IS 3.514
4.6189+000
4.6246+000
-0.12
0 . 03484
0. 36063
0 .35985
0.00078
1316
164.125
4 . 7622+ J00
4. 7880+000
. -0.12
' 0.03171
0.36134
0.36055
0.00079
2108
164.087
4. 7625+000
4. 7775+000
0.10
0. 03190
0 . 35982
0.36051
-0.00068
210 7
164.285
4. 8263 + 00C
4. 8327+000
-0.13
0.03089
0.36161
0.36074
0 .00 087
1314
184. 370
4. 8462+000
4. 8567+000
-0.22
0.03046
0.36228
0 .36 0 84
0.00144
2 1 0 b
184.471
4.8797+000
4.6857+000
-0.12
0.02994
0. 36177
0 . 360 96
0.00081
1312
184.510
4. 367b+00U
4.8969+000
-0.19
0.02975
0. 36228
0.36101
0.00127
6
185.030
5. j38G+00u
5. C524+O0C
-0.28
O'. 02711
0.36359
0.36164
0.00195
6
1 8o. 030
5.3640+000
5. 3838+000
0.00
0. 02208
0. 36290
0.36292
-0.00002
22 0 6
166.103
6. 4077+000
5.4098+000
-0.04
0.02172
0.36331
0.36302
0.00029
141b
130.129
5. 4096+000
5.4192+0C0
-0.18
0.02159
0 . 3b43 6
0.36305
0.00131
1414
18-.. 319
5. 4795+00 J
5.4691+000
-C.17
0.02064
0.36461
0.36331
0.00130
22 0 7
18o.304
5 . 4627+000
5.4835+000
-0.01
0. C2072
0.36339
0.36329
0.00010
22 0 b
136.501
5. 5571+000
5.5581+000
-0.02
0. 0 1974
0. 36369
0.36356
0.00013
1412
130.518
5.5591+000
5.5646+0CC
-0.10
0 . C 1965
C. 36434
0 . 36359
0.00075
6
1 6 7.0 51
5. 7360 +00C
5 . 7 7 2 3 ♦ 0 0 u
0.2 4
0.01711
0. 36244
0.36433
-0.00189
b
1 8 3 . 0 31
6. 2750+ 000
6.2474+0OG
0.44
0. 01219
0. 3620 1
0.36592
-0.00392
2306
138.140
6. 2930+000
6. 3064+000
-0.21
0.C1165
0 . 3680 4
0.36612
0.00193
2 10 7
183.343
6.4067+000
6. 4218+000
-0.24
0. r 1066
0 . 36868
0.36648
0.00219
230b
168.545
6.5278+000
6.5441+0U0
-0.25
0.0 0 968
0.36926
0 . 36686
0.00239
6
1 6 9 . 0 32
6. 916O+OU0
6.6777+000
0.59
0. C0732
0. 36167
0.36787
-0.00620
5
16). 765
7.561C+000
7.5576+0C0
-0.09
0.00378
0.37093
0.36975
0 .00117
6
190. J32
7.9oU0+30Q
7.9153+000
0.56
0.00250
0 . 3618b
0.37065
-0 .C0879
c,
130.046
7.9-5 50+^00
7.9371+000
-0.0 3
0 . C 0 243
0.37113
0.37070
0.00043
7
190.070
8. OOOC + OOG
7.9756+000
0.31
0.00232
0 . 36588
0.37079
-0.00491
7
1 9 J . 1 7 J
6.170C+000
8. 1508+000
0.24
0.00184
0 . 36709
0 .37120
-0 .0041 2
7
190.270
8.360C+OOL
8.3595+000
0.0 1
0.00136
0 . 37154
0.37166
-0.00013
5
1)0.279
S . 390 0 ♦ 0 C 0
8.3805+000
0.14
0.00132
0.36899
0.37171
-0.00272
7
1 9 0 . 570
8. b 200+000
8.6242+ 000
-0.05
0.00088
0. 37333
0.37221
0.00112
7
1 9 0.4 70
9. ouUC+OjC
9 . C 1 16+CuC
-0.13
0 . C a 041
0.37689
3.37291
0.00397
r,
13'. 500
9.1610+006
9.ie67+0C0
-C.26
C . C 0 026
0.36333
0.37319
0.01014
NP - 96, RHL^CT = 0.146
yy
OQILVIE PRESS. INC.. BROOKLYN 17. N. Y.
STOCK NO. 480
APPENDIX F . (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-5
PAGE
22
subject 'ppg Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
name p . p) ^ Goodwin
DATE
Sent. 18 1973
pm
03
ro
•
O
II
Table 15. Compari son of ethane vapor densities.
Ll_
on
ro
4
4
CD
4
T
m
03
o-
J-
03
in
-»-4
CM
rw
CD
N.
in
K-
ro
co ro
r-
U3
IH
4
of
j-
^4
H
ro
ro
CM
vH
o
CD
H
CM
CM
CM
CM
=?4
▼4
t4
CM
r4
CD
N.
o
ro
O' in
o
4-
D
o
o
O
CD
O
o
O
o
S'
CD
CD
O
o
CD
o
o
O
CD
O
CD
O
CD
o
o
CD
o o
•S'
o
>-
CD
o
Q
•S'
a
o
o
o
CD
O
CD
o
o
CD
CD
o
O
CD
o
CD
O
O
o
o
O
G O
o
o
o
G
O
o
CD
CD
o
o
O
CD
O
CD
o
CD
O
o
CD
CP
CD
O
o
CD
a
o
o
CD O
o
o
CD
1
CD
CD
a
O
•
0
1
0
1
o
•
0
1
O
1
CD
CD
CD
O
CD
o
CD
a
O
1
CD
•
o
•
CD
1
o
•
CD
1
CD
CT> O
0
1
0
1
C-3
K-
ro
CM
N-
tH
CO
O'
ro
03
cp
in
<x>
N-
H
ro
03
*4
•X)
in
*4
^4
B0
CM
▼4
O'
to 4-
in
GO
>-
in
os
VO
CO
▼4
CM
CD
C\J
03
ro
4
CO
03
CP
03
OO
CO
M3
03
O'
<=0
ro
03
iO
•n
>*4
N.
N.
00
CO
CO
in
CT P-
CO
oo
CM
i£>
CP
rl
ro
J-
in
in
CD
in
CO
p-
M3
in
ro
N.
o
•*4 CVJ
CM
CM
4
CM
o
CD
CM
ro
in
03
P-
O'
CD
CM
ro
4
4
j-
in
iO
N-
GO
BO
O'
O' O'
O'
O'
o
o
o
o
a
CD
CD
o
CD
o
CD
O
•H
▼4
W
<5-4
*4
▼4
*4
▼4
▼4
▼4
▼4
*4
^4 ^4
-*H
▼4
CD
1
CD
1
CD
•
CD
•
a
•
CD
CD
CD
CD
CD
O
o
CD
CD
O
CD
CD
O
CD
CD
CD
O
O
CD
O
G CD
o
O
X
in
CP
ro
4
GO
in
ro
4
CM
ro
O
r^
CO
N-
CO
CO
CO
*4
in
TO
in
in
i£>
4 N.
BO
ro
>-
CD
▼4
▼4
CM
cr
N.
O'
4
ro
in
CD
CP
▼4
<JD
CD
O' K.
4 p-
03
ro
<o
in
ro
4- v£>
•n
ro
ro
ao
CM
in
O' 03
CM
N.
CM
03
O' CM
ro
in
in
O)
o
in
GO
p-
03
in
CM
r-
o
CM CM
CM
CM
N-
m
4
CM
a
O
CM
TO
in
03
CP
CD
▼4
CM
ro
J-
4
Jf
in
03
OO
B0
O'
O' O'
O'
O'
rH
CD
CD
CD
CD
CD
CD
CD
CD
CD
CT
o
o
CD
*4
▼4
*4
•*4
▼4
▼4
t4
▼4
▼4
t4
t4
▼4
t4 4
^4
^4
CD
CD
CD
CD
CD
CD
CD
CD
CT
CD
CD
CD
CD
CD
o
CD
O
CD
CD
CD
CD
O
CD
O
a
CD
O
O
CD
CD O
O
CD
i
4-
i
»
i
i
•
CD
CD
in
O
N-
CD
M
■*4
4
*4
03
*4
CD
ro
4
C P
os
CD
ro
in
N-
O'
03
03
▼4
O'
o>
O'
4-
in
CP
o r\j
in
▼4
03
G
j-
<©
O
4
ao
•JO
▼4
CD
▼4
in
ro
N»
4
CO
\D
in
ro
CD
oo
H
03
P0
G
ro
cj iD
CM
▼4
03-
CD
X)
vO
rl
j-
oj
ro
rj
cr>
00
CD
ro
CP
CP
▼4
03
ro
00
CM
03
03
O'
0J
r-
CD
4-
ro
o
CD
N*
CD
(T
in
4
n
O'
ro
N-
ro
CP
in
▼4
OO
03
ro
*4
o
O'
03
03
J-
ro
^4
4
CD
CD CD
CD
O
in
CD
CP
<x>
N-
03
in
J-
j-
ro
ro
CM
CM
OJ
▼4
H
▼4
*4
t 4
CD
CD
CD
o
G
a
O
G
o o
G
O
ro
O
o
o
o
CD
o
CD
o
o
o
o
CD
o
CD
CD
O
CD
CD
CD
O
O
O
O
o
a
O
O CD
O
O
cD
CP
G
1—
O
r^
G
-t
in
ro
cO
in
CD
ro
4
O'
ro
4
4
t4
CP
10
03
G
n-
nj
in
CM
r-
CO
CO
▼4
ro
UJ
G
0J
o
z
O
G
4
o
o
*4
▼4
t4
G
UJ
O
*4
4
*4
▼4
CD
CD
G
p4
a
o
ro
o
a
*4
CD
CD
o
G
ID
o
o
i
CM
CD
a
G
CD
CD
G
CD
O
O
CD
CD
CD
G
CD
a
CD
O
CD
O
G
O
CD
a
o
CD
G
CD
O
CD
CD
a
CO
O
4-
CM
CD
1
i
t
i
i
•
t
i
i
•
i
i
i
UJ
O'
4
CP
CD
1 — 1
O'
t4
00
CD
y—
a0
in
•
•
H4
•
ro
0-
CD
o
n
in
in
4
ro
ro
ro
CvJ
CM
0J
CM
▼4
*4
^4
^4
▼4
t4
▼4
t4
CD
a
G
O
CD
CD
a
a
CD
CD
(/I
O'
•
1
o
a
o
a
G
CD
a
CD
CD
CD
"D
LJ
CD
CD
CD
O
CD
a
CD
CD
CD
o
CD
G
CD
O
o
CD
CD
CD
z
CO
▼4
— J
o
o
CD
G
CD
G
CD
o
CD
O
G
O
CD
O
G
CD
a
CD
G
o
CD
v-D
O
O
O
o
o
CD
O
UJ
rvj
G
<
i
«
i
i
i
i
»
1
i
i
i
i
i
t
i
i
t
•
i
4-
4-
4-
4-
4-
4-
4-
4
4
4
Q
II
II
o
O
o
ro
03
03
ro
CD
B0
4
CP
4
4
in
p-
lO
CD
cO
in
CP
N-
CP
O'
03
4
CD
ro
O'
N-
4
4
o
O
n
in
CP
i0
•D
O'
4
TO
O'
4
ao
ro
ro
<D
ao
CP
ro
▼4
in
03
0J
t4
4
CM
ao
CM
CO
CD
Ct
a
CL
1
4-
GO
ro
<£>
in
CP
CP
CP
CM
ao
t-D
CP
CO
o
CM
o
vU
in
(M
in
ro
03
1^
a
CD
▼4
ro
*4
4
▼4
O
O'
ac
•£>
CD
ro
ro
■*4
in
^4
CM
N-
cO
G
4
GO
ro
CD
o
0J
CO
r^.
03
C0
t4
in
Cl
ao
in
ro
03
CD
CP
■*4
•
a
1-
1 —
CO
O
LD
d
1—
o
a
O
*4
*4
ao
ro
ro
N.
t4
ro
l n
CO
▼4
0J
ro
4
in
iO
ao
^4
*4
0J
0J
ro
4
4
in
in
03
CD CD
in ct
o
f-D
G
in
G
UJ
ro
N.
»4
a
-j
03
in
in
4
ro
ro
ro
CM
(M
CM
(\J
▼4
▼4
▼4
▼4
*4
4
▼4
*4
O
O
CT
CT
O
CD
CT
CD
CT
CT
¥—
ro
GO
•
•
CD
CD
CD
a
G
G
o
G
CD
CT
O
CD
O
CD
O
CD
CD
CD
O
CT
o
CT
G
o
CD
CT
CT
O
CD
C_3
d
•
•
4
o
_i
CD
CD
CD
CD
a
G
o
G
CD
CD
CT
CT
CT
CT
CT
CT
CD
CD
CT
CT
o
CT
G
o
CD
CT
O
CT
CD
a
QC
in
03
o
i
«
i
i
i
i
1
i
i
i
i
|
i
i
i
i
i
i
i
4-
+
4-
4-
+
+
4-
♦
4»
+
10
r>
CD
r
<0
0J
tM
G
rp
ro
JO
CP
t4
'H
PM
O
0J
PM
in
03
▼4
CT
CT
o
CD
G
CT
G
O
CT
O
CD
X
w-
TO
*4
▼4
0)
4
'H
in
r^
m
4
G
CP
4
▼4
P*
in
O'
s.
00
0J
in
▼4
ro
fs.
N.
CT
PM
N-
4
in
ro
o CL
cl
a
CD
r
P3
03
in
CP
CD
o
ro
GO
▼4
O'
CO
0-
CP
4
o
03
in
ro
in
ro
03
<X3
CD
CD
CT
ro
^4
in
in
II
II
o
CD
ro
ro
▼4
in
▼4
ro
a0
03
O
4
B0
ro
o
CP
CVJ
CO
N»
CO
03
▼4
in
CT
ao
in
ro
03
CT
O'
4
UJ
k-
l
0J
03
4
▼4
rO
ro
*4
ro
N.
*4
ro
in
ao
▼4
PM
0J
4
in
03
r^
CO
▼4
^4
PM
0J
ro
4
4 in
in
03
0J
z
nc
CL
ro
<r
o
O
4
ro
II
X
1—
Q
N-
4
1—
rc
in
a
O
CD
CD
CD
CD
G
CT
G
CT
CT
CT
CT
CT
o
CD
CD
CT
CD
O
O
CT
CD
CT
CT
CT
CT
CT
CD
CL
UJ
CM
4
•L
CD
o
CD
CD
CD
G
O
CT
O
CD
a
CD
o
CD
CT
CT
CT
CD
in
in
in
tn
in
in
in
in
in
in
in
z
0J
CD
G
CD
n
fD
CT
CD
CT
CD
CD
CD
CD
CT
CT
CT
CT
CT
CT
▼4
4
"«4
▼4
▼4
4
*4
▼4
▼4
•4
OJ
4
▼4
CD
CD
CD
o
CT
CD
r D
CT
CT
CD
CD
CT
CT
CD
CD
CT
in
CD
ro
ro
ro
m
ro
a0
PM
ro
4
in
in
<T>
O
▼4
oo
ro
4
in
03
O
O'
O
▼4
PM
ro
4
4
in
in
03
N.
ao
O'
CP
CT
G
CT
CT
CD
•*4
-4
▼4
4
▼4
4
▼4
4
t4
*4
PsJ
PM
PM
PM
PM
PM
PM
PM
CM
PM
OJ
PM
PM
ro
ro
ro
ro
ro
Q
r4
▼4
H
4
■H
▼4
▼4
*4
▼4
▼4
*4
▼4
▼4
4
*4
t4
*4
*4
o
o
CT
CD
CT
CT
o
CD
CD
CT
o
1-4
4
t4
▼4
^4
▼4
▼4
t4
■*4
▼4
*4
OGILVIE PRESS. INC., BROOKLYN 17, N. Y.
STOCK NO. 490
100
APPENDIX F. (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-5
PAGE
23
SUBJECT
The Orthobaric Densities of Ethane, Methane, Oxygen and
NAME „ ^
R.D
. Goodwin
F luorine
DATE
IS 1 Q7T
Table 16. Ethane vapor data not used for least squares.
u.
vi>
rvj
CVJ
<30
ro
CO
C V
in
vD
O'
X
rr>
LT»
CT
x
3
f\J
x
in
in
eo
3
X
<50
in
CD
CM
ao
fr—4
cd
CD
9-4
CVJ
X
X
00
CD
CD
ro
CM
ao
PO
3
ee
o
<r>
®
o O'
O' O'
▼4
ao
3
3
3
O'
TO
CM
in
■9-4
fO
o
o
CD
CD
CD
CO
o
H
j-
CM
CM
CD
CD
CD
CD
9-4
o
CD
9"4
SD
O
9-4
CD
o
o
o
o
o
H
9-4
CM
3
O
V
CD
a
CD
CD
CD
o
O
CD
CD
CD
O
o
O
O
o
a
o
o
CD
O
o
O
O
o
o
o
o
o
CD
O
CD
CD
O
o
o
CD
CD
o
O
CD
CD
CD
CD
o
CD
CD
CD
CD
CD
o
o
cd
o
o
CD
©
o
o
o
o
CD
O
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
O
O
CD
o
CD
O
o
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
cd
CD
CD
CD
CD
CD
O
i
i
i
i
i
i
i
i
i
i
•
i
i
1
1
•
i
i
•
o
CD
j-
O'
in
CM
9-4
TO
X
in
CM
CD
CO
®
in
3
3
CM
X
in
3
ro
CM
P-
in
X
ro
X
CD
j-
3
P-
in
>-
3
o
in
CD
3
N.
O’
o
ro
XI
3
a
ro
in
O' C3
O'
p-
m
N.
X
3
in
X
X
X
Lf\
IV.
3
9-4
3
N.
O
in
O'
3
®
CM
X
•=H
CM
9-4
CD
3
O'
3
to
TO
®
CM
X
9-4
in
o' in
O' ro
X
N*
O' o
9-4
CM
CM
CM
in
in
m
x
P.
N-
OO
CM
ro
ro
eo
3
3
in
IT'
X
X
P-
P.
r^
p»
eo
®
to
X
O'
O'
X
X
X
9-4
9-4
9“4
9-4
9H
9-4
9-4
9-4
o
9-4
9-4
9=4
9-4
▼4
9-4
9-4
9—4
9-4
9-4
9-4
^4
9~4
9-4
9-4
9-4
9-4
9-4
9-4
9-4
9-4
9—4
9-4
CD
O
CD
CD
CD
O
O
CD
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
O
CD
CD
CD
CD
CD
CD
O
rD
CD
O
X
X
CM
X N-
X
ro
3
9-4
X
ro
3
CD
ro
IO
p.
CO
ao
9-4
CM
9-4
X
X
®
CM
X CM
CM
ao
X
at
X
ro
>-
3
o
3 N.
to
p-
o
a
CM
CM
9-4
X
p-
X
X
to
9-4
9-4
X
X
X X
-t
o
*r4
CD
X
o
X
X
X
9-4
CD
X
X
ro
P»
9-4
X
p-
o
X
X
ro
eo
TO
p.
CM
K
CM
X
O
X
9-4
X
O
3 X
®
CD
CM
CM
3
X
ro
X
X
in
X
X
p.
r^
p-
9-4
CM
ro
ro
3
3
X
X
X
X
N.
p.
ao
P-
®
co
®
®
X
X
X
X
X
a
9-4
9-4
▼4
9-4
9-4
9-4
9-4
9-4
CD
9-4
9-4
9-4
9-4
9-4
9—4
9-4
9-4
9—4
9-4
9-4
9-4
9-4
▼4
9—4
9-4
9-4
9-4
9-4
▼4
9-4
9—4
9-4
CM
CD
O
CD
CD
CD
O
CD
CD
CD
CD
O
CD
O
CD
CD
CD
CD
CD
CD
O
CD
CD
O
CD
CD
O
CD
CD
CD
CD
CD
rrj
a
PJ X
IT.
9*4
O
CM
in
p.
X
X
X
9-4
X
CM
X
ro
9-4
ro
X
9-4
CM
9-4
CM
X
ro
CM
®
GO
X
CM
ro
X
ro
X
X
O
r^
CD
CM
X
®
X
X
o
CM
CD
X
®
CM
X
CD
p-
X
®
CM
X
O
ro
X
X
X
CM
CM
CM
ro
3
X
N>
X
CM
ro
X
in
X
X
X
X
X
X
X
X
X
nj
-r
(M
ro
O
X
CM
9-4
CD
CD
®
X
X
3
ro
CM
CM
K.
3
CM
9-4
CD
X
<o
N-
X
X
ro
ro
CM
ro
(M
■9-4
9-4
9-4
CD
o
a
O
a
O
o
a
O
O
CD
o
o
CD
CM
9-4
9-4
9-4
9-4
o
o
O
CD
CD
o
CD
o
CD
o
CD
CD
CD
CD
a
CD
o
CD
CD
o
o
o
CD
a
CD
o
o
CD
o
o
O
o
a
o
o
CD
CD
CD
CD
O
CD
CD
CD
O
CD
CD
CD
CD
O
o
CD
CD
CD
ro
9-4
X
P0
ro
9-4
ro
at
CM
9-4
K-
®
ro
CM
▼4
p»
X
X
X
CD
X
9-4
X
ef
CM
ro
X
ro
CD
GO
z
o
CD
O
9-4
CM
■3-
p-
J-
9-4
ro
X
j-
9-4
CM
j-
X
j-
ro
ro
ro
p»
o
ro
9-4
9*4
9-4
CM
CM
CM
ro
X
N-
CL
CD
l
CD
CD
CD
CD
CD
CD
9-4
9-4
9-4
CD
CD
O
CD
CD
CD
a
CD
CD
o
o
1
o
•
CD
C)
I
a
1
CD
1
CD
8
CD
8
CD
J
o
•
CD
1
CD
1
CD
1
□
9-4
CJ
a
a
CD
CD
a
CD
CM
9-4
9-4
9—4
9-4
9-4
9-4
CD
CD
CD
O
O
CD
CD
o
<o
GO
CD
CD
CO
CO
CD
CO
CD
CD
o
'ID
CD
CD
CD
CD
CD
CD
CD
CD
O
O
CD
O
CD
CD
CO
o
CD
CD
CD
CD
CD
o
CD
O
CD
CD
CD
o
CD
o
O
O
a
CD
o
O
o
CD
o
O
O
CD
o
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
o
CD
CD
o
Q
Q
CD
O
CD
CO
CD
<
i
4*
4-
<♦»
•f
4-
4-
4-
i
t
1
•
i
i
i
4-
4-
4
4-
4-
•+•
4-
♦
4*
4
V
4-
4-
4-
4-
4
4
4*
o
X
9-4
ro
r^
J-
X
X
ro
N-
CM
ro
CM
X
3
X
3
9-4
CM
N»
X
X
®
X
rO
X
X
X
N*
X)
X
3
PJ
MJ
-3
CM
o
®
®
ro
3-
9-4
CM
X
3
X
X
X
CM
ro
ro
ro
CO
X
ro
X
CO
3
X
X
tn
®
3
CM
CD
X
9—4
CD
CM
P-
®
r-
9-4
CM
o
9-4
9-4
X
X
9-4
X
X
ro
CD
X
CM
X
CM
X
o
3
O
9-4
ro
X
9-4
9-4
D
CM
df
X
GO
9-4
X
®
p~
X
X
-J
in
X
CD
94
ro
X
GO
GO
J*
a
3
®
9-4
X
X
ro
X
CD
ro
X
X
9-4
9-4
9-4
9-4
9-4
CM
CM
X
ro
3
in
X
p.
CO
9-4
9-4
9-4
9-4
9-4
CM
CM
CM
CM
CM
ro
ro
ro
•J*
3
X
X
X
X
9-4
O
CD
O
O
CD
O
o
CM
H
9-4
9-4
9-4
94
9-4
CD
CD
CD
a
a
CD
O
a
CD
CD
CD
a
o
o
CD
CD
CO
o
N.
CO
O
a
CD
O
r D
CD
o
o
CO
O
O
CD
O
CD
CD
CD
CD
o
o
CD
o
CD
CD
O
CD
o
o
o
ro
a
CD
CD
X
CD
o
o
o
a
CD
CD
CD
CD
' )
CD
O
O
CD
CD
CD
CD
CD
CD
CD
CD
o
CD
r C)
o
CD
o
o
CD
CD
CD
CD
CD
o
i
4-
4-
+
4-
4-
4-
4-
i
1
i
i
i
i
i
4
4-
4-
+
4-
4-
+
4*
4*
4-
4-
4>
4-
4-
4-
4-
4-
4-
s:
CM
3
9-4
X
9-4
N.
CD
X
ro
N-
CD
N.
x>
X
9-4
9-4
ro
ao
CM
X
X
CO
X
ro
CM
cO
ro
ro
ro
X
ro
X
CM
X
3
3
X
3
CD
o
X
ro
®
9-4
3
9=4
^4
rs*
CD
o
X
9-4
®
X
9-4
3
o
O
3
X
CD
N-
X
X
X
9-4
CD
CM
®
CD
9-4
X
r^
ro
3
CM
ro
CM
X
in
3
9-4
®
9-4
X
9-4
X
CD
3
X
CD
(M
CM
X
CD
CD
CM
3
X
®
CM
X
®
p-
X
X
3
X
X
CD
94
ro
X
GO
CD
3
CD
3
CO
9—4
in
X
CM
CD
ro
®
X
9-4
9-4
9-4
9*4
9-4
CM
CM
X
ro
3
X
X
N.
GO
9-4
9-4
9-4
9-4
9-4
(M
CM
CM
CM
CM
ro
ro
ro
3
3
X
X
X
y
CD
CD
CD
O
O
CD
O
CD
Q>
N-
ro
9-4
®
m
CM
X
X
CM
CD
ao
X
3
a
CD
CD
O
CD
CD
CD
CD
CD
o
O
•t
O
CD
o
a
C3
O
o
CD
GO
O
o
CM
ro
X
3
a
®
ro
X
ro
rw
X
o
X
®
X
X
X
in
in
in
4—
O
C7D
CD
CD
CD
CD
CD
CD
X
CM
X
X
r\j
X
o
®
nj
N»
O
X
in
CM
CM
—4
9-4
X
9—4
X
9-4
9—4
X
9-4
CD
in
CD
X
'D
in
O
3
X
cr
ao
ro
GO
ro
ao
ro
ao
ro
ao
ro
GO
*o
GD
ro
m
CO
rD
CM
ro
3
3
X
in
X
X
K.
r^
GO
cO
X
®
CM
ro
ro
3
3
in
X
D
X
N.
®
GO
o
aO
X
X
O’'
CO
I D
o
D
D
O
CM
CM
CM
CM
CM
CM
CM
CM
9-4
CM
CM
(M
CM
CM
CM
CM
CM
CM
CM
(M
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
a
9-4
9—4
9-4
9-4
9-4
9-4
9=4
9-4
X
X
X
X
X
X
X
X
X
X
X
X
X
X
9-4
9-4
9-4
9=4
9-4
9-4
9 f =4
9—4
9 ^
9-4
9-4
OGILVIE PRESS. INC.. BROOKLYN 17. N. Y.
STOCK NO. 480
101
APPENDIX F. (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-5
PAGE
24
The Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
name p Goodwin
DATE
Spot. 18 1 973
Table
17. Calculated
oxygen vapor
densitie s .
T, K
R, MOL/L
DR/DT
D2R/DT2
54.351
3.3612-004
9.6727-005
2.4354-005
56.000
5.3288-004
1.4452-004
3.4007-005
53.000
8.9941-004
2.2709-004
4.9253-005
6 J. 000
1.4644-003
3.4449-004
6.8929-005
62.000
2.3068-003
5.0609-004
9.3527-005
64.000
3.5251-003
7.2213-004
1.2342-004
66.000
5.2388-003
1. 0035-003
1. $884-004
63.000
7.5899-003
1.3613-003
1.9990-004
7 0 . 0 0 0
1 . 0742-002
1.8068-003
2.4655-004
72.000
1 . 4883-002
2.3511-003
2.9868-004
74.000
2.0220-002
3.0050-003
3.5605-004
76.000
2.6983-002
3. 7786-003
4.1840-004
73.000
3.5421-002
4.6817-003
4.8543-004
30.000
4.5802-00 2
5. 7233-003
5 • 5684-0 0 4
32.000
5.8412-002
6.9118-003
6.3239-CC4
84.000
7. 3552-002
8.2554-003
7.1185-004
86.000
9.1542-002
9.7617-003
7.9510-004
88.000
1. 1271-001
1.1438-002
8.8208-004
90.000
1.3741-001
1.3293-002
9.7286-0C4
92.000
1.6601-001
1. 5332-002
1.0676-003
94.000
1 . 9887-00 1
1.7566-002
1.1666-003
96.000
2. 3641-001
2. GO 02- 0 02
1.2703-003
93.000
2. 7902-00 1
2.2651-0G2
1.3793-C03
100.000
3.2716-001
2. 5523-002
1.4944-003
102.000
3.8127-001
2. 6633-002
1.6164-003
104.000
4.4186-001
3.1994-002
1.7466-003
106.000
5. C943-001
3.5626-002
1.8865-003
1 0 3 . 0 0 0
5.8455-001
3.9548-002
2.0377-003
110.000
6.6783-001
4. 3785-002
2.2023-003
112.000
7.5992-001
4.8368-002
2.3830-003
114.000
8.6155-001
5.3330-002
2.5829-003
116. 000
9. 7353-001
5. 8715-002
2.8059-003
113.000
1.0967+000
6.4572-002
3.0569-003
12 J. 000
1 . 2322+000
7 . Q9b5- 0 02
3.3422-CG3
122. 000
1.3810+000
7. 7969-002
3.6695-003
124.000
1 . 5445+000
8.5678-002
4.0493-003
12o. 000
1. 7243+000
9.4210-002
4.4951-003
128.000
1.9220+000
1. 0371- 0 01
5.0254-CC3
13. .000
2. 1399+000
1.1438-001
5. 6657-C 0 3
132.000
2.3605+000
1. 2647-001
6.4520-003
134.000
2.6470+000
1.4032-001
7.4368-003
1 3 6 • J 3 Q
2.9433+000
1. 5641-001
8.6997-C03
1 3 5 . 0 00
3.2745+000
1.7539-CGi
1.0366-002
140.000
3 . 64 7 4 + 000
1.9828-001
1.2644-002
142.000
4. 3712+000
2.2661-001
1.5903-002
1 44. J 00
4.5592+000
2.6300-001
2.0854-002
1 4 b . 0 0 0
5. 1316+GOO
3.1214-001
2.9031-002
143.000
5.8225+000
3. 8373-001
4.4334-C 02
15 0. 000
6.6967+300
5.G204-C 01
7.9575-002
152. OUO
7 .9138+300
7. 542G-001
2.0346-001
154.000
1. 023C+001
2. 0622+000
2.4109+000
154.576
1 . 3bJG+001
0. 0000 + 000
0 . 00 0 0 + 0 0 0
OG1LVIE PRESS, INC., BROOKLYN 17. N. Y.
STOCK NO. 490
102
APPENDIX F. (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
PROJECT NO.
FILE NO.
PAGE
LABORATORY NOTE
7750364
73-5
75
subject Tkg Orthobaric Densities of Ethane, Methane, Oxygen and
NAME
R.D
■ Goodwin
Fluorine
DATE
...13. 19,71
Table 18. Calculated fluorine vapor densities.
T,K
R» MOL/L
DR/DT
D2R/DT2
53.481
5.6700-004
1.6771-004
4.2852-005
54.000
6.6001-004
1.9119-004
4.7718-005
56.000
1.1518-003
3.0817-004
7.0323-005
58.000
1. 9272-003
4.7699-004
9.9683-005
60.000
3.1038-003
7.1188-004
1.3650-004
62.000
4. 8291-003
1. 0283-003
1.8127-004
64.000
7.2821-003
1.4424-003
2.3426-004
66.000
1 . 0675-002
1.9709-003
2.9554-004
68.000
1.5253-002
2.6301-003
3.6499-004
70.000
2. 1293-002
3.4361-003
4. 4236-004
72.000
2.9105-002
4.4046-003
5 .2731-004
74.000
3.9029-002
5.5501-003
6.1945-004
7o. 000
5.1434-002
6.6869-003
7. 1844-0 04
78.000
6.6713-002
8.4282-003
8.2395-004
80.000
8.5291-002
1.0187-002
9. 3580-004
82.000
1.0761-001
1.2176-002
1.0539-003
64.000
1.3416-001
1. 4407-002
1.1783-003
3 6. J 0 0
1 . 6541-001
1.6893-002
. 1.3094-003
68.000
2.0191-001
1.9649-002
1.4475-003
90.000
2.4420-001
2.2689-002
1.5935-003
92.000
2.9286-001
2. 6029-002
1.7482-003
94.000
3.4852-001
2.9688-002
1.9129-003
96.000
4.1184-001
3.3688-002
2.0693-003
99.000
4. 8352-001
3. 8054-002
2.2793-003
1 0 0 . 0 00
5.6432-001
4.2816-002
2.4854-003
102.000
6.55G7-001
4.8009-002
2.7105-003
104.000
7. 5667-001
5.3674-002
2.9585-C03
106.000
8 . 7012-001
5.9861-002
3.2339-003
108.000
9.9651-001
6.6631-002
3.5426-003
il 3. J00
1. 1371+000
7. 4058-G02
3.8918-003
112.000
1.2932+00 0
3.2232-032
4.2910-003
114.000
1.4666+000
9.1264-002
4.7523-003
116.000
1.6590+000
1.0129-001
5.2919-003
113. UG0
1.8725+000
1.1250-031
5.9315-003
120.000
2. 1099 + 000
1.2511-001
6.7C13-003
122. 000
2 . 3741+000
1.3942-001
7.6437-003
124.000
2.6690+000
1. 5584-001
8.8210-003
1 2 6 • 0 0 0
2 . 9992+000
1.7492-001
1.0328-002
126.000
3.37C9+0C0
1.9746-GC1
1. 2313-0 02
130.000
3 . 7921+000
2.2465-001
1.5026-002
132.000
4.2739+000
2.5834-001
1.8913-002
134.000
4. 8319+000
3.0165-001
2.4841-002
136.000
5 . 49C5+000
3.6028-001
3.4720-CC2
139.000
6.2909+000
4.4628-001
5.3532-002
140.000
7.3133+000
5.9079-001
9.6476-002
1 <+ 2 . J 0 0
8.7644+000
9.1469-001
2.72 51-001
144. 000
1.1893+001
3. 5620+00 0
7.7289+000
144. 310
1 . 5150+001
0.0000+000
0.0000+000
OG1LVIE PRESS. INC.. BROOKLYN 17. N. Y.
STOCK NO. 450
103
APPENDIX F. (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
-73-5
PAGE
26
SUBJECT
The Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
NAME
R . D . Goodwin
DATE
ciopf 18 1Q78
Table
19. Calculated methane vapor
densitie s .
T,K
Rf MOL/L
DR/DT
D2R/DT2
90.680
1.5679-002
1.8523-003
1.7385-004
92.000
1.8280-002
2.0919-003
1.8937-004
94.000
2.2858-002
2.4952-003
2.1409-004
96.000
2.8294-002
2.9492-003
2.4020-004
98.000
3.4691-002
3.4569-003
2.6763-004
100.000
4.2159-002
4.0206-003
2.9634-004
102. 00C
5.0813-002
4.6430-003
3.2628-004
104.000
6. 0772-002
5. 3265-003
3.5744-004
106.000
7.2161-002
6.0736-003
3.8980-004
106.000
8.5110-002
6.8866-003
4.2339-004
11 0.000
9.9753-002
7. 7680-003
4.5823-004
112.000
1.1623-001
B. 7204-003
4.9439-004
114.003
1.3468-001
9. 7465-003
5.3195-004
116.000
1.5527-001
1.0849-002
5.7100-004
113.000
1.7813-001
1.2032-002
6.1170-004
120.000
2.0345-001
1.3297-002
6. 54 20-004
122.300
2.3138-001
1.4650-002
6.9870-004
124.000
2 . 6211-001
1.6093-002
7.4545-004
126.000
2.9582-001
1.7633-002
7.9471-004
128.000
3.3271-001
1. 9274-002
8.4681-004
130.300
3.7299-001
2. 1023-002
9.C214-0C4
132.000
4. 1687-001
2.2885-002
9.6113-004
134.000
4.6461-001
2.4870-002
1.0243-003
136.000
5.1644-001
2.6986-002
1.0922-003
138.000
5.7264-001
2.9242-CG2
1. 1657-00 3
14 0. 000
6.3351-001
3.1652-002
1.2454-003
142.000
6.9937-001
3.4229-002
1.3325-003
144.000
7. 7055-001
3.6988-002
1.4280-003
146.000
8.4745-001
3.9948-C02
1.5335-C03
148.000
9.3049-001
4. 3130-002
1.6506-003
150.000
1.0201+000
4.6559-002
1.7815-003
152.000
1 .1169+000
5. 0267-002
1.9288-003
154.000
1 . 2214+000
5.4288-002
2.0957-003
156. 300
1. 3343+000
5. 8665-002
2.2865-003
156.000
1.4563+000
6. 3453-002
2.5065-003
160.000
1 . 5884+000
6.8715-002
2.7627-003
162. J00
1 . 7316+000
7.4534-002
3.0643-003
164.000
1 .8870+000
8.1011-002
3.4240-003
166.000
2.0561+000
8.8280-002
3 . 85 92-0 G 3
168.000
2.2408+000
9.6514-002
4.3945-003
170.000
2. 4430+000
1. 0595-0C1
5.0661-003
172.000
2.6656+000
1.1691-001
5.9289-003
174.000
2.9119+000
1.2985-001
7.0695-003
176.000
3.1867+000
1.4546-001
8.6322-003
178.000
3.4963+000
1.6482-0C1
1.0873-002
180.000
3.6497+000
1.8973-001
1.4288-002
182.000
4.2610+000
2.2344-001
1.9949-002
164.000
4.7537+000
2. 7274-001
3.0592-002
186.000
5. 3730+000
3.5464-001
5.5251-002
168.000
6.2307+000
5. 3071-001
1.4281-001
190 . 000
7 . 8668+000
1.4868+000
1.7833+000
190.555
1. 020C+001
G . 000 0 + 000
0.0000+000
OQILVIE PRESS. INC., BROOKLYN 17. N. Y.
STOCK NO. 4SO
104
APPENDIX F. (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-5
PAGE
27
subject Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
name p Goodwin
DATE
SeDt. 18. 1 073
Table 20. Calculated ethane vapor densities.
ETHANE SATURATED VAPOR DENSITIES
T,K
R, MOL/L
DR/DT
D2R/DT2
89.699
1. 3511-006
3.4416-007
7.9422-006
90.000
1 .3863-006
3.5229-007
8.1081-008
95.000
4.5944-006
1. G378-0C6
2.1037-C07
i o o . o o o
1.3356-005
2.6924-006
4.8256-0 0 7
105.000
3.4683-005
6.2648-006
9.9665-007
110.000
8.1696-005
1.3276-005
1.8818-006
115. J00
1. 7684-304
2. 5955-005
3.2903-006
120.000
3.5568-004
4.7323-005
5.3851-006
125.000
6.7091-004
8. 1216-005
8.3256-006
1 3 . 0 0 0
1 .1963-003
1. 3223-004
1.2254-005
135.000
2. C304-003
2.0559-004
1.7283-005
1 4 0.0 00
3.2990-003
3.0703-004
2.3493-005
145.000
5. 1575-003
4.4257-004
3.0926-005
150.000
7. 7918-003
6.1835-004
3.9592-005
155.000
1. 1418-002
8. 405 1-004
4.9474-005
160.000
1.6284-002
1.1151-003
6.0539-005
165.000
2.2666-002
1.4478-003
7.2744-005
i 7 0 . 0 0 0
3.0869-002
1.8443-003
8. 60 50-005
175. OGu
4. 1225-002
2. 3101-C03
1.0C43-CC4
1 8 0. 0 00
5.4094-002
2.8504-003
1.1588-004
135.000
6. 9862-002
3.4707-003
1. 3243-004
19 J .000
8.8944-002
4.1767-003
1.5C14-C04
195. 000
1 . 1178-00 1
4.9742-003
1.6912-004
2 u 0.000
1 . 3885-001
5.8703-003
1 . 8956-004
205.000
1. 7066-301
6. 8727-003
2.1170-004
210.000
2. 0777-301
7.9907-003
2.3587-C04
215. 0C0
2. 5u78-JQi
9. 2355-Cu3
2.6252-004
22 0. 0 00
3. 0036-001
1. 0621-0G2
2.9224-004
225.000
3.5725-001
1.2164-002
3.2581-004
230.000
4. 223 C -3 01
1.3887-002
3.6425-004
235.000
4.9647-001
1. 5817-002
4.0894-C04
240.000
5. 8386-001
1.7990-002
4.6176-004
245.000
6. 7685-001
2.0453-002
5.2532-004
250 . 000
7.6599-001
2.3267-002
6.0 3 30 -0 0 4
255.000
9. Iu25-J0l
2 . 6519-C 02
7.0116-004
260.000
1.0521+000
3.0325-002
8.2712-C04
265.000
1.2147+000
3.4858-002
9.9430-004
270.000
1 « 4G23 + 30G
4. 1373-CC2
1.2246-003
275.000
1 . 6207+000
4. 7273-002
1.5572-003
280.000
1.6784+000
5. 6239-002
2.0691-003
285.000
2. 1686+300
6.8532-002
2.9298-003
290.000
2. 5736+000
8. 68 20-002
4.58 76-CG3
295.000
3 . C777 + 30 0
1.1613-001
8.6241-003
3 0 U . 0 00
3.8180+000
1.9083-001
2.5135-002
305.300
5.6689+000
1. 2377+000
2.4827+GCC
305.330
6. 870G+000
0. 0000+000
0 . 0000+000
OGILVIE PRESS. !MC.. BROOKLYN 17. N. Y.
STOCK NO. 4SO
105
APPENDIX F . (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-5
PAGE
28
subject Orthobaric Densities of Ethane, Methane. Oxygen and
NAME R.D
. Goodwin
Fluorine
DATE
Sent. 18. 1973
10/10/73
PROGRAM LICKFIT
C REPRESENT ETHANE SATURATED LIQUID DENSITIES.
C DEFINE X = ( TC-T ) /TC-TT) , Q = X»*l/3, XE = X**E, AND -
C DEFINE YY = < 0 - DC ) / ( D T-0 C ) , WHEN THE EQN. IS -
C (YY-X)/ (XE-X) = A1 ♦ A2*Q2 + A3*Q3 ♦ . . .
C DCRT = 6.86, 6.87 POSSIBLY VIA MY VAPORDEN EQN.
C DTRP = 21.68 ESTIM. VIA REIO C. MILLER.
C ID, (9) TESTER, (lO)DOUSLIN, ( 1 1 ) SLIWINSKI , (12) CANFIELD ET AL.,
C 10, (13) KLOSEK, ( 14) MI LLER, (15) EUBANK , ( 16) TOMLI NSON
COMMON E,AZ, TTRP,TCRT , DTRP, DCRT, DRDT, D2RDT2 , A(6)
C0MM0N/999/NP,NF ,H(15 ),Y(200),G(200,15)
DIMENSION I D C 9 9 ) ,T (99) ,0EN(99) , U ( 99 ) , W ( 99 ) , XQ ( 99 )
1 F ORM AT (15, 2F10.0)
2 FORMAT (1H1 13X 1HE 8X2HAZ 6X4HDCRT 8X2HSS)
3 F ORMAT ( 5X 4F10.3)
4 FORMAT (1H1 1ZX ♦ETHANE SATURATED LIQUID DENSITIES, E =* F6.3//
1 20 X 6HTCRT -F8.3, 8H , TTRP =F8.4//
2 20 X 6HDCRT =F6.3, 8H, DTRP =F8.4// 2(13X 3E15.7/) /
3 8X2HID 7 X 3 H T , K 5X5HM0L/L 6X4HCALC 4X4HPCNT
4 1 4 X 1 H X 8 X 2HY X 8X2HYC 6X4HYDIF )
5 F OR TAT ( 5X 15, 3F10.3, F8.2, F15.5, 3F10.5)
6 F ORMAT ( 1H1 16X ♦ETHANE SATURATED LIQUID DENSITIES* //
1 17X 3 H T , K 3X7HR,MOL/L 5X5HDR/0T 3X 7HD2R/DT 2 )
7 FORMAT ( 1 0 X 2F1C.3, FIG. 4, F10.5)
9 F ORMAT ( 1 8X 4HNP =13, 10H, RMSPCT =F7.3/)
C
C DO ALL FOUR, OXYGEN, FLUORINE, MFTHANE, AND ETHANE.
1C DO T9 I G= 1 , 4 $ GOTO (11,13, 15,17) , IG
C CONSTANTS FOR OXYGEN.
11 TTRP=54.3507 t TCRT=154.576 S TZ=52 « DT=2 I NZ=52
12 D TRP = 4 0.63 $ OCR T = 13 . 63 S DZ=13.58 t EZ = 0.340 $ GOTO 19
C CONSTANTS FOR FLUORINE .
13 T T R 3 = 5 3.481 1 J TCRT = 144.31 S TZ = 50 $ DT=2 t NZ = 48
14 D T RP = 44 .862 3 { DCRT = 15.15 $ DZ = 15.10 J EZ = 0.342 S GOTO 19
C CONSTANTS FOR METHANF.
15 TTRP=90.680 * TCRT=19C.555 * TZ=88 i OT=2 ? NZ=52
16 DTRP =2 3.147 S DCRT=10.20 S DZ=10.05 t EZ=0.350 S GOTO 19
C CONSTANTS FOR ETHANE.
17 TTRP =89. 899 S TCRT=305.33 S TZ=8C t DT=5 t NZ=46
lb D TRP = 2 1.68 $ OCR T= 6.87 $ DZ= 6.82 S EZ = 0.349
19 XN = TCRT-TTKP t YN = DTRP- OCR T
C RtAU NP DATA FOR LEAST SQUARES.
C READ L. A. WEBER S OXYGEN VOLUMES, CC/MOL.
20 OO 27 J = 1 , 9 9 t READ 1, I D ( J ) , T ( J ) , DEN ( J ) t IF(IO(J>> 21,28
21 XF(ID(J>— 15) 23,22
22 CONTINUE
23 I F ( I 0 ( J ) -99) 25,24
24 DEN(J) = 10Gv'/DEN(J)
25 U(J> = X = ( TCRT-T ( J) ) /XN $ Q = CU3ERTF ( X ) I DO 26 K=2,6
26 G ( J,K) = Q* * K $ G (J ,1) = 1
27 W(J) = (DEN (J) -DCRT) /YN
28 NPP = NP = J-l i NF = 3 $ E = 0.36
C EXPLORE E, AZ, AND DCRT.
29 AZ = NF % SSK = 1.CE+01C
30 DO *9 I E= 1 , 21 i E = EZ ♦ 0.001*IE
OGILVIE PRESS. INC.. BROOKLYN 17. N. Y.
STOCK NO. 480
106
APPENDIX F. (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-5
PAGE
29
SUBJECT . _ , w , „ ,
The Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
NAME _
R .D .Goodwin
DATE
Sent. 18. 1973
LICKFIT 1C/10/73
C SET UP THE LEAST SQUARES ARRAYS.
36 00 40 J = 1 , N P $ X = U(J) $ XQ ( J ) = XE = X**E
37 Y < J ) = (W ( J ) -X) / (XE-X )
40 CONTINUE $ CALL EGENFT J SS=0 $ DO 43 J=1,NP $ YC = 0 l 00 41 K=1,NF
41 YC - YC 4 H(K)*G(J,K) $ X = U(J) $ XE = XQ(J)
42 UC = DCRT 4 (X 4 (XE-X)*YC)*YN
43 SS = SS 4 ( DEN ( J ) /DC - 1 ) * *2 $ SS = IOC *SQRTF (SS/NP)
44 IF (SS.LT.SSK) 45,46
45 S 3K = SS i EK = E i AZK = AZ S DK = DCRT
46 DO h 7 K = 1 , 6
47 A (K) = H (K)
46 CONTINUE
49 CONTINUE
50 E=E< % AZ = A ZK i OCRT= DK J YN = DTRP - OCRT
C USE SAVED CONSTANTS FOR DEVIATIONS.
60 PRINT 4, E, TCRT , TTRP, DCRT, DTRP, <A(K> ,K=1,6> $ SS = 0
61 00 7 U J=1,NPP J X = U(J) t XE = X**E t XEX = XE-X
62 YC = 0 $ 00 63 K=1,NF
63 YC = YC 4 A ( K ) *G (J,K)
64 YS = X 4 XEX*YC l DC = DCRT 4 YN*YS
65 YX = (W ( J ) -X) /XEX $ YD = YX-YC
66 PCT = ICO* (OEN ( J) /OC-1) J SS = SS 4 PCT**2
67 PRINT 5, ID (J) , T ( J) ,DEN< J) , DC, PCT, X,YX,YC,YD
68 IF(J-NP) 70, b9
69 SC = S QR T F (SS/NP) J PRINT 9, NP, SS
70 CONTINUE
C PRINT UNIFORM TABLE FOR PUBLICATION.
71 PRINT 6 * DO 8J J=1,NZ $ IF(J-l) 73,72
72 TT = TTRP $ GO TO 76
73 IF(J-NZ) 75,74
74 TT = TCRT f GO TO 76
75 TT = TZ 4 Q T* J
76 R = DENLIQF (TT)
60 PRINT 7, TT , R , D R D T ,D2RDT2
99 CONTINUE
C 00 OTHER ETHANE DATA WITH EXISTING COEFFICIENTS.
100 PRINT 4, E, TCRT, TTRP, DCRT, DTRP, CA(K) ,K = 1, 6) J SS = 0
101 00 110 J = 1 , 99 $ READ 1, I DD , TT , DN $ IF(IDD) 1 3 2,99 3
102 X= (TCRT-TT) /XN $ Q = CUBERTF ( X) * XE=X**E J XEX = XF-X
103 YC = A ( 1) S DO 104 K=2 ,NF
104 YC = YC 4 A ( K ) * Q * * K
1 J 5 DC = DCRT 4 YN* ( X4XE X*YC) J P CT = 1 0 C ♦ ( DN / DC - 1 )
106 YY - (DN-DCRT) /YN S YX = (YY-X)ZXEX $ YD = YX-YC
110 PRINT 5, I DO , T T , DN , DC, PCT, X,YX,YC,YD
999 STOP I END
OOILVIE PRESS. INC., BROOKLYN 17. N. Y.
STOCK NO. 480
107
APPENDIX F. (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-5
PAGE
30
suBJtd Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
NAME
K .D .Goodwin
DATE
Sent. 18. 1973
10 / 10/73
PROGRAM VAPORFIT
C REPRESENT ETHANE SATURATED VAPOR DENSITIES.
C THIS FORM IS CONSTRAINED AT THE TRIPLE POINT, ANO
C DEFINE X ( T ) AS FOR THE VAPOR PRESSURE EQUATION -
C Z = ( 1- X ) = (TC/T-1) / ( TC/TT-1) , ZE = Z’*E, Q = Z”l/3, AND -
C DEFINE YY = L N ( DC/D) /L N ( DC/ D T) , AND THE DEPENDENT VARIABLE -
C Y (Z,YY) = (YY-Z) / (ZE-Z) , WHEN THE L.S. EQN. IS -
C Y ( Z » Y Y ) = A1 + A 2 ’Q2 + A3*Q3 + A4’Q4 + . . .
C ID., (1) VIRIAL/V.P. , ( 6 ) PORTER , (lO)OOUSLIN, (11 ) SL IWINSKI .
COMMON E , A L , TTRP, TCRT , DTRP , DCRT , DRDT,D2RDT2, A ( 9 )
C0MM0N/999/NP,NF , H ( 1 5 ) ,Y(23C),G(2C0,15>
DIMENSION ID(99) *T (99) ,DEN(99) , U(99),W<99), ZQ(99)
1 FORMAT ( 15 , F10.C, E15.5)
2 FORMAT ( 1 HI 10X 1 HE 8X2HAL 6X4HDCRT 8X2HSS)
3 FORMAT ( 1C X 4F10.3)
4 F ORMAT { 1 HI 17X * E T H A N E SATURATED VAPOR DENSITIES, E =* F6.3//
1 2 0 X 6HTCRT =F8.3, 8H , TTRP =F8.4/
2 2 u X 6HDCRT =F8.3, 6H, DTRP =E12.5// 2(13X 4E15.7/) /
2 3 X 2 HI D 7X 3HT , K 8X5HMOL/L 8X5HCALCD 4X4HPCNT
3 12X 1HZ 8X2HYX 3X2HYC 6X4HY0IF )
5 FORMAT ( 5X 15, F1U.3, 2E13.4, Fd.2, F13.5, 3F10.5)
6 F ORMAT (15, 2F1C.0)
7 FORMAT (1H1 1 6X ’ETHANE SATURATED VAPOR DENSITIES’ //
1 1 7 X 3 H T , K 6X7HR,M0L/L 8X5HDR/DT 6X7HD2R/DT 2 )
8 F ORMAT ( 1 G X F10.3, 3E13.4)
9 FORMAT (18X 4HNP =13, 10H, RMSPCT =F7.3/)
61 FORMAT (1H1 7X2HIO 7X3HT,K 8X5HMOL/L 8X5HCALCD 4X4HPCNT
1 1 2 X 1HZ 8X2HYX 8X2HYC 6X4HYDIF )
C
C DO ALL FOUR, OXYGEN, FLUORINE, METHANE, ETHANE.
10 DO 31 I G = 1 , 4 $ GOTO (11,13,15,17) ,IG
C CONSTANTS FOR OXYGEN.
11 T TRP=54. 35C 7 $ TCRT=154.576 t TZ=52 $ CT=2 S NZ=52
12 DTRP=3. 36122E-4 « OCRT=13.63 ? DZ=13.58 * EZ=0.360 * GOTO 19
C CONSTANTS FOR FLUORINE.
13 TfRP=53.4811 £ TCRT=144.31 £ TZ=50 £ DT=2 £ NZ=48
14 DTRP=5.670E-4 I DCRT=15.15 « DZ=15.1G * EZ=0.340 t GOTO 19
c Constants for methane.
15 T T RP = 9 J . 6 8 0 $ TCRT = 190.555 £ TZ = 88 S DT=2 £ NZ = 52
16 DTRP=0. 01567865 l OCRT=1C.20 J DZ=1C.05 J EZ=0.360 ? GOTO 19
C CONSTANTS FOR ETHANE.
C OMIT 24, AND FIX DTkF.
17 T T RP = 8 9. 899 % TCRT = 30 5.3 3 S TZ = 8C l 0T=5 t NZ = 46
16 OTRP= 1.35114E-6 $ DCRT=6.P7 S DZ=6.84 S EZ=0.34J
19 ZN = TCRT/TTkP-1 £ YN = L OG F ( DCRT / 0 TRP )
C READ OUR I D ( 1 ) DATA MIXED WITH DOUSLIN.
C INCREASE OUR DEN BY 0.15 PCT TO AGREE WITH COUSLIN.
20 DO 27 J = 1 , 2 0 0 £ IF(IG-4) 22,21
21 READ 1, ID ( J) , T ( J) ,DEN (J) $ I F < I D ( J ) ) 23,28
22 READ 6, I D ( J ) , T ( J ) , DE N ( J ) $ I F < I D ( J ) ) 25,28
23 IFlIO(J)-l) 25,24
24 CONTINUE
25 U(J> = Z = (TCRT/T ( J) -1) /ZN T Q = CUQERTF ( Z) f DO 26 K =2,7
26 G ( J , K) = Q”K $ G (J,l) = 1
27 W(J) = LOGF (DCRT/DEN ( J) ) /YN
OOILVIE PRESS. INC., BROOKLYN 17. N. Y.
STOCK NO. 490
108
APPENDIX F. (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
FILE NO.
73_5
PAGE
T. 1
subject The Orthobaric Densities of Ethane, Methane, Oxygen and
Fluorine
NAME
R .D .Goodwin
DATE
Sept 18 1Q77
VA PORFIT 10/10/73
26 NP = J-l 2 AL = NF = 5 $ E = 0.360
C EXPLORE OCR T , AND EXPONENT E.
33 SSK = 1.GE+01C
34 DO 48 I E= 1 , 2 1 2 E = EZ + 0.002*IE
C SET UP THE ARRAYS FOR LEAST SQUARES.
36 DO 39 J=1,NP $ Z = U(J) $ ZQ(J) = ZE = Z**E
37 Y ( U ) = (W(J)-Z)/ (ZE-Z)
39 CONTINUE 2 CALL EGENFT $ SS = 0
C NOW GET THE RMS DEVIATION.
40 DO 44 J=1»NP 2 YC = 0 $ DO 41 K=1,NF
41 YC = YC + H < K > * G (U » K )
42 Z = U<J) S YS = Z + (ZQ(J)-Z)*YC
43 DC = OCRT*EXPF ( - YN* Y S )
44 SS = SS + ( DC/ DEN ( J ) - 1 ) **2 2 SS = 100 *SQRTF (SS/NP)
45 IF (SS.LT.SSK) 46,46
46 S SK = SS 2 EK = E 2 ALK-AL 2 DK = DCRT 2 DO 47 K = l,9
47 A (K) = H ( K )
46 CONTINUE
49 E = E< 2 AL= ALK 2 DCRT = DK 2 YN = LOGF (DK/DTRP)
C USE SAVED CONSTANTS FOR DEVIATIONS.
50 PRINT 4, E, TCRT , TTRF , DCRT,DTRP, ( A ( K ) ,K=1,8) 2 SS = 0
51 DO 59 U=1,NP 2 Z = U(J) 2 ZE = Z**F 2 ZEZ = ZE - Z
52 YC = 0 2 DO 53 K=1,NF
53 YC = YC ♦ A (K) *G (U,K)
54 YS = Z + ZEZ*YC 2 DC = CCRT * EX PF ( - YN* Y S )
55 YX = (W(J)-Z)/ZEZ 2 YD = YX - YC
56 PCT = 100* (DEN (J)/DC-1) 2 SS = SS + PCT **2
57 IF (IG.EQ.3. AND.J.EQ.46) 58,59
58 PRINT 61
59 PRINT 5, ID ( J) ,T (J) ,DEN( J) , DC, PCT, Z,YX,YC,YO
60 SS = SQRTF ( SS/ NP ) 2 PRINT 9, NP, SS
C PRINT UNIFORM TABLE FOR PUBLICATION.
71 PRINT 7 2 DO 60 J=1,NZ 2 IF(J-l) 73,72
72 TT = TTRP 2 GO TO 76
73 IF(J-NZ) 75,74
74 TT = TCRT 2 GO TO 76
75 TT = TZ * D T*U
76 R = DENGASF (TT)
80 PRINT 9, T T , R, DRDT , D2RDT2
81 CONTINUE 2 PRINT 61
C DO OTHER ETHANE DATA WITH EXISTING COEFFICIENTS.
82 DO 88 J = 1 , 9 9 2 READ 6, I DO, T T , DN 2 IF(IDO) 83,99
83 Z = (TCRT/TT-1) /ZN 2 ZE = Z**E 2 ZEZ = ZE - Z
84 Q = CU3ERTF (Z) 2 YC = A(l) 2 DO 85 K=2,NF
a 5 YC = YC + A ( K ) *Q**K
86 YY = LOGF (OCRT/DN) /YN 2 YX = (YY-Z)/ZEZ 2 YD = YX-YC
87 DC = DCRT*EXPF(-YN*(Z 4 -ZEZ*YC) ) 2 PCT = 1C0MON/DC-1)
86 PRINT 5, I D D , T T , DN , DC, PCT, Z,YX,YC,YD
99 STOP 2 ENO
CGILVIE PRESS. INC.. BROOKLYN 17. N. Y.
STOCK NO. 450
109
APPENDIX F. (Continued)
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
LABORATORY NOTE
PROJECT NO.
2750364
FILE NO.
73-5
PAGE
- \ *>
bUBJECT i . f , .
1 he Ortnonaric Den ~ 1 ti- *s of Kthane, Methane, Oxygen and
*\1 no One
NAME _ _ _
R . O . Goodwin
DATE
Sent. 18.
10/ 10/ 73
FUNCTION DENLIC)F(T)
C ETHANE SATURATED LIQUID DENSITIES, MOL/L.
C y = A1 + A2*Q2 + A3* C 3 + . . . , YN = DTRP-DCRT,
C C-N - DCRT ♦ Y N * ( X + ( X E - X ) * Y ) .
CUM 'ION E,AZ,TTRP,TCRT ,DTRP,DCRT, DRDT ,D2RDT2 , A ( 6 )
1 FORMAT (1H0 9X * DENL IGF = 0, T EXCEEDS T CRT . * / )
2 IF(TCRT-T) 3,4,5
3 PRINT 1 t STOP
4 DENlIQF = DCRT $ DRDT = D2RD T2= G S RETURN
5 XN=TCRT-TTRP i YN=DTRF-OCRT S X = ( TCR T- T ) / X N ? DXCT=-1/XN
6 X E = X * * E S XE1 = E * X E / X $ X E 2 = <E-1)*XE1/X
7 n = CU 3E R T F ( X ) i W1 = W/3/X $ W2 = -2*Wl/3/X
tt Q = XE-X $ Qi = XE1 - 1 $ Q2 = XE2
S N F = A Z f Y = A ( 1 ) f Y1 = Y2 = 0 f D0 11K = 2,NF
1C Y = Y + A ( K ) * W * * K J Y 1 = Y 1 + K* A ( K ) * W * * ( K- 1 )
11 Y2 = Y2 ♦ K* (K-l ) *A ( K ) *W** ( K-2 )
12 Y 2 = Y1*W2 + Y2*W1**2 S Y1 = Y1*W1
13 OENLIQF = DCRT ♦ ( X ♦ Q* Y ) * YN
14 OROT = (1 f Q* Y 1 + Q 1 * Y ) * Y N* D X 0 T
15 D2R0T2 = ( Q * Y 2 ♦- 2*C1*Y1 ♦ Q2 * Y ) * YN * OXO T* * 2 $ EET'JRN t END
1 0 / 1 J / 7 3
FUNCTION DENGASF(T)
C ETHANE SATURATED i/APGR DENSITIES, MOL/L.
C Y = A1 * A 2 * G2 * A 3 * C 3 ♦ . . , NF = AL, YN = L N ( D CR T / 0 T RP ) ,
C U = Z + (ZE-Z)*Y, DEN = DCRT*EXP(-YN*U) .
C NOTE THAT Z - C ONLY AT T = TCFT, WHICH IS EXCLUDED.
COMMON t , A L , TTRP,TCRT, DT RP , OCR T , DRDT , D 2 R 0 T 2 , A(9)
1 c OR MAT (1HC hX *DENGASF = 0, T EXCEEDS TCRT. * / )
2 IF(TCRT-T) 3,4,5
3 PRINT 1 $ STOP
4 D E No AS F = DCRT S L^OT = D2RDT2 = C ? RETURN
5 ZN = TCRT/TTRP-1 $ Y N = L OOF ( DC R T/ D TR P ) t Z= < TCR T / T - 1 > / ZN
f
n Z
DT = -TCRT/ZN/T**2
% D2ZD
T 2 = -2*DZDT/T
7
7 r
= Z * * E % Z E 1 = E *
ZE/Z S
ZE2 = (E-
1 ) * Z E 1 / Z
t
X
= ZE-Z % XI = ZF 1
- 1 9
X 2 = ZE2
5
1
= CU3ERTF (Z) l Cl
= G/3/Z
i Q2 = -
2*01 /3/Z
1C
NF
= AL t Y - A ( 1 )
-<
K*
II
Y 2 = u *
DO 13 K=2,NF
1 1
T
- Y +• A ( < ) *Q**<
L 2
Y 1
= Y 1 * <*m<K)*Q**(K
-1 )
13
i l
= Y 2 + K*(K-1)*A(K)
♦Q** (K-
2 )
14
Y 2
= Y 1 *G2 ♦ Y 2 * Ql * * 2
S Y 1
= Y 1 * Q 1
1 c,
U
= Z y X * Y i UA = 1
+ X * Y 1
y x 1 ♦ Y t
U 1 = U A * D Z D T
lb
J 2
= UA*D2ZDT2 ♦ (X*Y2
♦
r\)
♦
X
H*
* Y 1 + X 2 * Y )
*DZDT**2
1 7 k 2 r E X P F ( - Y N * U ) t CENGASF = F = DCRT*XP * YU = -YN*Ui
IE DOT = Y U * F l D2RDT2 = ( YU* YU- YN* U2 ) * F l RETURN $ Fn
110
1 G I LV I E PRECIS, INC , BROOKLYN 17. N Y.
STOCK NO. 450
1
APPENDIX G.
Cryogenics Division — NBS Institute for Basic Standards
LABORATORY NOTE
COST CENTER
2750364
FILE NO
73-6
PAGE
SUBJECT
Liquid-Vapor Saturation (Orthobaric) Temperatures of
Ethane and Meth£ne_
name £). Goodwin
DATE Nov. 28, 1973
1. Introduction .
The present, new investigation has been necessary to accommodate the
extreme range of ethane saturated vapor densities (a factor of 10 7 ). Our previous
work on ethane appears in Lab. Notes 73-2,3,4,5.
Analytical description of the two-phase, liquid-vapor equilibrium (tempera-
ture-density relationship) is needed for our new equation of state which originates
on this locus (NBS IR 73-342). In particular, the forms used below give the important
property that all derivatives are zero at the critical point.
In the following we split the range, using different functions according
P ^ P c . In each case the dependent variable is
Y(T) = (T c /T-1)/(T C /T t -1) (1)
The symbols used here appear in a LIST.
2. The Saturated Vapor Temperatures .
The analytical formulation is
Y(T) = U (t ) . [1 + Ao • In (a /ct 6 ) + W(a )]
where
U(a) ~ exp [a . (ug - u)],
and n
W('-r) - l At • (q 1 - cp 5 ).
i = 1
1/3 1 / 3
The notation is q o' , q^ 0 g , and Ug 1 / 1 cr g - l j .
This equation is constrained at the vapor triple point.
Fixed-point constants are given by table 1, and coefficients by table 2.
The comparisons of results for ethane and for methane are in tables 3,5. Deviations
necessarily are systematic because the "data" are smoothed analytically (Lab. Note
73-5). We believe all deviations to be well within the real accuracy of the data.
3. The Saturated Liquid Temperatures.
The analytical formulation is
f.n(Y) = 8 • ( ut - u) + W(o ) (3)
where n
W(cr) o ; B t • (x 1 - x|). (3 -a)
iYl
( 2 )
( 2-a)
( 2-b)
SP 11342 A
111
☆ U S. Government Printing Office. 1973- a 780-339
APPENDIX G. (Continued)
Cryogenics Division-NBS Institute for Basic Standards
LABORATORY NOTE
COST CENTER
2750364
FILE NO
73-6
PAGE
2
SUBJECT
Liquid-Vapor Saturation (Orthobaric) Temperatures of
Ethane and Methane
namEr.d. Goodwin
DATE Nov. 28, 1973
The notation is x t = | (J t - 1 1 , = 1 /x t .
This equation is constrained at the liquid triple point.
The comparisons of results for ethane and for methane are in tables 4,6,
Computer programs are attached.
LIST OF SYMBOLS
d,
d c ,
d* ,
d t .
q>
D,
CT,
,
T,
Tc ,
T t ,
x,
density, mol/t, DEN
critical-point density, DCRT
vapor triple-point density, DGAT
liquid triple-point density, DTRP
1/3
q g =
_ _ 1/3
s
d/d t , density reduced at liquid triple point
d / cl, , density reduced at the critical point
d ? /d c , reduced triple-point vapor density
d t /d c , reduced triple-point liquid density
T a (p), the saturation temperature
critical-point temperature, TCRT
triple-point temperature, TTRP
1 /x, u g = 1 /x g , Ut = i /x t
| a - 1 1 , Xg s | a g - 1 1 , xt s | a t - 1 1
Table 1. The fixed-point constants
Ethane
Methane
T t , K
89.899
90.680
T c , K
305.330
190.555
d c , mol/T
6.87
10. 20
d t , liquid
21.68
28. 147
d ? , vapor
1.35114. 10" 6
1. 567 865.
nr 2
SP 11342 A
112
☆ U S. Government Printing Office 1973- # 730-339
APPENDIX G. (Continued)
Cryogenics Division — MBS Institute for Basic Standards
LABORATORY NOTE
COST CENTER
2750364
FILE NO
73-6
PAGE
3
SUBJECT
Liquid-Vapor Saturation (Orthobaric) Temperatures of
Ethane and Methane
name R.p). Goodwin
DATE Nov. 28, 1973
Table 2. Coefficients for the equations
Ethane
Methane
V apor
a
3/2
1/2
At
-0.0610 6983
-0. 1596 5159
At
-0.5510 7806
-0.6669 5380
As
1.8906 0757
1.0242 2995
A?
-4.8476 0684
-0.5885 7993
A*
8. 5887 8625
0. 2042 8358
As
-8.3103 1296
-
Ag
3.3001 3887
-
rms, %
d
0.111
0.043
T
0.009
0.004
Liquid
6
1/3
1/3
Bi
9. 1071 7170
8. 5837 7917
b 2
-7.9603 9387
-7.0525 4699
b 3
4. 8472 6284
4. 1610 2443
b 4
-1.5919 0104
-1.3691 9291
b 5
0.2253 7899
0. 2067 1342
rms, %
d
0.004
0.006
T
0.016
0.006
SP 11342 A
113
•ir U S Government Printing Office. 1973- tbo-339
APPENDIX G. (Continued)
Liquid- Vapor Saturation (Orthobaric) Temperatures of
Ethane and Methane
COST CENTER
2750364
FILE NO
73-6
PAGE
4
SUbJ-
Table 3. Ethane Saturated Vapor Temperatures
NAME R.D. Goodwin
DATE Nov. 28
1973
NF = 7, AL = 1.500, PE = 0.000, DGAT = 1.35114-006
TTRP
= 89.899, TCRT
= 305.330,
DTRP = 21.
680, DCRT
= 6.870
-0 .
C6106983 -0.
55107806
1.89060757
4.84760684
8 .
58878625 -8.
31X31 296
3.3 0813887
0.03000000
o •
UOOOQOOO C.
0LC 0 0 000
0.00000000
0.00000000
MOL/L
CALC
PCNT
T,K
CALC
PCNT
DTS/DD
V
1.35 114-006
1. 35114-006
0.00
89.899
89. 899
0.00
2-915+006
1 .38631-006
1. 38619-006
-0.01
90 .0 00
90.000
0.00
2.848+0G6
4.59443-006
4.58134-006
-0.28
95.000
95. 013
0.01
9.651+005
1 • 33561 — Q05
1. 33129-005
-0.32
100.000
100. 016
0.02
3.714+005
3 .46326—005
3.46067-005
-0 .22
105.000
105. Q12
0.01
1.594+005
8 . 16960-005
3. 16454-005
-0.06
110.000
110. 004
0.00
7.518+004
1.76344-004
1.76987-004
0 .08
115.000
Ilk. 995
-o.o a _
3.346+004
3 .55631-004
3.56292-004
0 .17
120 .0 00
119.907
-0.01
2.111+004
6.7 0 90 3-Q 04
6.72259-004
0.20
125.000
124. 983
-0.01
1.231+004
1 . 19634-JG3
1. 19845-003
0.18
130.000
129. 984
-0.01
7.567+003
2. 03041-0 G 3
2. 03275-003
Q .12
135.000
134. 969
-0.01
4.970+003
3.29903-003
3.30029-003
0.04
140.000
139. 996
-0.00
3.262+003
5 . 15754-o03
5.15568-033
-0.04
145. 000
145. Q 04
0.00
2.263+003
7 .79177-003
7. 73449-003
-0 .09
150.000
150. 012
0.01
1.619+003
1 . 14133-002
1. 1404 0-002
-0.13
155.000
155.017
0.01
1.191+003
1.62542-002
1. 62620-002
-0.13
160.000
160.019
0.01
8.969+002
2 .26660-002
2.2640 2-002
-0 .11
165.000
165. 018
0.01
6.903+002
3.08636-002
3. 08446-00 2
-0.08
170.000
170. 013
0.01
5.415+002
4. 12247-03 2
4. 12114-002
-0,03
175. 0QQ
175.006
0.00
4.322+002
5.4C 1 39-002
5.41016-002
0 .01
180.000
179. 997
-0.00
3.502+002
6 . 98623-002
6. 990C 3-002
0 .05
185 .0 00
184. 989
-0.01
2.877+002
3.89439-002
8. 90172-002
0.08
190.000
189. 982
-0.01
2. 392+002
1. 117 32— C o 1
1. 11888-G01
0.10
195.000
194. 979
-0.01
2 .009 + 00 2
1.38350-001
1 . 33978-001
0 .09
200.000
199. 978
-0.01
1.704+002
1.7(1662-001
1 . 73 78 7-0 01
0.07
205.000
204.982
-0.01
1.457+002
2. j777Q-G01
2 . 0786 2-0 01
0 .04
210.000
209. 988
-0.01
1.253+002
2 .50780-001
2. 5080 3-001
0 .01
215.000
214. 997
-0.00
1.085+002
3.00 559-00 1
3 . 0 328 0 -0 01
-0.03
220.000
220. 007
0.00
9.434+001
3 . 5 7 7 5 3 - 0 0 1
3.57050-031
-0 . 06
225.0011 .
225.017
0.01
9.234+001
4.22301-001
4. 21977-001
-0 .08
230.000
230. 023
0.01
7 .2G8 + 001
4. 96469-001
4.96061-001
-0.08
235.000
235. 026
0.01
6.322+001
5 .80*77-001
5 . 30460-001
-0.07
240 . 000
240.023
C . 01
5.553+001
6.76*52-001
6. 76541-001
-0.05
245.000
245.015
0.01
4.879+001
7.85990-001
7. 85922-001
-0 .01
250.000
250.003
0.00
4.286+001
9.10251-001
9. 13553-001
0.03
255.000
254. 989
-0.00
3.760+001
1.J5210+030
1. 0528 3 +0 00
0 . 07
260.000
259. 976
-0.01
3.291+001
1 .21471+000
1. 21579+000
0 .09
265.000
264. 969
-0.01
2.367+001
1 . 4 C 2 3 1 + 0 0 0
1 . 40343+000
0 .08
270.000
269.972
-0.01
2.482+001
A
1.62073+00 0
1.62131+000
0 .04
275.000
274. 988
-0.00
2.124+0C1
i'
1 . 37345+003
1.37773+000
-0.04
280.000
280. 013
0.00
1 .788 + 00 1
2.16363+uGG
2 . 1861 8 + 0 00
-0.11
285.000
285. 035
0.01
1.463+001
2.57 357 + uOO
2 .57381+000
-0.11
290.000
290.032
0.01
1.146+001
3.07773+309
3 . 0301 1+0CQ
0.00
295 .0.00
294. 980
.... -0.01
8.351+00C
3.31 3 0 3 + 00 0
3. 82166+OOG
0 . 10
300.000
299. 980
-0.01
5.426+0CC
= 0.009
1 14
P
44, DNRMSPCT
0.111, TSRMEPCT
APPENDIX G. (Continued)
1
Cryogenics Division — N B S Institute for Basic Standards
LABORATORY NOTE
COST CENTER
2750364
FILE NO
73-6
PAGE
5
subject Liquid-Vapor Saturation (Orthobaric) Temperatures of
Ethane and Methane
NAME R.D. Goodwin
° ATE Nov. 28. 1973
Table 4. Ethane Saturated Liquid Temperatures
NF =
5 , AL = 0.000
, BE = 0 .
333 , DGAT =
1.35114
-
006
TTRP
= 89 . 899 , TCRT
= 305 . 330 ,
OTRP = 21 .
660 , OCRT
= 6.970
9.
10717170 - 7 .
96039387
4.84726284
1
.59190104
0 .
22537699 0 .
00000000
0.00000000
0
.00000000
0 .
00000000 0 .
ooocoooo
0.00000000
0
.00000000
MOL/L
CALC
PCNT
T,K
CALC
PCNT
DTS/OO
2. 1680 0 + 001
2 . 16800+001
0.00
39.899
89.899
0.00
- 2 . 753+001
2 . 16764+001
2 . 16763+001
- 0.00
90.000
89.999
- 0.00
- 2 . 753+001
2 . 14963+001
2 . 14951 + 001 '
-0 .01
95.000
94.967
- 0.04
- 2 . 764+001
2 . 13162+001
2 . 13145 + 001
- 0.01
100.000
99.952
- C .05
- 2 . 771+001
2 . 11359+001
2 . 11341 + 001
- 0.01
105.000
104.951
- 0.05
- 2 . 773+001
2 . 09553+001
2 . 09538+001
-0 .01
110.000
109.958
- 0.04
- 2 . 771+001
2 . 07743+001
2 . 07732 + 00 1
- 0.01
115.000
114.969
- 0.03
- 2 . 766+00 1
2 . 05928 + 001
2 . 05921 + 00 1
- 0.00
120.000
119.983
- 0.01
- 2 . 758+00 1
2 . 041 06 + 0 01
2 . 041 05 + 001
- 0.00
125.000
124.997
- 0.00
- 2 . 746+001
2 . 02276+001
2 . 02280 + 00 1
0.00
130.000
130.010
0.01
- 2 . 733+001
2 . 00438+001
2 .00445 + 0 0 1
0.00
135.000
135.020
0.0 1
- 2 . 717+001
1 . 9 Q 588+001
1 .98598 + 00 1
0.01
140.000
140. 027
0.02
- 2 . 698+001
1 . 96727+001
1 . 96739 + 0 C 1
0 .01
145.000
145.0 31
0.02
- 2 . 673+001
1 . 94852+001
1 . 94964+001
0.01
150.000
150.032
0.02
- 2 . 655+00 1
1 . 92961+001
1 . 92972+001
0.01
155.000
155.031
0.02
- 2 . 631+001
1 . 91052+001
1 . 91062+001
0 .01
160.000
160.027
0.02
- 2 . 604+001
1 . e 9123 + 0 0 1
1 . 89132 + 00 1
0.00
165.000
165.021
0.01
- 2 . 575+001
1 . 87173+001
1 . 37178+00 1
0 .00
170.000
170.014
0.01
- 2 . 544+001
1 . 85190+001
1 . 85201+001
0.00
175.000
175.006
0.00
- 2 . 511+001
1 . 83196+001
1 . 83195+001
- 0.00
160.000
179.999
- 0.00
- 2 . 476+001
1 . 61164+001
1 . 811 60 + 00 1
- 0.00
185.000
184.992
- 0.00
- 2 . 438+00 1
1 . 79098+001
1 . 79092+001
- 0.00
190.000
109.986
- 0.01
- 2 . 397+001
1 . 76996+001
1 . 76987 + 0 0 1
- 0.00
195.000
194.981
- 0.01
- 2 . 354+001
1 . 74652 + 0 01
1 . 74843+001
- 0.01
200.000
199.978
- 0.01
- 2 . 308+001
1 . 72664 + 0 01
1 . 72653+001
-0 . 01
205.000
204.977
- 0.01
- 2 . 260+001
1 . 70425+001
1 . 70415+001
-0 .01
210.000
209.973
- 0.01
- 2 . 203+001
1 . 68130+001
1 . 60121+001
-0 .01
215.000
214.981
- 0.01
- 2 . 153+001
1 . 65774+001
1 . 65767+001
- 0.00
220.000
219.985
- 0.01
- 2 . 094+00 1
1 . 63348+001
1 . 63344 + 0 0 1
- 0.00
225.000
224.990
- 0.00
- 2 . 033+001
1 . 60845+001
1 . 60043+001
- 0.00
230.000
229.996
- 0.00
- 1 . 967+001
1 . 58255 + 001
1 . 58256+001
0 .00
235.000
235.002
0.00
- 1 . 898+00 1
1 . 55567+001
1 . 55571+001
0.00
240 .00 0
240.007
0.00
- 1 . 825+00 1
1 . 52767+001
1 . 52773+001
0.00
245.000
245.011
0.00
- 1 . 749+001
1 . 49638+001
1 . 49846+001
0 .01
250.000
250.013
0.01
- 1 . 668+001
1 . 46761+001
1 . 46770+001
0.01
255.000
255.014
0.01
- 1 . 582+001
1 . 43511+001
1 . 43518+001
0 .01
260.000
260.012
0.0 0
- 1. 49 3 + 00 1
1 . 40054+001
1 . 40059+001
0.00
265.000
265.0 0 3
0.0 0
- 1 . 399+001
1 . 36340+001
1 . 36350+001
0.00
270 .0 0 0
27 0 . 0 0 2
0.0 0
- 1 . 298+00 1
1 . 32333+001
1 . 32331 + 0 0 1
-0 .00
275 . 00 0
274.997
- 0.00
- 1 . 191+001
1 .27923 + 001
1 . 27917+001
- 0.00
280.000
279.994
- 0.00
- 1 . 076+001
1 . 22965+001
1 . 22978+001
- 0.01
285.000
204.993
- 0.00
- 9.500 +00 0
1 . 17293+001
1 . 17290+001
- 0.00
290.000
289.997
- 0.00
- 8. 090 + 00 0
1 . 10398+001
1 . 10403+001
0.00
295.000
295.003
0.00
- 6 . 441+000
1 . 01117+001
1 . 01117+001
0.00
300.000
300.000
- 0.00
- 4.358 + 00 0
NP
44, DNRMSPCT
0.004, TSRMSPCT
0.016
115
APPENDIX G. (Continued)
Liquid-Vapor Saturation (Orthobaric) Temperatures of
Ethane and Methane
Table 5. Methane Saturated Vapor Temperatures
NP =
5, AL = 0.500
, 35 = 0.
0 00 , DGAT =
1. 56787
-002
TTOp
- 90.680, TC P T
= 190.555,
DTRP = 28.
147, DCRT
=10. 200
-0 .
15965159 -0.
66695380
1.02422995
0 .53857993
0 .
20428358 0.
o o ooooon
0.00000000
0.00000999
0 .
00000000 0.
00000000
0.00000000
0.00000000
MOL/L
CALC
PCNT
T , K
CALC
PONT
DTS/OD
t .5678 6-00?
1 .56786-002
0.00
90.680
90.630
0.00
5 . 39 1 +-99-2
1 . 6?79 1-002
1 .8 2830-00 2
0.02
92.000
91.998
-0.00
4. 775+002
2.? 6 579-00?
2.28663-002
0.0 4
94,000
93 .996
-9.0 0
4* 0 05 +90 2
2. 8?943-00?
2 . 6 3066-002
0.0 4
96.000
95 .996
-0.0 0
3. 390+002
3.46926-002
3.47064-002
0.04
98.000
97.996
-0.00
2^8934-002
4.2162 5-002
4.21756-002
0.03
100.000
99.9 97
-0.0 0
2.488+002
5.06166-00?
5.0 8288-00?
0.02
102.000
101.998
— 0 »0 9
A. 1544-002
5.07803-00?
6,0785 r -002
0.01
104.000
103.999
-0.00
1.878+002
7 .*1719-902
7 .21702-00?
-0. 00
106.000
106. 0 90
0.09
1.6474-90 2
3.51224-00?
8.51123-002
-0. 01
103.000
108.091
0.00
1. 453+002
9. 9 765 6-00 2
9.97466-002
-0. 0?
110.000
110*092
0.00
1. 289+092
1 . 1624 1-00 1
1 .16213-001
-0. 0?
112.000
112.093
0.0 0
1.147+002
1 . 3469 2-001
1 .34655-001
-0.03
114. 000
114.094
0.00
1. 026+902
1 . 5526 9-00 1
1.55226-001
-0. 03
116.000
115.094
0.0 0
9. 221+001
1 . 761? 8-no 1
1.7 308 f1 -OOl
-0.0 3
113.000
113 .094
0.0 0
8.314+091
2.0 343 1 -00 1
2.03383-001
-0. 02
120.000
120.014
0.00
7. 522+001
2.7134^-001
2.31304-001
-0.02
122.000
122.013
0.00
6.827+091
2 . 6205 8-001
2.62022-001
-0. 0 1
124.000
124.092
0.0 0
6.215+001
2 . 9574 4—001
2.9572 c -001
-0. 0 1
126.000
125.091
0.00
5.672+991
3 . 1261 6-0 0 1
3.3261 1-001
-0.00
128.0 00
128.010
0.0 0
5.189+001
3. 72670-001
3.72889-001
0. 01
130.000
129.999
-0.00
4. 757+991
4 . 1673 7-0 0 1
4.16790-001
0. 01
132.000
131.998
-0 .0 0
4. 370+001
4.641+44-001
4,64520-001
0.02
134.000
133.997
-0 .00
4. 0 2 1 + 901
5.16255-001
5. lo3 62-001
0.0?
136.000
135.996
-0.0 0
3. 706+001
5.7?44 l-0 n l
5.72576-001
0. 02
133.000
177.995
-a .o o
3.420+001
6. 3729 7-001
6.33462-001
0.03
140. 000
139.9 95
-0.00
3. 159+001
5 . 99144-ng 1
6.9 9 331-001
0.03
142.000
141 .995
-0.00
2.921+001
7.70734-001
7.70534-001
0.0 3
144.000
143.995
-0.00
2. 704+001
3 .4725 1 -00 1
0.4745 1-001
0.0?
1 4 6. 000
145.995
-0.0 0
2.503+001
9 . 70 32 0- 00 1
9.30504-001
0. 0?
148.000
147 .9 96
-0.00
2. 319+001
1 . 0?00 1+000
1.02016+000'
0.01
150.000
149.997
-0.00
2. 146+001
1 . 1 1 68 5 +0 o n
1.11694+000
0.0 1
152.000
151 .9 98
-0.0 0
1.989+001
1.?? 147+000
1.22144+000
0,00
154.000
1 54 . 0 1 0
-0.00
1. 842+901
1.33441+000
1. 33437+000
-0.0 1
156.000
156.011
0.0 0
1. 705+001
1 .+5656 + 00 0
1.45636+000
-0. 01
158.000
158.013
0.0 0
1. 576+001
1. . 5*87 '’+000
1.58943+000
-0.0?
160.000
150.015
0.0 0
1. 455+001
1 .7 3 20+ + 0 00
1.73156+000
-0.0 3
162.000
162.017
0.00
1.341+001
1 . 6 3 75 ° + 0 0 0
1 »o 3697 + 000
-0. 03
164.000
164.0 9 8
0.0 0
1.234+001
2.05665+000
2.0561 0+000
-0,04
166.000
166.099
0.01
1. 132+001
?.?4l5 p +90n
2.24077+000
-0. 04
168.000
168.098
0.0 1
1. 036+001
2.44331+000
2.44300+000
-0.03
170.000
170.098
0.00
9. 433 + 000
2 ,6663 1+000
2.66564+000
-0.03
172,000
172.096
0.00
8 . 548+000
?. 9 124 P +000
2.91214+000
-0. 0 1
174.000
174.013
0.00
7.696+000
3. 13601 + 0 no
3.13711+000
0.0 1
176.000
1 7 5 . 9 99
-0.0 0
6.871 + 00 0
3. ■-*•9531 + 0 00
3.49685+000
0.0 3
178.000
177.994
-0.00
6. 066+000
3.343? 7 + 0 0 n
3.95039+000
0.0 6
180.000
179.939
-0.0 1
5. 275+00 0
4 .25606+000
4.26143+Q00
0.08
132.000
1 31.935
-0 .0 1
4.486+000
4.74367+300
4.75265+000
0.08
184.000
133.935
-0.0 1
3. 690+000
5 . 3 65 ? 6 + 0 0 0
5,36670+000
0.0 3
186.000
135.9 96
-0.0 0
2. 858+090
6.2^000+000
6.20577+000
-0.23
183.000
138.028
0.01
1.935+000
p
-in , n iPMs°rT
(1.0 43 , TS’MSPCT
0.00 4 H6
M (\l CM M CVJ (VI PU <\l CVJ fvl C\J CM CM CM CM <\J CM (\J (\J CM CM CM (VI CM CM CM CM (\f
File 73.6
APPENDIX G. (Continued)
Liquid-Vapor Saturation (Orthobaric) Temperatures of
Ethane and Methane
Table 6. Methane'Saturated Liquid Temperatures
NF =
5, AL = 0.000
, BE = 0
.333, DGAT
= 1.56787-
002
T7RP =
90.680, TCRT
= 190.555
, DTRP = 28
.147, OCRT
= 10. 200
8.53377917 -7.
05254699
4.16102443 -1
.36919291
0.20671342 0.
00000000
0.00000000 0
.00000000
1
MOL/L
CALC
PCNT
T , K
cal:
PCNT
DTS/DD
2.81470+001
2.81470+001
0.00
90.680
90.630
0.0 0
-
1.208+001
2.80376+001
2.60375+001
- 0 . 00
92.000
91.996
-0 .0 0
-
1.203+001
2.7871 4+001
2.76706+001
- 0 . 00
94.000
93.9 n
- 0.0 1
-
1. 194+001
2.77036+001
2.77026+001
- 0 . 00
96.000
95,936
- 0.0 1
-
1.186+001
2.75344+001
2.75332+001
- 0 . 00
95.000
97.936
- 0.01
-
1.176+001
2. 7363 e + 001
2.73625+001
- 0 . 00
100.000
99.935
- 0.01
-
1. 167+001
2.71916+001
2.71904+001
- 0 . 00
102.000
101.936
- 0 .01
-
1. 157+001
2.70179+001
2.70167+001
- 0 . 00
104.000
103.937
- 0.01
-
1.147+001
2.68425+001
2.63415+001
- 0 . 00
106.000
105.938
- 0.0 1
-
1. 136+001
2.66654+001
2.6o645+001
- 0.00
108.000
107.990
- 0.0 1
-
1. 125+001
2 . 64 8 6 5 + 001
2.64657+001
- 0 . 00
110.000
109.992
- 0.0 1
-
1. 113+001
2 . 6305 6 + 001
2.63051+001
-0. 00
112.000
111.994
-0 .0 1
-
1 . 101+001
2.61226+001
2.61224+001
-0. 00
114.000
113.996
-0.00
-
1.089+001
2.59379+001
2.59377+001
-0.00
116.000
115.998
-0.00
-
1 . 076+001
2.57507+001
2.57507+001
0.00
113.000
113.000
0.0 0
-
1. 063+001
2.55612+001
2.55615+001
0.00
120.000
120.002
0.0 0
-
1 . 050+001
2.53693+001
2.53697+001
0,00
122.000
122.004
0.00
-
1. 036+001
2.51749+001
2.5175^+001
0.00
124.000
124.006
0.00
-
1 . 022+001
2.41777+001
2.49784+001
0. 00
126.000
126.007
0.0 1
-
1 . 008+001
2 . 47776 + 00 1
2 .47784+001
0.00
128.000
128.005
0.0 1
-
9.928+000
2 .45745+001
2.^5754+001
0.00
130.000
130.009
0.0 1
-
9. 775+000
2.43632+001
2.43692+001
0.00
1 32. 0 00
132.009
0.0 1
-
9.616+000
2.41535+001
2.41595+001
0. 00
134.000
134.009
0.0 1
-
9.457+000
2.39452+001
2.39462+001
0 . 00
136.000
1 36 . 0 0 9
0.0 1
-
9.292+000
2.37230+001
2.37290+001
0. 00
138.000
138.009
0,0 1
-
9. 122+000
2.35067+001
2.35076+001
0. 00
140.000
140.008
0.01
-
8.948+000
2.3281 0+001
2.32816+001
0. 00
142.000
142.007
0.0 1
-
8.768+000
2.30506+001
2.30513+001
0. 00
144.000
144.006
0.0 0
-
8.584+000
2.26152+001
2.28156+001
0. 00
146.000
146.005
0.0 0
-
8.395+000
2 .25744+001
2.2574^+001
0.00
148.000
148.003
0.0 0
-
8 . 200+000
2.2327 6 + 00 1
2.23278+001
0.00
150.000
150.002
0.0 0
-
7.999+000
2.20746+001
2.20745+001
-0.00
152.000
152.000
-0.00
-
7. 793+000
2.18146+001
2.16143+001
-0.00
154. 000
153.933
“0.0 0
-
7. 579+000
2. 1547 1+001
2.15466+001
-0.00
156.000
155.9 35
-0.00
-
7. 359+000
2.1271 3+001
2.12705+001
-0.00
153.000
157.995
-0.0 0
-
7.132+000
2 . 0 986 3 + 00 1
2.09853+001
-0. 00
160.000
159.9 93
-0.0 0
-
6 . 896+000
2.06912+001
2.06901+001
- 0.01
162.000
161.932
-0.00
-
6.652+000
2.03349+001
2.03835+001
-0.01
164.000
163.9 91
- 0.01
-
6. 399+000
2.00656+001
2.00643+001
- 0.01
166.000
165.9 91
-0 .0 1
-
6.135+000
1 . 9732 2 + 0 0 1
1.97307+001
-0.0 1
168.000
167.932
-0.00
-
5. 859+000
1 . 9332 0 + 0 0 1
1.93607+001
- 0.01
170.000
169.933
“0.0 0
-
5.570+000
1.90125+001
1.90114+001
-0. 01
172.000
171.9 34
-0.0 0
-
5. 265+000
1.86201+001
1.86195+001
-0. 00
174.000
173.997
-0.0 0
-
4. 943 + 00 0
1 .3200 4 + 0 0 1
1.82004+001
0.00
176,000
176.000
“0.0 0
-
4. 60 0+000
1 . 7745 7 + 001
1.77475+001
0.00
176.000
173.003
0.0 0
“
4.232+000
1 .72^9 9 + 00 1
1.72516+001
0 . 0 1
180 . 0 0 0
130.0 35
0,00
-
3. 833+000
1 .6695 8 + 00 1
1 .669o3+001
0.01
182,000
1 32.0 0 8
0.0 0
-
3. 394+000
1.60606+001
1.60632+001
0.02
184.000
1 84.0 0 8
0.0 0
-
2.903+000
1 .52986+001
1.52997+001
0.01
186.000
136.033
0.0 0
-
2.338+000
1.42978+001
1.42937+001
-0.0 3
183.000
187. y 33
-0.0 0
-
1.65 2 + 000
1.25270+001
1.25276+001
0 . 00
190.000
190.000
0.0 0
-
6. 700-001
=51, DNRMSP
FT = G.OOo, T SR M S PC T =
0.006
117
APPENDIX G. (Continued)
Cryogenics Division — N B S Institute tor Basic Standards
LABORATORY NOTE
COST CENTER
2750364
FILE NO
73-6
PAGE
8
subject Liquid-Vapor Saturation (Orthobaric) Temperatures
NAME „ _
R D
Goodwin
of Ethane and Methane
DATE TV T
Nov.
28, 1973
11/28/73
Appendix I. The Computer Programs
PROGRAM TSATFIT
C DESCRIBE ETHANE SATN. TEMPS., TSAT(QEN).
C DEFINE R=D/DTRP, S=D/DCRT, S T = D TRP/DCR T , AND -
C YYJTSAT) = ITCRT/T-1J/ ITCPT/ITRP-l) , AND. -
C
COMMON NG,AL*££,TTRP.,I£RJ,_ OGAT , DTRP , QCRT-* DTSQR, A(15J,B(15)
C0MM0N/999/NP,NF ,H(15),Y(200),G<200,15)
DIMENSION T (99) * DEN ( 991 *Y Y ( 99) _»E115J
DIMENSION UL (99)
_2 FORMAT ( 1H1 3.0X * ETHANE. SATURATION TEMPERATURES* //
1 16X4HNF =13, 6H , AL =F7.3, 6H , BE =F7.3, 8H, OGAT =E13.5//
1 16X 6HTTRP =F7 • 3 , 8H , TCRT =F 8 . 3 , 8H, DTRP =F7.3,
2 8 H » DCRT =F6. 3/ / 3(12X 4F16.8/ ) /
315 X5HMOL/L 11X4HCALC 5 X4HPCNT 8X3HT,K 6X4HCALC 5X4HPCNT6X6HDTS/DD)
3 FORMAT (1H1 14X 5HMOL/L 11X4HCALC 5X4HPC NT
3 8X3HT,K 6X4HCALG 5X4HPCNT 6XEHDTS/DD )
4 FORMAT ( 5X 2E15.5, F9.2, F11.3, F10.3, F9.2, E12.3)
5 FURMAT E13X 2HNF 13X2HAL 13X2HBE 8X2HSSI
6 FORMAT (10 X 15, 2E15.5, F10.3)
9 FORMAT (1HC 6X 4HNP =13, 12H , DNRMSPCT =F6.3, 12H , TSRMSPCT =F6.3)
11 TTRP=89.899 $ TCRT=3D5.33 $ YN = TCRT/TTRP-1
1.2 DTRP = 21.68 S D CRT = 6 ♦ 67 $ DGAT=1. 351 14 E-6
13 ST = DGAT /DCRT $ VT=1/(1-ST) S QT = CUBE RTF ( S T)
C
C SATO. VAPOR TEMPS. CONSTRAINED AT T.P. BY SUBTRACTION -
C EQUATION, YY = U < S) * ( 1 +W ( S ) ) , U = E XP ( A L* ( VT- V ) ) ,
C V = 1/ABS(S-1), Q = S** (1/3) , AND -
C W = A1*LN(S/ST) * A2MQ.-QT) + A3MQ2-QJ2) + . . .
C GENERATE THE SATO. VAPOR CAT A .
25 DO 29 J=1 ,44 $ IF(J-l) 27,26
26 T ( J) = TTPP $ GO TO 28
27 T ( J ) = 80 + 5* J
2« DEN (J) = DENGASF ( T ( J) )
29 YYIJ) = ( TCRT/T { J) -1) / YN $ NP = 44
C PRINT FOR NF, GET AL BY TRIAL.
30 AL = 1.50
31 DO 69 NF=4,10 $ NG = NF $ SSK = 1.0E+100
32 DO 40 J=1,NP t S=DEN ( J) /DCRT $ Q = CU BE RT F ( S) J V=l/(1-S)
33 U = EXPF ( AL* (VT- V) ) $ C-(J,1) = U*LOGF(S/ST)
...35, DO 36 K=2,NF $ N = K-i„ .
36 G ( J , K ) = U*(Q**N - QT * *N )
40 Y ( J) = YY ( J) - U
49 CALL EGENFT $ DO 50 K=1,NF
5C A ( K) = H(K) $ SD = SS = 0
51 OO 52 J= 1 , NP S TC = TS A T F ( DE N ( J ) )
52 SS = SS + (TC/T(.J)-1) **2 . $ SS = 100*SQRTF (SS/NP)
53 IF (SS.LT.SSK) 54,56
54 SS K = SS $ NGK = NG $ A L K = A L $ BEK = BE S DO 55 K=1,NF
55 F ( K) = AIK)
56 CONTINUE
57 CONTINUE S NG=- NG K $ AL = ALK $ BE = BEK $ DO 58 K=1,NF
58 A ( K ) = F ( K) $ SS = SD = 0
SP 11342 A
118
☆ U S Government Printing Office 1973- H 790-339
APPENDIX G. (Continued)
Cryogenics Omiion-NBS Institute tor Bone Stindords
LABORATORY NOTE
COST CENTER
2750364
FILE NO
73-6
PAGE
9
SUBJECT
Liquid-Vapor Saturation (Orthobaric) Temperatures of
Ethane and Methane
name j-j Goodwin
DATE Nov. 28, 1973
Appendix I. (continued)
C PRINT CONSTANTS AND DEVIATIONS.
60 PRINT 2, NG» AL + BEtDGAT , TTRP,TCRT ,DTRP^DCRT j_ (A_( K) , K=1 , 12)
61 DO 67 J= 1 * NP $ 0=0 E N ( J ) $ X=T(J) $ DC=FIND S AT F ( 0 , X )
TSATFIT 11/28/73
62 DPCT = 100MOC/D-1) $ SD = SD + DPCT*0PCT
64 T.C = TSATF(D) $ DTSDD = D TSDR/DTRP
65 TPCT = 1 0 0 * { TC/X- 1) $ SS = SS + TPCT*TPCT
67 PRINT 4 4 0 ,QC,OPCT . X. TC.JPCT* DTSQO
68 SD=SQRTF (SD/NP) $ SS=S0RTF < SS/NP) $ PRINT 9, NP, SD, SS
69 CONTINUE $ AL = 0
C
C SATD. LIQUID TEMPS. CONSTFAI NED AT THE T.P. 3Y SUBTRACTION, -
C EQN . , LN(YY) = W(S), WHFRE X = ABS(S-1), XT=ABS { ST-1) , AND -
C W(S) = BE* LL/XT-l/X) + B1MX-XT) + 82MX2-XT2) + . . .
C GENERATE LIQUID DATA.
70 DO 74 J=1 , 44 $ IF(J-l) 72,71
71 T « J ) = TTRP $ GO TO 73
72 TtJ) = 30 + 5* J
73 DEN ( J) = DENLIQF ( T ( J) )
74 YYU) = LOGF { (TCRT/T ( J) -1) / YN)
75 NP = 44 $ NG = NF = 5 $ XT = DTRP/DCRT - 1
C SET UP FIXED LEAST SQUARES FUNCTIONS,.
30 DO 35 J= 1 , NP S S = DEN ( J ) /DCRT $ X = ABSF(S-l)
31 UL ( J ) = 1/XT - 1/X $ DO 82 K=1,NF $ N = K
32 G ( J , K ) = X**N - XT**N
35 CONTINUE _
C FIND NF, BE BY TRIAL.
90 BE = 1. 0/3.0 S DO 91 J = 1,NP
91 Y ( J ) = YYU) - BE*UL(J) $ CALL EGENFT $ DO 92 K= i , NF
92 9 ( K) = H ( K ) S SD = SS = 0
C PRINT LIQUID DEVIATIONS.
1QJL PRINT 2, NG, AL, BE, DGAT, TTRP, TCRT,DTRP, DCRT, (B ( K) , K=1 , 12 )
101 DO 105 J = 1 , N P $ D = DEN<J) $ X = T(J) $ DC = F I ND S AT F ( 1 , X )
102 DPCT = 10 0*1 DC/D - 1) $ SO = SD + DPCT**2
103 TC = TSATF(D) $ DTSDD = DTSDR/DTRP
104 TPCT = 100* (TC/X-1) $ SS = SS + TPCT**2
105 PRINT 4, D, DC, DPCT, X,TC,TPCT, DTSDD
106 3U = SORT F (SO/NP ) S SS = SGRTF<SS/NP)
107 PRINT 9, NP, SO,SS
11C CONTINUE
S9 C STOP $ END
SP 11342 A
119
■fr US Government Printing Office. 1973- # 790-339
APPENDIX G. (Continued)
Cryogenics Division — NBS Institute for Basic Standards
LABORATORY NOTE
COST CENTER
2750364
FILE NO
73-6
PAGE
10
SUBJECT
Liquid-Vapor Saturation (Orthobaric) Temperatures
of Ethane and Methane
name R.D. Goodwin
° ATE Nov. 28, 1973
Appendix I. (continued) 11/28/73
FUNCTION TSATF1DEN)
CQ-MWON NG ,AL *BE,-J TRP ,-ICRT , OGA T *-DTRP ,-DCRT , DTSDR * A(15),B(15J
1 R= DEN/OTRP $ S=DEN/DCRT ! QS = S-l $ OSOR=DTRP/D CRT S IF(QS) 2,30
2 X„J5._ABS£ I QS3 S- XI = OS£R*QS/X $ YN = TCRT/TTRP - 1
3 V = 1/X $ Vi = -DSOR/QS/X $ IF(QS) 4,30,15
C SAT D • VAPOR TEMPS. CON-STRAINED AT T.P. BY SUBTRACTION -
C EQUATION, YY = U t S) * < i+W <S ) ) , U = EXP ( A L* < VT- V )> ,
C = l/ABSCS-i), a = S** (1/3) , AND_=—
C W = Al*LN(S/ST) + A2*<Q-QT) + A3MQ2-QT2) ♦ . . .
-k_- ST ^DGAT /HCRX S.JI L=1/X1-ST) QI-.CUBERI.EAS T)
5 U = EXPF(AL*(VT-V)) $ U1 = -AL*V1*U
- 6 Q — = CU-BERTF (ST S Q1 = -£*OS0R23VS-
7 W = 1 + A t 1 ) *L0GF (S/ST) $ W1 = A<i)*DSDR/S
B M ID JC~2 , NG $ N = X-l - _
9 W = W + A{K)*(Q**N - QT**N)
IQ HI = W1 + N* A ( K) * Qi * Q** Xfclr.l 1
12 F = U*W $ Fi = U*W1 L'l * W $ 0=1 + YN*F
14 TSATF = TCRT/Q $ DTSDR = - YN*F 1*TSATF/Q $ RETURN
C SATO. LIQUID TEMPS. CONSTRAINED AT THE T.P. BY SUBTRACTION, -
C EQN . , LNIYY) = W ( WHERE X=ABS(S-1), XT = ABS ( ST- 1) , AND -
C W(S) = BE* (1/XT-l/X) + B1MX-XT) + B2*(X2-XT2) + . . .
.15 XT = OSDR-1 S H- = BE* (l/XT.-VJ $ -BE*V1
17 DO 19 K= 1 , NG $ N = K
18 W = W + B X K ) * ( X* *tX - XT **N )
19 W 1 = W 1 + B(K)*N*X1*X**(N-1)
20 F = EXPFIW). ,„i FI = W1*F $ Q =_ 1 + YN* F
22 TSATF = TCRT/Q $ OTSDR = - YN *F 1* TS A TF /Q S RETURN
3 C TSATF = TCRT- S DTSOR.= 0 _J .RETURN .. $ END
FUNCTION DENGASF { T)
C ETHANE SATURATED VAPOR DENSITIES, MOL/L.
C Y = A1 + A2*Q 2 ♦ A 3* Q3 + . . , NF = AL, YN = LN (OCRT/OTRP) ,
C U = Z + (ZE-Z) *Y* QEN = DCRT*£ XP l- YN*U) .
DIMENSION A ( 5 )
DATA (TTRP=89.899) ,(TCRT=305.33J, (E=fl.362)
DATA ( DCRT = 6.87) , (OTRP = 1 . 3 5 1 14 E- 6 )
3 AT A { A = 0.19277431, 0.041550G9, -fl. 78922629,
1 0.35766750, 0.12454376)
1 FORMAT (1H0 9X *OENGASF = 0, T EXCEEOS TCRT. * / )
2 IF (TCRT-T) 3,4,5
3 PRINT 1 $ STOP
4 DENGASF = OCRT $ DRDT = D2RDT2 =0 $ RETURN
5 ZN=TCRT/TTRP-1 $ YN= L OC-F { OCR T / D TRP) $ Z= ( TCRT/T-1) /ZN
6
D ZD T = -T CRT /ZN/ T /T $
ZE
= Z**E $ Z El =
E*ZE/Z
a.
X = ZE-Z $ XI = ZE1-1
$
Q = CUBERTF ( Z )
$ Q1 = G/3/Z
10
11
Y = A ( 1 ) $ Y 1 = 0 $
Y = Y + AIK) *Q**K
ro
13 <=2,5
12 Y 1 = Y 1 + K* A ( K) * Q** ( K- 1 )
13 CONTINUE £ Y1 =-Yi*Ql
15 U = Z + X * Y $ UA = 1 + X ♦ Y1 + XI *Y $ U1 = UA *DZDT
16 XP = E XPF ( - Y N*U) .$ DENGASF = F._= DCRT*XP
17 DRDT = -YN*U1*F $ PFTURN $ END
SP 11342 A
120
☆ U S. Government Fainting Office; 1973- # 790-339
APPENDIX G. (Continued)
Cryogenics Division — NBS Institute for Basic Standards
COST CENTER
FILE NO
PAGE
LABORATORY NOTE
2750364
73-6
1 1
subject Ljquicl_ "Vapor Saturation (Orthobaric) Temperatures
NAME R. D. Goodwin
of Ethane and Methane
DflTE Nov. 28, 1 973
Appendix I. (continued)
11/23/73
1
2
3
4
5
6
7
8
o
11
11
12
13
14
15
16
17
18
2 C
21
22
23
FUNCTION F I NOS AT F (M,T)
THIS FINDSATF AOJUSTED FOR ETHANE,
ITERATE DEN TO MINIMIZE (T-TS) VIA TSATF(DEN).
1 = 0 FOR VAPOR, M = 1 FOR LIQUID.
COMMON NG,AL,BE, TTRP»TCR7 , OGAT , DTRP, DCRT , DTSDR , A(15),B<15)
DATA (DGT = i. QE-6) , (QLT=23. Q)
FAILS TO CONVERGE. *
T EXCEEDS T CRT • * / )
/ )
FORMAT (1H0 9X *F I NOSATF = 0,
FORMAT (1H0 9X *F INDSATF - 0,
IF { T-T CRT ) 4,22,23
IF(M.EQ.O) 5,6
□ = DENGASF ( T ) $ GO TO 7
D = DENLIQF ( T)
DO 20 J= 1 , 5 0 $ D T =T-TS ATF ( 0 ) $ I F ( ABSF ( OT /T ) - 1 . 0 E -6 ) 21,21,8
DT D-D = DTSDR/DTRP $ IF (DT OD. EQ. 0 . 0) 22,9
DD = OT/DTDO $ IF ( A BSF (CD /D) - 1 • 0E-6 ) 21,21,10
D = D + DL S IF (M.EQ.0) 11,15
IF ID, GT . DGT ) 13,12
O = DGT $ GO TO 20
IF ( 0 , LT. DCRT) 20,14
D = DCRT - 0.02 I GO TC 20
IF (D.GT.OLT) 16,17
D = DL T $ GO VO 20
IF (O.GT.OCRT) 2C , 18
O = DCRT + 0.02
CONTINUE $ FINDSATF
FINDSATF =0 $
FINDSATF = DCRT
FINDSATF = 0 $ PRINT 2 $ RETURN $ END
= t $ PRINT 1 $ RETURN
RETURt
$ RETURN
PRINT 2 $
11/28/73
FUNCTION DENLIQF (T)
ETHANE SATURATED LIQUID DENSITIES, MOL/L.
Y = Al + A 2* Q 2 f A3*Q3 + . . . , YN = QTRP-OCRT,
DEN = DCRT ♦. YN*(X + (XE-X)*YL*. .
DATA (TCRT=3G5.33),(TTPP=89.899), (DCRT=6 . 87),(DTRP=21.68),<E=0.35»
DATA (A=Q. 76173503) , (B = 0. 29365351) , ( C =- 0 . 3276 23 94 )
1 FORMAT (1HC 9X ♦DENLIQF = 0, T EXCEEDS TCRT. * / )
IF { T CRT -T ) 3,4,5
PRINT 1 $ STOP
$ DRDT = D2FD T 2 = 0 . $ RETURN
DENLIQF=DCRI
XN = TCRT-TTRP $ YN=DTRP-DCPT $ X = ( T CRT -T ) / XN $ DXDT=-1/XN
$
XE = X**E
Q = XE-X $
WW = W*W $
1C Y 1 = 2*B*W +
11 Y 1 = Y 1 * W 1
13 DENLIQF = DCRT +■
14 DRDT - (1 + Q*Y1
XE 1 = E*XE/X
Q 1 = XF1-1
Y = A + B*WL +
3*C* WW
$ H = CUBERTF(X)
C*X
W1 = W/3/X
(X + Q*Y)*YN
*■ Q1*Y) *YN*DXDT
RETURN
END
SP 11342 A
121
☆ U S Government Printing Office. 1973- # 7&0-339
APPENDIX G. (Continued)
Cryogenics Division — NBS Institute for Basic Standards
LABORATORY NOTE
COST CENTER
2750364
FILE NO
73-6
PAGE
12
subject Liquid- Vapor Saturation (Orthobaric) Temperatures
name r . d t Goodwin
of Ethane and Methane
0ATE Nov. 28, 1973
Appendix I. (continued)
11/28/73
1
2
3
4
5
6
8
10
11
12
13
15
16
17
FUNCTION DENGASF(T)
METHANE SAT*. VAPOR DEN, MOL/L, VIA VAPORFIT,
Y = Ai ♦ A 2 * Q2 ♦ A3*Q3 ♦ . . , NF = AL, YN
U = Z_ + <ZE-Z)*Y, J3EN = DCRT*EXP (-YN*U) •
DIMENSION A (5 )
D ATA (TTRP = 9Q.,68) , (TCRT= 190. 555) , <E = 0 . 3 88)
OAT A (DCRT=10.2) , (DTRP=0 . 01567365 )
3 AT A ( A = 0,3925579, -0.4976888, 1.3200516,
1 -1.6817790, 0.6848609)
FORMATUHO 9X ♦DENGASF = 0, T EXCEEOS TCRT , * / )
I F ( TCRT-T ) 3,4,5
PRINT 1 $ STOP
DENGASF - DCRT % DROT = 02RDT2 = 0
ZN=TQRT/TTRP-1 l YN=LOGF(DCRT/DTRP)
DZOT = -TCRT/ ZN/T/T $ ZE = Z**E $
X = ZE-Z $ J(1 = ZE1-1 $ Q = CU8ERTF ( Z )
Y = A (1 ) $ Y 1 = 0 $ DO 13 < = 2,5
Y = Y ♦ A(K)*Q**K
Y 1 = Y1 + K*A <K) *Q**(K-l )
CONTINUE $ Y1 = Y1*Q1
U = Z ♦ X *Y $ UA = 1 * X*Y 1 f X 1*Y $ U1
XP = EXPF(-YN*U) $ DENGASF J= F = DCRT*XP
DPDT = -YN*U1*F $ RETURN $ END
11/19/73*1
= LN( OCRT/DTRP)
% RETURN
S Z= (TCRT/T-1) /ZN
ZE1 = E*ZE/Z
$ Q1 = Q/3/Z
= UA* DZ DT
LAB • NOTE 73-5.
= DTRP-OCRT,
1
2
3
4
5
6
8
9
10
11
13
14
FUNCTION OENLIQF(T)
METHANE SATD. LIQUID DEN, MOL/L,-VIA
Y = Al + A2*Q2 ♦ A3*Q3 *■ . . . , YN
DEN = DC P.T ♦ Y N* ( X + (XE-X)*Y).
DATA ( T TRP= 90 .68) , ( T CRT = 1 90 . 55 5 ) , (E= 0.361)
DATA (DCRT=10.2) , ( DT RP=2 8 .147 )
DATA ( A =0.8 37 0910 3) , (B=0. 08416127) , (C=-0. 07478575)
FORMAT ( IHO 9X *DENLIQF = 0, T EXCEEDS TCRT. * / )
I F { TCRT-T) 3,4,5
PRINT 1 $
DENLIQF=DCRT
X N=TCRT-TTRP
XE = X* *E $
Q = XE-X $
W H = W* H S
Y 1 = 2* 9* W +
Y 1 = Y1*W1
DENLIQF = DCRT ♦
DPDT = (1 + Q*Y 1
STOP
$ DRDT = D2 ROT2 = 0 t RETURN
$ YN=DTR p - DCRT $ X= ( TCRT-T ) /XN $
XE1 = E*X E / X t W = CUBERTF ( X )
Q1 = XE1-1
Y = A + 8* W W ♦ C*X
3*C* WW _
DXDT = -l/XN
$ rfl = W/3/X
(X + Q* Y ) * Y N
+ Q1*Y> *YN*DX DT
RETURN $ END
SP 11342 A
122
☆ U S Government Printing Office 1973- # 780-3 3 9
USCOMM ERL
oo OOOOOOOOOO
06/05/74
APPENDIX H„
Computer Programs for Equation of State
PROGRAM ETHANE
GOODWIN EQUATION OF STATE APPLIED TO ETHANE.
EQN. (Y-YSAT) = F(R,T), WHERE Y = (Z-1)*X/R, AND -
F (R,T) = 9* XBF ♦ E*XEF, NOTE ONLY TWO TERMS.
XBF = SQRT CT/TC) *LN (T/TS) .
XEF = PSI-PSISAT, PSI - (1-W*LN d+l/W)) /X, W = EP*(T/TH-i).
9 = 81 + 82*R ♦ B3*R2/(1+BE*R2) , BE = 1, APPROX.,
E = (S-l) * (S-ER) * (El + E2*R), ER - 1.9, NF = 5.
NOTE, PRESSURE IN BARS, 1.01325 BAR/ATM.
LET GAS CONSTANT GK = 0.0831434*DTRP, PN = R*GK*T.
AUTHOR 10. VIRIAH2), PAL(4), REAMER (8) , MICHELS<9), DOUSLIN(IO).
COMMON B1,B2,B3,B4, ER, E1,E2,E3
COMMON/l/AL ,BE,EP, GK, DCRT , TCRT , PCRT , DTRP, TTRP , PTRP
COMMON/2/NP ,NF,IO<999) ,T (999) , P (999) ,OEN (999)
COMMON/ 3/0 POT ,D2POT2,DPSDT,OPMCT,DPDO,DPCR,DTSOR,DTHOR
COMMON/4/ XB1 ,XB2 , XC1,XC2, XE1,XE2, OXBOR,DXCDR , DXEDR
COMMON/6/ TSAT, THETA, PSAT
COMMON/7/ XB,XC,XO,XE
COMMON/ 8/IP ,NPP, PI ,P2,P3,P4,P5, I DP (99) , TPS (99) ,PPS(99)
COMMON/ 9/ IS , NPS »EG ,EL,ALS,BES,AL1,AL2,AL3,CG(5) , AY (8) , AW (5)
COMMON/ 10 / IDS (99) , TSS(99), DNS(99)
COMMON/11/ MP4, NP5
COMMON/999/ NFUN,Y,F(30>
DIMENSION G ( 30 ) , DND (30) ,TD (16) , PPO(30,16)
1 FORMAT (15, 3F10.0)
2 FORMAT ( 15 , F10.3, E15.5)
3 FORMAT ( 1H0 9X *EQN. OF STATE, OTRP =*F7.3, 8H, DCRT =F7.3,
1 8H , TCRT =F8. 3//1 0X4HAL =F5.2, 6H, BE =F5.2, 6H, EP =F5.2//
2 10X 4HNP =14, 10H, PAVPCT =F6.3)
6 FORMA T ( 1H1 16X *THE ISOCHORE AT* F6.2, * MOL/L* //
1 17X 3HT , K 5X5HP,B AR 5X5HDP/DD 5X5H0P/DT 4X7HD2P/0T2)
7 FORMATdOX F10.1, 2F10.3, F10.4, F11.5)
8 FORMAT ( 1H1 14X *THE ISOTHERM AT* F7.2, * OEG. K* //
1 10X 5HM0L/L 5X5 HP, BAR 5X5H0P/CD 5X5HDP/0T 5X 7HD2P/DT 2 )
9 FORMA T ( 5X F10.2, 2F10.3, F10.4, F12.6)
11 FORMAT ( 1H1 7X *EQU ATION OF STATE VS. PVT DATA* //
1 8X 2 HI D 7X 3HT , K 5X5HMCL/L 5X5HCALCD 4X5H0,PCT
2 6X5HP, BAR 5X5HCAL CD 4X5HP,PCT)
12 F ORMA T ( 5X 15, F10.3, 2F10.4, F9.2, F11.3, F10.3, F9.2)
13 FORMA T ( 1H0 8X 4HNP =14, 12H, DNRMSPCT =F6.3, 12H, PMEANPC T =F6.3)
14 FORMAT ( 8F1 0 . 0)
15 FORMAT ( 16X 8F8.0)
16 FORMATdOX 7F10.0)
22 TTRP= 89. 899 $ 0TRP = 21.68 $ 0 = 1.01325 f PTRP=Q*9 . 967E-6
23 TCRT = 305.37 $ DCRT = 6.74
24 WM=30 .07 $ QP=Q/14. 69595 J GKK=0 .0831434 f GK = DTRP*GKK
25 AL=2 • 0 J BE=1. 0 $ EP=0.5 i ER=1.9
READ MIXED VAPOR PRESSURE DATA, ALL IN T-68, BAR.
26 DO 27 J=1 , 99 S READ 2, I OP ( J ) , T PS ( J) , PPS ( J) f IF(IOP(J) ) 27,28
27 CONTINUE
C READ TSAT (DEN) DATA (ORTHOBARIC DENSITIES).
28 NPP = J-l 5 DO 29 J=l,28
29 READ 2, I DS ( J) , TSS ( J ) , DNS ( J ) $ DO 31 J = 29,99
30 REAO 1, IDD,TSS(J) ,DNS(J) S IF(IDD) 31,32
123
oo o o o o o oo
ETHANE
APPENDIX H. (Continued)
06 / 85 / 71 *
31 XDS«J) - IOD
32 NPS = J — 1
GENERATE VIRIAL PVT DATA BELOW 1 MOL/L.
34 NP1 =38 2 DN = 0,4 2 OO 37 J=i,NPl f N = J
35 TT = 220 «• 10*N 2 ID(N> = 2 $ T (N) = TT 2 DEN (N) = ON
37 P (N) = ON*GKK*TT*ZIPF(TT,DN)
READ DOUSLIN ETHANE PVT DATA.
39 N=N«-1 2 DEN (N) =0.7 0 2 T(N)=248.15 S P(N ) =Q* 11 . 6 0 87 S ID(N) = 10
SET UP HIS DENSITIES, AND READ HIS TEMPERATURES.
40 ONO(l) = 0.75 $ OO 41 1=2,30
41 OND(I) = 0.5*1 2 REAO 14, (TO ( J ) , J=i, 16)
READ PRESSURES (ATM) ALONG ISOCHORES (MANY BLANKS).
42 00 43 1=1,30 S READ 15, ( PPO ( I , J) , J=1 , 16)
CONVERT TO ONE PVT POINT PER INDEX, N.
43 CONTINUE 2 OO 46 1=1,30 $ OO 46 J=l,16 $ IF(PPOfI,J)) 44,46
44 N = N41 2 ID (N) =10 2 T (N) = 273.15 ♦ TD(J)
45 0ENCN) = ONO(I) S P(N) = Q*PPD(I,J)
46 CONTINUE 2 DO 48 J=i,5 2 READ 1, IDD,ON,TT,PP
47 N=N*1 2 ID ( N) = IOO S OEN (N) =ON I T (N) =TT $ P(N> = Q*PP
READ MICHELS, DEG. C, AMAGAT DEN, AMAGAT (PM).
48 CONTINUE 2 NP2 = N * READ 16, (TO ( J) ,J=1 ,7) S DO 49 1*1,17
49 READ 14, ONO(I), (PPD (I, J) , J=i ,7)
50 00 53 1=1,17 S DC 53 J=i,7 2 IF(PPD(I,J)) 51,53
51 N = N*1 $ ID (N) = 9 J T (N) = 273.15 ♦ TO(J)
52 DEN (N ) = 0. 045064*DND(I) J P(N) = Q*DN0(I)*PPD (I , J)
53 CONTINUE 2 NP3 = N
READ 8 PAL/POPE ISOCHORES NO. 17 THRU 24, GRAM/CCf PSIA.
THESE DATA AOJUSTED BY RICE UNIV., APRIL, 1974.
57 CO 62 1=1,12 2 DO 61 J=l,99
58 READ 14, DN,TT,PP 2 IF (DN) 59,62
59 N = N*1 2 ID ( N) = 1200 ♦ 100*1 ♦ J
60 T (N) = TT 2 P (N) = QP*PP S OEN(N) = 1000*DN/HM
61 CONTINUE
C READ REAMER ET AL UP TO NP5.
62 CONTINUE 2 NP4 = N I CALL REAOIT
C USE ONLY OATA THRU PAL/POPE FOR LEAST SQUARES.
63 NP = NP4 2 NF = 5 2 SSK = 1.0E+100 2 IP = IS = 1
C
C EXPLORE NONLINEAR PARAMETERS DTRP , DCRT ,TCRT,AL,BE,EP.
64 CALL PSATFIT $ PCRT = PSATF(TCRT)
65 CALL OSATFIT 2 CALL TSATFIT
C 66 CO 74 MA=i , 3 2 AL = 0.5MMA+2)
C 67 00 74 ME=1 , 3 f EP = 1.0/(6-ME)
66 CALL SETUP 2 SS = 0 2 DO 69 J=1,NP
69 SS = SS ♦ ABSF ( 1-PVTE (T(J) , DEN ( J) )/P(J) ) 2 SS = 100*SS/NP
70 IE ( SS -SSK ) 7 1,74,74
71 SSK=S S 2 DC R=DCRT 2 TCR=TCRT 2 AL K= AL 2 BEK=BE 2 EPK=EP
72 CO 73 K=1 , NF
73 G (K) = F (K)
74 PRINT 3, DTRP, DCRT, TCRT, AL ,BE»EF , NP,SS
76 DCRT = OCR 2 TCRT =TCR 2 AL =AL K 2 BE=BEK 2 EP=EPK
77 81=G ( 1) 2 82=G (2) 2 B3=G(3)
7e E 1=G ( 4) 2 E2=G (5)
80 CALL PEEK 2 CALL ISOTHERM
124
o o o o
ETHANE
APPENDIX H. (Continued)
06/05/74
GET DEVIATIONS FOR INDIVIDUAL AUTHORS.
83 DO 100 IG=1,5 I G0T0<84, 85,86,87,88) ,IC-
84 M=1 S N=NP1 $ GO TO 90
85 M=N*1 * N = NP2 S GO TO 90
86 M = NM $ N=NP3 $ GO TO 90
87 R=N*- 1 t N = NP4 $ GO TO 90
88 R=N + 1 $ N=NP5 $ GO TO 90
90 PRINT 11 t SO = SS = K = L = 0
91 DO 98 J=M , N $ K=K+1 I L = L*1 S IF(L-53) 93,92
92 L = 0 * PRINT 11
93 FC = PVTF (T (J) , DEN (J) ) $ DC = FINOENF (T(J),F(J),CEN(J) )
94 PPCT=10Q* <1-PC/P(J) ) S SS-SS+AESF (PPCT) $ IF(DC) 95,96
95 DPCT = 100* (l-DC/DEN (J) ) $ GC TO 97
96 DPCT - 0.0
97 SO = SO «■ DPCT**2
96 PRINT 12, ID(J),T(J), DEN ( J) , DC , DPCT , P(J),PC,PPCT
99 SS = SS/K J SD = SQRTF (SD/K) f PRINT 13, K, SD,SS
100 CONTINUE
PRINTOUT ISOCHORES.
130 DO 160 1 = 1,22 S I F ( I -7 ) 132,131
131 DN = OCRT $ GO TC 133
132 DN = I
133 FRINT 6, DN
138 IF ( ON-OTRP ) 140,141,141
140 TS = TSATF(DN) $ GO TO 142
141 TS = TTRP* (ON/DTRP) **4
142 IF(I-ll) 143,143,144
143 IT = 8 $ GO TO 150
144 IF (1—15) 145,145,146
145 IT = 4 % GO TO 150
146 IF (I - 19) 147,148,1 48
147 IT = 2 $ GO TO 150
148 IT = 1
150 00 159 J= 90, 600, IT $ TT = J $ IF(TT-TS) 159,159,151
151 FP = PVTF ( T T ,ON) J PX = DPDRF ( T T , DN)
153 IFCPP-700.0) 155,155,160
155 PRINT 7, T T , PP , DPDD , OPDT , 02PDT2
159 CONTINUE
160 CONTINUE
C PRINTOUT ISOTHERHS (NEED FINDSATF).
200 DC 230 1=1,99
201 READ 1, IDD,TT,DS ? IF(IDD) 210,999
210 PRINT 8, TT
211 OH = OTRP* (TT/TTRP) **0.25 S IF(TT-TCRT) 212,212,213
21? DG = FINDSATF(TT,0) J 01 = F I NCSA T F ( T T , 1 )
213 DO 220 N= 1 , 5 0 0 $ DN = N*DS I IF ( TT- T CRT ) 214,215,215
214 IF(ON.GT.DG.AND.DN.LT.DL) 220,215
215 IF (ON.GT.OH) 230,216
216 FP = CPORF ( TT, DN ) I IF(PP-750.0) 217,217,230
217 PX = PV TF ( T T , DN )
219 FRINT 9, ON,PP, DPDD, 0PDT,D2PDT2
220 CONTINUE
230 CONTINUE
999 CONTINUE S STOP J END
125
APPENDIX H. (Continued)
06/15/74
SUBROUTINE READIT
C REAO ETHANE PVT DATA OF REAMER ET AL. T,F, PSIA, Z(P,R,T).
C IND. ENG. CHEM. 36, 956-958, (OCT. ,1944).
C0MM0N/2/NP , NF ,IO(9S9),T (999), F (999) ,DEN (999)
COMMON/ll/ NP4 , NP5
DIMENSION TA(7) ,PSI (22) ,Z(22,7)
DATA (GKK = 0.0831 43 4) , ( 0= 1. 0 1325 ) , (PA=14 . 69595 )
1 FORMAT ( 24X 7F8.0)
2 FORMA T ( 15, F11.0, 8X 7F8.0)
3 FORMAT ( 15 , F11.0, F16.0)
C REAO THE SUPPLEMENTARY PVT DATA. ONE POINT PER CARD.
9 CO 15 1=1,99 $ REAP 3, I00,PF,ZA $ IF(IDO) 10*16
10 N = NP4 ♦ I
11 ID(N) = IOO t P ( N ) = Q*PP/PA J IF( I - 13) 12,12,13
12 TF = 100 $ GO TO 14
13 TF = 160
14 T (N ) = 273.15 ♦ (TF-32)/1.8
15 DEN(N) = P(N)/ZA/GKK/T (N)
16 CONTINUE
C NCW REAO 22 ISOBARS OF THE SQUARE TABLE 1.
20 EFAD 1, (TA (J) , J=1 ,7) $ DC 21 1=1,22
21 READ 2, IOO, PSI (I ) , (Z ( I , J ) , J = 1 , 7)
C NCW CONVERT TO ONE FCINT PER INCEX, N.
25 DO 29 1=1,22 $ DC 29 J=l,7
26 N = N+l S ID (N) = 8 $ P(N) = Q*PSI(I)/PA
27 T (N) = 273.15 ♦ (T A ( J ) -3 2 ) / 1 . 8
28 DEN(N) = P (N)/Z (I, J)/T (N) /GKK
29 CONTINUE J NP5 = N
30 RETURN I ENO
SINGLE-BANK COMPILATION.
126
oooo oooooo ooo
APPENDIX H. (Continued)
06/05/7**
SUBROUTINE OSATFIT
FIND COEFFS. FOR DENGASF(T), DENLICF(T), ETHANE.
FUNCTIONS VIA GOODWIN LAB. NOTE 73-5.
DATA ARRANGED IN OROFR OF INCREASING DENSITIES.
COMMON/l/AL ,BE,EP, GK, DC RT , TCP T , F CRT , D TFP , TT RF , F T R F
C0MM0N/9/IS,NPS,EG,EL, ALS,BES, AL1 ,AL2,AL3,CG(5) ,AV(8),AW(5)
COMMON/iO/ IDS(99), TSS(99>, DNS(99)
COMMON/ 999/ NFUN,Y,F(30)
DIMENSION G ( 9)
OATA (DGAT = 1.35114E-6)
1 FORMA T(1H19X*SATURATED VAPOR DENSITIES, E = *F6 . 3 // 1 0 X 6HT TRP =F7.3,
1 8H , TCRT =F8. 3 , 8H, OCRT =F6.3, 8H, DGAT =E12.5// 7X 5F13.6//
2 13X2HI0 7 X 3HT , K 8X5HM0L/L 8X5HC A LCD 4X4HPCNT )
2 F CRM A T ( 1 0 X 15, F10.3, 2E13.4, F8.2)
3 FORMAT (1H19X*SATD. LIQUID DENSITIES, E = * F6.3// 1IX6HTTFF =F7.3,
1 8H , TCRT = F 8 • 3 , 8H, DCRT =F6.3, 8H, DT R F =F7.3// 9X 3F15.9//
2 13X2 HID 7 X 3HT , K 5X5HMCL/L 5X5HCALC0 5X5HPRCNT)
4 FORMA T ( 10X 15, 3F10.3, F10.2)
5 FORMAT(1HO 15X 4HNP =13, 10H, RMSFCT =F6.3>
FCR THE SATURATED VAPOR, DEFINE -
Z = (TC/T-1) /(TC/TT-1) , Q = Z**l/3, ZF = Z**E,
YY = LN(DC/D) /LN (DC/DT) , ANO THE DEPENDENT VAFIAELE -
Y ( Z, Y Y ) = (YY-Z) /(ZE-Z) , WHEN THE L.S. ECN. IS -
Y(Z,YY) = Al ♦ A2*Q2 ♦ A3*Q3 ♦ A4*C4 ♦ A5*Q5.
6 ZN=TCRT/TTRP-1 S Y N=LOGF ( OCR T / D GA T ) 5 SSK=1.0E+100
EXPLORE VALUES FOR EXPONENT EG.
7 CO 18 1=1,11 S EG = 0.33 + 0.01*1
8 NFUN =5 $ DO 12 J = l,99 $ I F ( CNS ( J ) - OOP T) 9,13,13
9 Z = ( TCRT/TSSC J)-l ) /ZN S Q = CUBERTE ( Z )
10 YY = LOGF (OCRT/DNS (J) )/YN $ F(l) =1 $ OO 1 1 K=2,5
11
F (K)
= Q**K
t Y = (YY-Z) / (Z**
EG-Z)
12
CALL
FIT
13
NP =
J-l $
CALL CCEFF J SS
= 0
S
DC 14 K = 1
,5
14
CG ( K )
= F ( K )
l DO 15 J = 1 , NP
i DC
-
DENGASF ( T
SS ( J) )
15
SS -
SS ♦ ( OC/ DNS ( J ) -1 ) * * 2 t
IF (SS
.LT
.SSK) 16,
18
16
SSK =
SS t
E GK = EG * DO 17
K=l,
5
17
G (K)
= F ( K )
16
CONTINUE $
EG = EGK J 00 19
K = l,
5
19 CG(K) = G ( K ) $ IF(IS) 20,26
20 PPINT 1, EG, TTRP, TCRT , DCRT, DGAT, (G(K),K=1,5)
21 SS = 0 t OO 24 J = 1 , N P $ DC = DENGAS F ( TSS ( J ) >
22 FCT = 100* (DNS(J)/DC-1) J SS = SS ♦ PCT**2
24 FRINT 2, IDS(J), T S S ( J ) , DNS ( J ) , CC,PCT
25 SS = SQRTF ( SS/NP) $ FRINT 5, NP, SS
FCR THE SATURATED LICUID, DEFINE -
X = (TC-T) / (TC-TT), Q = X**l/3, XE = X**E,
YY = ( O-DC) / (DT-OC) , WHEN THE L.S. EQN . IS -
(YY-K) /(XE-X) = A1 + A 2*Q2 ♦ A3*Q3.
26 M = NP ♦ 1 % SSK = 1.0E+100
27 XN = TCRT-TTRP $ YN = DTRP-DCRT
C EXPLORE VALUES FOR EXPONENT EL.
26 CO 37 1=1,14 * EL = 0.25 * 0.01*1 J NFUN = 3
29 00 32 J = M , NPS $ X = (TCR T-TSS ( J ) ) / XN
30 C = CUBERTF(X) 5 YY = ( DN S ( J ) -C CRT ) / Y N
31 F ( 1 ) = 1 S F ( 2 ) =Q * Q $ F ( 3 ) = X $ Y = ( YY- X ) / ( X* ♦ F L - X )
127
DSATFIT
APPENDIX H. (Continued)
06/85/74
32 CALL FIT $ CALL CCEFF $ AL1=F(1) * AL2=F(2) f AL3=F(3)
33 SS = 0 $ DO 34 J=M,NPS $ DC = DENLIQF (TSS ( J) )
34 SS = SS ♦ (DC/DNS(J)-1)**2 * IF (SS .LT. SSK) 35,37
35 SSK = SS J ELK - EL $ DO 36 K=l, 3
36 G (K) = F ( K )
37 CONTINUE $ EL = ELK $ AL1=G(1) S AL2=G(2) $ AL3=G<3)
36 IF(IS) 40,99
40 PRINT 3, EL, TTRP, TCRT , OCRT , OTRP , <G(K),K=1,3>
41 SS = N = 0
42 00 44 J=M , NPS l N = N+l S DC = DENL I QF ( TSS < J > ♦
43 PCT = 100* (DNS (J)/OC-l) t SS = SS ♦ PCT**2
44 PRINT 4, IDS (J) ,TSS (J) ,DNS ( J) , OC,PCT
45 SS = SQRTF ( SS/N) $ PRINT 5, N, SS
99 RETURN J END
SINGLE-RANK COMPILATION.
128
oo oooo ooooo
APPENDIX H. (Continued)
06/85/71*
SUBROUTINE TSATFIT
FIT TSAT DATA VIA FUNCTIONS OF TSA TFI T (METHANE ) , 4/19/74 AT 09.00.
NCTE, ALS = BES = 0.5, E - 1/4, VAPOR NF=6, LIQUID NF = 3.
NOTE DIFFERENT FUNCTIONS AS OEN L . T. OR G.T. DCPT.
DEFINE YY(TS) = ( TC R T /T -1 ) / ( TCR T /T TRP-1 ) FOR EACH FUNCTION.
DATA ARRANGED IN ORDER OF INCREASING DENSITIES.
COMMON/l/AL,BE,EP, GK, DCRT , TCRT , PCRT , D T RP , TT RF , P T R P
COMMON/3/ OP OT,D2PDT 2, DPS DT,DPM0T, OPOD , O PDR , D TSDR , 0 THOR
COMMON/ 9/1 S,NPS, EG , EL, ALS, BES, AL1 , AL 2 , AL 3 , C G ( 5 ) , AV (8) *AW (5)
COMMON/10/ IOS( 99) , TSSI99), DNS 1 99 )
COMMON/999/ NFUN,Y,F(30)
OATA (DGAT = 1.35114E-6)
1 FORMAT ( 1H1 3 OX ’ETHANE SATURATION TEMPERATURES’ //
1 16X 4HAL =F 6.3, 6H, BE =F6.3, 8H, DGAT =E12.5//
2 16X 6HTTRP =F7.3, 6H, TCRT =F8.3, 8H, DTRP =F7.3,
3 8H , DCRT =F6. 3 // 2(13X 4F15.9/) )
2 FORMATdHO 12X 2HI O 10X5HMOL/L 1 1 X4HCAL C 5X4HPCNT
1 8X3HT,K 6X4HCALC 5X4HPCNT 6X6HDTS/0D )
3 F ORMA T ( 10 X 15, 2E15.5, F9.2, Fll.3, ri0.3, F9.2, E12.3)
4 FORMATdHO 12X 4HNP =13, 12H, DNFMSPCT =F6.3, 12H, TSRMSPCT =F6.3)
FOR SAT. VAPOR DEFINE, X=ABS(S-1), XT= ABS ( ST- 1 ) , WHEN EQN. IS -
IN(YY) - AL’ (1/XT-l/X) = Al’LOG (LN ( 1 + E/S ) /LN ( 1 «-E / ST ) ) ♦ W«S),
W ( S > = A2MQ-QT) ♦ A3*(02-QT2) + A4’(S-ST) ♦ A5*(S2-ST2) ♦ . . .
WHERE, Q = S” 1/3, AND OT = ST”l/3.
5 ALS = BES =0.5 S E = 0.25 S YN = T CRT/TTRP - 1
6 ST = DG AT /DCRT I XT= 1-ST $ EK=LOGF ( 1 + E/ST)
7 GT = CUBERTF (ST ) % NFUN = NF = 8
9 OO 16 J = 1 , NPS $ IF (DNS (J) -OCRT) 10,17,17
10 S = DNS ( J ) / DCRT $ X = 1-S * 0 = CUBERTF (S )
11 F ( 1 ) = LOGF (LOGFC1 +E/S) /EK)
12 F ( 2 ) = Q-QT $ F ( 3 ) = Q’O - OT’CT
13 DO 14 K=4 , NF $ N = K-3
14 F(K) = S”N - ST” N
15 Y = LOGF( (TCRT/TSS C J) -1) /YN) - AL S’ (1/ X T - 1/ X)
16 CALL FIT
17 NF = J-l $ CALL CCEFF * DO 18 K=1,NF
18 A V ( K ) = F ( K ) $ IF (IS) 20,28
20 PRINT 1, ALS, BES, DGAT, TTRP,TCRT , DTRP, DCRT, {F ( K ) , K = 1 , N f >
21 PRINT 2 J SD = SS = N = 0
22 CO 26 J = 1 , N P $ T = TSS(J) $ C = DNS(J)
23 CC = FINDSATF (T, 0) * DPC T= 1 0 0 ’ ( 1 - DC /O ) $ S0=SD+DPCT”2
24 TC = TSATF(O) $ DTSCD = DTSDR/DTRP
25 TPCT = 10 0’ (1-TC/T ) J SS = SS ♦ TPCT”2
26 PRINT 3, IDS ( J ) , 0,CC,CPCT, T,TC,TPCT, OTSDD
27 SD = SORT F ( S O/N P ) f SS = SQRTF(SS/NP) $ PRINT 4, NP, C C,SS
FOP SATO. LIQ. USE, X=ABS(S-1), XT=ABS(ST-1) IN THE EON. -
LN(YY) = BE’ C 1/XT-l/X) ♦ Bl’(S-ST) + 92’(S2-ST?) + . . .
28 NFUN = NF = 5 $ M=1 f ST= OTRP/DCRT « XT = ST-1
29 00 35 J= 1 , N PS * IF (DNS (J) -DCRT) 30,30 , 31
30 M = M *• 1 % GO TC 35
31 S = D NS ( J ) / OCR T $ X = S-l % DC 32 K = 1,NF
32 F(K) = S”K - ST” K
33 YY = (TCRT/TSS (J)-l) /YN % Y = LOGF(YY) - BES’ (1/ X T- 1 /X ) '
34 CALL FIT
35 CONTINUE $ CALL COEFF $ OO 36 K=1,NF
129
o o
TSATFIT
APPENDIX H. (Continued)
06/85/74
36 AW < K) = F(K) $ IF(IS) 40,99
40 PRINT 1, ALS ,8ES,0GAT , TTRP , TCRT , 0TRP,0CRT, (F ( K) , K= 1 , NF )
41 PRINT 2 $ SD = SS = N = 0
42 DO 46 J=M , N PS * N = N+l « D = ONS(J) $ T = TSS(J)
43 CC=FINOSATF <T, 1) $ DPCT= 1 0 0 * < 1 -DC /O) J SD=S0+0FCT**2
44 TC = TSATF(D) $ DTSDD = DTSOR/DTRP
45 TPCT = 10 0 * ( 1— TC/T ) $ SS = SS ♦ TPCT**2
46 PRINT 3, IDS(J), D,DC,DPCT, T,TC,TPCT, DTSDD
47 SD = SQRTF ( SD/N ) I SS = SQRTF(SS/N) t PRINT 4, N, SO, SS
99 RETURN S END
06/05/74
SUBROUTINE PSATFIT
FIT GOODWIN EQN . TO VAPOR PRESSURE DATA, ALL ON T-68, BAR.
LMP/PT) = P1*X + P 2* X 2 ♦ P3*X3 ♦ P4* X4 ♦ P 5*X* < 1 -X ) * * 1 . 5 .
COMMON/l/AL,BE,EP,GK» DCRT , TCRT , PCRT , D TRP , TTRP , P TRP
COMMON/8/IP,NPP,Pl ,P2,F3,F4,P5, I0P(99) , TPS ( 9 9 ) , FPS ( 9 9 )
C0MM0N/999/NFUN,Y, F (30)
1 FORMAT ( 1H1 14X *VAFOR PRESSURES, TTRP =*F7.3, 8H, TCRT = F 8 . 3 )
2 FORMA T ( 1H0 12X 5F13.8)
3 FORMAT ( 1H0 17X 2HI D 7X3HT,K 10X5HP,BAR 10X5HCALCD 6X4HPCNT )
4 FORMAT (15X 15, F10.3, 2E15.5, F10.3)
5 FORMAT ( 1H0 16X 4HNP =14, 10H, RMSPCT =F6.3)
6 NFUN =5 « XK = 1 - TTRP/TCRT J DO 10 J=1,NPP
7 X = ( 1-TTRP/TPS ( J) )/XK $ QC = X* (1 -X) ♦SQRTF (1 -X)
8 F ( 1 ) = X t F(2) = X*X $ F ( 3) =X*X*X J F < 4 > =F ( 2) * F ( 2 ) ? F(5)=QC
9 Y = LOGFtPPS (J) /PTRP)
10 CALL FIT $ CALL COEFF
11 P 1=F ( 1) S P2=F (2) $ P 3=F ( 3 ) I F4 = F<4> f F5 = F(5) * IF(IF) 12,20
12 SS = L = 0 $ PRINT 1, TTRP, TCRT
13 PRINT 2, PI ,P2,P3, P4,P5 S FRINT 3
14 DO 18 J = 1 , NPP $ P = PPS(J) ! PC = PSATF (TPS ( J) )
15 L = L ♦ 1 J PCT=10 0* (P/PC-1) I SS=SS+PCT**2 $ IF(L-45) 18,17
17 L = 0 l PRINT 1, TTRP, TCRT I PRINT 3
18 FRINT 4, IOP(J) ,TPS ( J) , P,PC,PCT
19 SS = SQRTF ( SS/NPP) I PRINT 5, NPP, SS
20 RETURN $ END
130
APPENDIX H. (Continued)
06/85/74
SUBROUTINE PEEK
C EXAMINE BEHAVIOR OF THE COEFFICIENTS.
COMMON B1,B2,B3,B4, ER * E1,E2,E3
COMMON/l/AL , BE, EP,GK, DC RT , TCRT , F CRT , DTRP, TTRP , FTRF
COMMON/6/ TSAT, THETA, PSAT
4 FORMA T ( 1H1 14X ’EQUATION OF STATE, COEFFICIENTS* //
1 15X 6H0TRP =F8 • 4, 8H, TTRP =F 8 . 3 , 8H, PTRP =F13.9/
2 15X 6H0CRT =F8.4, 6H, TCRT =F8.3, 8H, PCRT =F13.9//
3 15 X 4HAL =F5. 2 , 6H, BE =F5.2, 6H, EP =F5.2//
5 12X 3F15.9/ 12X 2F15.9/ )
5 FORMAT ( 15X 5HM0L/L 6X4HTSAT 5X5HTHETA 6 X4HPSAT
1 9X1HB 9X1HC )
6 FORMAT (10X F10.1, 5F10.3)
70 FRINT 4, DTRP, TTRP, FTRP, DCR T , T CR T , PCRT , AL ,BE , EP ,
1 B1,B2,83, E1,E2
71 PRINT 5 $ DO 77 J=l,46 $ ON = 0.5*J $ S = ON/DCRT
72 R=DN/ DTRP % R2=R**2 J R3=R**3
73 5 = 31 t B2*R «• 83*R2/(1+BE*R2)
74 E = (S-l)* (S-ER)*(E1 ♦ E2*R)
76 TS=TSAT=TSATF(ON> S TH=THETAF (DN) $ PS=PSATF(TS)
77 PRINT 6, DN, TS,TH,PS, B, E
99 RETURN % END
06/05/74
SUBROUTINE ISOTHERM
C PRINTOUT THE CRITICAL ISOTHERM.
COMMON/l/AL , BE, EP, GK, CCRT , TCPT , FCRT , D TRP, TTRP , FTRF
C0MM0N/3/DPDT ,D2PDT2,DPSDT , DPMCT ,DPDC,DPCR, OTSCP , 0 THOR
C0MM0N/4/XBl,XB2, XC1,XC2, XE1,XE2, DXB 0 R , D XC OR , C X E CR
1 FORMAT ( 1H1 14X *THE CRITICAL ISOTHERM* //
1 10X 4HTC =F8.3, 6H, OC =F7.3, 6H , PC =F8.4//
2 11X 4HD/DC 9X4HP/PC 8X5HDP/DD 4X6H0TS/0R 4X6HDTH/DR
3 4X6HDPS/DR 4X6HDX B/DP 4X6HDXC/DF )
2 FORMA T (5X F10.2, 2F13.9, 5F10.5)
5 FRINT 1, TCRT, DCRT , FCRT $ CO 8 J=l,51
6 OR : 0.74 <► 0.01*J $ DN = OCPT’DR
7 FR = OPORF ( TCRT , ON ) /PCRT $ DPSOR = OPSDT’DTSOR
8 PRINT 2, DR , PR , DPD D , D TS DR , DTH DR , DPS DR , CXBDR ,DXEDR
9 RETURN t END
131
o o o o
APPENDIX H. (Continued)
06/85/74
SUBROUTINE SETUP
C SET UP THE ARRAYS FOR LEAST SQUARES.
COMMON B1,B2,B3,B4, ER, E1,E2,E3
COMMON/l/AL ,BE,EP, GK, DCRT , TOR T , PCRT , DTRP, TTRF, PTSP
COMMON/ 2/NP,NF, 10 (999) ,T(999) , P (999) , DEN (999)
COMMON/6/ TSAT, THETA, PSAT
COMMON/999/ NFUN,Y,F(30)
1 NFUN = NF $ DO 10 J=1,NP
2 TT = T ( J) J X = TT/TCRT $ 0 = DEN(J) f S = D/OCRT
3 R = D/OTRP S R2 = R*R $ R3 = R*R2 $ RG = R*GK
4 TS=TSAT=TSATF(D) I THETA=THETAF (D) « PS = PSATF(TS) t XS=TS/TCRT
5 XB = XBF (TT , D) $ XE = ( S- 1 ) * ( S- ER) *XEF (TT , D )
6 F (1 ) =XB * F(2)=XB*R $ F ( 3) =XB*R2/ (1+BE* R2)
7 F (4 ) = XE $ F ( 5) = XE* R
9 Y = (P( J)/RG/TT-1) *X/R - ( PS/RG / T S-l ) *X S /R
10 CALL FIT $ CALL COEFF J CALL STAT
11 8i = F ( 1 ) S B2=F(2) $ B 3=F ( 3 )
12 Ei=F(4) * E2=F (5)
30 RFTURN $ END
06/05/74
FUNCTION THETAF (OEN)
THFTA = TS AT *EXP (U ( S ) ) .
LET Q = (S-l) /(ST-1) , WHERE ST = DTRP/D CRT , THEN -
IF S < 1, U = AL*Q**3, IF S > 1, U = -AL*Q**3,
YIELOS ALSO THE FIRST DERIVATIVE RSP, TO RHO r OEN/DTRP.
COMMON/1/ AL , BE, EP, GK, DC RT , TCRT , PCRT , D TRP, TTRP , PTRP
COMMON/3/DPOT,D2PDT2,OPSDT , OPMC T , DPO C , D P CR , DTSCR,OTHOR
COMMON/6/ TSAT, THETA, PSAT
1 S = DEN/DCRT t D SDR = DTRP/DCRT S C = DSOF-1
20= (S-l)/C $ Q2 = Q*Q $ U = AL*Q*Q2
3 U1 = 3*AL*Q2*DSDR/C * IF(Q) 5,9,4
4 U = -U $ U1 = -U 1
5 XP = EXPF(U) J THETAF = TSAT*XP
6 CTHDR = ( TS A T* U1 ♦ OTSOR)*XP f RFTURN
9 THETAF = TCRT f OTHDR =0 $ RETURN f END
132
o o o o
APPENDIX H. (Continued)
06 / 05/74
FUNCTION PVTF(T,DEN)
C YIFLDS P,8AR, ALSO DP/DT, D2P/DT2.
COMMON 81, 82, 83, B4 , ER, E1,E2,E3
COMMON/l/AL ,BE,EP, GK, OCRT , TCRT , PCRT , D TRP, TTRP , PTRP
COMMON/3/DPDT,D2PDT2, DPSOT, DPMCT, CPOO,DPCR, DTSDR,0TH0R
C0MM0N/4/X81,XB2, XC1,XC2, XE1,XE2, OXBOR , DXCDP , CXEDR
C0MM0N/6/ TSAT, THETA, PSAT
1 Q = DEN * S = Q/DCRT £ R = Q/DTRP
2 R2 = R*R $ R3 - R*R2 $ RG = R *GK
3 TS=TSAT=TSATF(Q) I THETA =THETAF ( C ) * PS=FSATF(TS)
4 XB = XBF (T , Q ) $ XE = XEF (T , Q )
5 e = B1 + B2*R + B3*R2/(1+BE*R2)
6 E - (S-l) * (S-ER) *( El + E2*R>
9 F = B*X8 + E*XE $ FI = B*XB1 + E*XE1 $ F2 = E*XB2 + F*XF2
11 YS = <PS/RG/TS-1)*TS/TCRT/R
15 FVTF = (T ♦ R* (F+YS)*TCRT)*RG £ DPOT = (1+R*F1)*RG
17 C2P0T2 = R* RG*F 2/T CRT $ RETURN £ END
06/05/74
FUNCTION OPDRF CT ,DEN)
DPORF = P,BAR. OP/DR IS IN COMMON • GK = 0* 08 31434*DTRP.
EQNSTATE IS Y = YS AT + F (R , T ) , WHERE Y = (Z-1)*X/R, AND -
F (R , T ) = B*XB + C*XC + 0*XD + E«XE, YIELDS DFR I V . -
DP/DR = 2*P/R - GK*T + R2*GK*TCRT* (F 1 + YS1).
COMMON B1,B2,B3,B4, ER, E1,E2,E3
COMMON/l/AL, BE, EP,GK, DC RT , TCR T , P CRT , D TRP , TTRP , PTRP
COMMON/3/DPDT, D2PD T 2 , DPS DT , OPMD T , DPD D, D P CR , DTSDR , D THOR
C0MM0N/4/XB1 ,XB2, XC1,XC2, XE1,XE2, DXB O R , D XC DR , D X E DR
COMMON/6/ TSAT, THETA, PSAT
COMMON/7/ XE,XC,XD,XE
1 X=T/TCRT S Q=DEN £ S=Q/DCRT f CS D F=DTRP / DCR T
2 R-Q/DTRP £ R2=R*R $ R3=R*P2 £ RG - R* GK
3 TS=TSAT = TSATF (O) £ THETA =THETAF (C ) $ PS = PSATF(TS) £ XS = TS/TCRT
4 XB = XBF (T , G ) $ XE = X EF ( T , G )
5 BS = 1 + BE *R2 £ BS1 = 2*BE*R
66=91+ B2*R + B3*P2/BS
7 ED = B2 + B 3* ( 2*R/ 8S - R2* BS1/BS/BS)
6 SX = (S-l)MS-ER) £ E = El + E2*R
9 ED = SX *E2 + (2*S - 1 - ER)*OSOR*E £ E = SX*E
12 F = B * X B ♦ E*XE £ YS = < P S/R G / T S- 1 ) * X S /R
13 FI = 8*0XB0R + BO*XB + E*OXECR + EQ*XE
16 YS1 = (TS - R* D TSO R + DPSDT*DTSDR /GK - 2*PS/RG) /TCRT
17 C = <F+YS)*R/X £ DP DR = (1 + 2*Q + <R2*Fi + YS1)/X)*GK*T
16 CPORF = ( 1 +Q ) *RG*T £ DPOD = CPCR/DTRP £ RETURN £ ENC
133
o o o o
APPENDIX H. (Continued)
06/05/74
FUNCTION XBF(T,0)
C XEF = SORT <T/TC)*LN (T/TS) = Q<T)*Z(R,T),
C Z(R,T> = LN(U), U(R,T) = T/TS(R).
COMMON/l/AL,BE,EP,GK, DCRT , TCRT , PCRT , 0 TRP , TTRP , PTRF
COMMON/3/DPOT,D2PDT2,OPSOT,OPMCT,CPOO,DPCR, OTSCR ,OTHDR
C0MM0N/4/XBi,XB2, XCi,XC2, XE1, XE2, DXBDR ,DXCOR , DXEOR
COMMON/6/ TSAT, THETA, PSAT
1 TC = TCRT t TS = TSAT $ X = T/TC
2 U = T/TS S U1X = TC/TS J U1R = -U*DTSDR/TS
3 Z = LOGF(U) $ Z1R=U1R/U $ Z1X=U1X/U $ Z2X=-Z1X*Z1X
4 C = SQRTF(X) $ Qi = 0.5/Q $ 02 = -Q1/2/X
5 X8F = Q*Z $ OXBDR = Q*Z1R $ XB1 = Q*Z1X ♦ Cl*Z
6 XB2 = Q*Z2X ♦ 2*Q1 *Z1X + Q2*Z I RETURN t END
06/05/74
FUNCTION XEF (T , D)
XEF = PSI-PSISAT, PSI = <l-W*l_N (1+1/W) ) /X, W = EPMT/TH-i).
XEF = F(R,T)/X - FS (R ) / XS
F (R , T ) = 1-W*P<R,T> , P (R , T ) = LN(U), U = i+l/W(P,T),
FS (R) = 1-WS*PS(R), PS (R) = LN(V>, \l ~ 1 + 1/HS(R).
COMMON/l/AL ,BE,EP, GK, DCRT , TCRT , PCRT , D TRP, TTRP , PTRP
C0MM0N/3/DPDT,D2PDT2, DPSDT, DPMOT, DPDD, DP CR , DTSDR , D THOR
C0MM0N/4/XBl,XB2, XC1,XC2, XE1,XE2, DXB D R , OXC DR , DX EDR
COMMON/6/ TSAT, THETA, PSAT
1 E=EP t TC = T CRT $ T F=THET A $ TS = TS AT J W = E*(T/TH-i) $ IF(W) 30,30,2
2 WW = W*H J MIX = E*TC/TH t W 1 R = -E * T*D THDR/ TH / TH
3 U=l*l/W I U1R=-W1R/WH $ U1X=-W1X/WW $ U2X = -2»U1X*N1X/W
4 F=LOGF(U) t P1R = U1 R/U * P1X=U1X/U $ P 2 X = U2X/L - PIX*P1X
5 F = 1 - W*P $ FIR = -W*P1R - W 1 R* P
6 FIX = -W*P1X - W1X*P t F 2 X = -H*P2X - 2*W1X*P1X
7 WS = E* (TS/TH— 1) $ IF(WS) 8,8,9
6 FS = 1 * FS1 =0 $ GO TO 12
9 WS1 = E* ( DTSDR - TS*DTHDR/TH)/TH J U = 1M/WS
10 PS = LOGF(U) I PSI = -WSl/U/fcS/WS
11 FS - 1-WS*PS $ FS1 = -WS*PS1 - WS1*PS
12 X=T/TC t X2=X*X % XS=TS/TC I XS1=CTS0R/TC
13 XFF = F/X - FS/XS I XE1 = F1X/X - F/X2
14 XE2 = F2X/X - 2*F 1X/X2 ♦ 2*F/X/X2
15 CXEDR = F1R/X - FS1/XS ♦ FS*XS1/XS/XS $ RETURN
30 XEF - XE1 = XE2 = OXEDR =0 f RETURN $ END
134
o o o o o o
APPENDIX H. (Continued)
06/95/74
FUNCTION DENGASF (T )
ETHANE SATD . VAPOR DENSITIES, MCL/L, VIA LAB. NOTE 73-4, 73-5 .
Y = Ai ♦ A2*Q2 ♦ A3 *0 3 ♦ . . , NF = AL , YN - L N < DC RT / DT R F ) ,
U = 2 ♦ (ZE-Z) *Y , DEN = DCRT* E XP (-Y N*U ) .
COMMON/l/AL,BE,EP,GK, DCRT , TCRT , FCRT , D T RP , TTRF , F T R F
C0MM0N/9/IS,NPS,EG ,EL, ALS,BES,AL1 ,AL2,AL3,CG(5),AV(8),AW(5)
DATA (OGAT = 1.35114E-6)
1 FORMAT ( 1H0 9X *DENGASF = 0, T EXCEEDS TCRT. * / )
2 IF (TCRT-T) 3,4,5
3 PRINT 1 * STOP
4 CENG A SF = DCRT $ RETURN
5 YN = LOGF (DCRT/DGA T) f Z = ( TCP T/T -1 )/( TCRT /T T RP - 1 )
6 C = CUBERTF(Z) $ Y = CG(1> $ DO 7 K=2,5
7 Y = Y ♦ CG(K)*Q**K J U = Z ♦ (Z**EG-Z)*Y
8 CENG A SF = OCRT*EXPF ( - YN* U) $ RETURN * END
06/05/74
FUNCTION DENLIQF (T )
ETHANE SATD. LIQUID DENSITIES, MOL/L, VIA LAB. NOTE 73-5.
Y = Al ♦ A2*Q2 + A3*G3 + . . . , YN = DTRP-DCRT,
DEN = DCRT ♦ YN*(X + (XE-X)*Y).
COMMON/l/AL ,BE,EP,GK, CC RT , TCR T , F CRT , D TRP , TT RF , F T R P
C0MM0N/9/IS ,NPS,EG ,EL ,ALS,BES,AL1 ,AL2,AL3,CG(5),AV(8),AW(5>
1 FORMAT ( 1H 0 9X *DENLIQF = 0, T EXCEEDS TCRT. * / )
2 IE (TCRT-T) 3,4,5
3 PRINT 1 t STOP
4 OENLIQF = OCRT S RETURN
5 X = ( TCRT-T) / (TCRT-TTRP) S W = X**EL - X
6 0 = C U8 ER TE ( X ) $ Y = A L 1 «- AL2*C*Q ♦ AL3*X
7 CENLIQE = DCRT ♦ ( D TR P -D CR T ) * ( X ♦ W*Y) J RETURN % END
06/05/74
FUNCTION PMELTF(T)
C ETHANE MELT P TO 42 ATM., CL US I US / WE I GAN D , 1940 .
C SIMON EON., P = PT RF + A*(X**2 -1), X = T/TTRF.
C0MM0N/3/DPDT,D2PDT2, DPSDT, OPMD T , DPD D, D P CR , DTSCR,OTHDR
CATA (TTRP = 8 9. 8 99) , ( PTRP =9 . 96 7E -6 ) ,(A= 2840.0) ,(Q = 1.013 25 )
1 X = T/T TRP « PMELTF = QMPTRF + A*(X*X-1))
2 CPMOT = 0*A*2*X/TTRP $ RETURN S END
* SINGLE-BANK COMPILATION.
ROGRAM LENGTH 00063
135
ooo ooooo
APPENDIX H. (Continued)
0 6/ 1) 5/ 74
FUNCTION PSATF(T)
C ETHANE V.P., BAR , VIA LAB. NOTE 73-3.
COMMON/l/AL,BE,EP,GK, OCRT , TCRT , PCRT , DTRP, TTRP , PTRP
COMMON/3/DPDT,D2PDT2,DPSOT,DPMCT,DPDO,DPDR, DTSDR ,QTH0R
COMMON/ 8 /I P*NPP,P1*P2»P3,P4,P5» IDP(99) ,TPS(99) ,PPS(99)
1 FORMAT ( 1H0 9X *PSATF = 0, T EXCEEDS TCRT. * / )
2 XN = 1-TTRP/TCRT $ OXDT = TTRP/XN/T/T
3 X=(i-TTRP/T)/XN $ X2=X*X $ X3=X*X2 S X4=X2*X2
4 V = 1-X I IF (V ) 5,6,7
5 PSATF = OPSOT =0 $ PRINT 1 $ RETURN
6 Z = Z 1 = 0 t GO TO 9
7 C = SQRTF(V) $ W = V*Q $ W1 = -3*Q/2
8 Z = X*W * Z1 = W ♦ X*W1
9 F = P1*X ♦ P2*X2 ♦ P3*X3 ♦ P4*X4 ♦ P5*Z
10 FI = PI * 2*P2*X ♦ 3*P3*X2 ♦ 4*P4*X3 ♦ P5*Z1
11 PSATF = PTRP*EXPF ( F ) f DPSDT = FI* DXO T *PS ATF $ RETURN « ENC
06/85/74
FUNCTION TSATF (DEN )
C THIS NEW TSATF VIA TSATFIT, 4/19/74 AT 09.00.
COMMON/1/AL,0E,EP,GK, DCRT , TCRT , PCRT , D TRP, TTRP , P TRP
C0MM0N/3/0P0T,D2P0T2, OPSOT, OPMOT, DPDD, DP DR, DTSDR, 0 THOR
C0MM0N/9/IS,NPS,EG,EL,ALS,BES,ALl ,AL?,AL3,CG(5) , AV (8) , AH (5)
DATA (NFG= 8 ) , (NFL=5 )
DATA (E = 0.25) , (DGAT = 1.35114E-6)
SATD* VAPOR TEMPS. CONSTRAINED AT T.P. BY SUBTRACTION -
DEFINE X = ABS(S-l), XT = ABS(ST-l), WHEN THE FQN • IS -
LN(YY) = AL* ( 1/XT-l/X) ♦ A 1* LOG ( LN ( 1 * E/S ) /L N ( 1 +E / ST ) ) ♦ W(S>,
W(S) = A 2* ( Q— QT ) ♦ A3* ( Q2-QT 2) ♦ A4*(S-ST) «• A5*(S2-ST2) ♦ . . .
WHERE, Q = S**l/3, AND OT = ST**l/3.
1 S = OEN/OCRT $ D SDR = DTRP/DCRT t QS = S-l $ IF(QS) 2,30
2 X = ABSF(QS) $ XI = OSDR*QS/X S YN = TCRT/TTPP - 1
3 V=l/X $ Vl=— OSDR/X /CS $ ST=OGAT/CCRT $ IF(QS) 4,30,15
4 XT = 1-ST t V T = l/ XT I U=ALS*(VT^V) $ U1=-ALS*V1 f EK=LOGF(l* E/ST)
5 P = 1 «■ E/S $ PI = -E*DSDR/S/S $ PG = LCGF(P)/EK
6 G = LOGF(PG) t Gi = Pl/P/PG/EK
7 0 = C U8ERTF ( S) $ QT = CUBERTF (ST) S 01 = 0*DS09/3/S
8 W = U ♦ A V ( 1 ) *G ♦ AV (2 )* (Q-QT) ♦ AV ( 3) * ( G*C-Q T* Q T )
9 HI = Ui ♦ A V (1 ) *G1 + A V ( 2 ) * Q 1 + AV(3)*2*0*Q1
10 CO 11 K = 4 , NFG f N = K- 3 $ W = W + A V (K) * ( S**N-ST**N) ft
11 HI = HI ♦ N*OSDR*A V (K) *S** (N-l) t GO TO 18
SATO. LIQUID TEMPS. CONSTRAINED AT THE T.P. 8Y SUBTRACTION, -
EQN. , LN(YY) = H (S ) , WHERE X = ABS(S-1), XT= ABS (ST-1 ) , AND -
W (S) = BE* (1/XT - 1/X) ♦ El* (S-ST) <• B2*(S2-ST2) ♦ . . .
15 ST = DSDR S XT = ST-1 $ W = eES*(l/XT-V) $ Wi = -BES*V1
16 CO 17 K=1 , NFL $ W = W ♦ AW(K)*(S**K - ST**K)
17 Wl = Wl ♦ AW (K)*K*OSOR*S** (K-l )
18 F = EXPF(H) $ FI = Wl* F $ Q = 1 ♦ Y N*F
19 TSATF = TCRT/Q $ OTSDR = -YN*Fi*TSATF/Q * RETURN
30 TSATF = TCRT $ DTSDR =0 t RETURN S END
136
o o o
APPENDIX H. (Continued)
06 / 0 5 / 7*4
FUNCTION FINDENF(T,P,DI)
ON ISOTHERM T, ITERATE DEN TO MINIMIZE (P-PCALC).
NEWTON-RAPHS0N ITERATION. INITIAL OEN = 01.
NOTE STATEMENTS 14,15 FOR ETHANE .
COMMON/l/AL » BE,EP, GK, OCRT , TCRT , PORT , D TRP , TTRP , P TRP
COMMQN/3/OPDT,D2PDT2, DPSDT, OPMD T , DPDD, D P OR , DTSDR » 0 THOR
1 FORMATdHO 9X *FINDENF = 0, FAILS TO CONVERGE. * t )
2 FORMATdHO 9X ♦FINDENF = DCRT, DP/DR ZERO OR N EG • * / )
3 FORMATdHO 9X *F IN DENF = 0, 01 INSIDE DOME.* / )
4 D=DI $ Dr1=OTRP* < T/ TTPP ) * ♦ 0 . 25 % DX=DM+1 $ IF(T-TCRT) 5,7,8
5 DG=DENG ASF ( T ) % OL =DENLI OF ( T) % P S=PSATF(T)
6 IF CO. GT.OG.AND.O.LT .DL) 32,8
7 OG=OL =OCRT $ PS=PCRT $ IF (0 . EQ. DCRT ) 33,8
8 DO 30 J=l,50 * DP = P - DPDRF ( T ,D )
9 IF(ABSF(OP/P)-1.0E-6) 31,31,10
10 IF ( DP DO ) 33,33,11
11 CD = DP/DPDD $ IF (ABSF (DD/D) -1. OE-6) 31,31,12
12 0 = 0 + DO $ IFtO.GT. 0.001) 14,13
13 0 = 0.001 S GO TO 30
14 IF(O.GT.OX) 15,16
15 0 = DM $ GO TO 30
16 IFCT-TCRT) 17,22,30
17 IF(P.LT.PS) 18,20
18 IF(D.GT.OG) 19,30
19 C = OG J GO TO 30
20 IF(O.LT.DL) 21,30
21 C = DL % GO TO 30
22 IF(P.LT.PCRT) 23,25
23 IFCO.LT.DCRT) 30,24
24 C = DCRT - 0.02 $ GO TO 30
25 IFtO.GT. DCRT) 30,26
26 0 = DCRT ♦ 0.02
30 CONTINUE $ FI NOE NF = 0 $ PRINT 1 $ RETURN
31 FINDENF = D $ RETURN
32 FINOENF = 0 $ PRINT 3 $ RETURN
33 FINDENF = DCRT % PRINT 2 * RETURN t END
SINGLE-BANK COMPILATION.
137
o o o
APPENDIX H. (Continued)
06/85/74
FUNCTION FINDSATF ( T , M)
ITERATE OEN TO MINIMIZE (T-TS) VIA TSATF ( DEN) .
THIS FINOSATF ADJUSTED FOR ETHANE,
M = 0 FOR VAPOR, M = 1 FOR LIQUID,
COMMON/ 1/AL , BE, EP, GK , DCRT , TCR T , FCRT , D TRP , TTRP , PTRP
COMMON/ 3/OPOT, 02PDT2, DPS DT , DPMCT , DPDD, DP CR,DTSOR,D THOR
DATA (DGT=5.0E-7>, <DLT=23.0>
1 FORMATdHO 9X *FINOSATF = 0, FAILS TO CONVERGE.* / )
2 FORMATdHO 9X *FIN DSA TF = 0, T EXCEEDS TCRT.* / )
3 IF ( T- TCRT ) 4,22,23
4 IF(M.EQ.O) 5,6
5 D = OENGASFCT) S GO TO 7
60= DENLIQF (T)
7 00 20 J = l, 50 t DT=T-TSATF ( D) $ IF ( A BSF ( D T/T ) - 1 . 0 E-6 ) 21,21,8
8 OTDD = DTSOR/OTRP $ IF ( DTDO. EQ . 0. 0 ) 22,9
9 DO = DT /OTDD $ I F ( A BSF ( DO /0 ) - 1 . 0E-6) 21,21,10
10 D = 0 t DO $ IF(M.EQ.O) 11,15
11 IF(O.GT.OGT) 13,12
12 0 = OGT t GO TO 20
13 IF(O.LT.OCRT) 20,14
14 0 = DCRT - 0.02 $ GO TO 20
15 IF(D.GT.DLT) 16,17
16 D = DLT $ GO TO 20
17 IF CD.GT .DCRT) 20,18
18 0 = DCRT «• 0.02
20 CONTINUE $ FINDSATF = 0 $ PRINT 1 $ RETURN
21 FINOSATF = D S RETURN
22 FINDSATF = OCRT $ RETURN
23 FINDSATF = 0 t PRINT 2 $ RETURN * END
06/05/74
C
FUNCTION Z I PF ( T , D)
ETHANE VIRIAL EON. VIA LAB. NOTE 73-4.
DIMENSION B (5) , C( 3)
CAT A (TCRT = 3 05. 33) , ( VCRT = 0 . 1 45 5 6 ) ,(TB=7 40.0),(TC = 217.8)
CATA ( B = 7.993156, -10.672497, 9.217322, -2.481668, 0.842328)
DATA ( C = 0.253773, 0.865299, 0.556075)
S = 0 *VCRT
X2 =
ZB =
BV =
CV =
ZIPF
t X = T/T CRT
X*X $ X 3 = X* X 2 2
1 - ( T B/T ) **0 .25 2
ZBM8<1) + 8<2)/C ♦
ZC*(C(1)/X + C ( 2 ) /X 3
= 1 ♦ B V*S CV*S*S
* 0 = X* *0 • 2 5
X5 = X 2* X 3
ZC = 1 - TC/T
B (3) /X ♦ B (4) /X2 ♦ B ( 5 ) / X 3 )
+ C ( 3 > / X5 )
f RETURN t END
138
APPENDIX H. (Continued)
05/09/74
SUBROUTINE FITTER
COMMON/999/ NCOF,V,G(30)
OIMENSION A(30,31) ,B<30,31)
COMMON /77 7/ A,SY,SYY,RES
TYPE DOUBLE SY , SYY ,RES , A, B
DATA <NTR=-1), <NDIM=30)
EQUIVALENCE (A,B)
37 FORMAT (*i T HE COEFFICIENTS AND THEIR ESTIMATED ERRORS ARE 0 */ /)
38 FORMAT <*0 * /*0*/*OE STIMATE D RESIDUAL SUM OF SQUARES =*E17.9/
1 * ESTIMATED REGRESSION SUM OF SQUARES =*E17.9/
2 * ESTIMATED TOTAL SUM OF SQUARES =*E17.9/
3* VARIANCE OF FIT =*E17.9/* DETERMINANT OF THE MATRIX =*E17.9/
4* CORRELATION COEFFICIENT =*E17.9/* NUMBER OF POINTS = *I5)
45 FORMAT (*1 THE ARRAYS IN THE FITTING PROGRAM ARE TOO SMALL TO HOLD T
1HE NUMBER OF CONSTRAINTS AND FUNCTIONS ASKED FOR IN THE CALLING PR
20 GRAM* )
371 FORMAT (E19.10,* +0R-*E9.2>
C ENTER HERE TO FIT THE DATA
ENTRY FIT
IF(NTR) 1,3,3
1 NP = 0
NF=NCOF
IF ( NF • GT. N DIM) GO TO 44
NCO N= 0
S Y= 0 •
SYY =3.
NY=NF+1
DO 2 1=1, NY
DO 2 J = 1 , N F
2 A (J ,1) =0.
IF(NTR.EQ.O) GO TO 11
N TR = 0
3 SY=Y+SY
SYY =SY Y +Y * Y
DO 4 J= 1 , NF
A ( J , NY ) =A ( J , NY ) +Y* G (J)
00 4 1=1, NF
4 A (I , J) =A ( I , J) *G (I) *G ( J )
N P= NP+ 1
RETURN
C ENTER HERE TO CONSTRAIN THE EQUATION
ENTRY CONS TR
IF(NTR) 10,11,11
10 N TR = Q
GO TO 1
11 N = N Y—l
IF( (NY *NC0N*2) .GT.NDIM) GO TO 44
00 12 1=1, N
A (I ,NY + 1) =A (I, NY)
A (NDIM-NCON,!) =G(I )
A(NY,I)=G(I)
12 A (I , NY ) =G ( I )
NCON=NCON+l
DO 13 I =NF , N
A (NY,I + 1) = 0.0
139
o O «->
APPENDIX H. (Continued)
FITTER
13 A ( I +1 , NY) = 0 • 0
NY=NY+1
A (NY-1 , NY) = Y
RETURN
C ENTER HERE TO INVERT MATRIX ANG GET COEFFICIENTS
ENTRY COEFF
N =N Y-l
00 20 1=1, NF
20 G(I)=A(I,NY)
DO 22 1=2, N
DO 21 J=I , N Y
21 A (1-1, J)=A (1-1, J)/A(I-1,I-1)
DO 22 J=I , N
DO 22 K=I , NY
22 A (J,K) =A( J,K)-A (J, 1-1) *A(I-i,K>
A (N ,NY ) =A (N,NY) / A ( N , N )
DO 24 1=2, N
1 =N -I ♦ 2
DO 24 J=L , N
24 A (L -1 , NY) = A (L-l , NY > - A ( L-l , J ) *A ( J , NY >
RES=SYY
DO 25 1=1, NF
RES=RES-A(I,NY)*G(I)
25 G (I ) =A (I, NY)
DF=NP-NF+NCON
Y=NCON
N TR = -1
RETURN
C ENTER HERE FOR STATISTICS OF COEFFICIENTS
ENTRY STAT
DO 27 1=1 , NCON
DO 27 J=1 , NF
2 7 RES=RES-A (NDIM-I+i , J ) * A ( J , NY ) * A (NF + I ,NY )
TOT=SYY-SY*SY/NP
REG=TOT-RES
S Y Y =RE S/DF
ST=l*96+2»72/DF+8. 04/DF**3
D ET = 1 •
DO 30 1=1, NF
0ET=DET*B (1,1)
30 A (I ,1) =1. 0/A (I , I)
DO 32 1=2, NF
DO 32 J=2 , I
S Y= 0 •
00 31 K=J , I
31 SY=SY-A(I,K-1) *A(K-1,J-1)
32 A (I ,J-1)=SY*A(I ,1)
PRINT 37
DO 36 1=1, NF
L =NF-I
DO 33 J = 1 , L
K = NF- J
DO 33 H =1 , J
N=NF-M ♦ 1
33 A (K,I) =A(K,I)-A (K, N) # A (N» I )
05/09/74
140
APPENDIX H. (Continued)
FITTER 05/09/74
DO 34 J~2 t I
34 A < J-l, I) = A <I,J-1)*SYY
DO 35 J=1,I
35 A (I ,J)=A(I,J)*SYY
88 = 8 ( 1 , 1 )
C 88 IS THE VARIANCE OF THE COEFFICIENTS
IF< 8B.LT. 0 .0)BB=-8B
FF=ST*SGRT (BB)
B3B=B(I,NY)
36 PRINT 371, BBS, FF
IF(SYY.LT. 0.0) SYY =-SY Y
CORR=REG/TOT
PRINT 38, RES, REG, TOT, SYY, DET,CORR,NP
Y = SQRT (RES/OF)
RETURN
44 PRINT 45
STOP
END
SINGL E-9ANK COMPILATION.
141
o o o
APPENDIX I.
Computer Programs for Thermofunctions
06/06/74
PROGRAM ETHERM02
C START ETHANE PROVISIONAL THERMOFUNCTIONS, 14 FEB., 1974.
COMMON B1,B2,B3, ER, E1,E2
COMMON/l/AL,BE,EP,GK, OCRT , TCR T , PORT , D TRP , TTRP , PTRP
C0MM0N/3/DPDT,D2PDT2,CPSDT ,DPMCT ,DPDO,DTSDR,OTHDR
COMMON/4/ XB1,XB2, XE1.XE2, OXeDR,OXEDR
COMMON/6/ TSAT, THETA, PSAT
COMMON/7/ T B , PB , H B , SB
COMMON/8/ P , T, DEN, E,H,S, CV,CP,CSAT, W,WK
CCMMON/9/ El (60), SI (60), CVI (60)
COMMON/ 10/ 0F(34),EF (34) ,SF (34) , C VF (34)
COMMON/99/ TI,EZZ, EZ,SZ,CVZ, HZ,CPZ
DIMENSION PP (99 )
3 FORMATdHl 11X *LOOF CLOSURE CHECK FOR SATURATED LIQUID,* /
1 12 X ^ENTHALPY, H, VIA FURTADO CP(T). HC VIA CLAPEYRON EQN • * //
2 12X 3HT,K 9X1HH 8X2HHC 7X3HFCT 9X1HS 8X2HSC 7X3HPCT »
4 F ORM A T ( 5X 3F10.0, 4F10.2)
5 FORMAT(IX)
1C FORMATdHl 9X * ETH ANE FUNCTIONS AT TB ON THE CP ISCEAR AT PE.*//
1
10X
5HT9 =F8.3,
6H ,
PB
= F 8 . 3 , 6 H,
2
10X
5HEZ =F 1 0 • 2 ,
6 H ,
E
=F10.2//
3
10X
5HHZ =F10.2,
6 H ,
H
=F10.2//
u
10X
5HSZ = FI 0 . 4,
EH,
S
=F10 .4//
5
10X
5HCVZ =F 1 0 . 3 ,
6 H ,
C V
= F 1 0 • 3/ /
6
10X
5HCPZ =F1 0 . 3 ,
EH,
CP
=F10. 3//
7
10X
21HFURT ADOS VALUE
t
CP =F 1 0 • 3)
15 FORMA TC3F10.0)
16 FORMA T(//////// 1H1 18X ♦ ETHANE ISOBAR AT P =*F6.1, 4H EAR//
1 19 X 1HT 6X3HDEN 6X3HV0L 5X5HDP/DT 5X5HDP/PO 8X1HE 8X1HH 8X1HS
2 6X2HCV 6X2HCP 5X1HW /
3 1 5 X 5HDEG K 4X5HMCL/L 4X5HL/MCL 5X5HBAR/K 1X9HB AR-L/MOL 4X5HJ/M0L
4 ^X5H J/MOL 2X7HJ/MCL/K 1X7HJ/MCL/K 1X7H J/MCL/K 1X5HM/SEC )
17 FORMAT ( 10X F10.3, F5.3, F9.5, F10.4, F10.3, 2 F9 . 1 , F 9 . 3 , 2F 8 . 2 ,F 6. 0 )
18 FCRMATdOX F10.3, F9.5, F9.3, F10.6, F10.3, 2F9 . 1 , F9 . 3 , 2F8 . 2 ,F6. 0 )
CONSTANTS OF EQNSTATE, 6/5/74 AT 8.21.
NOTE, EZZ FROM TESTER.
30 WM = 30.07 I WK = 100000/WM $ Q = 1.01325 $ GKK = 0.0831434
31 TTRP = 89.899 * DTRP = 21.68 ? PTRP = 0*9.6676-6
32 TORT - 305.37 I DCRT = 6.74 t PORT = PSATF(TCRT)
33 GK - DTRP*GKK $ EZZ = 4.1868*4827.2
34 AL =2 $ BE = 1 $ EP = 0.5 $ ER = 1.90
35 ei = 1.348167996 $ B2 = 1.569704511 * B3 = 5.560186452
36 El = -1.042842462 $ F2 = 0.224978299
C INTEGRATE ON ISOTHERM TB UP TO POINT (TB , FB) , THFN -
C GET FURTADO, S CP(T) FOR COMPARISON, AND PRINT ALL VALUES.
40 TP = T = 340 $ PB = P = 137.895
41 CALL SAVIDEAL $ CALL HOMO THRM ? TI = T * CALL IDEAL
4? HB = H $ SB = S $ CPX = CPXF(T)
43 PRINT 10, T , P , D EN , EZ,E, HZ,H, SZ,S, CVZ,CV, CFZ,CF, CPX
44 CALL MEMORY
C
C NCW COMPARE SATLIQ FUNCTIONS VIA FURTADO WITH CLAPEYRON.
50 PRINT 3 S DO 60 J=l,43 S T = 85 + 5*J
51 P = PS - PSATF(T) ? CALL SATC-STRM ? CG = DEN
142
o o ooooooo
APPENDIX I. (Continued)
ETHERM02
06/06/74
52 DL = FINOSA TE ( T , 1) $ Q = 100*T*DPSDT* ( 1/DL-1/DC-)
53 HC = H + Q « SC = S + Q/T
55 CALL SATLQTRM $ HF = 100MHC/H-1) $ SR = 100*(SC/S-1)
60 PRINT 4, T, H,HC,HR, S,SC,SR
98 CALL JTLOCUS * CALL TA6LIQ
COMPUTE THERMOFUNCT ICNS ON ISOBARS.
EACH ISOBAR STARTS ON THE MELTING LINE.
ISOBARS AT P UNDER PORT TRAVERSE THE OOME.
LET THE FIRST ISOBAR BE AT P = 0.1 BAR.
ENTER COMPRESSED LIQUID V/ 1 A FUPTACC CP(T) ON 1 37.695 BARISC0AR.
10C NI = 68 $ PP ( 1 ) = 0.1 % READ 15, ( P P ( I ) , I = 2 , N I )
102 DO 30 0 1 = 1, NI * P = PP < I > % PFINT 16, P
103 CALL MELTHERM * V = 1/DEN
104 PRINT 17, T , DEN , V, DPDT , DPDD, E,H,S, CV,CP,W
105 IT = T/10 $ IF(P.LT.PCRT) 110,199
C
C
C
C
r
C
CASES FOR P LESS THAN PCRT.
110 TS = FINDTSF (P) $ TX = TS + 10 $ K = L =
111 DO 150 J= 1 ,99 ? T = JT = 10*(IT*J)
112 IF(T.LT.TS) 113,115
113 call LIQTHERM % V = 1/DEN
114 PRINT 17, T , DEN , V, DPDT, DPDD, E,H,S, CV,CP,W
115 IF(T.LT.TX) 118,130
CASE FOR THE SATURATED LIQUID AND VAPOR.
116 T = TS I CALL SATLCTPM J V = 1/DEN
119 PRINT 17, T , OEN , V, DPDT , DPDD, E,H,S, CV,CP,W
120 CALL SATGSTRM * V = 1/DEN
121 IF(P.LT.20. 0) 122, 123
122 PRINT 18, T , D E N , V , DPDT, DPDD, E,H,S, CV,CP,W
123 FPINT 17, T , DEN , V, CPCT,CFDC, E,P,S, CV,CP,W
124 T = JT
CASES FOP THE HOMOGENEOUS DOMAIN.
130 IF (JT-5Q9) 135,135,131
131 K = K + 1 * T = JT = JT + 10*K
132 IF (JT-600) 135,135 , 300
135 CALL HOMOTHRM f V = 1/DEN
13C IF(P.LT.20. 0) 137,138
137 PFINT 18, T , DEN , V, DPDT, DPDD, E,H,S, CV,CP,W
13fc PRINT 17, T,DEN,V, DPDT, DPDD, F,H,S, CV,CP,W
1 5 C CONTINUE
0
f
f
?
CASES FOR P GREATER THAN FCRT.
199 K = L = 3
200 DO 25 0 J = 1 , 9 9 J T = JT = 10MIT+J)
201 IF (T.LT.TB) 202,21 0
202 IF ( T . GT .TCRT ) 203,205
203 PX = PVTF (T ,QCRT,0 ) J IF(P.GT.FX) 205,220
CASE FOR THE COMPRESSED LIQUID.
205 CALL LIQTHERM $ V = 1/DEN
206 PRINT 17, T , OEN , V, DPDT, DPDD, E,H,S, CV,CP,W ?
CASES FOR THE HOMOGENEOUS DOMAIN.
210 IF(JT-500) 220,220,211
211 K = K+t ? T = JT = JT + 1 0 * K
GC TC 1 5 C
PRINT 5
GC TO 1?4
GC TC 150
GC TO 2 5 C
143
APPENDIX I. (Continued)
ETHERM02
212 IF (JT-600) 220,220,300
220 CALL HOMOTHRM $ V = 1/DEN
221 PRINT 17, T , DEN , V, DPDT , DPDD, E,H,S, CV,CP,W
250 CONTINUE
300 CONTINUE
999 STOP % END
SUBROUTINE SAVIDEAL
C MEMORIZE IDEAL GAS FUNCTIONS EVERY 10 K THRU 600 K.
C NCTE USE BY HOMOTHRM ONLY.
COMMON/9/ El (60) ,SI (60) ,CVI (60)
COMMON/99/ TI , EZZ , EZ,SZ,CVZ, HZ,CPZ
1 DC 9 J = 9 , 6 0 * TI = 10* J J CALL IDEAL
2 E I ( J ) = EZ $ SI < J ) = SZ $ C VI (J) = CVZ
9 CONTINUE J RETURN J END
SUBROUTINE MEMORY
C MEMORIZE CPSUMIT RESULTS EVERY 1C K FROM 90 TO 340
C NOTE USE BY L IQTHERM ONLY.
COMMON/3/P, T ,DEN, E,H,S, CV,CP,CSAT, W,WK
COMMON/ 10/ DF(34),EF (34) ,SF(34),CVF(34)
1
00 9 J= 9, 33
J
T = 10*J
$
CALL CPSUMIT
2
C F ( J ) = DEN
*
EF ( J) = E
J
SF ( J) = S $ CVF ( J)
9
CONTINUE
*
RETURN
S
END
06/06/74
06/06/74
06/06/74
K.
= CV
144
APPENDIX I. (Continued)
06/06/74
SUBROUTINE JTLOCUS
C DERIVE THE J-T INVERSION CURVE. USE ROUTINE DEL TAP ( T ,01) .
DIMENSION TT (99) ,PP (99) , ON (99)
DATA (QCRT=6.76) , ( TCP T = 3 0 5 . 4 3 )
1 FORMAT ( 1H1 16X *THE JCULE-THCMSON INVERSION LOCUS FOR ETHANE*//
1 17X3HT,K 5 X5HP * BA R 5X5HM0L/L 7X3HT,K 5X5HP,BAR 5X5HM0L/L)
2 FORMAT ( 10X F10.0, F10.1, F10.2, F1C.C, F1C.1, F10.2)
6 TA = 240 « NP = 72
7 PRINT 1 I DO 25 1=1, NP S DX = 1.6
8 T = TA + 5*1 $ X - T/TCRT
o
Cl = OCRT* (2.40 - 0.
un
OD
*
X
+ 0.
2 4 / X )
10
IF(T-TCRT) 11,12,12
11
CL = DENLIQF(T) $
IF (DI
-DL)
25,12,12
12
SS = DELT AF ( T, 01 ) ?
DO
20 I T = 1 , 15
14
0 =D I - DX ? SL = OELTAF(T
*D)
$
D = DI ♦ DX t SP=DEL T AF ( T
15
IF(SS-SL) 18,16,16
16
IF(SP-SL) 19,17,17
17
SS = SL S DI= D I
-
DX
$
GC TC 20
18
IF(SS-SP) 20,20,19
19
SS = SP $ DI = D I
+
DX
20
OX = DX/2
23
T T ( I ) = T J D N ( I )
=
DI
$
PP(I) = PVTF(T,OI,0)
25
CONTINUE $ N = NP/2
$
DO
2 9 J =1 , N
29
PRINT 2, TT ( J) ,PP( J)
*
D N ( J ) ,
TT (J+N) ,PP (J + N) , CN (J + N)
30 RETURN $ END
06 /06/74
FUNCTION DEL TAF (T, D)
C GET (T*OR/OT - D*DP / DD ) FOR THE J-T INVERSION CURVE.
C0MM0N/3/DPDT, D2PD T2,DPSDT ,DPMCT ,DPDD,DTSDF,DTHDF
DATA (DCRT = 6.76) , ( TCPT = 305. 43)
1 IF(T-TCRT) 2,4,4
2 DL = DENLIQF(T) $ IF(O-DL) 3,3,4
QFLTAF = 1 . 0E+10 0 I
RETURN
P = PVTF (T, D , 1 )
DELTAF = ABSF ( T*DPOT -
D*OPDO )
RETURN
145
o o o
APPENDIX I. (Continued)
06/86/74
SUBROUTINE TABLIQ
C TABULATE THE ETHANE SATURATED LIQUID FUNCTIONS.
COMMON/l/AL,BE,EP,GK, DCRT , TCRT , FCRT , D TRP , TTRP , PT RP
COMMON/3/DPDT,D2PDT2,DPSDT,DPMOT, DPDD, D TSDR ,D THDR
COMMON/3/ P,T,DEN, E,H,S, CV,CP,CSAT, W , WK
DIMENSION TSA<46), PSA(46>
4 FORMA T ( 1H1 13X ’PROPERTIES OF SATURATED LIQUID ETHANE* //
1 14X1HT 10X1HP 5X3HDEN 4X5HV,LIQ 6X5HV,GAS 5X6HDFS/DT 3X6HDCL/DT
2 6X5H0P/0T 6X5H0P/0D 2X5HQ,VAP 2X5HQ,XPT /
3 10X5HOEG K 8X3HBAR 3X5HMOL/L 4X5HL/M0L 6X5HL/M0L 6X5H3AR/K
4 2X7HM0L/L/K 6X5HBAR/K 2 X9H B A R-L / MOL 2X5 H J/ MOL 2X5HJ/M0L )
5 FORMAT(5XF10.3, Ell. 3, F8.3, F9.5, 2E11.3, F9.4, 2E11.3, 2F7.0)
11 FORMAT ( 1H1 13X ’PROPERTIES OF SATURATED LIQUID ETHANE* //
1 14X1HT 1 1 X 1 HP 9X1 HE 9X1 HH 9X1HS
2 6X2HCV 6X2HCS 6X2HCP 6X1HW 2X6HCS,XPT /
3 10X5HOEG K 9X3HBAR 5X5HJ/MOL 5X5HJ/MOL 3X7HJ/M0L/K
4 1X7H J/MOL/K 1X7HJ/M0L/K 1X7HJ/MCL/K 2X5 HM/SEC 1X7HJ/M0L/K )
12 FORMA T ( 5X F10.3, E12.3, 2F10.1, F10.3, 3F8.2, F7.0, F8.2)
C FOR PAGE ONE OF TABLIQ.
140 PRINT 4 J NP = 46
141 DO 151 J-1,NP t IF(J.EQ.l) 142,143
142 r = TTRP $ GO TO 147
143 IF(J.EQ.NP) 144,146
144 T = TCRT J OG = DL = DCRT $ CDLDT = 0
145 VG = VL = 1/OG J GO TO 149
146 T = 80 + 5 * J
147 OL = FINOSA TF ( T , 1) $ DDL DT = DT RP/DTSDR
146 DG = FINOSATF (T ,0) J VG = 1/DG $ \ll = 1/OL
149 TSA(J) = T t PSA(J) = PS = PSATF(T)
150 QC = 100*T* DPSDT* ( VG-VL) $ PX = PVTF(T,DL,1) S QX = CVAFXF(T)
151 PRINT 5, T,PS,OL, VL,VG, DPSDT, DDLDT, DPDT, OPDD , QC,OX
FOR PAGE TWO OF TABLIQ.
NOW INTEGRATE ALONG FB, THEN ON ISOTHERM T DOWN TO THE SATLIQ.
USE SUBROUTINE SATLQTRM FOR THIS OPERATION.
1 6 C PRINT 11 % OO 165 J = 1,NP
161 T = TSA (J ) J P = PSA ( J)
162 CALL SATLQTRM J CSX = CSATXF(T)
165 PRINT 12, T,P, E,H,S, C\/,CSAT,CP, W, CSX
999 RFTURN $ END
SINGLE-BANK COMPILATION.
146
o o o o o o o
APPENDIX I. (Continued)
06/06/74
FUNCTION PVTF(T,D,M>
P V TF = P,3AR. M= 0 YIELDS DP/ 0 T , C 2 F /DT2 . M = 1 YIELDS ALSC DF/DC.
NOTE GK = 0. 0831434*DTPP, AND R = DEN/DTRP*
P = PS (R) + R*GK*(T-TS) + R2 *GK* TC * ( B*XB + E*XE>.
COMMON B1,B2,83, ER, E1,E2
COMMON/l/AL, BE,EP,GK, DCRT , TCRT , FCRT , D TRP , TTRF , P TRP
C0MM0N/3/0PDT,02PDT2,DPSDT, DPMCT,DPOC,DTSDR, OTHDR
COMMON/4/ XB1,XB2, XE1*XE2, OXBDP,DXEDR
COMMON/6/ TSAT, THETA, PSAT
1 S = 0 /DCRT f DSD R = DTRP/OCRT J R = D/D TRP
2 R2=R*R * R3=R*R2 S R4=R2*R2 I RG = R*GK
3 TC = TCRT $ TS = TSAT = TSATF(D) J THETA = THETAF(C)
4 PS = PSATF(TS) S XB = XBF(T,C) * XE = XEF(T,D)
5 BN ■= 1 + 3E* R2 $ B = B1*R2 + B2*P3 + B3*R4/8N
6 EM = E1*R2 ♦ E2*R3 * S X = (S-1)*(S-ER) $ E = SX*EM
7 F = 8*XB + E*XE J Fi = B*XP1 + E*XE1 S F2 = P*XB2 ♦ E*XE2
g PVTF = PS + (T-TS) *RG + GK*TC*F
9 DPDT = RG + GK*F1 f D2PDT2 = GK*F2/TC t IF(M.EQ.l) 10,20
10 3D = 2* 91 * R ♦ 3* B2 *F 2 + (2-BE*R2/PN) *2*B3*R3/PN
11 ED = SX*(2*E1*R + 3* E 2* R 2 ) + (2*S-1-ER) *EM*OSDR
12 FI = B*DXBDR + BD* X B + E*OXECR + ED* X E
13 DPDR = OPSD T*DTSDR + GK* ( T - TS-R* 0 TSD R) + GK*TC*F1
14 OPDO = OPDR/DTRP
20 RFTURN $ END
06/06/74
FUNCTION THETAF (DEN)
THETA = TS A T *EXP (U( S ) ) .
LET Q = (3-1 ) / (ST-1 ) , WHERE ST = DTRP/D CRT , THEN -
IF S < 1, U = AL *Q* * 3 , IF S > 1, U = -AL*Q**3,
YIELDS ALSO THE FIRST DERIVATIVE RSP. TO RHO = DEN/DTRP.
COMMON/l/AL , BE, EP, GK, DCRT , TCRT , F CRT , D T RP , TT RP , F T R F
COMMON/3/DPDT ,D2POT2,DPSDT ,OPMCT,OPOC,OTSDP,OTHDF
COMMON/6/ TSAT, THETA, PSAT
1 S = DEN/OCRT * D SDR = DTRP/DCRT $ C = DSDR-1
2 Q = (S-l)/C S Q2 = O *Q S U = AL*Q*02
3 U1 - 3*AL*Q2*DSDR/C f IF(O) 5,9,4
4 U = -U $ U 1 = -U1
5 XP - EXPF(U) J THETAF = TSAT*XP
6 OTHDR = ( T S AT* U 1 + CTSDR)*XP S RFTURN
9 THETAF = TCRT $ OTHDR =0 $ RETURN J END
147
o o o o o o
APPENDIX I. (Continued)
06/86/74
FUNCTION XBF(T,D)
XBF = SORT (T/TC) *LN (T/TS) = Q(T)«Z<R,T>,
Z(P,T) = LN(U>, U(R,T) = T/TS (R ) •
COMMON/i/AL,BE,EP,GK, OCRT , TCRT , PCRT , 0 TRP , TTRP , PTRP
C0MM0N/3/DPDT,D2PDT2, DPSDT, DPMOT , DPDO, D TSDR ,DTHOP
COMMON/4/ XB1,XB2, XE1,XE2, OXBDR , DXEDF
COMMON/6/ TSAT, THETA, PSAT
TS = TSAT $ X = T/TC
U1X = TC/TS $ U1R = —U*D TSOR/TS
2 Z1R=U1R/U 2 Z1X=U1X/U 2 Z2X=-Z1X*Z1X
$ Q1 = 0.5/Q 2 G2 = -Q1/2/X
OXBDR = C*Z1R $ XB1 = Q * Z1X *• Q1*Z
• 2*Q1*Z1X + Q2*Z $ RETURN 2 END
1
TC
= TCRT I
2
U =
T/TS $
3
z =
LOGF (U)
4
Q =
SQRTF (X )
5
XBF
= Q*Z 2
6
XB2
= Q*Z2X
06/06/74
FUNCTION XEF (T, D)
XEF = PSI-PSISAT, PSI = (1-W*LN (1+1/W) ) /X, W = EPMT/TH-l).
XEF = F (R, T) /X - FS (R) /XS
F(R,T> = 1-W*P(R,T), P (R , T ) = LN(U), U = i+l/W(R,T),
F S ( R) = 1-WS*PS(R>, PS ( R ) = L N < V/ ) , \J - l + i/WS(R).
COMMON/l/AL ,BE,EP,GK, OCRT , TCRT , PCRT , 0 T RP , TT RP , PT R F
COMMON/ 3/ D POT, D2PD T2 , DPSOT , DPMCT,DPDD,DTSOR,DTHDP
COMMON/4/ XB1,XB2, XE1,XE2, OXBDR, DXEOR
COMMON/ 6/ TSAT, THETA, PSAT
1 E = EP 2 TC = T CRT $ TH = THET A $ TS = TS AT 2 W = EMT/TH-1> 2 IF(W) 30,30,2
2 W W = W*W 2 H 1 X = E*TC/TH 2 W1P = -E # T*DTHDP/ TH/TH
3 U=l+1/W 2 U1R=-W1R/WW 2 U1X=-W1X/WW 2 U2X = -2*U1X*H1X/H
4 P=LOGF ( U) S P1R = U1 R/U $ P1X=U1X/U 2 P 2 X = U2X/U - P1X*F1X
5 F = 1 - H*P * FIR = -W * P 1 R - W1P*P
6 F IX = - W* P 1 X - W IX # F 2 F 2 X = -R*P2X - 2*W1X*F1X
7 WS = E* ( T S/ T H— 1 ) 2 IF(WS) 8,8,9
8 FS = 1 2 FS1 =0 2 GO TO 12
9 WS1 = EMDTSOR - T S *D T HDR/ T H ) / T H $ U = 1+1/WS
10 PS - LOGF(U) $ PSI = -WS1/U/WS/WS
11 FS = 1-WS*PS 2 FS1 = -WS*PS1 - WS1*PS
12 X = T / T C 2 X 2 = X* X S XS=TS/TC $ XSl = DTSOR/TC
13 XEF - F/X - FS/XS 2 XEl = F1X/X - F/X2
14 XE2 = F2X/X - 2*F1X/X2 + 2*F/X/X2
16 OXEDR = F1R/X - FS1/XS + FS*XS1/XS/XS 2 RETURN
3 C XFF = XEl = XE2 = DXEDP = 0 2 RETURN 2 ENO
148
o o o
APPENDIX I. (Continued)
06/06/7*4
FUNCTION DENGASF (T )
C Y = A 1 + A2*Q2 ♦ A3*C3 + . . , NF = AL , YN = L N ( DCRT /D T RF) ,
C U = Z ♦ (7E-Z)*Y, DFN = DCRT*EXP (-YN*U ) .
DIMENSION A (5)
DATA (TTRP=89.899) , ( DTRP = 1 . 35 1 1 4 E -6 )
DATA (TCRT=305.37) , (DCRT =6. 74) , ( E = 0 . 39)
OATACA = 0.21587515, - 0 . 0 8 5 2 2 3*4 2 , - 0 .61 5 23457 ,
1 0.25452490, 0.15177230)
1 FORMAT (1H0 9X *DENGASF = 0, T EXCEEDS TCRT. * / )
2 IF(TCRT-T) 3,4,5
3 PRINT 1 $ STOP
4 DENGASF = DCRT $ RETURN
5 ZN=TCRT/TTRP-1 $ Y N = LO GF ( OCR T / C TRP ) $ Z= ( TCP T / T - 1 ) / Z N
6 Q = CUBERTF ( Z) S X = Z**E -2 3 Y = A(l) 3 DO 8 K=2,5
8 Y = Y + A(K)*Q**K $ U = Z + X*Y
9 DENGASF = DCRT* EXP F ( - Y N* U ) 3 RETURN 3 FNO
06/06/74
FUNCTION DENLIQF (T )
ETHANE SATO. LIQUID DENSITIES, NOL/L, VIA LAB. NOTE 73-5.
Y = A 1 + A2*Q2 ♦ A3*C3 ♦ . . . , YN - DTFP-DCRT,
DEN = OCRT + YN*(X + <XE-X)*Y).
DATA (TTRP = 89.899) , (DTRP = 21.66)
DATA (TCRT = 3 05. 37) ,(DCRT = 6.74) , (F = 0.33)
DATA ( A = 0 . 72 190943 8), ( 6=0.2965778 99 ),(C = -0. 30 0365476)
1 FORMAT (1H0 9X *DEN LIQF = 0, T EXCEEDS TCRT. ♦ / )
2 IF(TCRT-T) 3,4,5
3 PRINT 1 3 STOP
4 OENLIQF - DCRT S RETURN
5 XN = TCRT-TTRP 3 YN = OTRP-DCRT 3 X = (TCRT-D/XN
6 W = CUBERTF ( X ) 3 G = X**E - X 3 Y = A + ♦ C*X
6 CENLIQF = DCRT + (X + C*Y)*YN 3 RETURN 3 END
06/06/74
FUNCTION PMELTF(T)
C ETHANE MELT P TO 42 ATM., C L US I U S / WE I GA N D , 1940 .
C SIMON EQN . , P = PTRF + A*(X**2 -1), X = T/TTRF.
C0MM0N/3/DPDT, C2PDT2,DPSDT , DPMCT,CPDD,DTSDF,OTHDP
OATA ( T T RP= 8 9 . 6 99) , ( PT PP = 9 . 96 7 E -6 ) , ( A=2 8 4 0 . 0 ) , ( Q = 1 . 0 1 3 25 )
1 X = T /T TRP S PMELTF = GMPTPF + AMX*X-1>)
? CFMDT = 0*A*2*X/TTRF 3 RETURN 3 END
149
o o o o o o o
APPENDIX I. (Continued)
06/06/714
C
C
FUNCTION PSATF(T)
C ETHANE V.P., BAR, VIA LAB. NOTE 73-3.
COMMON/3/DPDT,D2PDT2,DPSDT,DPMOT,OPOO,DTSDR,DTHDR
DATA (TTRP = 89.899) , ( TCPT = 3 0 5 . 3 7 ) , <PTRP= 9 .967E-6)
DATA <P1= 10. 795491 66 ), <P 2=8. 35899 001) , <P3=-3. 11498770 > ,
1 (P4 = -0. 64969799) , (F5 = 6. 07349549)
1 FORMATdHQ 9X *PSATF = 0, T EXCEEDS TCPT. * / )
2 XN = 1-TTRP/TCRT $ DXDT = TTRP/XN/T/T
3 X=(1-TTRP/T)/XN S X2=X 4 X f X3=X 4 X2 S X4=X2 4 X2
47= 1-X $ IF (V ) 5,6,7
5 PSATF = DPSDT =0 $ PRINT 1 S RETURN
6 Z = Z 1 = 0 $ GO TO 9
7 Q = SQRTF(V) % W = V 4 Q $ HI = -3 4 Q/2
8 Z = X 4 W S Z1 = W + X 4 W1
9 F = P1 4 X 4 P2 4 X2 4 P3 4 X3 + P4 4 X4 + P5 4 Z
10 FI = PI 4- 2 4 P2 4 X 4 3 4 P3 4 X2 + 4 4 P4 4 X3 + P5 4 Z1
11 FSATF = 1.01325 4 PTRF 4 EXPF(F)
12 DPSDT = F 1 4 OXDT 4 PS AT F T RETURN * END
06/06/74
FUNCTION TSATF(DEN)
C THIS NEW TSATF VIA TSATFIT, 4/19/74 AT 09.00.
COMMON/3/ OP DT, 02PD T2 , DPS OT , DPM C T , DPD 0, 0 T S DR , 0 THO P
DIMENSION A V ( 8 ) , AW(5)
DATA (ALS=0.5),(BES=0.5),(E=0.25),(DTRP=21.68),(DGAT=1.35114E-6)
DATA (TTRP = 89. 899) , ( TORT = 3 0 5 . 37 ) , (DCRT=6.74)
D AT A ( AV = 0.868105174, 0 .015169784, -0.7 296 0432 2, 1.0096514932,
1 -8.734027096, 21.107128228, -31.449940867, 17.863703965)
OATACAW = 23.724518399, -14.886051613, 5.431774425,
1 -1.071505659, 0.091351825)
SATO. VAPOR TEMPS. CONSTRAINED AT T.P.
DEFINE X = ABS(S-l), XT = ABS(ST-l), WHEN THF FQN . IS -
IN(YY) = AL 4 ( 1/XT-i/X) + Al 4 LOG (LN (H-E/S) /LN (1 + E/ST) ) ♦ W(S),
W(S) = A2MQ-QT) + A3 4 (Q2-QT2) + A4MS-ST) 4 A5 4 (S2-ST2) + . . .
1 S = DEN/DCRT $ D SDR = DTRP/DCRT S OS = S-l ? IF(QS) 2,30
2 X = ABSF(QS) $ XI = DSDR 4 QS/X $ YN = TCRT/TTRP - 1
3 V = l/X t Vl = -OSOR/X/CS S ST = DG AT/C CRT $ IF(QS) 4,30,15
4 XT = 1 - ST t V T = l/ XT $ U=ALS 4 (VT-V) $ U1=-ALS 4 V1 J EK=LOGF(l+ E/ST)
5 P = 1 + E/S $ PI = -E 4 DSDP/S/S $ PG = LOGF(P)/EK
6 G = LOGF(PG) J G1 = Pl/P/PG/EK
7 Q = CU9ERTF (S) $ CT = CUBERTF (ST) $ Q1 = Q 4 DSOR/3/S
e W = U 4 AV(1)*G 4 AV ( 2 ) 4 (O-CT) 4 AV ( 3) * ( C 4 C-QT 4 QT)
9 W 1 = U1 4 AV(1)*G1 4 A V ( 2 ) * 0 1 4 AV(3) 4 2 4 G 4 Q1
10 DO 11 <=4,8 $ N = K-3 $ W = W 4 AV(K) 4 (S 44 N-ST 44 N)
11 W 1 = W1 4 N 4 DSDR 4 AV (K) 4 S 44 (N-l) t GO TO 18
SATD. LIQUIO TEMPS. CONSTRAINED AT THE T.F.
ECN., LN(YY) = W(S), WHERE X = APS(S-1), X T= APS (S T- 1 ) , ANO -
W(S) = BE 4 ( 1 / XT - 1/X) 4 B1 4 ( S-S T ) 4 B2 4 (S2-ST2) 4 . . .
15 ST = DSDR I XT = ST-1 T W = BESM1/XT-V) f W1 = -BES 4 V1
16 CO 17 K = 1 , 5 $ W = W 4 AW ( K) 4 (S 44 K - ST 44 K)
17 W1 = W1 4 A W ( K ) 4 K 4 DSDR 4 S 44 (K-l)
18 F = EXPF(W) $ FI = W l 4 F I C = 1 4 Y N 4 F
19 TSATF = TCRT/Q $ DT SDR = -YN 4 F1 4 TSATF/G $ RETURN
30 TSATF = TORT $ DTSDP =0 « RETURN S END
150
APPENDIX I. (Continued)
06/06/7A
FUNCTION FINOTMF (P )
C GIVEN MELTING PRESSURE P, ITERATE T TO MINIMIZE (P-FC).
COMMON/ 3/DPDT, 02PDT2, DPSOT , OPM C T , DP D 0 , D T S DR , DTHO P
1 FORMAT ( 1H0 9X ♦FINOTMF = 0, FAILS TO CONVERGE) ♦ / )
2 T = 100 $ DO 6 J = 1 » 5 0 f DP = P-PMELTF(T) J A DP = AESF(DP)
3 I F t ADP/P-1. OE-6) 7,7,4
4 IF( ADP/DPMDT/T-1.0E-6) 7,7,5
5 T = T DP/DPMDT
6 CONTINUE $ FINOTMF =0 $ PRINT 1 $ RETURN
7 FINOTMF = T $ RETURN $ END
06/86/74
FUNCTION FINDTSF(P)
C GIVEN VAPOR PRESSURE P, ITERATE T TO MINIMIZE (P-PC).
COMMON/l/AL , BE , EP, GK , DC RT , TOR T , F CRT , D T RP , TT RP , F TR F
COMMON/ 3/ DPDT, D2POT2, DPSDT , OPMOT ,DPDO,DTSDP,DTHDR
1 FORMA T ( 1H0 9X ♦FINDTSF = 0, FAILS TO CONVFRGE. ♦ / )
2 FORMAT ( 1H0 9X ♦FINDTSF =0, P EXCEEDS PCRT. ♦ / )
3 IF (P-PCRT ) 4,11,12
4 T = 2 00 $ DO 9 J = 1 , 5 0 $ DP = P - PSATF(T) $ AOP = AeSF (DP)
5 IF(ADP/p-1. 0E-6) 10,10,6
6 IF ( ADP/OPSDT/T-l.O E-6) 10,10,7
T = T + OP/DPSDT S
IF(T-TCPT) 9,9, B
T = TCRT
CONTINUE $
FINDTSF
= 0 $
PRINT 1
RETURN
FINDTSF = T
$ RETUPN
FINDTSF = TCRT *
RETURN
FINDTSF = 0
$ PRINT
2 $
RETURN
$
ENO
151
APPENDIX I. (Continued)
06/06/74
FUNCTION F INDENF (T , P)
C ON ISOTHERM T, FIND DEN, MOL/L, TO MINIMIZE (P-PC) VIA EQNSTATE.
COMMON/l/AL,BE,EP,GK, DC RT , TCRT , F CRT , D TRP, TTRF , FTRP
COMMON/3 /DPDT,D2PDT2,DPSDT,0PM0T,DPD0,DT SDR, D THOR
DATA (DM=23. 0) , ( DG AT = 1 . 3 51 14E- 6 )
41 FORMA T ( 1H0 9X ♦FINOENF = 0, FAILS TO CONVERGE. * / )
42 FORMAT ( 1H0 9X ’FINDENF = DCRT, DP/DR ZERO OR NEG. * / )
43 FORMAT ( 1H0 9X ’FINOENF = 0, DOUBL E- VALUED AT P = PSAT. * / )
1 IF(T-TCRT) 2,5,8
2 DG=FINDSATF (T,0) $ DL=FI NDSATF < T , 1) $ PS=PSATF(T>* IF(P-FS) 3,32,4
30= DG/ 2 $ GO TO 11
40= (DL+DM)/2 $ GO TO 11
5 DG=DL=DCRT $ PS=PCRT $ IF(F-FS) 6,33,7
60= DCRT/2 * GO TO 11
7 0 = 2 ’DCRT $ GO TO 11
6 IF(T.LT. 400.0) 9,10
9 PC = PVTF ( T , OCRT , 0 ) $ IF(P-PC) 6,33,7
10 0 = OCRT
11 DO 30 J = 1 , 5 0 I DP=P-PVTF (T ,D,1) S IF ( ABSF ( DP/F) - 1 . OE-6) 31,31,12
12 IF(OPDD) 34,34,13
13 OD = DP/OPDD $ IF (ABSF (DO/D) -1. OE-6) 31,31,14
14 C = 0 + DO $ IF (D.GT.OGAT) 16,15
15 0 = OGAT $ GO TO 30
16 IF(D.GT.OM) 17,18
17 0 = D TRP S GO TO 30
16 IF ( T-TCRT ) 19,24,30
19 IF(P.LT.PS) 20,22
20 IF(D.GT.DG) 21,30
21 0 = D G $ GO TO 30
22 IF(D.LT.DL) 23,30
23 D = OL * GO TO 30
24 IF (P.LT.PCRT) 25,27
25 IF (D.LT .OCRT) 30,26
26
0 = OCRT - 0.02
$ GO TO
30
27
IF(D.GT.DCRT) 30
,20
28
0 = OCRT ♦ 0.02
30
CONTINUE $ F INDENF = 0
$
PRINT 41
t RETURN
31
FINDENF = D $
RETURN
32
FINDENF = 0 t
PRINT 43
$
RETURN
33
FINDENF = DCRT
$ RETURN
34
FINDENF = DCRT
$ PRINT
42
$ RETURN
l END
SINGLE-BANK COMPILATION.
152
o o o o o
APPENDIX I. (Continued)
06 / 06/74
*v>
FUNCTION FINDSATFt T,M)
C ITERATE OEN TO MINIMIZE (T-TS) VIA TSATF(OEN).
C M = 0 FOR VAPOR, M = 1 FOR IIQIIC.
COMMON/i/AL ,BE,EP,GK, DCRT , TCP T , P CRT , 0 TRP , TTRP , PTPP
C0MM0N/3/DPDT,02PDT2,DPS0T, DPMDT, DPDD, DTSDR , DTHDR
DATA (DM = 23.0» , < DG A T = 1 . 3 5 1 1 4E- 6 )
1 FORMA T ( 1H0 9X ♦FINDSATF = 0, FAILS TO CONVERGE.* / >
2 FORMAT ( 1HG 9X *FIN OS A TF = 0, T EXCEEDS TCPT.* / )
3 IF(T-TCRT) 4,22,23
4 IF(M.EQ.O) 5,6
5 0 = DENGASF (T) S GO TO 7
60= DENLIQF (T)
7 CO 20 J = 1 , 5 0 $ D T =T-TS ATF (D ) S IF(ABSF (DT/T) -1.0E-6) 21,21,8
8 OTDD = DTSDR/OTRP $ IF ( D T DO . EQ . 0 . 0 ) 22,9
9 DD = OT/DTDD $ I F < ABSF ( DD/O > - 1 . OE-6) 21,21,10
10 0 = D + DO $ IF(M.EQ.O) 11,15
11 IF(D. GT.DGAT) 13,12
12 0 = DGAT $ GO TO 20
13 IF ( 0. LT. DCRT) 20,14
14 0 = DCRT - 0.02 $ GO TO 20
15 IF(D.GT.DM) 16,17
16 0 = DM I GO TO 20
17 IF (D.GT .DCRT) 20,18
18 0 = DCRT «- 0.02
20 CONTINUE S FINDSATF =0 $ PRINT 1 $ RETURN
21 FINDSATF =0 J FETURN
22 FINDSATF = OCRT $ RETURN
23 FINDSATF = 0 J PRINT 2 $ RETURN * END
06/06/74
SUBROUTINE IDEAL
ETHANE IDEAL GAS (1 ATM) TH ERMO F UN CT I ONS (CHAO, 1973).
EQN., Y = ( EZ-EZZ) /FT = 3 + F(X), X = T/100, 0 = X**l/3,
F ( X ) = A 1* Q4 + A2*Q5 + A3*Q6 + . . . + AN*Q**(N+3).
(HZ-HZZ)/RT = 1 + Y, CVN = CVZ/R = 0(EZ/R)/DT, CPZ/F = 1 + CVZ/F,
SZ/P = AZ + INTEGRAL (CVZ/R/X + 1/X)*DX.
CCMM0N/99/TI , EZZ, EZ,SZ,CVZ, HZ,CPZ
DIMENSION A (9)
OATA (R = 8. 3143) ,<AZ=21. 705718)
0 A T A ( A = 65.498641, -362.0 1 15914, 853. 3408616, - 1 123.601622 ,
1 °06. 2184427, -459.2302545, 143.0300226, -25.07495605,1.897540044)
1 X = TI/100 S 0 = CUPERTF (X) $ DQDX = Q/3/X * F = FI = S = C
2 DO 4 J=i,9 $ K = J + 3 $ L = J + 6
3 Y = A ( J ) * 0 * * K $ F = F + Y $ F1 = F1+ K*Y/C
4 S = S f L * Y/K $ S = AZ + S + 4*L0GE(X)
5Y=3fF I CV = Y + X*E1*CQCX
C CONVERT TO DIMENSIONED RESULTS, JOULES, MCLES, KELVINS.
6 E 7 = R* T I * Y I HZ = R*TIMi + Y) f CPZ = R*(1+CV)
9 SZ = R*S $ CVZ = P*C V ? RETURN * ENC
153
o o o o o o
APPENDIX I . (Continued)
06/06/74
SUBROUTINE HOMOTHRM
GIVEN P,T, GET DEN AND FUNCTIONS FCR HOMOGENEOUS DOMAIN.
USE MEMORIZED IOEAL GAS FUNCTIONS EVERY 10 K.
COMMON/l/AL , BE,EP, GK, DCRT , TCR T , PCRT , D T RP , TTRP , FTRP
CCMM0N/3/DP0T,02PDT2,DPSDT , DPMD T , OPDO, D TSDR , D THOR
C0MM0N/8/ P,T,DEN, E,H,S, CV,CP,CSAT, W , WK
COMMON/9/ El (60) ,SI (60) ,CVI (60)
COMMON/ 39/ TI ,EZZ, EZ,SZ,CVZ,HZ,CFZ
DATA (DA=0. 0) , (Q=l. 01325) , ( G= 0 . 0 8 31 4 34)
1 K = T/10 t EZ = EI(K) J SZ = SI ( K) J CV7 = CVI(K)
2 OEN = OB = FINOENF (T , P) $ N = 5*(l+OB)
3 E = EZZ + EZ ♦ ESUMF(N,T,DA,DB) $ H = E + 100*P/DB
4 S = SZ + SSUMF(1,N,T,DA, OB) - 100*G*LOGF (G*T*DB/G)
5 X = 1 0. 0* A 8SF (T /TCRT-1) J IF(X.LT.3.0) 6,7
6 N = N + DB*DB*EXPF (-X)
7 CV = CVZ «- CSUMF(N,T ,DA, DP) $ PX = PVTF(T,DB,1)
6 CP = CV f 1 00*T/DPDD* (DPDT/DB ) **2
9 W = SQRTF ( WK*CP*DPOD/CV) J RETURN $ END
06/06/74
SUBROUTINE LIQTHERM
FOP DEN ABOVE DCRT, AND T UNDER TP = 340 K.
GIVEN P , T , GET DEN ETC. FIRST USE CPSUMIT TO GET FUNCTIONS
AT POINT (T , P B , 0 B ) , THEN INTEGRATE ALONG ISOTHERM T.
USE MEMORIZED FUNCTIONS FROM CPSUMIT CN ISOBAR PB(FURTADO).
COMMON/3/OPOT,D2PDT2,DPSDT,DPMOT, OPDO, D TSDR ,D THD R
COMMON/8/ P , T , DEN, E,H,S, CV,CF,CSAT, W,KK
COMMON/ 10/ DF(34),EF (34) ,SF(34),CVF(34)
1 K = T/10 $ D8 = DF ( K) f DEN = DN = FINOENF (T ,P)
2 E = EF ( <) $ S = S F ( K ) $ CV = CVF(K)
C INTEGRATE ALONG ISOTHERM T FROM DE TO DN .
3 CX = ABSF ( DN-D3 ) J N = 5M1+CX)
4 E = E f ESUMF (N,T, OP, DN) t H = E ♦ 100*P/DN
5 S = S + SSUMF ( 0 ,N, T ,DB,DN) * N = N ♦ DX*DX
6 CV = CV f CSUMF (N, T ,DP,DN) t PX = PVTF(T,DN,1)
7 CP = CV * 100*T/OPDD* (OPDT/DN ) **2
9 W = SQRTF ( WK*CP*DPDO/CV) t RETURN S END
154
-g CT> vn .t-
APPENDIX I. (Continued)
06/06/74
SUBROUTINE SATGSTRM
C GIVEN P,T AT SATURATION, GET OEN ETC. -
COMMON/l/AL , BE, EP,GK, DC RT , TC R T , F CRT , D TRP , TTRF , FTRP
COMMON/ 3/ DP DT, D2P0 T2, DFSDT , DPMD T , DPDD, D T SDR , D THD R
COMMON/8/ P,T,DEN, E,H,S, CV,CF,CSAT, W,V<K
COMMON/99/ TI,EZZ, EZ,SZ,CVZ, HZ,CPZ
CAT A (A = 0 . 0 ) , <Q = 1. 0132 5) , ( G = 0 . 0 8 31434)
1 TI - T S CALL IDEAL
2 DEN = OG = FINOSATF (T , 0) $ N = 5M1 + DG)
3 E = EZZ f EZ + ESU MF ( N , T , A , DG ) S H = E + 100*P/DG
4 S = SZ + SSUMF( 1,N ,T,A,OG) - 100*G*LOGF (G*T*OG/Q)
5 IF(T.EQ.TCRT) 6,7
6CF=CV=W=Q S RETURN
7 N = N + DG * DG SC V = CVZ + C S UN F ( N ,T , A , DG )
8 PX = PVTF ( T , DG , 1) ? CP = CV + 1 00 * T/ D P CD* (DPD T / 0G ) * * 2
9 W = SQRTF(WK*CP*DPDO/CV) $ RETURN S ENC
06/06/74
SUBROUTINE SATLQTRM
C GIVEN P,T AT SATURATION, GET DEN ETC. -
C AT TEMP. T, GET FUNCTIONS AT P = FP VIA CFSUMIT,
C THEN INTEGRATE ON ISOTHERM T FROM CB OOWN TO DL OF THE SATLIC.
COMMON/l/AL, BE, EP,GK, PC RT , TC R T , F CRT , D T RP , TT RF , F T R F
COMM ON/ 3/ DP DT, 02PDT2, DFSCT ,DPMCT,DPDD,DTSDP,DTHDP
COMMON/8/ P , T , DEN, F,H,S, CV,CP,CSAT, W , WK
1 CALL CP SUM I T S D8 = DEN S CEN = DL = F I ND S A T F ( T , 1 )
2 DX = ARSF(DB-OL) S N = 5M1 + CX)
3 S = S + SSUMF(0,N,T ,Oe,OL) S E = E + ESUMF ( N , T , OB , CL )
H = E + 100*P/DL S IF(T. EQ.TCRT) 5,6
CSAT = CV = CP = W = 0 S FETl’RN
N = N + D X* DX S CV = CV + CSL M F (N , T , D 8 , DL )
PX = PVTF(T , CL , 1 ) f CDLDT = C TF F/DTSOR
8 CSAT = CV-1 00*T*OPDT*DDLDT/DL/CL S CP = C V 10 0* T / O P CD * ( D P C T / DL ) * * 2
9 W = SQRTF ( WK*CP # DPDP/CV) S RETURN f END
06/06/74
SUBROUTINE MELTHERM
C GIVEN P, GET T , DEN, ETC. FOR FREEZING LIQUID.
COMMON/3/DPDT,02PDT2,DPSDT,DPMCT,CPDD,DTSDR,DTHDP
COMMON/8/ P , T , DEN, E,H,S, CV,CF,CSAT, W , WK
1 T = FINOTMF(F) S CALL CPSUMIT $ DB = DEN
2 DEN = DM = FIN DENE (T , F )
C NON INTEGRATE ON ISOTHERM T FROM DB TO DM
3 N = 5 + 5* A8SF COM- DE ) S E = E + ES UMF ( N , T , O P , D M )
4 H = E + 100*P/CM S S = S + SSUME(0,N,T,DB,DM)
5 CV = CV + CSUMF (N, T , D E , DM ) S PX = PVTF(T,DM,1)
6 CP = CV + 1 00*T/DPDD* (DPDT/CM) **2
9 W = SQRTF (WK*CP*DPOP/CV) * RETURN S END
155
o o o
APPENDIX I. (Continued)
36/06/74
SUBROUTINE CPSUMIT
USE FURTAOO CP(T) ALONG ISOBAR FB = 137.895 BAR.
START AT TB = 340 K WITH VALUES HB , SB, THEN -
INTEGRATE DOWN TO ANY T, YIELDS DEN, E, H, S, CP, C V, AT (T,FE).
C0MM0N/3/DPDT,D2PDT2, DPSDT , DPMO T , DP DO, 0 T SDR , D TH D R
COMMON/7/ TB ,PB , H B , SB
COMMON/8/ P , T , DEN, E,H,S, CV,CF,CSAT, W , WK
DATA (TX = 250.0)
1 H = H B t S = SB ? IF(T.LT.TX) 6,2
2 TP = T-T3 I N = 2 +A BSF ( TR ) $ DT = TR/N
3 CO 5 J=i,N J TJ = TB + (J-3.5)*DT I CP = CFXF(TJ)
4 H = H + CP* OT $ S = S + C P* D T /T J
5 CONTINUE « GO TO 15
6 TP= TX-TB J N = 2 + ABSF ( TR ) $ OT = TP/N
7 00 9 J=1,N I TJ = TB + (J-0.5)*DT S CP = CPXF(TJ)
8 H = H + CP*DT $ S = S + CP* DT/T J
9 CONTINUE
10 TP = T-TX $ N = 2+ABSF (TR) /2 J DT = TR/N
11 DC 13 J=1,N $ TJ = TX + ( J- 0 • 5 ) *DT S CP = CPXF(TJ)
12 H = H + CP* DT * S = S + CP*DT/TJ
13 CONTINUF
15 DEN = FINDENF (T ,PB) $ CP = CPXF(T)
16 E = H - 100*PB/DEN J PX = P VTF ( T, DEN , 1 )
20 CV = CP - 1 00*T/DPOD* (DPDT/OEN) **2 S RETURN $ END
156
<D Ui oj r\) .X) vn c*j no
APPENDIX I. (Continued)
06/06/74
FUNCTION CSUMF<N,T ,CA ,08)
C OELTA C V = -T*INTEGPAL ( ( 0 2P/ DT 2 ) / C** 2 > * D D .
COMM ON/3/ DP DT,02PDT 2 , DPSDT , DPMCT,OPDD,OTSOP,DTHDF
DX = (03-DA ) /N S CSUHF =0 t DO 5 J=1,N
DN = DA ♦ (J-0.5)*DX $ P = PVTF(T,DN,0)
CSUHF = CSUMF - D2PDT2*0X/ DN/DN
CSUHF = 100*T*CSUMF $ RETURN $ END
06/06/74
FUNCTION ESUMF (N,T ,DA, DB)
GET DELTA E OVER DENSITY RANGE FRCH DA TO DP.
DELTA E - INTEGRAL (P-T* (DP/DT) ) * DX/ DN* * 2.
C0MM0N/3/DPDT,D2PD T2, DPSDT, DPMO T , DPD D, D T SDR , OTHDR
CX = (D3-DA ) /N $ ESUMF = 0.0
DO 5 J=1,U % ON = DA + <J-0.5)*DX t P = PVTF(T,DN,0>
ESUMF = ESUMF ♦ (P - T* DPD T ) * DX/ 0 N/ ON
ESUMF = 10 0 *ESUMF $ RETURN J END
06/06/74
FUNCTION SSUMF (L,N , T , DA, DP )
C DENSITY- DEPENDENT CHANGE OF S FROM DA TO CB.
C DELTA S = INTEGRAL (GK-(DP/DT)/DN)*DX/DN.
CCMMON/3/OPDT , D2PDT2, DPSDT , DPMDT ,OPDO,OTSDR,DTHDF
DATA (GC = 0.0831434)
1 SSUMF = 0 ? DX = ( DB-D A ) / N J IF(L.EQ.O) 4,2
2 00 3 J=1,N * DN = DA + (J-0.S)*DX t F = PVTF(T,DN,0)
3 SSUMF = SSUMF + (GC-DPCT/DN)*DX/DN $ GC TO 9
4 DO 5 J= 1 , N * DN = DA + (J-0.5)*OX * F = PVTF(T,DN,0>
5 SSUMF = SSUMF - DP QT* OX/ ON/ DN
9 SSUMF = 1 0 0 * SS UMF $ RETURN ? END
157
!i
APPENDIX I. (Continued)
06/86/74
FUNCTION CPXF(T)
C ETHANE CP, J/MOL/K, OF ANDRE FURTADO AT P = 137,895 BAR.
C DEFINE X = (T-TTRP) /(TMAX-TTRP), WHEN THE EQN. IS -
C LN(CM-CP) = Al ♦ A2*X2/(1-X) + A3*X2 ♦ A4*X3 + A5*X4.
C NOTE THIS FORMULA VALID ONLY UP TO 345 K.
C NOTE FACTOR 1.874 FOR ETHANE VS. METHANE CONVERSION.
DIMENSION A (5)
DATA (TTRP=89.899) , (TM=354. 0) , <CM=62.60 )
DAT A ( A = 3.2632884, -0.1544225, -0.1414889, -0.5064375, 0.2769915)
1 X = (T-TTRP ) / (TM-TTRP) S X2 = X*X
2 Y = A (1 ) ♦ A (2) *X2/ ( 1-X) + A(3)*X2 + A(4)*X*X2 ♦ A(5)*X2*X2
3 CPXF = 1.87 4335* (CM - EXPF(Y)) $ RETURN S ENO
10/15/74
FUNCTION CSATXF(T)
C F Q RM U L A T I QN-Q F ETH A NE DA T A O F AU TH O RS
C WIEBE/HUBBARD/BREVOORT, AND WITT/KEMP, J/MOL/K.
C VIA PROGRAM CSAT-2, 3/27/74.
C FOR 59 POINTS, THE RMS IS 0.50 PCT.
C CS = A t X = T/TCRT
C REVISED FOR TCRT = 305.37, 10/7/74.
DATA (E = 0 .5) , ( TC=3Q 5. 37 )
DATA ( A=67 .3153) , (B =-16. 5 87 6) , (C =16. 3526)
1 X = T/TC $ U = 1-X $ IF ( U ) 2,2,3
2 CSATXF =0 $ RETURN
3 CSATXF = A + B*X *_CfX/U*»_E t- ..... RETURN $ END
10/15/74
FUNCTION QVAPXFCT)
C VIA PROGRAN SWAB-2+ USING OATA OF^
C DOUSLIN, RIEDEL, FURTADO. FOR 49 POINTS, RMS = 0.56 PCT.
£ DE FINE X = (TC-T) / ( TC-TT) , U = X»»l/3, WHFN EQN. IS -
C QV = A1*U ♦ A2*U2 ♦ . . . ♦ A6*U6.
C REVISED FOR TGRT = J 3G5-.37,- 10/7/74.
DIMENSION A ( 6 )
DATA- lTX=aR.A9Rl , ( T C = 3Q5. 37 I
DATA (A = 12.102730, 11.165588, 16.539265,
1 - 7 1 ^ 8 54 6 95 . 82 ^166239, -3? . fil (151 1.1
1 U = CUBERTF ( (TC-T)/ (TC-TT)) $ Q = 0 $ DO 2 K=l,6
2 Q = Q ♦ ACK)*U**K S QVARXF = 1G0G*CI $ RETURN S__END
158
CD
CD
UD
S
o
COUD-3-CVJ CDCOCOCj-CNI CD
• — ! « — • . — I ■ — I 1 — I
L/LOUJ 'AilSNBd
159
Figure 1. The locus of recent P-p-T data.
Figure 2. Generalized locus of isochore inflection points.
Figure 3. Generalized behavior of the critical isotherm.
160
DENSITY
TEMPERATURE
Figure 4. Gene ralized behavior of the locus 0(p).
161
$(p, T)— ■ $ (p, T)
Figure 5. Generalized behavior of the function $(p,T).
Figure 6. Generalized behavior of the function Y(p, T).
162
+ .5
0
~T~
1 1 1
0 ©OOOOo o _
o ~ ^ O
o
o
o
o
o
©
Q. ~’ 5
- o
O —
o
o
o
o
-1.0
— o
© —
o
0
o
o
-1.5
1 1
1 ^ 1 1
0 12 3
P/Pc *
Figure 7. Behavior of coefficients B(p), C(/o) for methane.
163
P/Pz~~
Figure 8. Presumed behavior of C(p) for hydrogen.
164
TEMPERATURE
Generalized density-temperature phase diagram.
1 6 5
Figure 9.
o
o
ro
• o
• o
-• o
o«
p
o
o
o
o
o
o •
o
o
o
o
<_>
TO
u
cr
I
+J
CL
X
cr
■M
S-
CJ
TO
O
O
O
CM
I
LOUi/r ‘ 33N3U3J3K3
o
o
co
I
Figure 10. Comparisons for saturated liquid ethane. Q is heat of vaporization,
and H is enthalpy. Calculated values are via the Clapeyron equation. See
section 4.3 of the text.
166
o
LD
CM
+
o
o
CM
O
ID
O
O
TEMPERATURE
2400
o
o
CO
o
CO
CM
o
CM
CM
t
o
CO
o
o
o
s/uj a n n o s jo a 3 3 d s
Figure 11. Speeds of sound for saturated liquid ethane
167
TEMPERATURE
Table 1. Experimental and calculated vapor pressures
ID: (4) Pal; (7) Ziegler; (9) Popej^lO) Douslin
VAPOR PRESSURES, TTRP - 89.899, TCRT = 305.370
10.79549166 8.35899001 -3.11490770 -0.64969799 6.07349549
ID
T,K
P , BAR
CALCD
PGNT
7
90.010
1.03991-005
1.04012-005
-0.120
7
100.010
1.11231-004
1.11214-004
0.015
7
109.998
7.46205-004
7.460 84-004
0.016
7
119.989
3.53971-003
3.54004-003
-0.009
7
129.987
1.28963-002
1.29009-002
-0.835
7
139.992
3.82929-002
3.83041-002
-0.029
7
150.000
9.67387-0U2
9.67415-002
-0.803
7
160.010
2.14770-001
2.14725-001
0.821
7
170.019
4.29490-0D1
4.29303-001
0.044
7
180.027
7.88547-001
7.88122-001
0.054
7
184.550
1.01 325 + 00 0
1.01269+000
0.055
9
198.216
1 .99985 + 0 00
2.00235+000
-0.125
4
214.334
3.97283+000
3.96786+000
0.125
4
224.130
5. 71141+000
5.71485+000
-0.860
4
229.782
6.94778+000
6.95075+000
-0.043
4
234.581
8.13995+000
8.14562+000
-0.870
9
234.715
8.18108+000
8.18100+000
0.801
10
238.150
9.12908+000
9.12702+000
0.823
9
238.792
9.30599+000
9.31232+000
-0.068
4
239.864
9.62177+000
9.62783+000
-0.863
4
240.534
9. 82448+000
9.82894+000
-0.845
10
243.150
1.06455+001
1.06436+001
0.818
4
243.377
1.07162+001
1.07165+001
-0.803
4
246.830
1.18689+001
1.18715+001
-0.022
4
247.831
1.22099+001
1.22225+001
-0.103
10
248.150
1.23369+001
1.23360+001
0.007
4
249.755
1.29310+001
1.29184+001
0.097
4
250.160
1.30694+001
1.30685+001
0.007
4
251.600
1.36207+001
1.36124+001
0.861
4
252.556
1.39895+001
1.39824+001
0.851
1 0
253.150
1.42169+001
1.42160+001
0.007
4
254.301
1.46818+001
1.46766+001
0.036
4
257.552
1.60349+001
1.60 361+001
-0.007
10
258.150
1.62966+001
1.62958+001
0.005
10
263.150
1. 85895+001
1 .85882+001
0.007
4
263.386
1. 86989+ 0U1
1.87019+001
-0.816
4
267.539
2.07916+001
2.07864+001
0.825
1 0
268.150
2.11078+001
2.11067+001
0.805
4
271.750
2.30678+001
2.30680+001
-0.001
9
272.949
2.37622+001
2.37499+001
0.852
10
273.150
2.38670+001
2.38656+001
0.006
4
275.921
2.54917+001
2.55038+001
-0.047
4
276.362
2.57931+001
2. 57719+001
0.082
4
276.384
2.57863+001
2.57854+001
0.804
168
Table 1
ID
4
4
10
4
4
10
4
9
4
10
4
4
9
4
4
10
9
4
10
4
9
4
4
1 0
1 0
4
4
9
4
1 0
4
4
4
4
4
4
4
4
4
10
10
. Experimental and calculated vapor pressures, (continued).
T » K
276.513
277.811
278.150
280.038
282.243
283.150
284.630
284.840
287.648
288.150
288.257
290.034
290.208
292.229
293.091
293.150
293.259
296.339
298.150
299.657
299.855
300.196
301.242
302.150
303.150
303.462
303.468
304.002
304.039
304.150
304.350
304.435
304.506
304.723
304.785
304.913
304.969
305.110
305.142
305.150
305.250
P,8AR
2.58857+001
2.66672+001
2.68824+001
2. 80710 + QtJl
2.95400+001
3. 01708 + QU1
3.11740+001
3.13657+001
3.33652+001
3.37524+001
3.38323+001
3.51469+001
3.53369+001
3.69269+001
3.75729+001
3. 76506+001
3.77610+001
4.02866+001
4.1897 3 + O’0 1
4.32194+001
4.34545+001
4.37369+001
4.46929+001
4.55769+001
4.65413+001
4.68154+0D1
4.68930+001
4.73934+001
4.73895+001
4.75255+001
4.77171+001
4.78455+001
4.78280+001
4.80594+001
4.81482+001
4.83164+001
4.83453+001
4.84837+001
4.85152+091
4.05339+001
4.86354+001
CALCD
PCNT
2. 58642+001
0.883
2.66676+001
-0.002
2.68805+001
0.807
2.80 889+001
“0.064
2.95509+001
-0.837
3.01685+OQi
0.008
3.11970+001
*0.074
3.13450+001
0.866
3.33761+001
-0.033
3.37495+001
0.009
3.38295+001
0.008
3.51795+001
-0.893
3.53139+001
0.865
3.69041+001
0.962
3.75992+001
-0.070
3.76472+001
0.8 09
3.77359+001
0.067
4.03123+001
-0.S64
4.18927+001
0.811
4.32470+001
-0.064
4.34277+001
0.0 62
4.37404+001
-0.808
4.47120+001
-0.043
4.55712+001
0.013
4.65354+001
0.013
4.68403+001
-0.053
4.68462+001
0.100
4.73730+001
0.043
4.74097+001
-0.043
4.75201+001
0.011
4.77197+001
-0. 105
4.78048+001
0.985
4.78781+001
-0.105
4.80947+001
-0.873
4.81574+001
-0.019
4.82871+001
0.061
4.83440+001
0.003
4.84878+001
-0.008
4.85205+001
-0. Oil
4.85287+001
0.011
4.86313+001
0.808
NP = 85, RMSPCT = 0.050
169
Table 3. Experimental and calculated saturated liquid densities
ID: (5) via isochores of Pal; (10) Douslin; (12) Chui;
(13) Klosek; (14) Miller; (16) Tomlinson
SATO. LIQUID DENSITIES » E = 0.330
TTRP = 89.899, TCRT = 305.370, DCRT = 6.740, DTRP = 21.688
0.721909438 0.296577899 -0.300365476
ID
T,K
MOL/L
CALCC
PRC NT
10
304.150
8.737
8.740
-0.03
10
303.150
9.201
9.200
0.01
10
302.150
9. 544
9.544
0.00
10
298.150
10.499
10.487
0.12
10
293.150
11. 297
11.292
0.05
10
283.150
12.458
12.454
0.04
10
273.150
13. 342
13.344
-0.02
10
263.150
14. 089
14.091
-0.02
5
255.963
14. 554
14.570
-0.11
10
253.150
14.753
14.747
0.04
5
247.962
15. 050
15.060
-0.07
5
240.700
15. 455
15.475
-0.13
5
229.917
16. 037
16.048
-0.07
5
222.618
16. 423
16.413
0.06
5
214.942
16.754
16.781
-0.16
5
207.941
17. 125
17.103
0.13
5
197.888
17.529
17.548
-0.11
5
188.451
17. 941
17.950
-0.05
5
176.512
18. 446
18.440
0.03
5
167.366
18. 823
18.805
0.10
12
161.360
19. 027
19.040
-0.06
5
156.875
19.226
19.213
0.07
13
133.150
20. 126
20.107
0.10
13
127.594
20. 323
20.312
0.05
13
122.039
20. 521
20.516
0.02
13
116.483
20. 717
20.719
-0.01
12
115.770
20. 747
20.745
0.01
14
115.050
20. 771
20.771
0.00
13
110.928
20.915
20.921
-0.03
14
1 08.110
21. 025
21.023
0.01
12
108.150
21. 027
21.022
0.02
14
100.020
21. 313
21.315
-0.01
14
91.010
21. 639
21.640
-0.00
NP = 33, RMSPCT = 0.068
170
Table 4. Vapor densities via vapor-pressure and virial equations
ETHANE SAID. VAPOR DENSITIES VIA V.P. AND VIRIAL EQNS *
ID
T,K
P, ATM
PLANK/ KAH0
MOL/L
PC T
1
69. 699
9.9670-006
1.3511-006
1.3511-006
0 .00
i
90.000
1.0233-005
1.3863-006
1 .3863-006
0.00
1
95.000
3.5303-005
4.5936-006
4.5936-006
0.00
1
100.000
1.0952-004
1.3347-005
1.3347-005
0.00
1
105.000
2.9851-004
3.4649-005
3 .4648-005
0.00
1
110.000
7 .3654-004
8.1615-005
8.1612-005
0.00
1
115.000
1.6670-003
1.7671-004
1.7670-004
0.01
1
120.000
3.4991-003
3.5556-004
3.5552-004
0.01
1
125. 000
6.8762-003
6.7110-004
6.7093-004
0 .02
1
130.000
1.2752-002
1.1974-003
1 .197 0-003
0 .04
1
135.000
2.2468-002
2.0336-003
2.0323-003
0 .06
i
140. 000
3.7834-002
3.3064-003
3.3033-003
0 .09
1
145.000
6.1192-002
5.1721-003
5.1653-003
0.13
1
150. 000
9.5478-002
7.8184-003
7 .8043-003
0.18
1
155. 000
1.4426-001
1 .1464-002
1.1436-002
0.24
1
160.000
2.1176-001
1.6358-002
1.6308-002
0.31
1
165.000
3.0288-001
2.2781-002
2.2694-002
0.38
1
170.000
4.2317-001
3.1042-002
3.0899-002
0.46
1
175.000
5.7882-001
4.1479-002
4.1252-002
0.55
1
130.000
7.7662-001
5.4457-002
5 .411 1-002
0.64
1
135.000
1.0239+000
7.0359-002
6.9660-002
0,73
1
190.000
1.3287+000
8.9635-002
8.891 1-002
0 .81
1
195. 000
1.6991+000
1.1271-001
1 .1171-001
0 .89
1
200.000
2.1440+000
1.4006-001
1 .3872-001
0.97
1
205.000
2.6726+000
1.7222-001
1 .7047-001
1.03
1
210.000
3.2943+000
2.0973-001
2 .075 0- 001
1.03
1
215.003
4.0186+000
2.5321-001
2.5043-001
1.11
1
220.000
4.8561+000
3.0331-001
2.9993-001
1 .13
1
225.000
5.6165+000
3.6077-001
3.5674-001
1.13
1
230.000
6.9105+000
4.2642-001
4.2173-001
1.11
1
235.000
8.1487+000
5.0120-001
4.9585-001
1 .08
1
240. 000
9.5420+000
5.3616-001
5.6025-001
1.02
1
245. 000
1.1102+001
6.8262-001
6.7626-001
0.94
I
250. 000
1.2339+001
7.9203-001
7.8551-001
0.83
1
255.000
1.4766+001
9.1613-001
9.0997-001
0.68
1
250.000
1.6395+001
1.0572+000
1.0522+000
0.43
1
265.000
1.9238+001
1.2179+000
1.2154+000
0.21
1
270.000
2.1310+001
1.4016+000
1 .4041+000
-0.18
1
275.000
2.4624+001
1.6125+000
1 .6245+000
-0.74
i
230.000
2. 7697+ 001
1.8563+000
1 .886 1+ 00 0
-1.58
1
285. 00 0
3.1047+001
2.1404+000
' 2.2047+000
-2.91
1
230.000
3.4693+001
2.4754+000
2.6108+000
-5.19
171
Table 5. Experimental and calculated saturated vapor densities
ID: (1) from Table 4; (10) Douslin
SATURATED VAPOR DENSITIES, E = 0.390
TTRP = 89.899, TCRT = 305.370, DCRT - 6.740, DGAT =
0.21587515 -0.08522342 -0.61523457 0.25452490
ID
T,K
KOL/L
CALCO
PCNT
1
90.000
1.3863-006
1.3863-006
0.00
1
100.000
1.3347-005
1.3356-005
-0.06
1
110.000
8.1612-005
8.1689-005
-0.09
1
120.000
3.5552-004
3.5564-004
-0.03
1
130.000
1.1970-003
1.1962-003
0.06
1
140.000
3.3033-003
3.2989-003
0.13
1
150.000
7.8043-003
7.7922-003
0.16
1
160.000
1.6308-002
1.6286-002
0.13
1
170.000
3.0899-002
3.U875-002
0.08
1
180.000
5.4111-002
5.4107-002
0.01
1
190.000
8.8911-002
8.8968-002
-0.06
1
200.000
1.3872-001
1.3888-001
-0.12
1
210.000
2.0750-001
2.0781-001
-0.15
1
220.000
2.9992-001
3.0040-001
-0.16
1
230.000
4.2172-001
4.2231-001
-0.14
1
240.000
5.8025-001
5.8083-001
-0.10
1
245.000
6.7626-001
6.7677-001
-0.07
10
248.150
7.4490-001
7.4384-001
0.14
1
250.000
7.8551-001
7.8586-001
-0.04
10
253.150
8.6310-001
8.6220-001
0.10
10
263.150
1. 1530+000
1.1516+000
0.12
10
273.150
1.5370+000
1.5357+000
0.09
10
283.150
2.0670+000
2.0669+000
0.00
10
293.150
2.8800+000
2.8748+000
0.18
10
298.150
3.5020+000
3.5051+000
-0.09
10
302.150
4.3070+000
4.3068+000
0.01
10
303.150
4.6040+000
4.6122+000
-0.18
10
304.150
5.0350+000
5.0298+000
0.10
NP = 28, RMSPCT = 0.107
1.35114-006
0.15177230
172
Table 6. Experimental and calculated liquid saturation temperatures
d
X!
O
<M
w
3
0
Q
ri fi
k =3
m . — .
<D
Ll i-H
O —
X! •-
U X
o o
tc CO
•- 1 O
.2 w
Q
7
rt
•
tO
H
a
o
C_l
<o
<o
M
CL
Cl
h-
o
o>
in
tO
m
o
in
ft
CD
I
in
cm
7
7
K
rt
ro
7
•
in
ft
ro
in
&
u
PO
'H
tO
tH
in
o
tO
to
CO
•
7
I
O
O' o m
eo O' CM
• n co
O' CO »-l
«o ^ in
in ro
M 7 -H
CVJ cr
Q. N- O
QC • »
*- WO
►— CM
a
o
o
o
©
o
4=4
4*1
H
v-4
4°4
4-4
4-4
4*41
▼=4
4=4
4-4
<3=1
<4-4
<9=4
a
o
o
o
©
o
O
o
O
O
©
©
O
O
©
©
©
©
©
©
o
o
©
©
©
©
©
©
©
©
©
©
o
©
V
o
o
©
o
o
©
O
©
©
O
©
o
©
©
O
©
©
©
©
©
©
©
©
©
©
©
©
©
©
©
©
©
©
i n
♦
4*
+
4-
♦
♦
4-
♦
4
4-
4»
4-
4-
♦
4-
4»
4
♦
4
4
4
4
4
4
4
4
4
4
4
4
h-
»-i fo
CM
j’ -h in
po
CM
in
tO CM 7
in x>
H
PO
©
in
PO
PO
®
H
PO
CM
to
O'
©
wH
in
t©
te
w=*
O'
D
CM O'
CM
CM
PO
in
in
p-.
CM
O
o
7
PO
t4 O'
®
■s
®
ro
to
©
(VI
J-
in
tO
r-
K
N-
ft.
p*.
n-
J-
CO
in
CM
CM
4=4
©
CM
7
in
lO N CD
O'
o
4-4
CM
PO
J-
in
m
OJ
N-
it
p^
K
p^.
ft-
pt.
ft-
J>
iM
•
. ©
, •
ll*
L»
L*
•
±9
J9
,»
•
4-4 (VJ
PO
in
ft
4=4
4-4
4-4
4-4
4-4
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
1
1
1
i
1
i
1
i
i
i
•
i
i
1
•
1
1
S
1
1
1
1
1
•
•
1
1
1
1
1
•
1
1
1-
o
o
o
O
CM
CM
^=4
ro
PO CM
cm in
4=4
<30
O' ®
CM
ft
PO
PO
iD
in
t£>
PO
J-
t©
CM
O
®
tO
S'
Z
©
o
o
o
o
o
©
o
o
4=4
©
O
O
4=4
4-4
CVJ
CM
4-4
©
4-4
PO
©
CM
4-4
©
©
©
©
©
▼H
O
©
CL
o
o
a
o
o
a
O
©
©
O
o
©
O
O
O
o
©
©
O
©
o
©
©
©
©
©
©
©
©
©
©
©
©
1
1
•
i
1
1
i
•
i
i
1
1
1
•
i
1
C_>
ft-
it.
*4
to
®
ft.
©
PO
PO
®
in
j-
▼H
®
O'
CM
PO
O' o
©
j-
CVJ
©
in
©
4H
<7-4
ro
N-
-7
©
•S
in
PO
-3"
PO
o
©
©
.T
m
«H
▼H
©
m to
PO
to
tu
in
-T
©
O
CM
©
in
J-
in
©
CM
ro
4H
v-4
f4
(VI
CM
•H
©
©
®
O' ®
O' CM
ro
PO
PO
ft
in
O' «
®
-3-
cr> in
IN*
o
a
©
O'
©
©
j-
PO
OJ
©
ro
ro
ro
ro
%D
(VJ
©
O'
CVJ
IT*
ft-
©
©
to
f-
4“$
tD
C\J
r*-
+4
to
in
in
4H
©
f-
©
4-»
o
O
o
O' O'
©
ft.
tO
in
in
j- j-
CM
CM
^■1
o
O'
®
ft.
tO to
in
PO
CM
CM
*4
©
©
e>
O'
r^5
ro
PO
CM
CM
CM
(VI
(VJ
CM
(VI
(VJ
CM
CM
CM
(VJ
CM
4—1
•rH
<»H
*rH
4-4
H
4-H
V-)
-8-1
4-4
4-1
4-4
w4
SC
©
©
©
©
o
O
©
O
ro
©
(VJ o
n- ®
CM
^4
©
4-4
CM
to
©
in
©
7
O'
PO
©
©
©
©
©
©
©
- •>
in
in
in
in in
in
in
in
to
in
tO O
(H
-7
7
® in
4-4 vO
10
in
O'
PO
®
Pt
in
CM
in
fVJ
i H
4-4
4-4
4-4
4—4
4H
4-4
4-4
<r4
O'
O' ft
CT UJ
O'
O'
®
7
in
PO
PO
©
4H
in
O
7
ft
o
O'
4-4
4-4
O
©
J-
PO
CM
©
PO
ro
PO
PO
in
PO
N- o
O' CM
-7 ft-
ft
®
t0 ft.
tH
tO
ro
N.
CM
tO
in
m
O
®
®
o
4-4
O
<3
O
O' O'
®
N.
10
in
in
J- J-
CM CM
w4
©
O'
®
ft-
<0
to
m ro
CM
CM
•H
©
©
©
O'
ro
PO
PO
CM
CM
CM
CM
CM
CM
CM
CM CM
CM CM
CM
CM
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4H
4-1
4-4
4-4
4-4
4H
4-4
I-
7 tO
PO
PO
®
in
CM
PO
7
CM
CM
7
a
CM
cm in
*-i ft
^4
in
CM
4-4 vO
PO
4-4
4-4
<H
©
ro
4=4
PO
©
©
z
©
©
©
©
©
o
O
©
©
4-4
©
o
©
4-4
4=4
4-4
4-4
©
©
©
<H
©
©
o
©
©
©
©
©
©
©
o
©
o
Q-
©
a
o
o
o
©
©
©
o
O
©
o
o
©
©
O
©
©
©
©
©
O
©
©
O
©
O
©
©
©
o
©
©
»
1
1
1
1
1
1
1
1
i
i
1
»
l
1
»
o
©
©
O
4-4
4-4
4-4
4-4
4"4
4-4
<?-4
4-4
•H
4-4
<H
4-4
4-4
4-i
4-4
4-4
4-4
4-4
4-4
4=4
4-4
4-4
4-4
4-4
4=4
4-4
4-4
4-4
4-4
o
a
©
o
s=
e
O
O
©
O
a
©
©
©
o
e
©
©
©
©
©
c
S3
©
©
©
©
©
©
e
©
©
o
©
O
O
O
©
©
©
a
©
©
o
©
©
©
©
©
©
©
o
O
©
©
©
©
©
©
O
©
o
©
O
©
o
♦
*
♦
♦
♦
4-
♦
«►
<*■
♦
4-
■f
♦
★
♦
♦
*
♦
+
♦
+
+
♦
♦
■*>
★
♦
♦
♦
*
CM
4-4
PO
PO
to
Pt
O
7
▼h
©
CM
PO
CM
PO
in
O'
m
CM
PO
in
O'
PO
7
®
®
e
<0
in
(VJ
ft
PO
PO
m
O'
BO
4-4
tO
tO
PO
in
41
O'
in
ft
4-4
10
PO
PO
«
«
7
®
7
O'
PO
PO
®
O'
m
4-4
o
*r4
©
PO
O'
©
in
<H
O'
O
tO
7
®
in
ro
7
tO
PO
©
ft
O'
7
in
7
7
CM
4=4
4-4
■H
4-4
7
ft
CM
CM
CM
<H
ro
7
O'
7
7
ro
7
PO
©
in
ft
©
7
O
7
ft
©
in
O'
7
®
©
CM
4-4
PO
m
ft
ft
ft
O'
o
©
PO
to
ft
4-4
in
o
4-4
CM
PO
7
7
7
m
in
tO
to
tO
ft
pt
it
e
®
O'
O'
©
O
©
©
©
O
©
4-4
4-4
4-4
•7=1
®
O'
O'
4-4
4H
4-4
4-4
4-4
4-4
4-4
4H
4-4
4-4
4-4
^4
4-4
4-4
^4
4-4
4-4
4-4
4-4
CM
CM
CM
CM
CM
CM
CM
CVJ
CVJ
CM
(VJ
-1
O
©
O
*4
4-4
<w4
4-4
4-4
^4
4=4
4>4
^■4
4-4
4-4
4-4
4H
tH
4-4
4-4
4=5
v*1
r4
4-4
<4«4
4-4
4-4
4-4
4H
4-4
4-4
4-4
4-4
<H
V
©
©
a
o
CJ
©
s
C3
©
B
©
©
o
©
©
o
B
o
©
©
o
©
©
a
o
©
©
©
©
©
©
o
©
o
©
©
e
©
©
o
o
©
©
o
©
©
©
©
©
B
O
©
©
B
©
®
G
o
©
s
©
©
©
O
©
©
o
♦
<4*
♦
♦
4*
+
♦
♦
4>
+
+
4>
■f
♦
♦
♦
♦
4*
♦
♦
♦
4=
♦
♦
♦
«♦=
r
©
©
©
©
©
©
©
&
o
©
©
©
©
©
&
©
©
©
©
©
ro
©
CM
®
ft
^4
«
m
to
ft
t©
O
7
G
©
O'
ft
CM
O'
7
PO
©
m
ft
PO
7
in
O'
<w-4
to
PO
n.
tO
VJ0
CM
©
it
tO
4-1
7
7
tO
CM
O
ft.
4*4
7
O'
O'
in
4-
O
in
in
in
in
n
N
in
CM
CM
7
7
CM
CM
CM
CM
CM
CM
^4
7
It
4-4
CM
CM
PO
PO
©
7
7
CM
7
PO
©
in
ft
®
7
O
7
ft
4=4
in
O'
7
®
e?
CM
PO
in
ft
ft
ft
O'
©
©
PO
to
ft
CM
in
©
4-4
CM
fO
7
7
7
in
in
to
tO
tO
ft
ft
ft
®
«
O'
O'
©
©
©
©
©
©
©
H
4^
<^>4
®
O'
O'
4-4
v4
4-4
4-4
4-4
4-4
4-5
4-4
4-4
4-4
«H
4^
4-4
4-4
4-4
^r4
<H
4-1
4“1
CM
CM
CM
CM
CM
CM
fM
CM
CM
CM
PM
a
©
©
o
©
o
©
©
0
5
0
5
5
5
5
5
5
5
5
5
5
2
5
3
PO
PO
ro
OJ
tj-
PO
-3*
(VI
H4
r4
4-4
H
4-4
4-3
4-4
4-H
4-4
4-4
4=4
4-4
4=4
4-4
4-4
H
4-4
4-4
4^
4-4
4-4
rn
fr>
II
IL
Z
173
OlMRHSPCT = 0.062, TSRHSPCT = 0,127
Table 7. Experimental and calculated vapor saturation temperatures
4 CM 8
ro a.)
• cr cr»
vo 4 ro
8 a
H (CK
cr ro
h- o 8
cr o ®
o • •
O n.
CD
8 CM r«.
• CM 8
▼h ro «o
cvi 4 CD
B 4
II 8 O'
cr o'
a cm 4
O' N- 4
►— • •
Q O •r-l
i ro
► i
CD
N-
ro 4 oo
• co N
in cm
o cr oo
ro 8 cm
II U> N
.-I O
CD •*-(
tt • •
O CD -H
V- CM
o
8
in
4
4
ro
ro
ro
CM
CM
CM
CM
CM
CM
*4
*4
▼H
▼H
▼■<
©
o
a
©
O
a
o
O
o
o
o
O
e
IS
o
G
8
o
O
e
o
O
e
CD
O
O
o
o
o
o
o
o
o
O
M
o
o
s
©
o
O
o
o
o
o
o
o
o
CD
o
o
o
CD
o
o
CD
©
O
©
o
©
o
O
in
4
♦
4
♦
4
♦
4
4
4
♦
4
4
♦
4-
4
4
4
4
4
4
4
4
4
4
4
4
4
K
8
in
s.
▼H
in
ro
ro
V©
in
ro
4
CO
m
CM
4
K
m
4 1
8
O'
in
CM
ro
K
vO
ro
a
ro
CM
4
ro
4
8
ro
CM
CD
o
in
O'
®
in
O'
©
O
8
CM
ro
8
o
in
4
CM
CO
in
▼H
in
CM
8
O'
4-
in
4
fs.
CM
ro
w4
in
CO
in
ro
O'
G
CM
in
8
in
V©
CD
O'
ro
CVJ
ro
r^
2
7
▼H
«o
in
ro
CM
▼H
▼H
9
7
5
4
4 4
ro
ro
CM
O' 8
ro
CM
t-4
1*-
CD
+4
CM
CM
▼■3
▼M
CM
CM
a
CM
CM CM
o
CM
CM
«H CM
CM
*4
CD
o
*4
o
z
O
©
©
CD
O
O
o
O
O
e
o
B
CD
o
o
O
o
o
O
CD
CD
©
O
o
o
o
O
o
CL
CD
©
O
O
O
O
CD
©
CD
o
o
o
o
CD
o
o
o
O
CD
o
o
o
o
o
o
G
o
o
i
1
i
1
1
»
1
1
•
1
1
1
1
I
»
1
o
o
O'
4
in
BO
4
in
CM
®
r»
U'
O' CD
O' CM CD
*4
CM
▼H
V©
j-
O'
CM
V©
V©
ro
-T CM
-i
o
O
CM
CM O
®
V©
V©
IM.
S3
ro
4
4
o
n- in
in
n-
V©
V©
O'
t£>
CM
in
ro r*.
ro
in
€3
o
CD
o
CTJ
O'
O'
O'
O'
CD
o
O
o
©
O' O'
O'
O'
fH
fH
iH
*4
*4
©
O
O
O
©
O'
O'
O'
O'
CD
G
CD
o
CD
o' <r*
4-
2D
w
PO
ro
ro
ro
ro
ou
CM
ro
•T
O'
8
*4
CM ro
ro
4-
m
V©
ao
S'
O
*4
CM cm ro
4-
4
J-
in
V©
K
® O' O'
8
8
8
■*4
▼H
▼H
▼H
*4
*-4
*4
*4
▼H
CM
CM
CM
CM CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
CD
O
O
O
o
CD
O
O
O
CD
CD
O
o
CD
CD
CD
CD
CD
G
CD
O
o
CD
O CD
CD
CD
CD
o
8
a
8
B
8
8
8
8
8
8
e
8
O
8
8
in
8
in
in in in
in in
in
in
in
1-
o
CD
o
O
o
o
o
o
o
o
o
8
o
8
o
o
8
▼H
o
4H
'C-*
tH H
*4
o
o
o
o
o
8
o
o
8
CD
8
o
o
CD
8
8
m
o
ro
ro
ro
ro
ro co
CM
ro
cr
o
•H
cm ro
J-
in
l© K
to
8
o
tH
CM
ro
J-
J” in
m
V©
8
8 8
8
e
o
▼H
*4
*4
w4
▼H
CM
CM
CM
CM
CM
CM
CM CM
CM
CM
CM
CM
CM CM
ro
ro
ro
K-
o
CO
8
ro
8
in
«
V©
ro
v©
w4
in
ro
8 v©
in
CM
in
ro
8
CM
V©
in
CM
CM
z
CD
*4
ro
ro
CD
CM
CM
*4
8
*4
CM
o
8
*4
8
*4
O
o
CD
O
8
o
a
CD
O
CD
CD
CD
O
o
CD
CD
o
CD
o
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
o
CD
CD
O
o
CD
»
1
*
»
I
l
\
•
I
I
t
o
VU
in
in
-T
ro
ro
ro
CM
CM
CM
CM
rl
▼H
▼-4
*4
*4
8
CD
CD
CD
CD
CD
CD
CD
_j
8
a
CD
8
e
o
8
8
8
8
8
8
O
8
e
O
8
8
8
CD
8
CD
o
e
8
CD
O
8
«x
CD
CD
CD
o
CD
o
CD
CD
CD
o
CD
o
CD
o
o
o
CD
8
o
CD
o
CD
o
CD
a
O
CD
CD
o
•
i
»
1
i
1
i
i
i
I
•
1
»
1
1
1
i
1
1
i
4
4
4
4
4
4
4
4
*4
*4
r-
in
8
in
V©
j-
CM
H
J-
CM
8
•4-
ro
ro
J-
8
®
8
8
CM
8
8
CM
ro
CM
ro
ro
in
CO
ro
iH
8
ao
8
ro
®
CM
8
n-
8
O
8
CM
CO
ro
CM
h-
8
8
v©
CM
8
ro
in
ao
V©
in
ro
8
8
J-
ao
r<
H
CM
J-
j-
r^.
▼H
8
ao
8
J-
CD
8
oo
ro
CM
J-
8
CD
CM
ro
8
CD
N-
CO
r^
8
CM
K
8
CM
8
ro
8
N-
CD
CD
CD
ro
ro
CO
m
tH
ro
CD
i©
CD
j-
8
ro
o
O'
CM
ao
r-
O’
ao
8
r4
8
O
CO
8
ro
8
CD
*4
*4
oo
ro
*4
ro
n-
*4
ro
8
ao
*4
CM
CM
J-
8
8
n-
r^
CO
n4
r4
CM
CM
ro
J-
8
*
-i
8
8
8
•4-
ro
ro
ro
CM
CM
CM
CM
^■4
H
■H
*4
H
▼H
o
o
O
CD
O
8
CD
CD
8
8
CD
O
o
o
a
O
O
8
8
8
8
8
8
8
8
o
8
o
8
8
8
8
o
8
CD
O
8
8
8
_i
G
o
o
o
o
o
o
8
O
8
8
O
8
8
8
a
o
8
o
8
8
O
8
8
a
CD
o
8
®
r- 8
o
i
1
1
1
|
»
i
1
1
•
1
1
1
1
1
i
1
1
»
1
4
4
4
4
4
4
4
4
t
*H 8
X
CM
ro
N.
4-
8
«
a
*4
K
8
4-
•H
a
8
8
8
CM
8
8
a
8
8
8
o
a
O
8
o
8
8 K
ro
N-
CM
8
CM
ro
to
®
•H
CM
o
CM
CM
4-
8
CD
o
o
8
o
CD
CD
o
8
o
CD
®
8 CM
8
J-
wi
8
8
ro
4-
8
8
N-
8
8
r^
CM
CM
8
8
w4
CO
K-
r^
o
CM
r-
4
8
*-l 8
«
ro
8
8
8
CD
8
ro
®
^4
8
«
N-
8
8
8
4-
8
ro
8
ro
8
®
e
8
8
ro
II
® J-
ro
ro
8
ro
®
8
CD
4
®
ro
CD
8
CM
to
4-
®
8
8
CD
CD
8
ro
8
O
8 ro
a
® N-
H
®
ro
ro
n.
rH
ro
8
®
H
CM
CM
4
8
8
rw
®
▼HI
CM
CM
ro
4-
4
8
cr • •
I— CD ec
*- I
II
CJ ▼H f— 4 4
r<HHQTHOOOOCIDOOO
174
28, DNRMSPCT = 0.162, TSRMSPCT = 0.014
Table 8. Experimental and calculated second virial coefficients
ID: (3) Michels; (6) McGlashan; (10) Douslin
0.
552671
- 1. 106244
- 0.592947
-O.i
041944
0.000000
ID
T »K
T/TC
9 4
CALC
DIFF
PCNT
6
150.000
0.4912
- 5.183
- 5.185
0 . 002
0.03
6
160.000
0 . 5240
-4 .48 9
- 4.487
- 0.001
- 0.03
6
170.000
0 . 5567
- 3.935
-3.933
- 0.002
-0.04
o
100.000
0.5894
- 3.485
- 3.483
- 0.001
- 0 .04
6
i ao . ooo
0 . 6222
- 3.112
- 3.112
- 0.001
- 0.02
o
20 G . 0 00
G . 65 4 9
- 2.600
- 2.800
0.000
0.01
6
210.000
0 . b 877
- 2.535
- 2.536
0.001
0.04
b
220 .000
0.7204
- 2.307
-2.309
0.002
0.07
6
230.000
0. 7532
- 2.110
- 2.111
0.002
0.09
D
2 4 C . 000
0 . 7859
- 1.937
- 1.939
0.002
0.10
b
2 5 G . 0 0 G
0-6187
- 1.765
- 1.766
0.002
0.10
o
260.000
0 . 6514
- 1.650
- 1.651
0 . 001
0.08
o
270.000
0.6842
- 1.529
- 1.530
0.001
0.05
o
260.300
0.9169
- 1.421
- 1.421
0.000
0.0 0
b
200.000
0 . 9497
- 1.323
- 1.323
- 0.001
- 0.06
6
300.000
0.9824
- 1. 235
- 1.233
- 0. 002
- 0.14
3
273 . 150
0 . 6943
- 1.493
- 1.494
0.002
0 .12
10
273.150
C • 6945
- 1.498
- 1.494
- 0.003
- 0.21
3
296.133
0 . 9763
- 1 .251
- 1.249
- 0. 002
- 0.14
13
2 96 . 15 0
0 . 9764
- 1.252
- 1.249
- 0.003
- 0.26
10
303.150
0 . 9927
- 1.209
- 1.207
- 0. 002
- 0.21
5
322 . 748
1.0569
- 1.058
- 1.058
- 0.000
- 0.01
10 .
323 . 150
1.0582
- 1.056
- 1.055
- 0.001
- 0.14
3
347. 652
1 . 1365
- 0 . 898
- 0.900
0 . 002
0.18
10
346 . 150
1 . 1401
- 0 . 896
- 0.897
0.001
0.07
3
372.522
1.2199
- 0.769
- 0.770
0.001
0.13
10
373.150
1 . 2220
- 0 .766
- 0 .767
0.001
0 .14
3
397 .644
1.3023
- 0.659
- 0.659
“ 0.000
- 0.02
10
396 . 150
1.3033
- 0.656
- 0.657
0 . 001
0.23
3
4 22 . 7 0 0
1. 3642
- 0.566
- 0.566
0.000
0.02
10
423 . 1 5 C
1. 3657
- 0.563
- 0.564
0 . 001
0.12
10
446. 150
1 . 4676
- 0.463
- 0.484
0 . 001
0.13
10
473.150
1 . 5494
- 0.415
-0.414
- 0.000
- 0.09
1 0
4 9 c . 15 0
1.6313
- 0.353
- 0 . 353
- 0.000
- 0.07
10
523. 150
1. 7132
- 0.300
- 0.299
- 0.001
- 0.37
10
546.150
1.7950
- 0.251
- 0.251
- 0.001
- 0.30
10
573. 153
1. 6769
- 0 .208
- 0.208
- 0 . 001
- 0.36
10
590.150
1. 9563
- 0 . 168
- 0.169
0 . 000
0.10
10
623 .150
2 . 0 4 0 o
- 0 . 132
- 0.134
0.001
1.06
NP = 3 9. MEANPC T = 0.133
175
Table 8. Experimental and calculated second ririal coefficients (Continued)
ID:
(1) Eucken; (2) Lambert; (4) Hoover; (5) Pope; (8) Gunn*
Dymond / Smith .
(9) Ham ann via
10
T »K
T/TC
3 *
CALC
0 IFF
PCNT
1
230.039
0.6549
- 3 .053
- 2.800
- 0.253
- 9.03
2
2 013. 0 00
0.6549
— o . 060
- 2.800
- 0 . 260
- 9.27
5
2 09. 5 3 **
0.6862
- 2.465
- 2.547
0.063
2.46
1
210.030
0.6877
- 2.763
- 2.536
- 0 . 227
- 8.97
2
210.000
0.6877
- 2.763
- 2.536
- 0. 227
- 8.97
4
215.030
0.7041
- 2.296
- 2.418
0.123
5.07
1
220 .030
0.7204
- 2.494
- 2.309
- 0 . 185
- 8.02
2
220 .000
0 . 720 +
- 2.528
- 2.309
- 0.219
- 9.48
1
230.000
0. 7532
- 2.244
- 2.111
- 0 . 133
- 6.30
2
230 . 00 G
0.7532
- 2.298
- 2.111
-0 . 187
- 8.85
5
236.759
0.7819
- 1.935
- 1.959
0 . 024
1.24
1
2 h 0 .000
0.7859
- 2.056
- 1.939
- 0.117
- 6.03
2
240.000
0 .785 9
- 2.076
- 1.939
- 0.137
-7 .07
4
240 . 0 30
0.7859
- 1.864
- 1.939
0 . 075
3.88
1
250.030
0.8187
- 1.887
- 1.786
- 0.101
- 5.64
2
250.000
0,8187
- 1.907
- 1.786
- 0.121
- 6.77
5
254.307
0.6344
- 1.700
- 1.719
0 . 019
1.11
1
260. 000
0 . 6514
- 1.725
- 1.651
- 0 . 074
- 4.51
2
2 o C . 030
0.8514
- 1.752
- 1.651
- 0 . 101
- 6.14
1
270 . 000
0.6842
- 1 .584
- 1.530
- 0.054
- 3.53
2
270 .030
0 . 6842
- 1.618
- 1.530
- 0.088
- 5.73
4
273. 150
0. 6945
- 1.506
- 1.494
- 0.011
- 0.76
h
273.150
0 . 6945
- 1.479
- 1.494
0 .016
1.06
3
273. 230
0 . 6947
- 1.498
- 1.494
- 0.004
-0 .25
i
260 . 030
0.9169
- 1.442
- 1.421
- 0.021
- 1.50
2
260 . 30
0.9169
- 1.483
- 1.421
- 0 . 062
- 4.35
2
2 30 . .30
, 0.9497
- 1.382
- 1.323
- 0.059
-4 •‘♦7
6
' 296.230
0. 9765
- 1.260
- 1.249
- 0.011
- 0.89
2
300.000
0 . 9824
- 1.281
- 1.233
- 0 . 047
- 3.85
5
306. 062
1.0023
- 1.181
- 1.163
0 . 002
0.13
0
310 . 940
1.0182
- 1.111
- 1.144
0 . 033
2.87
3
323.200
1.0584
- 1 .062
- 1.054
- 0.007
-0 .68
9
344.270
1.1274
- 0.913
- 0.920
0.006
0.68
9
377.630
1.2365
- 0.741
- 0.746
0 . 004
0.60
•3
377.600
1. 2365
- 0.737
- 0.746
0.009
1.14
6
410. 300
1 . 3456
- 0.604
- 0.608
0 .004
0.67
9
410 . 9+0
1.3457
- 0 .609
- 0.608
- 0.001
- 0.24
9
444.270
1.4549
- 0.500
- 0.496
- 0.004
-G .91
3
444.300
1.4553
- 0.499
- 0.496
- 0 . 003
- 0.65
9
477 . 63 G
1. 5640
- 0.404
- 0.403
- 0.001
- 0.27 <
3
4 7 7 . 6 3 0
1.5640
- 0.415
- 0.403
- 0.013
- 3.11
0
510 . 930
1.6731
- 0 . 344
- 0.325
- 0.019
- 5.92
9
510 . 940
1. 6732
- 0.319
- 0.324
0 .005
1.53
176
Table 9. Experimental and calculated third virial coefficients
ID: (7) Chueh; (10) Bouslin; (4) Hoover; (5) Pope
217
. 8 0 0 0
. 2 1 * 42 26 G .
832S 29
0.534875
0.000000
10
r,K
T/TC2T
C*
CALCD
01 FF
7
2 1 G .000
0 .6677
-0 .241
“0.237
-0.004
7
220.000
0 .7234
G .053
0.053
0.000
7
230.000
0 .7532
C . 239
0.233
0.002
7
240.000
0.7853
C . 353
0.352
0 .001
7
250.000
0.8137
0.419
0.421
-0.002
7
260.030
0 .8514
C.454
0.460
“0.005
10
273 .130
0.8945
C . 471
0.480
"0.010
10
296.150
0 . 9764
C . 482
0.471
0.011
10
303 . 150
0.3927
0.472
0.465
0.007
10
323 .150
1 . 0532
0.43 8
0.436
0.0 03
10
3 h6 . 15 3
1.1401
0 . 393
0.395
“0.001
10
373.150
1 .2220
C . 351
0.355
-0.004
10
336.150
1.3036
0.316
0.319
“0.003
10
423 . 150
1.3857
C .284
0.238
-0.004
1 0
448 . 130
1 .4676
C . 258
0.261
-0.003
10
473. 150
1.5494
C . 24 0
0.2 33
0.002
10
4 96. 15 C
1.6313
0 . 220
0.218
0.002
10
523 . 150
1.7132
C .204
0.201
0.003
10
546. 150
1 . 7950
0 .188
0.186
0.002
1 0
573.150
1 .67j9
C. 175
0.173
0.002
10
536.150
1.9536
0 . 161
0.162
-0.001
10
623 . 150
2.040c
0 .149
0.151
-0.003
NP = 22, HEANDIFF = 0.00 3
Iu
T , K
T / T C^T
C*
CALCD
DIFF
5
209.534
0 .6862
-2.667
-0.254
-2.412
4
215.000
0 . 7041
-3.230
-0.076
-3.154
.>
236.769
0 .7ol9
0.168
0.341
“0.173
u
240.030
0 . 7659
-0.117
0.352
-0.469
5
254 . 307
0 .8344
0 . 386
0.443
-0.056
0
273.150
0.8945
C . 471
0.480
-0.010
4
273 . 150
0.6945
C . 482
0.480
0.002
4
273. 150
0 .8945
0.517
0 . 4 8 0
0.036
*
296 .136
0 .97o3
G . 488
0.471
0.017
5
306 . 062
1.0023
C .456
0.461
-0.006
4
322. 746
1 . 05o9
0 . 439
0.436
0.003
4
347. 652
1.1395
0 . 390
0.395
-0.006
*4
372 . 522
1.2199
G . 350
0.356
“0.006
4
3 97 . 8 4**
1 .3026
0 . 318
0.320
-0.002
4
422 . 7 .30
1 .3642
0 . 290
0.269
0.001
I
177
Table 11. Coefficients of the equation of state
DTRP = 21.6800, TTRP = 89.
OCRT = 6.7400, T CRT = 305.
AL = 2.00, BE = 1.00, EP =
1.848167996 1.569704511
-1.042842462 0.224978299
MOL/L
TSAT
THETA
0.5
235.219
203.322
1.0
258.239
230.548
1.5
272.349
249.833
2.0
282.050
264.599
2.5
289.067
276.149
3.0
294.268
285.179
3.5
298.122
292.103
4.0
300.905
297.215
4.5
302.825
300.790
5.0
304.083
303.124
5.5
304.868
304.520
6.0
305.290
305.215
6.5
305.370
305.367
7.0
305.370
305.367
7.5
305.339
305.258
8.0
305.101
304.735
8.5
304.546
303.552
9. 0
303.623
301.528
9.5
302.281
298.493
10.0
300.467
294.288
10.5
298.130
288.775
11. 0
295.227
281.851
11.5
291.719
273.446
12.0
287.576
263.540
12.5
282.779
252.156
13.0
277.314
239.372
13.5
271.175
225.313
14.0
264.365
210.151
14.5
256.890
194.102
15.0
248.763
177.416
15.5
240.000
160.367
16.0
230.619
143.243
16.5
220.643
126.336
17.0
210.093
109.923
17.5
198.992
94.264
18.0
187.364
79.584
18.5
175.236
66.069
19.0
162.640
53.856
19.5
149.619
43.037
20.0
136.230
33.650
20.5
122.556
25.688
21 . 0
108.713
19.098
21.5
94.854
13.788
22.0
81.182
9.635
22.5
67.940
6.494
23.0
55.403
4.205
PTRP = 0.000010099
PORT = 48.755014373
5.560186452
PSAT
B
C
.315
1.88 7
-1.754
.335
1.932
-1.540
.40 7
1.983
-1.340
.421
2.040
-1.152
.440
2.102
-0.978
.565
2.170
-0.817
.868
2.243
-0.668
.397
2.321
-0.532
.220
2.404
-0.408
.454
2.491
-0.296
.242
2.583
-0.197
.672
2.678
-0.109
.755
2.777
-0.832
.755
2.880
0.032
.723
2.985
0.686
.478
3.094
0.128
.916
3.204
0.159
.998
3.317
0.180
• 696
3.432
0.190
.990
3.548
0.189
.875
3.665
0.178
.366
3.783
0.157
.497
3.902
0.126
.323
4.021
0.886
.915
4.140
0.8 35
.358
4.260
-0.624
.746
4.379
-0.093
. 179
4.498
-0.171
.752
4.616
-0.258
.556
4.734
-0.354
.668
4. 851
-0.458
.149
4.967
-0.571
. 038
5.082
-0.692
. 351
5.196
-0.821
. 075
5.309
-0.958
.176
5.420
-1.102
.595
5.530
-1.254
.260
5.639
-1.414
.094
5.747
-1.580
. 026
5.853
-1.754
.005
5.957
-1.935
. 001
6.060
-2.122
• 000
6.162
-2.316
• 000
6.262
-2.516
. 000
6.361
-2.722
.000
6.458
-2.934
899,
370,
0.50
8
16
23
29
34
36
41
44
46
47
48
48
48
48
48
48
47
46
45
43
41
39
36
33
29
26
22
19
15
12
9
7
5
3
2
1
0
0
0
0
0
0
0
0
0
0
178
Table 12. Experimental and calculated P-p-T data
The following pages compare experimental P-p-T (compressibility)
data with densities and pressures computed by the equation of state (5).
The first column identifies sources of the data (as in Table 10):
ID Authors
2 Virial equation (4).
8 Reamer et al [57].
9 Michels et al [47].
10 Douslin and Harrison [14].
100 + A. K. Pal, via Pope [54].
The equation of state was adjusted only to data of ID = 2, 9, 10,
and 1300 + . Remaining data validate our extrapolation to higher pres-
sures. Density deviations should be ignored near the critical point,
and pressure deviations should be ignored for compressed liquid at
low temperatures for reasons given in the text.
179
Table 12. Experimental and calculated P-p-T data
EQUATION OF STATE VS, PVT DATA
ID
T , K
MOL/t
CAICO
C ,PCT
P, BAR
CAUCD
P, PCT
2
230.000
0.4000
0.4003
-0.07
6.693
6.689
0.06
2
240.000
0.4000
0.4003
-0. 07
7.070
7.066
0.06
2
250.000
0.4000
0.4002
-0.06
7.442
7.438
0.05
2
260.000
0.4000
0.4002
-0. 06
7.811
7.807
0.05
2
270.000
0.4000
0.4002
-0.06
8.177
8.173
0.05
2
200.000
0.4000
0.4002
-0. 05
8.541
8.537
0.05
2
290.000
0.4000
0.4002
-0.05
8.902
8.898
0.05
2
300.000
0.4000
0.4002
-0.05
9. 262
9.258
0.04
2
310.000
0.4000
0.4002
-0.04
9.621
9.617
0.04
2
320.000
0.4000
0.4002
-0, 04
9.978
9.974
0.04
2
330.000
0.4000
0.4002
-0. 04
10.334
10.330
0.04
2
340.000
0.4000
0.4002
-0.04
10.689
10.686
0.04
2
350.000
0.4000
0.4001
-0.04
11.044
11.140
0.03
2
360.000
0.4000
0.4001
-0.03
11.397
11.393
0.0 3
2
370.000
0.4000
0.4001
-0.03
11.750
11.746
0.03
2
380.000
0.4000
0.4001
-0.03
12.102
12.899
0.03
2
390.000
0.4000
0.4001
-0.03
12.454
12.451
0.0 3
2
400.000
0.4000
0.4001
-0.03
12.805
12.802
0.03
2
410.000
0.4000
0.4001
-0.02
13.156
13.153
0.02
2
420.000
0.4000
0.4001
-0.02
13.506
13.503
0.02
2
430.000
0.4000
0.4001
-0.02
13.856
13.853
0.02
2
440.000
0.4000
0.4001
-0.02
14.205
14.203
0.02
2
450.000
0.4000
0.4001
-0.02
14.555
14.552
0.02
2
460. 00 0
0.4000
0.4001
-0.02
14.904
14.901
0.02
2
470.000
0.4000
0.4001
-0.02
15.252
15.250
0.02
2
400.000
0.4000
0.4001
-0.02
15.601
15.598
0.02
2
490.000
0.4000
0.4001
-0. 01
15.949
15.947
0.01
2
500. 00 0
0.4000
0.4001
-0.01
16.297
16.295
0.0 1
2
510.000
0.4000
0.4001
-0.01
16.645
16.643
0.0 1
2
520.000
0.4000
0.4001
-0.01
16.993
16.990
0.01
2
530.000
0.4000
0.4001
-0.01
17.340
17.338
0.01
2
540.000
0.4000
0.4001
-0.01
17.687
17.685
0.01
2
550.000
0.4000
0.4001
-0.01
18. 035
18.032
0.01
2
560.000
0.4000
0 .4001
-0. 01
18. 382
18.379
0.0 1
2
570.000
0.4000
0.4001
-0.01
18.729
18.726
0.01
2
580.000
0.4000
0.4001
-0.01
19.076
19.073
0.01
2
590.000
0.4000
0.4001
-0.02
19.423
19.420
0.02
2
600.000
0.4000
0.4001
-0.02
19.769
19.766
0.02
NP = 38, ONRMSPCT = 0. 035, PMEANPC T = 0.028
180
Table 12. Experimental and calculated P-p-T data- - - (Continued)
EQUATION OF STATE VS. PVT DATA
ID
T,K
MOL/L
CALCD
C,PCT
P,BAR
CALCO
P»PCT
8
310.928
3.5245
3.5650
-1.15
48.263
48.071
0.40
8
310.928
4.5021
4.5925
-2.01
51.711
51.498
0.41
8
310.928
5.5178
5.6358
-2.14
53.434
53.287
0.28
8
310.928
7.2697
7.2407
0.40
55. 158
55.192
-0.06
8
310.928
8.3632
8.1814
2.17
56.537
56.923
-0.68
8
310.928
8.8480
8.7333
1.30
57.916
58.294
-0 .65
8
310.928
9.1894
9.1054
0.91
59.295
59.673
-0.64
8
310.928
9.4447
9.3856
0.63
60.674
61.110
-0.55
8
310.928
9.6593
9.6110
0.50
62.053
62.385
-0.54
8
310.928
9.8423
9.8000
0.43
63.432
63.771
-0.54
8
310.928
9.9921
9.9633
0.29
64.811
65.074
-0.41
8
310.928
10.1321
10.1072
0.25
66.190
66.444
-0.38
8
310.928
10.2579
10.2362
0. 21
67.569
67.815
-0.36
8
344.261
4.9251
4.9626
-0.76
75.842
75.550
0.39
8
344.261
5.8407
5.8663
-0.44
82.737
82.542
0 .24
8
344.261
6.7517
6.7335
0.27
89.632
89.785
-0.17
8
344.261
7.5579
7.5011
0.75
96.527
97.880
-0.57
8
344.261
8.2287
8.1557
0.89
103.421
104.275
-0.82
8
344.261
8.7434
8.6969
0.51
110.316
110.943
-0.57
8
344.261
9.1754
9.1501
0.28
117.211
117.636
-0.36
8
344.261
9.5504
9.5302
0.21
124. 106
124.503
-0.32
8
344.261
9.8679
9.8559
0.12
131. 000
131.275
-0.21
8
310.928
0.5889
0.5911
-0.36
13.790
13.745
0.32
8
344.261
0.5165
0 .5173
-0.16
13.790
13.769
0.15
8
377.594
0.4620
0.4623
-0.07
13.790
13.780
0.07
8
410.928
0.4189
0.4190
-0.04
13.790
13.785
0.04
8
444.261
0.3838
0.3839
-0.03
13.790
13.785
0.02
8
477.594
0.3544
0.3546
-0.04
13.790
13.784
0.04
8
510.928
0.3295
0.3297
-0.07
13.790
13.780
0.07
8
310.928
1.3468
1.3519
-0.38
27.579
27.500
0.25
8
344.261
1.1212
1.1222
-0. 09
27.579
27.558
0.08
8
377.594
0.9762
0.9762
-0.00
27.579
27.578
0.00
8
410.928
0.8711
0.8708
0.03
27.579
27.587
-0.02
8
444.261
0.7892
0.7893
-0.02
27.579
27.574
0.02
8
477.594
0.7233
0.7238
-0.06
27.579
27.563
0.06
8
510.928
0.6684
0.6694
-0.15
27.579
27.540
0.14
8
310.928
2.4961
2.5158
-0.79
41.369
41.196
0.42
8
344.261
1.8567
1.8601
-0.18
41.369
41. 312
0.14
8
377.594
1.5546
1.5549
-0.02
41.369
41.363
0.01
8
410.928
1.3605
1.3589
0.12
41.369
41.411
-0.10
8
444.261
1.2172
1.2168
0.03
41.369
41.382
-0.0 3
8
477.594
1.1066
1.1068
-0.01
41.369
41.364
0.01
8
510.928
1.0165
1.0180
-0.14
41.369
41.312
0.14
8
310.928
7.2697
7.2407
0.40
55.158
55.192
-0.06
8
344.261
2.8018
2.8142
-0.44
55.158
55.802
0.28
8
377.594
2.2130
2.2174
-0.20
55.158
55.074
0.15
8
410.928
1.8902
1.8895
0. 04
55.158
55.175
-0.02
8
444. 261
1.6685
1.6684
0.00
55.158
55.159
-0.0 0
8
477.594
1.5040
1.5043
-0.03
55.158
55.145
0.02
8
510.928
1.3733
1.3755
-0.16
55.158
55.073
0.15
8
310.928
10.3736
10.3532
0. 20
68.948
69.201
-0.37
8
344.261
4.0959
4.1261
-0.74
68.948
68.679
0.39
181
(Continued)
Table 12. Experimental and calculate P-p-T data- - -
EQUATION OF STATE VS. ^VT DATA
ID
T,K
MOL/L
CALCO
C » FCT
P $ BAR
CALCO
P,PCT
8
377,594
2.9702
2.9796
-0.32
68.948
68.789
0.23
8
410.928
2.4628
2.4656
-0.12
68.948
68.882
0.09
8
444.261
2.1426
2.1447
-0.10
68.948
68.887
0.05
8
477.594
1.9142
1.5163
- 0 . 11
68.948
68.876
0.10
8
510.928
1.7377
1.7417
-0.23
68.948
68.798
0.22
8
310.928
11.2820
11.3103
-0.25
86.184
85.486
0.81
8
344.261
6.3137
6.3109
0.05
86.164
86.a07
-0.03
8
377.594
4.0652
4.0858
-0.51
86.184
85.885
0.35
3
410.928
3.2373
3.2474
-0.31
86.184
85.970
0.25
8
444.261
2.7645
2.7714
-0. 25
86.184
86.801
0.21
8
477.594
2.4431
2.4490
-0.24
86.184
85.996
0.22
3
510.928
2.2028
2.2099
-0. 32
86.184
85.925
0.30
3
310.928
11.8116
11.8807
-0.59
103.421
100.977
2.36
8
344.261
8.2287
8.1557
0.89
103.421
104.275
-0.8 3
8
377.594
5.2776
5.3106
-0.63
103.421
102.959
0.45
8
410.928
4.0686
4.0863
-0.43
103.421
103.867
0.34
8
444.261
3.4145
3.4256
-0. 33
103.421
103.133
o. 2 e
8
477.594
2.9861
2.9963
-0. 34
103.421
103.105
0.31
8
510.928
2.6754
2.6862
-0.41
103.421
103.831
0.36
3
310.928
12.2182
12.2988
-0.66
120.658
116.984
3.05
8
344.261
9.3676
9.3479
0.21
120.658
121.018
-0.3 0
8
377.594
6.4713
6.4858
-0.22
120.658
120.431
0.19
8
410.928
4.9220
4.9488
-0.54
120.658
120.119
0.45
8
444.261
4.0781
4.0962
-0.44
120.658
120.194
0.36
8
477.594
3.5369
3.5520
-0.43
120.658
120.193
0.39
8
510.928
3.1538
3.1664
-0.40
120.658
120.207
0.37
8
310.928
12.5479
12.6333
-0.68
137.895
133.171
3.43
8
344.261
10.1360
10.1396
-0. 04
137.895
137.802
0.07
8
377.594
7.5147
7.4975
0.23
137.895
138.216
-0.23
8
410.928
5.7575
5.7831
-0.44
137.895
137.349
0.40
8
444.261
4.7394
4.7654
-0.55
137.895
137. ai7
0.49
8
477.594
4.0884
4.1085
-0.49
137.895
137.268
0.45
8
510.928
3.6322
3.6462
-0.39
137.895
137.389
0.37
8
310.928
12.8333
12.9143
-0.63
155.132
149.886
3.38
8
344.261
10.6669
10.7182
-0.48
155.132
153.407
1.11
8
377.594
8.3540
8.3367
0.21
155.132
155.527
-0.25
8
410.928
6.5294
6.5505
-0. 32
155.132
154.632
0.32
8
44^.261
5.3796
5.4124
-0.61
155.132
154.236
o.5e
8
477.594
4.6299
4.6564
-0.57
155.132
154.288
0.54
8
510.928
4.1041
4.1210
-0.41
155.132
154.516
0.40
8
310.928
13.0738
13.1579
-0.64
172.369
166.162
3.60
8
344.261
11.0985
11.1720
-0.66
172.369
169.320
1.77
8
377.594
9.0258
9.0201
0. 06
172.369
172.531
-0.09
8
410.928
7.2289
7.2381
-0.13
172.369
172.124
0.14
8
444.261
5.9919
6.0219
-0.50
172.369
171.493
0.51
8
477.594
5.1560
5.1860
-0.58
172.369
171.370
0.56
8
510.928
4.5658
4.5853
-0.43
172.369
171.633
0.43
8
310.928
13.2869
13.3736
-0.65
189.606
182.447
3.7 e
8
344.261
11.4646
11.5453
-0.70
189. 606
185.617
2. 1C
8
377.594
9.5652
9.5810
-0.17
189.606
189.074
0.28
8
410.928
7.8461
7 .8502
-0.05
189.606
189.482
0.07
8
444.261
6.5583
6.5860
-0.42
189.606
188.723
0.47
8
477.594
5.6568
5.6902
-0.59
189. 606
188.432
0.62
182
Table 12. Experimental and calculated P-p-T data- - - (Continued)
EQUATION OF STATE VS. PVT DATA
10
T > K
MOL/L
CALCD
0,PCT
P, BAR
CAICO
P, PCT
8
510.928
5.0133
5.0344
**0.42
189.606
188.781
0.43
8
310.928
13.4768
13.5679
-0.68
206.843
198.548
4.01
8
344.261
11.7810
11.8628
-0.70
206.843
202.151
2.27
8
377.594
10.0144
10.0500
-0.35
206.843
205.433
0.68
8
410.928
8.3875
8.3906
-0.04
206.843
206.735
0.05
8
444.261
7.0812
7.1044
-0.33
206.843
206.939
0.39
8
477.594
6.1325
6.1653
-0.53
206.843
205.617
0.59
8
510.928
5.4446
5.4646
-0. 37
206.843
206.924
0.40
8
310.928
13.8169
13.9077
-0.66
241.316
231.536
4.05
8
344.261
12.3150
12.3850
-0,57
241.316
236.205
2.12
8
377.594
10.7385
10.7972
-0.55
241. 316
238.239
1.28
8
410.928
9.2546
9.2879
-0,36
241.316
239.874
0.60
8
444.261
8.0043
8.0164
-0.15
241.316
240.816
0 .21
8
477.594
6.9989
7.0249
-0.37
241.316
240.204
0.46
6
510.928
6.2432
6.2616
-0. 29
241.316
240.475
0.35
8
310.928
14.1021
14.1998
-0.69
275.790
263.723
4.38
8
344.261
12.7400
12.8070
-0.53
275.790
269.878
2.14
8
377.594
11.3044
11.3770
-0.64
275.790
271.638
1.72
8
410.928
9.9483
9.9983
-0.50
275.790
273.107
0.97
8
444.261
8.7521
8.7793
-0.31
275.790
274.453
0 .49
8
477.594
7.7541
7.7753
-0.27
275.790
274.748
0.38
8
510.928
6.9554
6.9734
-0.26
275.790
274.871
0.33
8
310.928
14.3527
14.4571
-0.73
310.264
295.792
4.66
8
344.261
13.0835
13.1626
-0.60
310.264
302.128
2.62
8
377.594
11.7680
11.8495
-0.69
310.264
303.853
2.07
8
410.928
10.5117
10.5772
-0.62
310.264
306.630
1.36
8
444.261
9.3799
9.4201
-0.43
310. 264
307.927
0.75
8
477.594
8.4052
8.4289
-0.28
310.264
308.925
0.43
8
510.928
7.5930
7.6094
-0.22
310.264
309.327
0.30
8
310.928
14.5677
14.6877
-0.82
344.738
326.363
5.33
8
344.261
13.3764
13.4709
-0.71
344.738
333.679
3.21
8
377.594
12.1604
12.2483
-0.72
344.738
336.676
2.34
8
410.928
10.9866
11.0620
-0.69
344.738
338.997
1.67
8
444.261
9.9098
9.9651
-0.56
344.738
340.967
1.09
8
477.594
8.9742
8,9992
-0.28
344.738
343.124
0,47
8
510.928
8.1552
8.1777
-0.28
344.738
343.297
0,42
8
310.928
14.9359
15.0894
-1.03
413,685
385.936
6.71
8
344.261
13.8663
13.9892
-0.89
413.685
395.994
4.28
8
377.594
12.3094
12.8982
-0.69
413.685
403.217
2.53
8
410.928
11.7577
11.8412
-0.71
413.685
405.383
2.01
8
444.261
10.7824
10.8474
-0.60
413.685
407.951
1.39
8
477.594
9.9049
9.9429
-0. 38
413.685
410,568
0.75
8
510.928
9.1371
9.1425
-0. 06
413.685
413.258
0.10
8
310.928
15.2790
15.4333
-1.01
482.633
450.484
6.66
8
344.261
14.2981
14.4173
-0.83
482.633
462.241
4.23
8
377.594
13.3124
13.4189
-0.80
482.633
467.419
3.15
8
410.928
12.3491
12.4538
-0.85
482.633
469.784
2.66
8
444.261
11.4576
11.5401
-0.72
482.633
473.608
1.87
8
477.594
10.6337
10.6943
-0.57
482.633
476.512
1.27
8
510.928
9.8992
9.9277
-0.29
482.633
479.885
0.57
8
31C.928
15.5877
15.7353
-0.95
551.581
516.844
6.30
6
344. 261
14.6722
14.7839
-0.76
551.581
529.535
4.0 0
8
377.594
13.7271
13.8549
-0.93
551.581
530.226
3.87
183
Table 12. Experimental and calculated
EQUATION OF STATE VS. PVT DATA
10
T,K
MOL/L
CALCD
C,P
8
410.928
12.8373
12.9589
-0.
8
444.261
12.0126
12.1079
-0.
8
477.594
11.2338
11. 3126
-0.
8
510.928
10.5290
10.5812
-0.
8
310.928
15.8659
16.0055
-0.
8
344.261
14.9988
15.1058
-0.
8
377.594
14.1021
14.2311
-0 .
8
410.928
13.2590
13.3892
-0.
8
444.261
12.4801
12.5883
-0.
8
477.594
11.7416
11.8356
-0.
8
510.928
11.0763
11.1369
-0.
8
310.928
16.1346
16.2505
-0.
8
344.261
15.2747
15.3933
-0.
8
377.594
14.4380
14.5628
*0.
8
410.928
13.6362
13.7647
-0.
8
444.261
12.8838
13.0047
-0.
8
477.594
12.1848
12.2880
-0.
8
510.928
11.5520
11.6184
-0.
NP = 176, DNRMSPCT = 0.605, PMEANPCT =
p-T data- - - (Continued)
P,BAR
CALCO
P, PC T
551.581
533.862
3.21
551.581
539.119
2.26
551.581
542.088
1.72
551,581
545.625
1.08
620.528
584.101
5.89
620.528
596.696
3.84
620.528
595.836
3.98
620.528
598.584
3.54
620.528
604.863
2.65
620.528
607.339
2.13
620.528
612.496
1.29
689.476
656.075
4.84
689.476
660.150
4.25
689.476
662.597
3.90
689.476
664.891
3.57
689.476
668.504
3.04
689.476
672.912
2.40
689.476
679.400
1.46
.222
P-
CT
95
79
70
50
88
71
91
98
87
80
55
72
78
86
94
94
85
58
1 .
184
Table 12. Experimental and calculated P-p-T data- - - (Continued)
EQUATION OF STATE VS . PVT DATA
ID
T * K
MOL/L
CALCD
C,PCT
P > BAR
calco
P » PC T
9
273.150
0.8538
0.8552
“ 0.16
15.874
15.854
0.13
9
296.142
0.8538
0.8545
- 0.08
17.978
17.967
0.06
9
323.140
0.8538
0.8540
- 0.02
20.036
20.032
0.02
9
348.143
0.8538
0.8538
0.00
22.065
22.065
- 0.00
9
373. 150
0.8538
0.8535
0. 04
24.066
24.875
- 0.04
9
396.160
0. 8538
0.8533
0 . 06
26.053
26.067
- 0.06
9
423.170
0.8538
0.8533
0.06
28.031
28.846
- 0.06
9
273.159
1.0672
1.0686
“ 0.13
18.802
18.784
0.10
9
258.142
1.0672
1.0675
- 0.03
21.539
21.534
0.02
9
323.140
1.0672
1.0669
0.03
24.201
24.206
- 0.02
9
348.143
1.0672
1.0665
0.06
26.812
26.826
- 0.05
9
373.150
1.0672
1.0662
0.10
29.385
29.410
- 0.08
9
398.160
1.0672
1.0660
0.12
31.933
31.967
- 0.11
9
423.170
1.0672
1.0661
0.11
34.468
34.502
- 0.10
9
273. 150
1.2812
1.2828
- 0.13
21.349
21.331
0.08
9
296.142
1.2812
1.2815
- 0.03
24.769
24.764
0.02
9
323.140
1.2812
1.2805
0.05
28.067
28.079
- 0.04
9
348.143
1.2812
1.2800
0.09
31.294
31.318
- 0.08
9
373.150
1.2812
1.2794
0.13
34.465
34.504
- 0.12
9
398.160
1.2812
1.2791
0.16
37.599
37.652
- 0.14
9
423.170
1.2812
1,2792
0.15
40.713
40.770
- 0.14
9
273.150
1.4870
1.4888
- 0.12
23.441
23.424
0.07
9
298.142
1.4870
1.4876
- 0.04
27.563
27.555
0.03
9
323.140
1.4870
1.4862
0.05
31.508
31.520
- 0.04
9
348.143
1.4870
1.4856
0.09
35.354
35.381
- 0.08
9
373.150
1.4870
1.4848
0.14
39.125
39.173
- 0.12
9
398.160
1.4870
1.4844
0.17
42. 848
42.912
- 0.15
9
423.170
1.4870
1.4845
0.17
46.543
46.612
- 0.15
9
298.142
1.6354
1.6366
- 0 . 07
29.397
29.384
O
•
o
9
323.140
1.6354
1.6351
0.02
33.830
33.836
- 0.02
9
348.143
1.6354
1.6343
0.07
38.142
38.163
- 0 .06
9
373.150
1.6354
1.6333
0.13
42.360
42.405
- 0.11
9
398.160
1.6354
1.6328
0.16
46.520
46.585
- 0.14
9
423.170
1.6354
1.6328
0.16
50.647
50.719
- 0.14
9
296. 142
1.7032
1.7050
- 0.11
30.189
30.169
0.07
9
323. 140
1.7032
1.7031
0.01
34.846
34.848
- 0.01
9
348.143
1.7032
1.7021
0.07
39.371
39.392
- 0.05
9
373. 150
1.7032
1.7010
0.13
43. 798
43.844
- 0.10
9
398.16 0
1.7032
1.7004
0 . 17
48.161
48.229
- 0.14
9
423. 170
1.7032
1.7005
0 . 16
52.490
52.564
- 0.14
9
296.142
1.9165
1.9202
- 0.19
32.483
32.446
0.11
9
323.140
1.9165
1.9174
- 0. 05
37.873
37.861
0.0 2
9
348.143
1.9165
1.9159
0.03
43. 093
43.104
- 0.0 2
9
373. 150
1.9165
1.9145
0. 10
48.192
48.232
- 0.0 8
r>
396*160
1.9165
1.9137
0.14
53.214
53.278
- 0.12
9
423.170
1.9165
1.9138
0.14
58.192
58.262
- 0.12
9
298.142
1.9754
1.9793
- 0. 20
33.063
33.025
0.11
9
323. 140
1.9754
1.9767
- 0 . 06
38.665
38.648
0.04
9
348.143
1.9754
1.9751
0.01
44. 084
44.888
- 0.01
9
373. 150
1.9754
1.9739
0 . 08
49.378
49.407
- 0.06
9
398.160
1.9754
1.9729
0.13
54.581
54.640
- 0.11
9
423.170
1.9754
1,9728
0.13
59. 738
59.807
- 0.12
185
Table 12. Experimental and calculated
EQUATION OF STATE VS. PVT DATA
ID
T , K
MOL/L
CALCD
C,F
9
298.142
2.1218
2.1279
-0.
9
323.140
2.1218
2.1243
-0.
9
348.143
2.1218
2.1222
-0.
9
373.150
2.1218
2.1204
0.
9
398.160
2.1218
2.1194
0.
9
423.170
2.1218
2.1195
0.
9
296.142
2.3339
2.3428
-0.
9
323.140
2.3339
2.3383
-0.
9
348.143
2.3339
2.3356
-0.
9
373.150
2.3339
2.3334
0.
9
398.160
2.3339
2.3321
0.
9
423.170
2.3339
2.3319
0.
9
298.142
2.4084
2.4175
-0.
9
323.140
2.4084
2.4130
-0.
9
348.143
2.4084
2.4103
-0.
9
373.150
2.4084
2.4081
0.
9
398.160
2.4084
2.4066
0.
9
423.170
2.4084
2.4063
0.
9
298.142
2.9393
2.9535
-0.
9
323.140
2.9393
2.9485
-0.
9
348.143
2.9393
2.9443
-0.
9
373.150
2.9393
2.9410
-0.
9
398. 160
2.9393
2.9390
0.
9
423.170
2.9393
2.9385
0.
9
323.140
3.5820
3.5966
-0.
9
348.143
3.5820
3.5907
-0.
9
373.150
3.5820
3.5867
-0.
9
398.160
3.5820
3.5841
-0.
9
423.170
3.5820
3.5836
-0.
9
323.140
4.4288
4.4544
-0.
9
346.143
4.4286
4.4450
-0.
9
373.150
4.4288
4.4392
-0.
9
398. 160
4.4288
4.4367
-0.
9
423. 170
4.4288
4.4361
-0.
9
323.140
5.4403
5.4572
-0.
9
348.143
5.4403
5.4494
-0.
9
373.150
5.4403
5.4478
-0.
9
398.160
5.4403
5.4476
-0.
9
423. 170
5.4403
5.4492
-0.
9
323. 140
6.6818
6.5878
1.
9
348. 143
6.6818
6.6341
0.
9
373.150
6.6818
6.6551
0.
9
358.160
6.6818
6.6654
0.
9
423.170
6.6818
6.6739
0.
9
323.140
8.2024
8.0128
2.
9
348.143
8.2024
8.1079
1.
9
373.150
8.2024
8.1498
0.
9
398.160
8.2024
8.1707
0 .
9
423.170
8.2024
8.1813
0.
NP = 101, ONRMSPCT = 0. 353, P MEANPCT =
T data - - (Continued)
P , BAR
CALCO
P, PC T
34.428
34.374
0.16
40.556
40.524
o.oe
46.470
46.463
0.02
52.238
52.264
-0.05
57.913
57.967
-0.05
63.538
63.596
-0.0 9
36.183
36.115
0.19
43. 101
43.052
0.12
49.758
49.732
0.05
56.240
56.251
-0.02
62.614
62.655
-0.06
68.922
68.972
-0.07
36.734
36.668
0.18
43.938
43.887
0.12
50.862
50.834
0.06
57.603
57.609
-0.01
64.224
64.263
-0.06
70.776
70.828
-0.07
39.901
39.833
0.17
49.228
49.148
0.16
58.126
58.062
0.11
66.768
66.742
0.04
75.253
75.260
-0.01
83.640
83.659
-0.02
54.204
54.107
0.18
65.647
65.553
0.14
76.769
76.700
0.09
87.686
87.646
0.04
98.481
98.446
0.04
58.974
58.854
0.20
74.001
73.854
0 . 2 C
88.656
88.516
0.16
103.099
102.959
0.14
117.402
117.240
0.1<l
62.995
62.935
0.10
82.596
82.521
0.09
101.932
101.833
0.10
121.098
120.966
0.11
140.168
139.962
0.15
66.912
67.250
-0.51
92.790
93.230
-0.47
118.770
119.173
-0.34
144.726
145.073
-0.24
170.709
170.924
-0.13
72.785
73.780
-1.37
108.346
109.548
-1.11
144.605
145.681
-0.74
181. 105
182.004
-0.50
217.659
218.423
-0.35
135
P-P
CT
29
12
02
06
11
11
38
19
07
02
08
09
38
19
08
01
08
09
48
31
17
06
01
03
41
24
13
06
04
58
37
24
18
17
31
17
14
13
16
41
71
40
25
12
31
15
64
39
26
0 .
186
Table 12. Experimental and calculated P-p-T data- - - (Continued)
EQUATION OF STATE VS. PVT OATA
ID
T f K
MOL/L
CALCD
C,PCT
P » BAR
CALCO
Ft PC T
10
248.150
0.7000
0.6999
0.02
11.763
11.764
-0.01
10
273.150
0.7500
0.7508
-0.11
14.298
14.285
0.09
10
298.150
0.7500
0.7506
-0.08
16.116
16.105
0.07
10
303.150
0.7500
0.7506
-0.08
16.475
16.464
0.07
10
323.150
0.7500
0.7504
-0.06
17.897
17.888
0.05
10
348.150
0.7500
0.7503
-0.03
19.652
19.646
0.03
10
373.150
0.7500
0.7502
-0.02
21.391
21.386
0,02
10
398.150
0.7500
0.7501
-0.01
23.116
23.113
0.01
10
423.150
0.7500
0.7500
-0.00
24.830
24.829
0.00
10
448.150
0.7500
0.7500
-0.00
26.538
26.537
0.0Q
10
473.150
0.7500
0 .7500
-0.00
28.239
28.238
0.0 0
10
498.150
0.7500
0.7500
0.00
29.934
29.934
-0.00
10
523.150
0.7500
0.7500
-0.00
31.627
31.626
0.00
10
548.150
0.7500
0 .7501
-0.01
33.315
33.313
0.01
10
573. 150
0.7500
0.7501
-0.02
35.003
34.997
0.02
10
598.150
0.7500
0.7502
-0.03
36.689
36,678
0.03
10
623.150
0.7500
0.7504
-0.05
38.375
38.357
0.05
10
273.150
1.0000
1.0003
-0.03
17.908
17.903
0.02
10
298.150
1.0000
1.0000
-0.00
20.450
20.449
0.0 0
10
303.150
1.0000
0.9999
0.01
20.948
20.949
- 0.01
10
323.150
1.0000
0.9996
0.04
22.919
22.926
- 0.03
10
348.150
1.0000
0.9994
0.06
25.344
25.358
- 0.05
10
373.150
1.0000
0.9992
0.08
27.738
27.757
- 0.07
10
398.150
1.0000
0.9991
0.09
30. 109
30.133
- 0.08
10
423.150
1.0000
0.9991
0.09
32.462
32.499
- 0.09
10
448.150
1.0000
0.9991
0.09
34.802
34.832
- 0.09
10
473.150
1.0000
0.9991
0.09
37. 130
37.162
-0.09
10
498.150
1.0000
0.9991
0.09
39,450
39.483
- 0.08
10
523. 150
1.0000
0.9992
0.08
41.763
41.796
- 0.08
10
548.150
1.0000
0.9993
0.07
44.071
44.102
- 0.07
10
573.150
1.0000
0.9994
0.06
46.375
46.402
-0.06
10
598.150
1.0000
0.9995
0.05
48.675
48.697
-0.05
10
623. 150
1.0000
0.9999
0.01
50.982
50.988
-Q.01
10
273.150
1.5000
1.4984
0.11
23.530
23.545
- 0.06
10
298.150
1.5000
1.4997
0.02
27.719
27.723
- 0,0 1
10
303.150
1.5000
1.4994
0.04
28.528
28.535
- 0.0 3
10
323.150
1.5000
1.4987
0 . 09
31.709
31.730
- 0.07
10
348.150
1.5000
1.4979
0.14
35.592
35.632
- 0.11
10
373.150
1.5000
1.4975
0. 16
39.407
39.461
-0.14
10
396.150
1.5000
1.4974
0.17
43.172
43.237
-0.15
10
423. 150
1.5000
1.4973
0. 18
46. 899
46.973
-0.16
10
448.150
1.5000
1.4975
0.17
50.600
50.678
-0.15
10
473. 150
1.5000
1.4975
0. 16
54.276
54.358
-0.15
10
498.150
1.5000
1.4977
0.15
57.934
58.017
-0.14
10
523. 150
1.5000
1.4979
0.14
61.578
61.659
-0.13
10
548.150
1.5000
1.4983
0.11
65.215
65.287
- 0.11
10
573.150
1.5000
1 .4983
0. 11
68.827
68.902
-0,11
10
598.150
1.5000
1.4987
0.09
72.443
72.506
- 0.09
10
623. 150
1.5000
1.4993
0.05
76.067
76.101
- 0.05
10
298.150
2.0000
2.0027
-0.14
33.289
33.263
o .o e
10
303.150
2.0000
2.0023
-0.12
34.448
34.425
0.07
10
323. 150
2.0000
2.0003
-0.02
38.978
38.974
0,0 1
187
(Continued)
Table 12. Experimental and calculated P-p-T data- - -
EQUATION OF STATE VS , PVT DATA
ID
T,K
MOL/l
CALCD
0 ,PCT
P 9 BAR
CALCO
P * PC T
10
348,150
2.0000
1.9986
0.07
44.474
44.496
- 0.05
10
373.150
2.0000
1.9978
0.11
49.850
49.094
- 0.09
10
398.150
2.0000
1.9972
0.14
55.139
55.203
- 0.12
10
423.150
2.0000
1.9969
0.15
60.365
60.445
- 0.13
10
448.150
2.0000
1.9971
0.15
65.550
65.635
- 0.13
10
473.150
2.0000
1.9973
0.13
70.697
70.783
- 0.12
10
498 . 150
2,0000
1.9975
0.13
75.809
75.898
- 0.12
10
523.150
2.0000
1.9977
0.11
80.898
80.984
- 0.11
10
548.150
2.0000
1.9979
0.11
85.959
86.847
- 0.10
10
573.150
2.0000
1.9982
0.09
91.008
91.889
- 0.09
10
598.150
2.0000
1.9987
0.06
96.054
96.114
- 0.06
10
623.150
2.0000
1.9997
0.02
101. 105
101.123
- 0.02
10
298.150
2.5000
2.5084
- 0.33
37. 369
37.313
0.15
10
303.150
2.5000
2.5077
- 0.31
38.918
38.860
0.15
10
323.150
2.5000
2.5042
- 0.17
44.928
44.883
0.10
10
348.150
2.5000
2.5007
- 0.03
52.169
52.159
0.02
10
373.150
2.5000
2.4989
0.04
59.233
59.252
- 0.02
10
398.150
2.5000
2.4981
0.07
66.177
66.216
- 0.06
10
423.150
2.5000
2.4977
0.09
73.029
73.085
- 0.08
10
448.150
2.5000
2.4978
0.09
79.818
79.880
- 0.0 8
10
473.150
2.5000
2.4977
0 . 09
86.544
86.616
- 0.08
10
498.150
2.5000
2.4979
0.09
93.231
93.305
- 0.08
10
523.150
2.5000
2.4984
0 . 06
99.892
99.953
- 0.06
10
548.150
2.5000
2.4989
0.04
106.522
106.568
- 0.04
10
573.150
2.5000
2.4993
0.03
113 . 120
113.153
- 0.02
10
598.150
2.5000
2.4998
0.01
119.704
119.713
- 0.01
10
623.150
2.5000
2.5013
- 0.05
126.314
126.251
0.05
10
298.150
3.0000
3.0121
- 0.40
40.172
40.118
0.12
10
303.150
3.0000
3.0125
- 0.42
42.149
42.082
0.16
10
323.150
3.0000
3.0080
- 0.27
49.750
49.681
0.14
10
348.150
3.0000
3.0029
- 0.10
58. 862
58.826
0.06
10
373.150
3.0000
3.0002
- 0.01
67.732
67.729
0.0 0
10
398.150
3.0000
2.9992
0.03
76.450
76.465
- 0.0 2
10
423.150
3.0000
2.9983
0.06
85.039
85 . C 79
- 0.05
10
448.150
3.0000
2.9986
0 . 05
93.560
93.599
- 0.04
10
473.150
3.0000
2.9988
0.04
102.007
102.044
- 0.0 4
10
498.150
3.0000
2.9990
0.03
110.392
110.427
- 0.0 2
10
523.150
3.0000
2.9995
0 . 02
118.741
118.759
- 0.02
10
548.150
3.0000
3.0002
- 0 . 01
127.056
127.848
0.01
10
573.150
3.0000
3.0007
- 0.02
135. 329
135.299
0.02
10
598.150
3.0000
3.0016
- 0.05
143.594
143.517
0.05
10
623.150
3.0000
3.0034
- 0.11
151.881
151.705
0.12
10
303.150
3.5000
3.5146
- 0. 42
44. 346
44.294
0.12
10
323.150
3.5000
3.5119
- 0.34
53.635
53.553
0.15
10
348.150
3.5000
3.5051
- 0 . 15
64.723
64.667
0.09
10
373. 150
3.5000
3.5017
- 0.05
75.512
75.486
0.03
10
398.150
3.5000
3.5007
- 0.02
86.122
86.108
0.02
10
423.150
3.5000
3.5000
0.00
96.586
96.586
- 0.00
10
448. 150
3.5000
3.5003
- 0.01
106.961
106.953
0.01
10
473.150
3.5000
3.5008
- 0.02
117.256
117.232
0.02
10
498.150
3.5000
3.5010
- 0 . 03
127.471
127.438
0.02
10
523.150
3.5000
3.5015
- 0.04
137.642
137.583
0.04
10
548.150
3.5000
3.5021
- 0.06
147.765
147.676
0.06
188
Table 12. Experimental and calculated P-p-T data- - - (Continued)
EQUATION OF STATE VS. PVT DATA
ID
Tf K
MOL/L
CALCD
C,PCT
P,BAR
CALCO
P» PC T
10
573.150
3.5000
3.5029
“0.08
157.853
157.724
0.08
10
598.150
3.5000
3.5039
“0.11
167.924
167.731
0.11
10
623. 150
3.5000
3.5061
-0.17
178.025
177.702
0.18
10
303.150
4.0000
4.0149
-0.37
45.714
45.684
0.07
10
323.150
4.0000
4.0182
-0.45
56.768
56.667
0.18
10
348.150
4.0000
4.0086
-0.21
69.920
69.836
0.12
10
373.150
4.0000
4.0044
-0.11
82.737
82.675
0.07
10
398.150
4.0000
4.0030
-0.07
95.353
95.299
0.06
10
423.150
4.0000
4.0025
-0.06
107.820
107.764
0.05
10
448.150
4.0000
4.0031
-0.08
120.189
120.108
0.07
10
473.150
4.0000
4.0035
-0.09
132.460
132.355
0.06
10
498. 150
4.0000
4.0038
-0.10
144.652
144.521
0.05
10
523.150
4.0000
4.0046
-0.11
156.793
156.618
0.11
10
548.150
4.0000
4.0046
-0. 12
168.860
168.656
0.12
10
573.150
4.0000
4.0055
-0.14
180.897
180.643
0.14
10
598.150
4.0000
4.0067
-0.17
192.920
192.583
0.17
10
623.150
4.0000
4.0093
-0.23
204.991
204.481
0.25
10
303.150
4.5000
4.5112
-0.25
46.448
46.437
0.02
10
323.150
4.5000
4.5245
-0.54
59.302
59.191
0.19
10
348.150
4.5000
4.5115
-0.25
74.601
74.498
0.14
10
373.150
4.5000
4.5068
-0.15
89.556
89.466
0.10
10
398.150
4.5000
4.5058
-0.13
104.316
104. ai3
0.10
10
423.150
4.5000
4.5055
-0.12
118.922
118.800
0.1G
10
448.150
4.5000
4.5065
-0.15
133.434
133. 261
0.13
10
473.150
4.500P
4.5065
-0. 15
147.823
147.621
0.14
10
498.150
4.5000
4.5072
-0.16
162.148
161.896
0.16
10
523. 150
4.5000
4.5076
-0.17
176.399
176.898
0.17
10
548.150
4.5000
4.5076
-0.17
190.571
190.336
0.18
10
573.150
4.5000
4.5080
-0.18
204.706
204.318
0.15
10
598.150
4.5000
4.5093
-0. 21
218.837
218.348
0.22
10
623.150
4.5000
4.5123
-0.27
233.031
232.331
0.30
10
323.150
5.0000
5.0242
-0.48
61. 395
61.300
0.16
10
348.150
5.0000
5.0099
-0.20
78.919
78.835
0.11
10
373. 150
5.0000
5.0065
-0.13
96. 135
96.850
0.05
10
398.150
5.0000
5.0068
-0.14
113.178
113.057
0.11
10
423.150
5.0000
5.0073
-0. 15
130.076
129.91?
0.13
10
448.150
5.0000
5.0083
-0.17
146.871
146. 646
0.15
10
473.150
5.0000
5.0086
-0.17
163.555
163.281
0.17
10
498.150
5.0000
5.0089
-0.18
180.155
179.830
0.18
10
523.150
5.0000
5.0087
“0 . 17
196.667
196.306
0.18
10
548.150
5.0000
5.0088
-0.18
213.119
212.715
0 .19
10
573.150
5.0000
5.0094
“0.19
229.543
229.063
tH
•
CD
10
598.150
5.0000
5.0107
-0.21
245.951
245.357
0.24
10
623. 150
5.0000
5.0140
-0.28
262.444
261.600
0.32
10
323.150
5.5000
5.5078
-0.14
63.184
63.156
0.04
10
348.150
5.5000
5.4995
0. 01
83. 020
83.024
-0.01
10
373.150
5.5000
5.5009
-0.02
102.635
102.623
0.01
1 0
398.150
5.5000
5.5036
-0. 06
122.111
122.046
0.05
10
423.150
5.5000
5.5056
-0. 10
141.466
141.335
0.05
10
448.150
5.5000
5.5070
-0.13
160.716
160.516
0.12
10
473.150
5.5000
5.5075
-0.14
179.857
179.604
0.14
10
498.150
5.5000
5.5083
-0.15
198.931
198.612
0.16
10
523.150
5.5000
5.5081
-0.15
217.90 1
217.547
0.16
189
Table 12. Experimental and calculated P-P-T data- - - (Continued)
EQUATION OF STATE VS . PVT DATA
10
T,K
MOL/L
CALCD
0 ,PCT
P » BAR
CALCO
Pf PC T
10
548.150
5.5000
5.5080
- 0.15
236.807
236.415
0.17
10
573.150
5.5000
5.5087
- 0.16
255.693
255.221
0.18
10
598.150
5.5000
5.5099
- 0.18
274.554
273.970
0.21
10
623.150
5.5000
5.5135
- 0.25
293.532
292.665
0.30
10
323.150
6.0000
5.9723
0.46
64.792
64.887
- 0.15
10
348.150
6.0000
5.9798
0.34
87.049
87.221
- 0.2 0
10
373.150
6,0000
5.9890
0.18
109.215
109.367
- 0.14
10
398.150
6.0000
5.9962
0.06
131.309
131.383
- 0.06
10
423.150
6.0000
5.9999
0.00
153.294
153.295
-o.oc
10
448.150
6.0000
6.0026
- 0.04
175.196
175.118
0.04
10
473.150
6.0000
6.0042
- 0.07
197.010
196.861
0.08
10
498.150
6.0000
6.0053
- 0.09
218.751
218.531
0.10
10
523.150
6.0000
6.0049
- 0.08
240.359
240.132
0.09
10
548.150
6.0000
6.0051
- 0.09
261.935
261.668
0.10
10
573.150
6.0000
6.0056
- 0.09
283.465
283.143
0.11
10
598.150
6.0000
6.0070
- 0.12
304.998
304.557
0.14
10
623.150
6.0000
6.0109
- 0 . 18
326.668
325.914
0.23
10
323.150
6.5000
6.4217
1. 20
66.335
66.610
- 0.41
10
348.150
6.5000
6.4533
0.72
91.161
91.579
- 0.46
10
373.150
6.5000
6.4720
0.43
116.055
116.465
- 0.35
10
398. 150
6.5000
6.4843
0.24
140.958
141.281
- 0.23
10
423.150
6.5000
6.4913
0.13
165.80 0
166.031
- 0.14
10
448.150
6.5000
6.4957
0.07
190.579
190.717
- 0.07
10
473.150
6.5000
6.4981
0.03
215.266
215.340
-0.03
10
498.150
6.5000
6.4997
0.00
239.886
239.900
- 0.01
10
523.150
6.5000
6.4995
0 . 01
264. 373
264.398
- 0.01
10
548.150
6.5000
6.5003
- 0.00
288.851
288.833
0.01
10
573.150
6.5000
6.5005
- 0.01
313.236
313.207
0.01
10
598.150
6.5000
6.5023
- 0 . 04
337.677
337.520
0.05
10
623.150
6.5000
6.5059
- 0.09
362.215
361.772
0.12
10
323.150
7.0000
6.8616
1.98
67.920
68.441
- 0.77
10
348.150
7. 0000
6.9238
1.09
95.515
96.251
- 0.77
10
373.150
7.0000
6.9537
0.66
123.367
124.100
- 0.59
10
398.150
7.0000
6.9727
0. 39
151.344
151.950
- 0.40
10
423.150
7.0000
6.9822
0.25
179.269
179.778
- 0.28
10
448.150
7.0000
6.9890
0 . 16
207. 185
207.572
- 0.15
10
473.150
7.0000
6.9918
0.12
234.982
235.323
- 0.15
10
498.150
7.0000
6.9933
0 . 10
262.698
263.022
- 0.12
10
523.150
7.0000
6.9939
0.09
290.334
290.667
- 0.11
10
548.150
7.0000
6.9943
0.08
317.906
318.353
- 0.11
10
573.150
7.0000
6.9948
0 . 07
345.424
345.778
- 0.10
10
598.150
7.0000
6.9967
0 . 05
372.994
373.241
- 0.07
10
623.150
7.0000
7.0011
- 0.02
400.729
400.640
0.02
10
323.150
7.5000
7.3181
2.43
69.687
70.439
- 1.08
10
348.150
7.5000
7.4020
1.31
100.302
101.338
- 1.03
10
373.150
7.5000
7.4407
0.79
131.381
132.409
- 0.78
10
398.150
7.5000
7.4644
0.48
162.693
163.557
- 0.53
10
423.150
7.5000
7.4762
0 . 32
193.990
194.733
- 0.38
10
448.150
7.5000
7.4843
0.21
225.305
225.906
- 0.27
10
473.150
7.5000
7.4879
0.16
256.509
257.056
- 0.21
10
498.150
7.5000
7.4900
0.13
287. 646
288.170
- 0.18
10
523.150
7.5000
7.4901
0.13
318.646
319.235
- 0.18
10
548.150
7.5000
7.4899
0.14
349.569
350.246
- 0.16
190
Table 12. Experimental and calculated P-p-T data- - - (Continued)
EQUATION OF STATE VS. PVT DATA
ID
T* K
MOL/L
CALCD
D,PCT
P » BAR
CALCD
F,PCT
10
573.150
7.5000
7.4900
0.13
380.454
381.196
-0.20
10
323.150
8.0000
7.8017
2.48
71.775
72.734
-1.34
10
348.150
8.0000
7.8935
1.33
1 05.750
107.024
-1.2C
1 0
373.150
8.0000
7.9379
0.78
140.417
141.621
-0.86
1 0
398.150
8.0000
7.9617
0.48
175.341
176.373
-0 .59
10
423.150
8,0000
7.9749
0.31
210.334
211.202
-0.41
10
448.150
8.0000
7.9832
0.21
245.348
246.061
-0.29
10
473.150
8.0000
7.9884
0.14
280.338
280.917
-0.21
10
498.150
8.0000
7.9888
0.14
315.099
315.748
-0.21
10
523.150
8.0000
7.9884
0 . 14
349.779
350.538
-0.22
10
548.150
8.0000
7.9882
0.15
384.407
385.276
-0.23
10
323.150
8.5000
8.3116
2.22
74.407
75.542
-1.52
10
348.150
8.5000
8.3967
1.22
112.147
113.592
-1.29
10
373.150
8.5000
8.4411
0.69
150.763
152.072
-0.87
10
398.150
8.5000
8.4648
0.41
189. 705
190.779
-0.57
10
423.150
8.5000
8.4774
0.27
228.728
229.609
-0.39
10
448.150
8.5000
8.4858
0.17
267.823
268.497
-0.25
10
473.150
8.5000
8.4903
0.11
306.859
307.399
-0.18
10
498.150
8.5000
8.4898
0.12
345.630
346.287
-0.19
10
523.150
8.5000
8.4886
0 . 13
384. 306
385.139
-0.22
10
323.150
9.0000
8.8361
1. 82
77.856
79.144
-1.65
10
348,150
9.0000
8.9087
1.01
119.857
121.393
-1.28
10
373.150
9.0000
8.9493
0.56
162.857
164.171
-0.81
10
398.150
9.0000
8.9723
0.31
206.258
207.234
-0.47
10
423.150
9.0000
8.9836
0.18
249.728
250.455
-0.29
10
448.150
9.0000
8.9901
0. 11
293.226
293.756
-0.18
10
473.150
9.0000
8.9943
0 . 06
336.726
337.085
-0.11
10
498.150
9.0000
8.9924
0.08
379. 850
380.403
-0.15
10
323. 150
9.5000
9.3667
1.40
82.499
83.907
-1.71
10
348.150
9.5000
9.4253
0.79
129.325
130.868
-1.19
10
373. 150
9.5000
9.4606
0.41
177.203
178.418
-0.69
10
398.150
9.5000
9.4811
0.20
225.515
226.290
-0.34
10
423.150
9.5000
9.4913
0.09
273.897
274. 343
-0 .16
10
448. 150
9.5000
9.4975
0 .03
322.334
322.486
-0.05
10
473.150
9.5000
9.4993
0 . 01
370.609
370.659
-0.0 1
10
323. 150
10.0000
9.8976
1.02
88.838
90.311
-1.66
1 0
348.150
10.0000
9.9423
0.58
141.085
142.568
-1.05
10
373. 150
10.0000
9.9730
0.27
154.424
195.427
-0.5 2
10
398. 15 0
10.0000
9.9915
0.08
248.207
248.618
-0.17
1 0
423.150
10.0000
9.9996
0. 00
301.977
301.991
-0.0 0
10
448.150
10.0000
10.0037
-0 . 04
355.71 5
355.450
0.07
10
323. 150
10.5000
10.4239
0 . 73
57.478
98.972
-1.53
10
348.150
10.5000
10.4587
0.39
155.840
157. 176
-0,86
1 0
373.150
10.5000
10.4843
0.15
215.238
215.943
-0.33
1 0
398.150
10.5000
10 . 4999
0.00
275.014
275.018
-0,00
10
423. 150
10.5000
10 . 5069
-0. 07
334.734
334,252
0.14
1 0
448.150
10.5000
10.5097
-0 . 09
394.346
393.551
0 .20
1 0
296.150
11.0000
10.9727
0 . 25
46.397
46.734
-0.73
10
323.150
1 1 .000 0
10.9450
0.50
1 09. 20 1
110.664
-1.34
10
348.150
11.0000
10.9729
0.25
174.42 0
175.525
-0.6 3
1 0
373.150
11.0000
10.9952
0 . 04
240.596
240.858
-0.11
10
398.150
11.0000
11.0079
-0.07
306.980
306.438
0 . 18
10
423.150
11.0000
11.0133
-0.12
373.226
372.128
0.29
191
Table 12. Experimental and calculated P-P-T data- - - (Continued)
EQUATION OF STATE VS. PVT DATA
ID
T » K
MOL/L
CALCD
0,FCT
P, BAR
CALCD
P,PCT
10
298.150
11.5000
11.4689
0. 27
54.120
54.730
-1.13
10
323.150
11.5000
11.4619
0.33
124.979
126.340
-1.0 9
10
348.150
11.5000
11.4841
0.14
197.803
198.620
-0.41
10
373.150
11.5000
11.5036
-0.03
271.474
271.232
0.09
10
398.150
11.5000
11.5151
-0.13
345.236
343.992
0.36
10
298.150
12.0000
11.9705
0. 25
66.139
67.006
-1.31
10
323.150
12.0000
11.9763
0.20
146.022
147. 141
-0.77
10
348.150
12.0000
11.9934
0. 05
227.224
227.651
-0.19
10
373.150
12.0000
12.0104
-0.09
309. 160
308.307
0.28
10
398.150
12.0000
12.0220
-0. 18
391.141
388.973
0.55
10
298.150
12.5000
12.4738
0.21
83.768
84.868
-1.31
10
323.150
12.5000
12.4854
0.12
173.516
174.419
-0.52
10
348.150
12.5000
12.5006
-0.01
264. 063
264.011
0.02
10
373.150
12.5000
12.5155
-0.12
355.074
353.521
0.44
10
298.150
13.0000
12.9782
0.17
108.587
109.845
-1.16
10
323.150
13.0000
12.9890
0.08
208.863
209.738
-0.42
10
348.150
13.0000
13.0057
-0.04
309.878
309.305
0.18
10
273.150
13.5000
13.4989
0. 01
31.583
31.642
-0.19
10
298.150
13.5000
13.4821
0.13
142.310
143.698
-o.9e
10
323.150
13.5000
13.4926
0. 05
254.146
254.893
-0.29
10
348.150
13.5000
13.5083
-0. 06
366.398
365.364
o.2e
10
273. 150
14.0000
13.9904
0. 07
62,783
63.504
-1.15
10
298.150
14.0000
13.9863
0. 10
187.036
188.425
-0.74
10
323.150
14.0000
13.9986
0 . 01
311.735
311.915
-0.06
10
273. 150
14.5000
14.4880
0.08
106.237
107.449
-1.14
10
298.150
14.5000
14.4911
0.06
245.114
246.273
-0.47
10
323.150
14.5000
14.5033
-0.02
383. 607
383.080
0.14
10
273.150
15.0000
14.9872
0.09
164.251
165.958
-1.04
10
298.150
15.0000
14.9928
0. 05
318.560
319.750
-0 .37
10
248.150
15.5000
15.4982
0.01
67.393
67.644
-0.37
10
273.150
15.5000
15.4916
0. 05
240.347
241.786
-0.60
10
298.150
15.5000
15.4932
0.04
410.257
411.635
-0.34
10
248.150
16.0000
15.9930
0.04
144. 656
145.900
-0.86
10
273.150
16.0000
15.9950
0 . 03
336.908
337.977
-0.32
NP = 298 , DNRMSPCT = 0.401, PMEANPCT = 0.256
192
Table 12. Experimental and calculated P-p-T data- - - (Continued)
EQUATION OF STATE VS. PVT DATA
ID
T » K
MOL/L
CALCD
D,PCT
P , BAR
CALCQ
P,PCT
101
2 63 . ft 4 7
1.1061
1. Q9Q1
1.45
1 7.993
18.174
- 1 - 01
102
267.267
1. 1058
1.0955
0.92
18.458
1 8. 578
-0.65
103
270.457
1. 1054
1.0970
Q.76
1 8 . 8 49
18.951
-0. 54
104
273.094
1. 1054
1.0977
0.69
19.165
19.261
-0.50
105
276.946
1.1051
1 .0987
0.58
19.623
1 9.706
-0. 42
106
261.362
1. 1048
1.0995
0.48
20.142
20.213
-0. 35
107
283.868
1. 1044
1.1000
0.40
21.006
21.069
-0. 30
108
293.954
1. 1038
1.0998
0.36
22.139
22.202
-0.28
109
306.232
1.1034
1.0999
0.32
22.953
23.012
-0.25
110
315.923
1.102b
1.0994
0.31
24.016
24.077
”0. 25
1 1 1
326.1 85
1.1021
1 .0990
0 .28
25.1 35
25.192
-0. 23
1 112
332.655
1.1018
1.0989
0.26
25.836
25.892
- 0. 22
113 343.612 1. 1011 1. 0 96.4 0.25 27.010 27.067 -0.21
211 29Q..3L3-5 2.5966 2. 5 S2.1 Q.56 3-5. .4 79 3 5,55 3 -Q.21
202
292.700
2.5963
2.5957
0.02
36.139
36.142
-0.01
203
294.967
2.5959
2.5983
-0.09
36.907
36.894
n. 04
204
297.293
2.5956
2.5988
-0.12
37.678
37.658
0.05
205
299.402
2.5953
2.6006
-0.20
38.380
38.346
0. 09
206
300.717
2.5953
2.5987
-0.13
38.797
38.773
0.06
207
306.169
2.5943
2.5983
-0.16
40.554
40.524
0.08
i 208
311.528
2.5936
2.5974
-0.14
42.255
42.223
0.07
209
317.621
2.5926
2.5557
-0.12
44.159
44.130
0. 07
210
325.244
2. 5916
2.5535
-0.07
46.507
46.487
0.04
211
333.158
2.5903
2.591 1
-0.03
48.909
48.900
Q. 02
212
343.446
2.5890
2.5883
0 • C 3
51.991
52.000
-0.02
301
305.270
4.5943
4.519 0
1.64
47.863
47.962
-0.21
30 2
306.575
4.5939
4.536B
1 .24
48.748
43.836
-0. 18
303
3C6.998
4.5939
4.5454
1.06
49.040
49.118
-0.16
3Q4
308.355
4.5936
4.5483
0.99
49.934
50.018
-0. 17
305
309.475
4.5933
4.5514
0.91
50.671
50.757
-0. 17
306
310.226
4 .5929
4.5 54 7
0.83
51.168
51.251
”0.16
307
311.461
4.5926
4.5562
0.79
51.973
52.060
-0.17
3Q8_
314.528
4.5920
4.5585
0.73
53.959
54.053
-0. 16 ...
309
316.957
4. 5913
4.5537
0.71
55.518
55.628
-0. 20
. 3J- CL
326.208
4. 5890
4.5558
0.72
61.371
61.537
_ ~Ha_2J _
311
329.514
4.5880
4.5471
0.89
63.647
63. 878
-0. 36
112 3 33. 690 4.5670 4.5821 0.11 66.220 66 , 251 ... -G_^_Q5,
401
305.232
5 .3595
4.9727
7.22
48.302
48.507
-0,42
402
306.165
5.3595
5.1961
3.05
49.168
49.266
”0. 20
.. 4Q3
307.343
5.3588
5.2688
1.68
50.145
50.216
-Q.T4
404
308.378
5.3585
5.2844
1.38
50.973
51.045
-0. 14
405
310.753
5.3576
5.3268
0.58
52.892
52.935
-0. 08
406
315.523
5.3565
5.3429
0.25
56.662
56.693
-0.05
407
320.133
5.3552
5.3418
0.25
60.250
60.291
-0. 07
406
324.789
5.3535
5.3397
0.26
63.845
63.90 0
-0. 09
. 489
329.529
5.3522
5.3387
0.25
67.488
67.553
_
410
334.774
5 . 3505
5.3379
0.24
71.501
71.574
-0.10
411
342.584
5.3482
5,3379
0.19
77.45Q
77.525
1 93
Table 12. Experimental and calculated P-p-T data- - - (Continued)
EQUATION OF STATE VS. PVT DATA
ID
T,K
MOL/L
CALCD
D,PCT
P,BAR
CALCD
P,PCT
501
304.721
6. 1373
5.2442
14.55
48.051
48.166
-0.24
502
305.360
6.1370
5.5227
10.01
48.682
48.763
-0.17
503
305.932
6,1367
5.6833
7.39
49.202
49.289
-0.18
504
306.528
6.1367
5.7928
5.60
49.760
49.854
-0.19
505
307.927
6. 1360
5.9612
2.85
51.087
51.173
-0.17
506
309.803
6.1354
6.0301
1.71
52.846
52.933
-0.16
507
314.618
6.1337
6.0789
0.89
57.330
57.425
-0. 17
508
320.295
6. 1317
6.0814
0.82
62.550
62.692
-0.23
509
325.427
6.1300
6.0801
0.82
67.241
67.434
-0.29
510
330.799
6.1280
6.0821
0.75
72.153
72.381
-0. 32
511
336.699
6. 1260
6.0860
0.65
77.549
77.797
-0.32
512
343.543
6. 1237
6.0873
0.59
83.782
84.059
-0. 33
601
305.423
6.7892
5.9149
12.88
48.790
48.811
-0. 04
602
305.743
6.7888
5.6716
16.46
49.034
49.151
-0.24
603
306.184
6.7888
5.8169
14.32
49.461
49.619
-0.32
604
306.693
6.7885
6.0142
11.41
49.978
50.159
-0.36
605
307.189
6.7885
6.2012
8.65
50.499
50.685
-0. 37
606
309.162
6.7875
6.4936
4.33
52.576
52.781
-0. 39
607
312.231
6.7865
6.5013
4.20
55.667
56.040
-0.67
608
317.552
6.7845
6.5778
3.05
61.188
61.688
-0.82
609
322.347
6.7825
6.6161
2.45
66.200
66.775
-0.87
610
327.148
6.7805
6.6398
2.08
71.229
71.864
-0.89
611
333.270
6.7782
6.6639
1.69
77.676
78.349
-0. 87
612
343.351
6.7745
6.6836
1.34
38.268
89.013
-0.84
701
305.633
8.1021
5.9810
26.18
48.991
49.211
-0.45
702
306.319
8.1016
7.1329
11.96
49.819
50.129
-0.62
703
307.031
8.1014
7.6433
5.65
50.808
51.087
-0.55
704
309.123
8. 1008
7.6411
5.67
52.160
52.564
-0.77
705
311.913
8.0991
7.6884
5.07
56.966
57.728
-1.34
706
316.998
9. 0968
7.7679
4.06
63.649
64.713
-1. 67
707
322.404
8.0941
7.8239
3.34
70.899
72.181
-1.81
708
327.708
9.0918
7.8583
2.89
78.080
79.537
-1.87
709
333.451
8.0891
7.8875
2.49
85.935
87.525
-1.85
710
339.014
8. 0865
7.9157
2.11
93.653
95.278
-1.73
711
343.093
8 . 0845
7.9315
1.89
99.332
100.969
-1.65
801
305.015
6. 8104
8.2090
6.83
48.426
48.920
-1.02
802
306.220
8.8098
8.2922
5.87
50.132
50.785
-1. 3C
803 •
307.783
8.8088
6.3015
5.76
52.332
53.219
-1.70
804
309.310
8. 8081
8.4607
3.94
54.784
55.611
-1.51
805
310 .839
9 . 8 074
P .4754
3.77
57. 061
58.016
-1. 67
806
314.681
8.8055
8.4776
3.72
62.751
64.091
-2. 14
807
319.840
8. 8028
8.5218
3.19
70.675
72.302
-2.30
808
325.591
8.7998
8.5685
2.63
79.720
81.50 7
-2. 24
809
331.302
8.7971
e .6010
2.23
8 8.7 9**
90.690
-2. 13
810
337.309
6. 7938
8.6277
1.89
98.429
100.374
-1.98
811
342.720
8.7912
8.6448
1.67
107.138
109.122
-1.85
901
303.430
9.6887
5.5875
1.04
48.035
48.413
-0. 79
902
303.752
9.6887
9.585 0
1 . 07
48.615
49.016
-o. e 2
903
303.962
9.6887
9.5803
1.12
48.982
49.410
-0.87
194 _
Table 12.
Experimental and calculated
P-P-T
data- - - (Continued)
EQUATION OF STATE VS. PVT DATA
ID
T,K
MOL/L
CALCD
D,PCT
P» BAR
CALCD
P,PCT
904
3 0 4.336
9.6884
9.5310
1 .62
49.484
5 0.110
-1 . ?7
905
305.899
9.6874
9.5180
1.75
52.267
53.046
-1. 49
906
303-437
9.6861
9.5031
1.89
56.812
57.339
-1 .81
907
313.081
9.6834
9.5096
1.80
65.354
66.663
-2. 00
908
S') ft „ n u ft
9. 6fl07
9.531 8
1.54
74.730
76.163
-1 - 9?
909
322.924
9. 6781
9.5421
1.40
83.951
85.534
-1.89
910
S ? 7 . 9 9 1
9 . 6751
9.5515
1.28
93. 6ns
95.306
-1 .81
* 911
334.413
9. 6714
9.5540
1.21
105.611
107.733
-1.82
912
342.647
9.6668
9.5814
0.88
122.022
123. 717
-1.39
1001
293.336
11 .3761
11.3655
0.09
38.979
39.135
-0.40
1002
293.674
11.3761
11.3634
0.11
39.876
40.064
-0.47
inns
294.1 03
11. 3758
11 .3587
0.15
4 0.9R1
41 .23 ft
-fi.63
1004
294.883
11.3751
11.3534
0.19
43.036
43.374
-0.78
ions
295.416
11 . 3748
11. 3495
0.22
44.436
44.835
-n. 90
1006
295.792
11.3745
11.3470
0.24
45.424
45.865
-0.97
i nn7
296.034
1 1 . 3745
11.3452
0.26
46.058
46.53?
-1.03
1006
298.624
11.3728
11.3334
0.35
52.946
53.646
-1. 32
1009
301.993
-11. 3705
11 .3220
0 .43
61.951
62.91 ?
-1.55
1010
304.995
11. 3685
11.3180
0.44
70.089
71.18 3
-1. 56
1011
309.657
11.3651
11.3151
0.44
82.812
84.041
-1.40
1012
314.468
11.3622
11.3130
0.43
95.989
97.341
-1.41
_ 1013
11 . 3588
11.3170
0.37
109.329
110.604
-1. 17 ..
1014
324.667
11.3552
11.3213
0.30
124.415
125.561
-0.92
1015
325.535
11 . 3525
11.3216
0.27
135.300
136.420
-0, 83
1016
335.200
11. 3482
11.3225
0.23
153.711
154.743
-0.67
1017
341.335
11.3442
11.3099
0.30
170.251
171.747
-0.88
1101
277.504
12. 9867
13.0057
-0.13
27.349
26.677
2.46
1102
277.925
12. 9884
13.0037
-0.12
28.958
28.348
2. 11
1103
273.136
12.9884
13.0006
-0.09
29.682
29.192
1. 65
1104
278.777
12.9877
12.9994
-0.09
32.203
31.730
1.47
1105
279.387
12.9874
12.9966
-0.07
34.536
34.156
1.10
1106
279.902
12. 9670
12.9955
-0.07
36.554
36.202
0.96
1107
282.317
12.9850
12.9836
Q .01
45.716
45.770
-0.12
1103
284.543
12. 9834
12.9823
0.01
54.539
54.588
-0. 09
1109
286.727
12.9614
12.9784
0.02
63.074
63.214
-0.22
1110
290.613
12. 9784
12.9727
0.04
78.298
73.585
-0. 37
1111
297.190
12.9734
12.9664
0 . 05
104.097
104.490
-0.38
1112
304.683
12.9674
12.9640
0.03
133.702
133.914
-0.16
1113
312*£Z5_
12.9614
12.9601
0.01
164.925
165.016
-0.06
1114
320.632
12.9548
12 .9581
-0.03
197.261
197.007
0.13
1115
329.753
12.9476
12.9589
-0.09
232.594
231.663
. 0 * 4 C _
1116
339.939
12.9401
12.9531
-0.10
272.480
271.290
0.44
1201
263.389
13. 7157
13.7212
-0.04
21.840
21.525
1. 44
1202
263.613
13. 7153
13.7206
-0.04
22.869
22.567
1. 32
1203
263.944
13 . 7150
13.7198
-0.04
24.394
24.115
I. 14
1204
269.313
13. 7150
13.7180
-0.02
26.037
25.862
0.67
1205
269.861
13.7143
13.7169
-0.02
28.565
28.418
0.52
1206
270.539
13. 7137
13.7146
-0.01
31.644
31.586
0, 18
1207
271.359
13. 7130
13.7128
0.00
35.412
35.424
-0.03
12 08
272.788
13.7120
13.7094
0.02
41.957
42.115
-3.38
195
Table 12. Experimental and calculated P-p-T data- - - (Continued)
EQUATION OF STUE VST PVT OATA
ID
T * K
MOL/L
CALCD
D,PCT
P» BAR
CALCO
P» PCT
1209
277.605
13. 7060
13.7001
0.06
64.048
64.572
-0.82
1210
281.789
13. 7044
13.6957
0.06
83.378
33.991
-0.74
1211
266.317
13.7007
13.6911
0.07
104.232
104.953
-0.69
1212
290.328
13.6974
13.6879
0.07
122.712
123.454
-0.61
1213
296.212
13.6924
13.6851
0 . 05
149.868
150.484
-0. 41
1214
302.145
13. 6874
13.6819
0.04
177.132
177.624
-0.28
1215
310.715
13.6604
13.6790
0.01
216.504
216.647
-0. 07
1216
313.093
13.6734
13.6783
-0.04
255.083
254.561
0.20
1217
334.225
13.6606
13.6723
-0.08
323.892
322.512
0 • 43
1301
256.613
14 . 5544
1 4 .5 58 4
-0.03
19.044
13.702
1.80
1,30 2
257.326
14.5537
14.5556
-0.01
22.901
22.743
0. 69
1303
257.911
14.5534
14.5538
-0.00
26.113
26.073
0. 15
1304
259.065
14.5524
14.5519
0.00
32.560
32.60 7
-0.15
1305
263.450
14 . 5484
14.5440
0.03
56.915
57.324
-0.72
1306
266.631
14.5437
14.5353
0 . 06
85.525
86.354
-0. 97
1307
273.496
14. 5391
14.5321
0.05
112.695
113.417
• -0.64
1306
283.116
14.5304
14.5247
0.04
165.879
166.542
-0.40
1309
291.287
14.5231
14.5194
0.03
210.784
211.238
-0. 22
1310
298.372
14.5168
14.5160
0.01
249.591
249.70 0
-0. 04
1311
307.254
14. 5088
14.5117
-0.02
297.945
297.542
0.14
1312
319.529
14.4978
14.5045
-0.05
364.059
363.039
0.28
1401
248.290
15 .0496
15.0457
0.03
14.224
14.625
-2. 82
1402
249.192
15. 0486
15.0456
0.02
20.022
20. 331
-1.54
1403
250.248
15. 0476
15.0433
0.03
26.564
27.018
-1. 71
1404
253.374
15 . 0446
15.0378
0.05
45.992
46.742
-1. 63
1405
258.654
15. 0396
15. 0 30 0
0.06
78.728
79.845
-1. 42
1*06
265.858
15. 0329
15.0229
0.07
123.345
124.612
-1.03
1407
272.972
15.0263
15.0163
0.07
167. 038
168.374
-0. 80
1403
279.035
15. 0206
15.0116
0.06
204.080
205.354
-0.62
1409
285.189
15. 0146
15.0074
0.05
241.489
242.571
-0.45
1410
29*. 840
15. 0057
15 .0025
0.02
299.962
300.461
-0. 17
1411
30*. 470
14. 9967
14.9963
0.00
357.549
357.617
-0. 02
1412
316.744
14.9850
14.9999
-0.10
432.383
429.618
0. 64
1501
240.739
15 . 4546
15.4609
-0.04
10.100
9.335
7.57
1502
240.885
15. 4546
15.4603
-0.04
11.065
10.369
6.28
1503
241.249
15.4543
15.4602
-0.04
13.638
12.90 5
5. 37
150 4
241.891
15. 4536
15 . 4590
-0.03
18.027
17.364
3.68
1505
243.148
15.4523
15.4565
-0.03
26.600
26.074
i.9e
1506
246.601
15.4490
15.4481
0.01
49.622
49.938
-0.23
1507
251.930
15.4436
15.4423
C. 01
86.273
86.453
-0.21
1508
257.186
15.4386
15.4375
0.01
122.011
122.182
-0. 14
1509
261.7*5
15. 4343
15.4335
0.01
152.813
152.930
-0. 08
1510
267.242
15.4287
15.430 0
-0.01
189.660
139.655
0.11
1511
273.834
15. 4223
15.4245
-0.01
233.736
233.380
0.15
1512
282.799
15 . 4137
15.4187
-0.03
293.088
292.212
0. 30
1513
290.022
15. 4067
15.4131
-0.04
340.314
339.120
0.35
1514
296.219
15.3987
15.4081
-0.06
393.682
391.85 0
0.47
1515
309.559
15. 3378
15.4010
-0.09
466.789
464.006
0.60
1601
230.051
16. 0366
16.0361
0.00
8.0 60
8.126
-0.82
196
Table 12. Experimental and calculated P-p-T data-
(Continued)
EQUATION OF STATE VS. FVT DATA
ID
T t K
MOL/L
CALCD
D,PCT
P,BAR
CALCD
P,PCT
1_qT2
16. 0362
16.0357
n - nn
9.965
1 fl.043
-0.78
1603
230.307
16. 0359
16.0348
0.01
13.973
14.142
-1.21
1 604
232.572
16. 0339
16.0324
0.01
27. 840
28.078
-0.85
1605
2 3h . 16 0
16. 0323
16.0286
0.02
40.005
4 0.59 0
-1.46
1606
9 7 u O C ~
16.0268
0.03
48.499
49.21 7
-1 . 48
1607
242.791
16. 0236
16.0158
0.05
106.582
107.928
-1. 26
1 608
249.107
16. 0170
16.0093
0.05
155.042
156.422
-0.89
T 1609
254.888
16. 0110
16.0029
0.05
198.800
200.331
-0.77
1610
262.164
16. 0037
15.9976
0 . 04
253.808
255.01 7
-0. 46
1611
271.236
15.9943
15.9880
0.04
320.920
322.271
-0. 42
1612
279.282
15.9860
15.9829
0.02
3 B 0.442
381.144
-0.18
1613
286.940
15.9781
15.9779
0.00
436.516
436.544
-0.01
1 614
2 94 . 5 1+3
15.9704
15.9734
-0.02
491.788
491.055
0.15
1615
301.025
15.9638
15.5651
-0.01
537.420
537.087
0.06
1701
222.875
15.4230
16.4030
0.12
7.625
11.158
-46. 34
1702
223.264
16. 4227
16.4017
0.13
10.831
14.539
-34. 24
1703
223.573
16.4223
16.4012
0.13
13.464
17.210
-27. 83
170 4
225.014
16. 421 0
16.3994
0.13
25.785
29.680
-15. 10
1705
230.291
16 . 4154
16.3902
0.15
70.101
74.832
-6. 75
1736
237.396
16. 4077
16.3812
Q.16
129.495
134.758
-4.06
1707
252.785
16. 3911
16.5647
0.16
255.712
261.545
-2. 28
1708
253.848
16. 3838
16 .3580
0.16
312.610
318.592
-1. 91
1709
2b7.6Q2
16. 3755
16.3512
0.15
374.481
380.373
-1. 57
1710
275.649
16.3668
16.3460
0.11
438.898
443.679
-1. 09
1711
282.466
16. 3598
16.3429
0.10
492.335
496.803
-0.91
■■ 17 . 1.2
293.185
16 . 3485
16.3360
0®08
575.740
579.231
-0. 61
.14 Hi. 215 .247 16.7539 16.7727 -0.11 6.823 3 .Q84 54. 8Q
1802
215.504
16.7536
16.7728
-0.11
9.325
5.477
41.27
1 3 Q 3
215.892
16.7532
16.7715
-0.11
12.777
9.119
28.62 .
1804
216.369
16.7526
16.7710
-0.11
17.256
13.541
21.53
1805
216.832
16.7522
16.7702
-0.11
21.511
17.890
16.83
1306
217.058
16.7519
16.7692
-0.10
23.470
19.977
14. 88
1807
220.809
16. 7476
16.7629
-0.09
57.842
54.663
5. 50
1808
22o.802
16.7409
16.7551
-0.08
112.523
109.436
2. 74
1809
2 3 -f . 9 1 7
16. 7323
16.7456
-0.08
185.542
132.440
1_. 67
1810
243.045
16 .7233
16.7365
-0 .08
257.383
254.185
1. 24
18UL
250.885
16.7147
16.7300
-0.09
326.185
322.276
1 . 20
1812
260.378
16 .7044
16.7226
-0.11
408.366
403.433
1.21
1313
2.oJ±3lZ7
16. 6937
16.7176
-0.14
490.451
433.674
1. 38
1314
273. 13 0
16 . 6847
16.7118
-0.16
559.695
551.671
1. 43
1315
2 8-4.744
16.6778
16.7078
-0.18
615.144
605.967
1. 49
1816
293.608
16.6681
16.7025
-0.21
686.810
677.857
1.59
1901
206.953
17. 1250
17. 0977
0.16
8.116
14.30 0
-76. 19
1902
209.053
17. 1244
17.0967
0 .16
14.067
20.385
-44. 71
1903
213.403
17. 1194
17.0891
0.18
57. 037
64.142
-12.46
1904
213.5_6Sl
0.19
107.538
115.363
-7,. 2.8
1905
227. 034
17. 1038
17.0713
0.19
189.571
197.916
-4, 40
1906
233.700
17. 0961
17.0636
0.19
252.998
261.697
-i. 44 _
1907
241.770
17. 0871
17.0560
0.18
328.989
337.725
-2.66
1908
251.549
17.0762
17.0496 _
0.16
4.2 0.2 78
428.155
-1.87
197
(
Table 12. Experimental and calculated P-p-T data- - - (Continued)
EQUATION OF STATE VS. PVT OATA
ID
T,K
MOL/L
CALC D
D,PCT
P, BAR
CALCO
P,PCT
1909
260.957
17.0655
17.0446
0.12
507.048
513.568
-1. 29
1910
268.486
17.0569
17.0368
0.12
574.398
580.876
-1.13
1911
280.494
17. 0436
17.0328
0.06
683.038
686.701
-0.54
2001
193.356
17.5291
17.5476
-0.11
7.130
2.315
67.53
2002
199.230
17.5281
17.5454
-0.10
16.592
12.067
27.27
2003
200.946
17.5261
17.5424
-0.09
35.439
31.123
12.18
2004
2 0 h . 75 6
17.5214
17.5355
-0.08
76.814
72.991
4.98
2005
210.931
17, 5141
17.5267
-0.07
143.419
139.863
2.48
2006
220.998
17.5022
17.5152
-0.07
250.280
246.369
1.56
2007
227.537
17. 4945
17.5071
-0.07
318.013
314.102
1. 23
2008
235.067
17.4859
17.5015
-0.09
395.918
390.856
1.28
2009
242.758
17.4769
17.4948
-0.10
473.940
467.90 1
1.27
2010
249.071
17.4692
17.4903
-0.12
537.459
530.140
1. 36
2011
256.389
17.4609
17.4875
-0.15
611.081
601.535
1.56
2012
263.603
17. 4523
17.4829
-0.18
682.214
670.834
1.67
2101
183.907
17.9415
17.9532
-0.07
6.728
3.226
52.05
2102
189.331
17.9411
17.9521
-0.06
11.762
8.484
27. 87
2103
169.746
17.9405
17.9515
-0.06
16.843
13.521
19.72
210^
192.590
17.9368
17.9459
-0.05
50.874
48.097
5.46
2105
198.660
17.9295
17.9362
-0.04
123.000
120.883
1.72
2106
205.509
17.9209
17.5254
-0.03
202.640
201.149
0.74
2107
213.217
17. 9115
17.9159
-0.02
291.132
289.643
0.51
2108
220.733
17.9022
17.9096
-0.04
376.667
374.052
0.69
2109
228.543
17.8929
17.9040
-0.06
464.311
460.202
0.89
2110
233.949
17.3799
17.9001
-0.11
580.193
572.381
1.35
2201
176.719
18 . 4456
18.4480
-0.01
3.471
2.652
23. 59
2202
177.382
18. 4450
18.4462
-0.01
12.310
11.869
3. 58
2203
173.429
18.4433
ie .4445
-0.01
26.585
26.156
1. 61
2204
179.691
18 . 4416
ie .4416
-0.00
43.417
43.41 3
0.01
2205
182.793
18. 4376
18.4358
0.01
84.808
35.485
-0.60
2206
188.263
18.4307
18.4260
0.03
156.732
158.461
-1.10
2207
195*143
18 . 4217
18.4155
0 .03
245.802
248.198
-0.97
2208
201.949
18. 4130
18.4077
0.03
332.786
334.917
-0.64
2209
203.686
16. 4044
16.4024
0.01
418.212
419.023
-0.19
2210
215.452
18.3957
18 . 3979
-0.01
502.825
501.907
0.18
2211
222.008
18. 3871
18.3956
-0.05
584.427
580.711
0.64
2212
2 2 7 . 0 3 0
18. 3808
ie.3942
-0.07
646.312
640.353
0.92
2213
229.121
18. 3781
18.3946
-0.09
672.368
664.967
1. 10
2301
163. C32
18.8234
18.8126
0.06
10.003
14.303
-42.99
2302
163.479
18 .6227
18.8117
0.06
16.593
21.008
-26.61
2303
169.437
16. 8214
16.6093
0 .06
30.514
35.366
-15.90
2304
171.067
18. 8194
16.8057
0.07
54.233
59.759
-10.19
2305
1 73.679
16. 8158
18.8008
0.08
92. 210
98.292
-6.60
2306
177.673
18.8104
18.7931
0.09
149.285
156.488
-4. 83
2307
183.136
18.8031
18.7831
0.11
226.036
234.559
-3. 77
2308
163.344
18. 7955
18.7749
0.11
305.443
314.423
-2.94
2309
195.448
18 . 7665
18.763 8
0.09
396.636
404.799
-2. 01
2310
201.251
18.7788
18.7661
0.07
476.851
482.746
-1.24
2311
206.784
18.7715
18.7606
0.06
55 0.626
555.305
-0.94
198
Table 12 » Experimental and calculated P-p-T data- - - (Continued
EQUATION OF STATE VS. PVT DATA
ID T,K MOL/L CALC D D,PCT P , BAR CALC D P,PCT
2 31 2 212.460 , 16 .7-613 16.7616 T.J11 628.513 629.515
2313 217.337 18.7576 16.7591 -0.01 692.835 692.094 0.11
2401
157.201
19.2261
19.222 0
0.02
5.219
7. 098
-36. 01
240?
1 6 4 - 4 9 F,
19. 224 1
19.2189
0.03
26. 1 62
28.51 6
-9. on . .
2403
159.577
19.2225
19.2149
0.04
42.627
46.284
-8. 07
2404
1 9 . 2208
19.2138
0.04
62.930
66.128
-5. 08
2405
163.656
19. 2168
19.2080
0.05
108.664
112.741
-3.75
2406
167.103
19. 2122
19.1981
0.07
161.353
167.949
-4. Q9
2407
172.270
19 . 2049
19.1897
0.08
241.688
248.95 8
-3. 01
2J±M
1 77. 321
19.1 970
1 9.1 81 5
0.09
31 8.533
326.541
.. -2. 51
2409
183.160
19. 1896
19.1764
0.07
407.622
414.225
-1. 62
2410
1 88 .69?
19.1819
1 9 . 1 72 6
0 . 05
490.353
495.107
- -0.97
2411
194.552
19.1739
19. 1703
0.02
578.543
580.48 0
-0. 33
241 2
199.115
19.1673
19.1720
-0.02
647.704
645.181
fl. 39
2413
202.417
19. 1630
19.1682
-0.03
694.537
691.718
0.41
2501
134.069
20.4330
20.1037
1.60
14.291
221.481
-1449.79
25 02
20.4293
20.1019
1.60
25.882
234.170
-308. 77
2503
1 36.071
20. 4270
20.0975
1.61
53.739
264.078
-391.41
2504
1 37.536
20 . 4247
20. 0931
1.62
82.345
294,824
-258. 04
2505
140.791
20 . 4194
20.0642
1.64
145.396
362.087
-149. 04
25Q6
144.763
20 ^ 41,3 4
2G.H76 3
1 . 66
221.796
442.862
-99.67
2507
149.679
20 . 4054
20.0673
1.66
315.714
540.141
-71.09
2508
154.382
20 . 3981
2C. 0628
1.64
405.313
631.278
-55. 75
2509
159.399
20. 3904
20.0607
1.62
500.568
726.521
-45. 14
2510
164.174
20 . 3828
20.059b
1.58
590.104
815.074
-38. 12
2511
168.954
20 .3755
20.0614
1.54
679.933
902.343
-32. 71
NP = 321, DNRMSPCT = 2.853, PMEANPCT =14.092
199
CD
•4-
X
CD
tH
tH
x
CD
cvi
CM
tH
CM
'X)
tH
z
CP
CM
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
ro
(_>
LL
CD
CD
CD
CD
CD
CD
CD
CD
CD!
CD
CD
CD
CD
CD
till III
c_>
cn
ro
jj
UJ
ro
r^
o>
a)
CJ
m
c n
tH
CD
r-
_i
O
fN
X'
CM
LA
j-
X
j-
CD
CM
"H
O
IN
cn
<X
CJ
ro
m
CO
C\J
o'
(VJ
CM
in
ar
cp
rp
OL
Lf>
CM
ro
ro
ro
X
LA
un
X
n-,
cu
O'
O
tH
CM
i
l
[
tH
tH
tH
INI
cn
x
id
X
-T
IN
CM
ao
1
f
a>
x
CD
CT'
fN
O'
a
ro
x
x
CM
X
X
N
x cn
CNJ
CM
O’
rN
in
<_>
ro
IA
cc
CM
(T*
CM
CM
LA
O'
cr>
X
CM
ro
ro
ro
X
LTi
IT,
x
N-
ao
o>
CD
tH
CM
tH
tH
tH
I
x
CM
CM
CD
CD
tH
tH
CD
O
CD
CD
tH
tH
tH
z
CD
O
CD
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
<_>
Cl.
CD
CD
CD
CD
C~>
CD
CD
CD
O
CD
CD
CD
CD
CD
1/5
Z
hH
D»
X
o
ao
ro
tH
CD
CP
LA
r-
j-
CO
o
ro
CD
IN
IL.
-J
■H
ao
o -
b '
OJ
tH
nT
ro
ro
a <
tH
0
tH
UJ
«SC
CJ
CD
ro
cc
CD
X
o
O'
OJ
CM
(N
CM
b \
CP
tH
UJ
CO
O'
tH
CM
CM
CM
x
X
f'
a>
CD
tH
x
£
X
tH
tH
X
CM
CM-
CM
CM
CM
CM
CM
CM
ro
ro
ro
o
Lxl
• i—i
-J
-4->
o
CJ
2.
M
(M
n
fN
CD
CO
CM
LA
in
J"
IN
cr
X
IN
Cs j
CH
01
tH
CO
X
in
UL>
tH
j-
ro
ro
X
CD
X
CD
UJ
m
a)
CuO
01
Lu
CD
ro
or •
CD
J-
O'
CT>
X
CM
IN
CM
X
X
tH
_l
X
CO
tn
tH
CM
CM
CM
J-
X r —
cn
CJ
tH
ro
3
tH
H
H
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
r— H
O
aj
3
ai
T3
• I—*
z
T3
KH
y-
CD
CD
CD
CJ
CJ
CD
tH
CD
CD
CD
CJ
CD
CD
CD
z
CD
CD
CD
CD
CD
CJ
CJ
O
CD
CD
CD
CD
CD
CD
CD
4->
ctf
iLi
o
a
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
i-H
i
l
i
i
i
i
3
<X
CJ
X
h—
o
LU
T)
U
CJ
CD
lx '
ri
T'-
j-
tH
t-t
CD
b '
ro
IN
tH
X
fl
to
-J
r^-
LA
CM
LP
O
U>
tH
-T
in
CM
'JU
CD
cn
cti
x
<3
i — i
O
r^
tH
O'
(N
CD
in
CM
in
X
tH
CM
tH
kO
X
(3
o>
X
CO
ro
la
CD
r^.
u\
ro
OD
ro
CM
b>
4-i
£
(D
; y
cD
ro
CM
eg
W
'XJ
O'
CL
O
X
•DJ
CM
X
ro
o
tH
r^
in
N*
O
tH
tH
X
ro
CM
ro
X
X
HH
tH
tH
tH
H
CM'
ro
in
a>
fN
a
h—
• i—i
O
u
<u
Ph
X
W
z
INI
IN
tH
CD
IN
CM
CD
CM
X
CD
O'
CM
X
CM
3
X
|N
b>
CM
LO
tH
cc
tH
fN
CP
o
X
X
X
ao
Ll.
no
C'
tH
u>
CM
LA
N-
▼H
CM
CD
UN
ro
00
X
co
ro
in
CD
IN
N»
fN
X
ro
X
ro
CM
X
•
<a
Vi)
ro
CM
CM
vD
o
CP
co
CD
X
ao
CM
cr
ro
CO
LD
tH
ro
in
1^-
CD
tH
tH
r^-
in
ro
i\j
ro
~x
NkJ
i— i
tH
tH
tH
tH
CM
ro
X
in
X
IN
CD
_J
<T
XI
UJ
CJ
CD
o
CD
LA
in
CD
CD
CD
o
CD
CD
CD
CJ
cd
(3
O
CD
a
O
t-4
tH
CD
CD
CJ
CJ
O
CD
O
CJ
H
hH
i-
CD
CD
CD
CD
ro
ao
CD
CD
CD
CJ
CD
CD
CD
CJ
in
CD
in
CD
r>-
O'
CJ
CD
O
o
CD
CD
CD
CD
tH
tH
<M
CM
CM
ro
j-
X
X
IN
CO
X
CD
200
Table 14. Interpolated ideal gas functions
ETHA
N F IHEflL
GAS FUNCTIONS
;. JOULES
.MOLES. 1
KFl VT KS
T ,K
H7
- S7
O \I7
r p 7
9 C
2 2 7 3.7
3027.0
If 0.150
26.66
35.17
_ i an
2550.1
-3381.5
IP 3.8,84
27.42
35 .73
lie
2827. 0
3741.6 .
187.316
27.98
36.29
i ?n
31 03. h
4 1 07.4
190.458
28.54
3 6 .66
.150
3 3 3 7. E
4478.3
193.471
29.12
3 7.43
140
345?. 0
4856.0
19 6 .2 66
29.71
3 8.0?
15 0
3 <392. 1
5239.3
198.910
3 0 . 32
38.64
16 J
4 2 9 b . fa
5628.9 \
20 1.424
3 0.97
39.28
170
4 611. t
6025.1
2C 3. 826
31.65
39.96
1 3t
4931.7
b 4 2 8 . 3
206.131
32.37
4 0.69
190
5 259. 2
6338.9
208.351
33.14
41.45
2 0 0
5594.6
7257.4
210. 467
33.95
42.26
2 10
5 9 3 3.2
7684.3
21 2 .579
34.80
43.12
22 4
6 2 9 0. 7
8116.9
21 4.6 06
35.70
4 4.92
2 30
o 65 2. 5
6564.3
216.583
36.65
44.97
2 4 U
7 0 23. 9
C Q1°.4
213.513
37.64
45.96
2 5 C
7 4 0 5.5
5484.1
22 0 . 415
3 6.66
46.99
2 EC-
7 79 ?. c
9959. 3
222 . 279
3 9.75
46.07
2 70
6 2 0 0.6
1 li 44 c . 5
224.113
4 0 .86
49.18
2 50
3614.5
10943.0
226.9??
42.01
30.32
2 5 C
9 040. «
11452.0
227.708
43.18
51.49
3 0 0
9 h 75. 6
1 1 972.9
229.474
44.38
52.69
3 1C
9 92 8. 5
12506.0
231.222
4 5.61
53 . 92
3 2 0
1 0 39 0. £
13051.4
232.654
48.65
55.17
3 50
1 0 8 6 5.6
13609. 3
234.670
46.11
56.43
3 hO
1 1 353. 1
14160.0
236.374
49.39
57.70
3 50
1 1853. 4
14763.4
23 8 . C65
5 G .68
5 6.99
3 o0
12 3 6 6.6
15359.3
239.745
51.97
6 0 . 2 3 . .
3 70
12 392. c
15 96 c .l
24 1 . 4 14
53.27
61.58
.3 . n
1 3 43?. n
16691.4
24 7 . 074
5^.57
62.83
3 50
1 3 934. 2
17226.3
244.724
55 .67
6 4.13
4 : g
1 4 5 49. 4
17875.1
246.366
57.17
6 6.48
4 10
15 127. 5
18536.4
247.993
5 0.46
66.78
•+ 7 0
15 718.6-
192in.o
246 . 6 ?3
59.75
6 8 . 07
4 3 0
16 322. =
16867.7
251.240
61.03
6 9.35
u ^ n
1 6 936. ?
2 0 ^ Cj 7 . 5
252.849
62.30
70.6?
4 50
1 7 5bo. 6
21310.0
254.450
.6 3.56
7.1 .88
4 AH
1.-21 0. 5
? 2 0 3 e- . n
26 fi . 0 43
6 4.81
73.13
4 7 0
1 6 6 b 4 . tr
22772.5
257.629
6 6.05
74.37
4 a.-s
1 « 6 ?, ; . -
? 5 6 ? 2 . .3
269.208
67 .26
75.59 - .
-+ 5 0
2 0 210. 3
29284.4
260 . 773
6 8.49
76 .31
u n n
20401. 3
?9n5P.4
26 2.343
6 9 .69
. 7 8 . 0 0 . . ...
5 1 0
2 1 6 0 4. 1
2 6 8 9 4 . 4
263. 699
70.67
7 9.19
5 2 n
2 2 31
26642.1
265.443
7?.05
8 0.36
5 3 r
2 3 0 4 5. 0
27451.5
266.660
7 3.20
81.5?
5 40
2 3 76 2.7
28 272.4
266.524
74.35
3 2.66
1 w - 3
! «\
2 4 5 31.
2 C 104.7
27 0 . 051
76.47
6 3.29
5 c 0
25 262. 2
? c 448.2
27 1 .571
76.59
6 4.90
5 70
2 6 3 6 3.6
3 C 6 0 2 . 7
273 . C 84
77.69
66.01
5 30
2 6 8-. 5. 9
31666.2
274.569
78 .78
p 7 . 0 9
5 5 0
27639. 1
32544.5
276. 0 87
79.65
68.17
o 00
2 8 44 3. 0
33431.5
277.578
60 .92
89.23
201
Table 15. Experimental and calculated heats of vaporization
ID; (10) Douslin; (11) Wiebe; (13) Riedel via Furtado; (20) Furtado
“ 17
21027302+001
1.11655879+001 1
.65392652+9(9
-7 .
L 6546945 +0 01
6.21662337+001 -3
.26105136+001
10
T * K
K J/ MOL
Cf LCD
PCNT
nr
246 . 15
11.299
11.235
0.57
10
253.15
10.925
10 . 862
0.53
nr
ZbTTXT
10. 072
10.039
0*33
10
273.15
9.073
9.072
0.01
10
269. T5
7. 8 + 4
7 .878
-0.44
10
293.15
6.17 0
6.253
-1.34
nr
293.15
5.034
5.090
-1.09
10
302.15
3.677
3.708
-0.85
nr
303 .13
— 37337
37238
-0732
10
304.15
2.546
2.547
0.04
13
10 J . 00
17.154
17.312
-T.9X
13
111.11
16.926
17.068
-0.82
TT
1 5 5 • 53
16.455
16.492
-3722
13
155.56
15.853
15.797
0.35
l3~
lfc o . O 7
'15 .433
15.403
0.50
13
160 . 00
14.957
It- .886
0.48
I Z
164.10
1 4 .“73c
93 . 7X7
-T.T7
13
164 . 11
14.802
lc .716
0.58
IT
190.00
14.526
in • 4bb
07773
13
200.00
14.049
14.012
0.26
13
21 u .xnr
1 5 • b 5 0
13.525
9737
13
220 . 00
12.999
12.998
0.01
1 3
2td . od
T2.338
127725
-0*30
13
240.00
11.743
11 . 797
-0.46
13"
2X77X3
11.044
11.099
-0.50
13
260.00
10.237
10.311
-0.24
13
““2T7 . TO
9.416
? • 3 9 6
“0722
13
260.00
8.353
8.287
0.80
13
293 . rr
6 . 8o 3
67 83 6
0.70
13
300.00
4.557
4.531
0.57
2X
1 0 U . 03
1/ .54 4
17.312
1794
20
111.11
17.117
17.068
0.28
23
133. 3r
XT'. 4 37
IF. 492
0.03
20
155 • 5o
15.761
15.797
-0.23
20
1 c b • 6 (
15.351
9577439
-0.34
20
160.00
14.832
14.886
-0.36
nr
184.11
14.677
14.716
-0."27
20
190.00
14.422
14 .465
-0.30
20
23F. 00
X 3 .3c 3
17 . TXT
-0.42
20
210.00
13.438
13.525
-0.27
20
225. TO
12.939
127 998
0.01
20
230.00
12.434
12.425
0.07
nr
240 . 00
11.314
11.797
0.15
20
250.00
11.065
11.099
-0.31
20
2cT0 . m
13723 7
1379X1
-0.24
20
27 0 . 00
9.416
9.396
0.22
20
26 0 . TT
3 . 279
F. 287"
-0.46
20
290.00
6*663
6.836
0.40
nr
333733
4 • b 1 2
4.531
1.78
li
190 .00
13.777
14 ,465
-4.75
li
135.30“
13. 639
17.24 n
-4.27
n
200.00
13.501
14 .012
-3.65
n
205.30 '
13.338
17.773
-3.16
n
210.00
13.179
13.525
-2.56
li
215 . 30
12.939
13.266
-2.02
li
220.00
12.806
12.998
-1.47
n
225. 03
12.334
127718
-1.03
n
230.00
12.362
12.425
-0.50
n
'“233.33
12.11 X
12.119
-0.06
n
240.00
11.844
11.797
0.40
rr
235733
11. 55 1' '
11.458
078X
ii
250.00
11.233
11.099
1.20
xn
“255730
13789X7“
X0759 0
1.52
n
260.00
10.492
10.311
1.75
“m
265. 00
13. 0Tb
97372
1 . 63
n
270.00
9.534
9.396
2.00
rr
275733
973X2
5 .872 "
1.4/
n
260.00
6.429
8 . 287
1.71
n
“'265733
7.70 0
77329
r. T3
n
290.00
6.834
6.836
-0.03
n
23:7.03
57 779
3.865
-1 • 4o
n
300.00
4.294
4.531
-5.24
NP
= 49, R9SPCT
= 0.56
202
Table 16. Experimental and calculated specific heats for saturated liquid
ID:
(11) Wiebe;
(12) Witt
T c
- 3 ^. 3 7
6.73153+001
-1.65876+001 1.
63526+001 r c
t - 0-5
ID
T.K
J/ f'OL/K
CflLCD
PCNT
-jg
Q fl - 0 0
6ft- ??
6 a r 17
0,07
11
96.77
68. 42
68.33
0 . 14
it
96.82
68.22
68.33
0*57
11
98.06
68.51
68.36
0.21
12
1 o o „00
68. 55
68 „ 4-1
0*-20
ii
101.54
68. 68
68.46
0.32
i n 7 . n ft
6 ft. 69
6 ft .. 6 1
-0,03
ii
108.65
68.51
68.66
-0.22
12
1 1 Q-fll)
6ft. 93
6ft .7f)
8*32
u
115.74
68. 63
68.89
-0 .38
-
ii
116.19
68.42
68.91
^8.70
12
120.00
69. 26
69.04
0.31
1 1
1 ?? . 7 Q
69.5 1
A 9 _ \ 9
0,6?
ii
123.60
69. 14
69.18
-0 .06
-
11
128.08
69.51
69.36
( U 22
11
128.49
69. 47
69.38
0 .14
-
12
130.00
69.-51
6 9.44
0-10
11
132.65
69. 81
69.55
0 . 36
1 3 ft . 0 5
A Q, AA
6 9 . * 0
0,06
11
138.18
69. 97
69.81
0 .23
_
11
138.31
69. 81
69.82
-0.01
12
140.00
69. 85
69.90
-0.07
-
11
16 2 .63
70.06
—70,02
8.05-
11
143.36
70.02
70.07
-0.08
1 2
15 0 .00
7 0.27
7 0 i 4 3
-0,23
ii
151.75
69. 93
70.53
-0 . 85
ii
152.60
7 0.10
70.58
-8,68
ii
154.99
70. 22
70.72
-0 .71
-
ii
156.98
- 70.22
70.8-5
0 .88
ii
157.42
70. 06
70.88
-1.15
12
160-00
7 0.86
71.04
-0,27
ii
160.10
71.06
71.05
0.02
-
ii
162.65
71. 14
71.22
-0.11
ii
164.49
71. 69
71.35
0.48
ii
71- 56
7 1 . A1
- q , 06
12
170.00
71.48
71.75
-0 .38
1 1
17 0 - 1 9
7ii 73
71-77
-0,05
11
172.05
71.73
71.91
-0 .25
-
11
172.69
72.11
71.96
0.2-0
11
178.17
72. 78
72.42
0 .49
12
1 ft 0*0 0
7?, 23
72 -+ 5 A
- a * 48
ii
181.50
73. 03
72.72
0.43
1 8 2 i 0 3
7 3.28
72-77
0 , 7 1
ii
190.00
73. 49
73.55
-0 .08
11
1 99 ,ft 6
* 3 \
7-4 -67
~ Q ,46
ii
208.88
75.62
75.87
-0 . 32
11
?12* ft Q
7 5* 92
76*45
-0*70
ii
220.48
77. 76
77.73
0.03
77 ft . 7F,
an. rf,
7Q. 75
1 .53
ii
236.21
82.2 8
81.06
1 .50
11
244*6 1
a 3. 9i
83.19
0.62
ii
252.53
87. 09
86.11
1.14
11
25 A „?2
ft B. 39
aa ,4ft
-0*10
ii
265.25
92. 28
92.09
0 .20
ii
273.06
98.05
97.44
0.63
ii
278.07
1 01.28
102.01
-0 .72
1 1
284, o 7
10 Q T Q A
1 QQ T UR
-0*39
ii
291.27
122. 62
124.08
-1.18
11
294.85
13 a, 72
1 36*37
-o *47
NP- ~
59. KHSPCT
= 0,-54 —
203
T able 1 7
• Experimental and calculated specific heats C„(T)
ir
on isobar P,
b
TM *
354.0, CM
= 117.333
89154 -0
.15442 -0.
14149 -0.
50644
T,K
J/MOL/K
CALC
PCT
110. 928
68.19
68.45
-0.39
118.372
68.45
68.55
-0.15
122. 039
68.56
68.62
-0.08
133. 150
68.94
68.87
0.10
144. 261
69.44
69.23
0.31
155. 372
70. 08
69.70
0.55
166. 483
70.59
70.29
0.42
177.594
71. 09
71.03
0.09
186. 872
71.58
71.75
-0.24
188. 706
71.71
71.91
-0.27
199. 817
72. 72
72.94
-0.30
210.928
73. 98
74.15
-0.23
222. 039
75. 37
75.54
-0.23
233. 150
77.13
77.14
-0.01
241. 761
78.63
78.53
0.13
244. 261
79. 0 0
78.96
0.06
255. 372
81.14
81.03
0.13
266.483
83. 41
83.42
-0.01
277.594
86.31
86.17
0.17
282. 706
87.70
87.58
0.13
288. 706
89.71
89.39
0.36
299. 817
92.97
93.22
-0.27
305. 261
94.86
95.38
-0.55
310.928
97. 8 8
97.88
0.00
322. 039
103.80
103.63
0.17
324. 817
105. 43
105.26
0 .16
333. 150
110.45
110.54
-0.08
344.261
116.62
116.62
0.00
NP = 28, RMS = 0.25
204
Table 18. Calculated P(p) critical isotherm
The following page gives a high-resolution examination of the
critical isotherm of ethane as computed by equation of state (5). Column
headings have the following interpretations - -
D/DC = d/d c , density reduced at the critical point.
P/PC = P/P c , pressure reduced at the critical point.
DP/DD = c'P/cid, slope of the critical isotherm, bar/(mol/X).
The last five columns give the density-dependence of functions
used in the equation of state, where R = p = d/d^ is density reduced at
the liquid triple point- -
DTS/DR = dT a (p)/dp, K.
DTH/DR = d0(p)/dp, K.
DPS/DR = dP r7 (p)/dp, bar.
DXB/DR = B$(p, T)/9p.
DXC/DR h 3Y( P , T) /Bp.
205
Table 18. Calculated P(p) critical isotherm
TC =
305 . 370 , DC =
6 . 740 , PC =
48.7550
0 /DC
P/PC
OP/DD
CTS/OR
0.75
0 .993995341
0 . 658819307
40.90712
0 . 76
0.994858823
0. 591217592
38.34226
0.77
0.995632133
0. 528321099
35.89818
0 . 78
0.996321595
0. 469866251
33.56442
0.79
0.996933166
0. 415589108
31.32866
0 .80
0.997472439
0. 365229997
29.17651
0.81
0 . 997944660
0. 318539129
27.09132
0.82
0 . 998354733
0. 275283463
25.05409
0 . 83
0 . 998707261
0. 235255248
23.04356
0 . 84
0. 999006584
0. 198282488
21.03666
0.85
0 . 999256832
0. 164241474
19 . 0 0951
0.86
0 . 999462008
0. 133071105
16.93942
0 .87
0.999626082
0. 104787529
14 . e 0834
0.88
0. 999753105
0. 079495860
12.60834
0.89
0 . 999847343
0. 057392249
10.34968
0.90
0.999913379
0 . 038744754
8 .07130
0.91
0 . 999956191
0. 0238 36 181
5.65191
0.92
0.999981094
0. 012651315
3.61596
0.93
0 . 999993499
0. 005707396
2.12263
0 . 94
0 . 999998411
0. 001681248
0.92089
0 . 95
0. 999999775
0 . 0 C 0380 131
0.26456
0.96
0 . 999999987
0. 000031585
0.03611
0 . 97
0 . 999999999
0 . 0 0 0 0 00 362
0.00107
0.98
1.000000000
0.000000001
0.00000
0.99
1. 000000000
0. 000000000
0.00000
1.00
1. 000000000
0. 000000001
0.00000
1.01
1 . 000000000
0. 000000001
- 0.00000
1.02
1. 000000000
0.000000000
- 0.00000
1.03
0 . 999999999
0. 000000307
- 0.00017
1 . 04
1. 000000006
0. 000015499
- 0 .0 0658
1.05
1 . 00 00 0 0 099
0 . C 00163143
- 0.05510
1 .06
1 . 000000673
0. 000790788
- 0.21774
1.07
1. 000002769
0. 002471622
-0 .566 0 1
1.08
1. 000008306
0 . 0 0 5884 665
- 1.1 3956
1.09
1.000020147
0 . Cl 1698 168
- 1.9430 3
1.10
1 . 000042032
0 . 0 20506538
- 2.95766
1.11
l . 000078458
0. 032614787
- 4 . 15409
-
1 . 12
1 . 0001 34569
0. 049048904
-5 .5 0116
-
1.13
1 . 000216050
0 . 069575 997
- 6.97053
-
1 . 14
1 . 000329066
0. 054724915
- 8 .53860
-
1.15
1. 000480221
0 . 124803633
- 10.1 8679
-
1 . 16
1 . 000676539
0 . 1601 12464
- 11.90101
-
1.17
1 . 000925457
0.200953526
- 13.67097
-
1.18
1 . 001234836
0. 247637223
- 15 .48936
-
1.19
1 . 00 1612976
0. 300486478
- 17.35121
-
1 .20
1 . 002068631
0. 359839428
- 19.25328
-
1.21
l . 002611035
0. 426051033
-21 . 1 9357
-
1.22
1 . 00 3249928
0. 499493948
- 23.17105
-
1.23
1 . 00 3995570
0. 560558929
- 25 . 1 8528
-
1 . 24
1. 004858783
0. 669654959
- 27.23630
-
1 .25
1. 005850959
0. 767209159
- 29.32441
-
DTH/OR
OPS/DR
DXB/DR
CXC/CR ,
.38357
40.77208
- 0.13448
0.40412
.22775
38.32854
- 0.12600
0 .38616
.29211
35.98713
- 0. 11792
0.36888 (
.56723
33.73933
- 0. 11021
0.35219
.04173
31.57456
- 0.10284
0.33599
.70206
29.47982
- 0.09575
0.32014
.53235
27.43963
- 0.08888
0.30447
.51428
25.43582
- 0.08217
0.28875
.62722
23.44768
- 0 . 07556
0.27271
.84865
21.45237
- 0 . 06896
0.25603
.15516
19.42597
- 0. 06230
0.23833
.52453
17.34554
- 0.05551
0.21919
.93907
15.19272
- 0 . 04 e 52
0.19819
. 39122
12.95942
- 0. 04130
0.17498
.89154
10.65629
- 0.03390
0.14936
.47924
8.32377
- 0. 02644
0.12153
.23329
6.04377
- 0.01517
0.09228
.27835
3.94613
- 0.0125 0
0.06328
.77383
2.19740
- 0.00695
0.03716
.86884
0 .95413
- 0.00202
0.01707
,61736
0.27427
- 0.00087
0.00521
.90191
0.03745
- 0. 00 Cl 2
0.00076
.48808
0.00111
- 0.00000
0.00002
.21645
0.08000
- 0.00000
O.OOOCO
.05411
0.00000
- 0.00000
0.00000
.00000
0.00000
0.00000
0.00000
.05411
- 0.00000
0.00000
- 0.00000
.21645
- 0.00000
0.00000
- 0.00000
.48719
- 0.00018
0.00000
- 0.00000
.87239
- 0.00683
0 . 0 0 0 0 2
- 0.00014
.40790
- 0.05714
0.00018
- 0.00109
.16574
- 0.22573
0 . 00 C 71
- 0.00408
.21735
- 0.58651
C . 00 185
- 0.01010
.60234
- 1.18018
0 . 00 37 3
- 0.01943
.32524
- 2.01086
0 . 00 6 35
- 0.03171
.36717
- 3.05834
0.00669
- 0.04633
.69861
- 4.29137
0 . 01 36 0
- 0.06259
.28819
- 5.6768 2
0.01602
- 0 . 079 c l
.10734
- 7.18454
0 . 02 28 3
- 0.09782
.13220
- 8.78935
0.02797
- 0 . 115 c 8
.34387
- 10.47126
0.03337
- 0.13414 „
.72791
- 12.21500
0.03699
- 0.15216
.27363
- 14.00923
0 . 0448 0
- 0 . 169°5
.97332
- 15.84571
0 . 05 076
- 0.18744
.82149
- 17.71 862
0.05687
- 0 . 20463 '
.81437
- 19.62388
0.06212
-C .22150
.94941
- 21.55873
0 . 0695 0
- 0.23807
.22492
- 23.52133
0 . 0 7 6 0 0
- 0.25436
.63980
- 25.51048
0.08262
- 0 .270 39
.19332
- 27.52539
C . 0 8 9 3 8
- 0.26618
.88500
- 29.56554
0.09626
- 0.30175
74
69
64
59
55
50
4 6
42
38
34
31
27
23
20
16
1 3
10
7
4
2
1
0
0
0
0
0
-0
-0
-0
-0
-1
-2
-3
-4
-6
-e
1 o
13
16
19
22
2 5
29
32
36
40
44 .
49
5 3
58
62 .
206
Table
19. Loop closure computations for
saturated liquid.
FNTHALPY, H, \/IA
FURTADC
CP(T). HC
\/IA ClAPEYPCN FQN.
T,K
H
HC
PC T
S
SC
PCI
9 Q
5306
5 38 ?
1.45
76.57
77.16
0.77
95
5648
5677
0.51
80 . 28
80.44
0.21
1 00
5991
5 978
- 0.22
83.8 0
83.55
- 0.29
105
6335
6296
- 0.61
87. 15
66.65
- 0.57
110
6678
6633
- 0.68
90 . 35
69.79
- 0.62
1 15
7023
6987
- 0.52
93.41
92.93
- 0 . 51
120
7368
7352
- 0.21
96. 3 5
° 6 .05
- 0.31
125
7714
7724
0.13
99.17
99.09
- 0 . c s
130
8061
8058
0.46
101.89
102.04
0,14
135
8409
8470
0.73
104. 52
104.86
0.32
140
8758
8837
0.90
107. 06
107.54
0.45
1 45
31 C 8
915 7
0.98
109.51
110.03
0.52
1 5 C
9460
9552
0.97
111.90
112.50
0.54
155
9814
9901
0.89
1 14. 22
114.80
0.51
1 6 0
10169
10 246
0.76
116. 47
117.00
0.45
165
10527
10 589
0.60
1 18. 67
119.11
0 . 36
170
10886
10 532
0.42
120. 81
121 .16
0 . 29
175
11248
11277
0.26
122. 91
123.16
0.20
1 3 0
11513
11626
0.11
124. 96
125.11
0.13
185
11981
11579
- 0.02
126.96
127.04
0 . C 6
190
1 2 352
12 340
- 0.10
128.93
128.95
0 . 02
195
12727
12707
- 0.15
130 . 87
130.35
- 0.01
200
13106
13 0 8 3
- 0.17
132. 77
132.73
- 0.03
205
1 3468
13466
-0 . 16
134.65
134.61
-0.03
2 1 C
1 38 76
1385 7
- 0.14
136. 5 0
136.47
-0.02
215
14268
14255
- 0.09
138. 32
138.32
-0.00
220
14666
14 66 0
- 0.04
140 . 1 3
140.15
0»0?
225
15070
15 071
C. 00
141. 92
141.97
C , 04
233
15480
15486
0.04
143. 69
143.77
0 . 05
2 35
15898
15 90 8
0.06
145. 45
145.54
0.06
240
16323
16 336
0.06
147. 21
147.30
0 , 06
245
16758
1676 8
0. 07
148. 96
149.04
C . 06
250
1720 2
17210
0.05
150.70
150.77
0.05
2 55
17657
17660
0.02
152. 45
152.50
0.03
260
16125
18 123
- 0.01
154 . 2 1
154.24
0.02
265
18607
186 C 1
- 0.03
155. 99
156 .00
0.01
270
1910 7
19 0 98
- 0.05
157,78
157.78
0.00
2 75
19628
19619
- 0.04
159. 62
159.62
0.0 0
2 30
2 017 5
20 169
-0.03
161 . 50
161.51
0.01
265
20756
20 784
- 0.01
163.46
163.46
0 . 0 1
29 3
213 8 6
21 36 3
- 0.02
165.55
165 .56
0.01
2 9 5
22093
22 06 0
- 0.06
167. 84
167.82
-0.01
3 00
2295 0
2293 5
- 0.16
170. 58
170.49
-0.06
207
Table 20.
Experimental and calculated specific heats, Cp(p,T).
THE CP ISOBAR AT P =
0.000 BAR
T *K
MOL/L
J/MOL/K
CA LCD
PCNT
99.817
0.000
35.86
35.72
0.37
110.928
0 . 000
36.49
36.34
0.41
118.372
0 . 000
36. 98
36.76
0.59
122.039
0.000
37.24
36.97
0.73
133.150
0.000
37.99
37.61
1.00
144.261
0.000
38.74
33.28
1.19
155.372
0.000
39. 25
38 . 98
0.69
166.483
0 . 000
40.02
39.72
0.74
177.594
0.000
40.77
40.51
0.64
186.872
0.000
41.39
41.21
0.43
188.706
0.000
41.65
41.35
0.72
199.617
0.000
42.53
42.24
0.67
210.928
0.000
43.52
43.20
0.74
222.039
0 . 000
4 4.53
44.21
0.73
233.150
0.000
45.55
45.27
0.60
241.761
0 . 000
46. 43
46.14
0.62
244.261
0.000
46.67
46.39
0.59
255.372
0.000
47.93
47.56
0.76
266.483
0 . 000
49. 20
48 . 78
0.85
277.594
0.000
5 0.46
50.04
0.82
282.706
0.000
50.96
50 .63
0.65
288.706
0.000
51.71
51.34
0.72
299.817
0.000
52.84
52 .67
0.31
305.261
0.000
53. 21
53.34
-0.23
310.928
0 . 000
53. 85
54.03
-0.34
322 .039
0.000
55.24
55.42
-0.33
324.817
0.000
55.61
55.77
-0.29
333.150
0.000
56.62
56.83
-0.36
344.261
0.000
58.12
58.25
-0.22
355.372
0.000
60.15
59.68
0.77
366.483
0.000
61.65
61.12
0.85
366.817
0.000
61.78
61.17
0.99
377.594
0.000
63.17
62 . 57
0.94
388.706
0.000
64.53
64 . 02
0.80
399.817
0.000
. 65.81
65.46
0.53
410.928
0.000
66.56
66.90
-0.51
422 .039
0.000
67.81
68.33
-0.76
THE CP ISOBAR AT 'P = 17.237 BAR
T * K
MOL/L
J/MOL/K
CALCD
PCNT
99.817
21 .340
6 8. 45
68.59
-0.21
110.928
20.943
66.69
63.80
-0.15
118.372
20.676
68.83
63.98
-0.23
122.039
20.544
6 8.94
69 .09
-0.22
133.150 —
20 . 1*2
6 9. 20
6 9' .'50
-0.43
144.261
19.734
69. 82
70.03
-0.30
155 . 372
19.318
70.70
70.70
-0.00
166.483
18.891
71.47
71 .55
-0.11
177T594 —
18.452
72.46
72.59
-0.18
186.872
18 . 073
73. 34
73.63
-0.39
188.706
17.996
73. t*7
73.86
-0.53
199.817
17.522
74.99
75.41
-0.55
210.928
17.025
76.75
77.31
-0.72
222.039
16.498
78. 89
7 9.66
-0.98
233.150
15.933
82.02
82.67
-0.80
’241 . 761
15.460
8 5 • 3to
85.68
-0.44
244.261
15.315
85.94
86.70
-0.89
249.817
14.980
8 9.33
8 9.31
0.02
252.594
14.804
91. 34
90 .84
0.55
255 . 372
14'. 621
94.11
92.54
1.67
258.150
14.431
98.76
94.48
4.33
260.928
1. 05 3
7 4.35
71.68
3. 59
262.594
1 . 037
72.72
70.51
3. 04
265.372
1.012
70.21
68.68
1.90
266.483
1.002
69.44
68.32
1.62
277.594
0.921
6 5.17
64.56
0.94
282.706
0.890
64. 05
63.57
0.75
288.706
0.558
6 3.28
62.77
0*80
299.817
0.605
62.40
62.01
0.62
305.261
0.783
" ' 62715
61 . 87
0.45
310.928
0.761
62. 02
61.86
0.27
3 22.039 —
0.723
62.28
62.10
OTTO
324.817
0.714
62.40
62.20
0.31
333.150
0.689
62.77
62 • 6i
0.26
344.261
0.659
63.65
63.31
0.53
355.372
0.632
64.53
64 . 17
0.57
366.463
0.608
65. 30
65.12
0.27
TF5T8T7
O'." 607
65.41
65.15
0T4TJ
377.594
0.536
66.16
66.17
0.03
Table 20.
Experimental and calculated specific heats, C (P,T), (continued).
THE CP ISOBAR AT P =
28.269
BAR
T7K~
MOL/L
J/MOL/K
CA LCD
punt
277 .594
13.020
115.37
113.73
1.42
278 . 706
12 #90 6
116.13
116.21
279.017
12.788
118.65
119.01
-0.31
THE CP ISOBAR AT P =
34.474
BAR
T » K
MOL/L
J/MOL/K
CALCO
PUNT
233.150
16.045
81.78
81.55
0.28
241.761
15 '.'594
84.42
84.13
07T5
244.261
15.457
85. 30
84.99
0.37
255.372
14.807
89. 20
89.67
-0.53
266.483
14.066
96.86
96.69
0.20
277 .594
13.165
109.70
109.28
07T5
282.706
12.652
119. 26
119.93
-0.56
285.928
12.27?
128.8?
““130 i 62
-1.40 ~
287.594
12.049
136.68
138.50
-1.18
288.706
11.886
142.81
145,26
-1.72
290.372
2.432
131.60
132.60
-0.77
291.483
? . i 7 7
122.28
124.59
-1.89
292.594
2.327
115.63
118.25
\ -2.27
294.261
2 . 261
107.19
1 111 . 84
-3~.4 0
297.039
2.166
98.52
101.99
-3.53
299.817
2 • U 6 7
98.38
y 5 .//
2.66
305.261
1.359
87.06
37.69
-0.72
310.928
1.853
82. 28
82.43
-0.18
322.039
1.691
76.25
76.54
-0.39
324.817
1 .658
75.61
75.60
0.02
333 . 150
1 . 569
73.72
73.53
0.26
344.261
1.47 0
72. 22
71.96
0.36
355.372
1.338
71.47
71.23
0.33
366 .483
1.318
71.47
71.04
0.60
366.817
1.316
71.47
71 . 04
0.60
THE CP ISOBAR AT P =
41.369
BAR
T.k
MOL/L
J/MOL/K
C A LCD
PCNT
282.706
12.642
111.60
113.45
-1.66
288.706
12.131
129.59
129.39
0.16
294.261
11 . 356
161.66
163.98
-1.43
295 .928
11.021
179. 26
187.10
-4.36
297.039
10.752
195.01
212.72
-9.08
298.706
3.25 2
220.60
203,18
5.71
299 . 817
3 . 131
189.98
179.61
5.46
299.817
3 . 131
189. e5
179.61
5.39
300.650
3.055
168.60
165.17
2.03
301.206
3 . 009
157.76
157.51
0.16
302.594
2.909
137.89
142.85
-3.59
305.261
2.754
122.41
124.78
-1.94
310.928
2.516
104.66
104.74
-0.06
322.039
2.214
89.20
83 . 19
1.13
324.817
2.157
86. 93
85 . 89
1.20
THE CP ISOBAR AT P =
46.678
BAR
T,K
MOL/L
J/MOL/K
CALCD
PCNT
298.428
10 . 938
174.88
180.66
-3.31
299.817
10 1 619
198.79
206.55
-3.90
300 .650
10.392
221.43
230 . 76
-4.21
301.206
10.219
240. 31
253.87
-5.64
302.039
9.906
279.31
310 . 02
-10.99
302.594
9.639
320.83
381.40
-18.88
302 . 872
9.47 4
352.28
443 . 36
-25.85
303.150
9.270
401.35
549.78
-36.98
303.983
4.273
425.25
457.03
-7.47
304.261
4.176
352. 28 ■
394.11
-11.87
305.261
3.922
299. 44
281.47
6.00
305.372
3.900
293.15
274.01
6.53
305.928
3.799
261.69
243.90
6.80
306.761
3.673
223.95
213.18
4.81
308.150
3.505
184. 94
181.23
2.00
309.539
3.371
162. 30
161.11
0.73
310.928
3.259
146.47
147.11
0.92
310 . 926
3.25 9
148.84
147.11
1.17
313.706
3.073
130.05
128.66
1.67
316.483
2.934
120.28
116.93
27T3
322.039
2.712
119.02
102.71
13.71
324 .817
2.623
97.88
93 . 06
-0.18
209
Table 20. Experimental and calculated specific heats, C (P,T), (continued).
P
' THE CP ISOBAR A T'P =
49. 160
TO
T * K
MOL/l
J/MOL/K
CALCD
PC NT
232.706
13.026
106.07
108.18
-1.99
283.150
12.986
106.69
103.82
-2.0 0
288.706
12.443
119. 15
119.03
0.10
294.261
11.778
135.50 '
136.93
-1.06
297.039
11.366
149. 08
152.75
-2.46
298.261
11 . 158
156.64
162.78
-3.92
299.817
10 . 858
177.89
180.52
-1.47
300.928
10,610
193. 13
199.02
-3.05
302.039
10 . 320
217.40
226.77
-4.31
302.594
10.152
231.24
246.82
-6.74
3 0 3 .150
9.963
246.48
274.21
-11.25
303.706
9.743
274.40
314.24
-14.52
304.261
9.476
566.16
379.44
32.98
304.817
9.125
691.97
510.24
26.26
305.261
8.70 7
1006.50
795.16
21.00
305.261
8 . 707
1132. 32
795 .16
29.73
306.483
4.904
553.58
709.02
-28.08
307.039
4.60 3
488. 15
474.72
2.75
307.594
4.401
375.56
“371778
1.01
308.150
4.247
332.39
312.59
5.96
309.261
4.016
261. 83
246.21
5797
310.928
3.769
200.05
196.12
1.96
313.706
3.435
158.14
155.87
1.44
316.483
3.281
135.50
134.78
0.53
T~2'2“.''d39
2.937
108.82
112.55
-3.42
324.817
2.375
101.91
105.91
-3.92
327.594
2.777
102.54
100.83
i .6?
333.150
2.613
95.37
93.61
1.84
THE CP ISOBAR AT P =
51.711
BAR
T7TT“
MOL/L
J/MOL/K
CALCD
PCT7
322.039
3.310
125.81
126.12
-0.25
324.817
3.164
116.88
116.22
0.57
333.150
2.841
99.26
99.23
0.04
344 . 2bl
2.549
88. 82
88.60
0.26
355.372
2.339
83.03
83.19
-0.19
366.483
2.17 6
79.27
80.19
-1.16
366.817
2.171
79. 13
80.12
-1.25
377.594
2.043
76.75
78.50
-2.28
THE CP ISOBAR AT P = b fc . 4 fc 8 BAR
T,K
MOL/L
J/MOL/K
CALCD
PCNT
3 107 372
8 .'515
406.89 —
442.02
-8.10
310 .650
8 . 338
444. 12
479.25
-7.91
310.928
8.146
467712 —
— 519.80
-7.59
311.206
7.938
530.92
560.87
-5.64
3 1 1 .483
7.718
577.48
596.74
•3 • 3 3
311.761
7.438
626.55
619.71
1.09
3T2V0 39
7.256
666TF1
623 # 91
6.43
312.150
7.165
680. 65
620.86
8.78
312.261
7.076
689.46
616.16
10 • 63
312 .428
6.944
693. 22
607.65
12.34
312.594
6.817
694746 —
— 598.49
1 3 • 8 2
312.706
6.733
693.22
598.20
13.71
317.817
6.632“
ET9T797
591.75
14.48
312.928
6.572
679. 39
585.18
13.87
313.150“
6.413
644.15
— 571.49
11.28
313.428
6.235
595.10
549.95
7.59
313.706
6.064
552.21 —
520.95
5.68
313.983
5.90 9
514.58
489.20
4.93
314.261
5.766
485.64
438.85
5.61
210
1
Table 20. Experimental and calculated specific heats, C (p,T), (continued).
P
THE- CP ISOBAR AT P =
63.948
TAR
T,K
MOL/L
J/MOL/K
C A LCD
PC NT
110 .928
21. 009
b 8 • 5 b
b 3 . 64
-O'. 11
118.37?
20 .748
68.69
63.79
-0.13
12?; 03?
20 .61?
6 6.83
68*67
-0.07
133.150
20.227
69.07
69.21
-0.20
144 . 2bl
19.830
69.71
69 • 66
0TTT7
155 . 372
19.426
70.46
70.23
0.32
166.483
19.015
71.21
70 .96
0.35
177 .594
16.593
71.84
71.84
-0.00
186.872
18 . 232
72.46
72.73
-0.36
188.705
16 . 159
73. 23
72 . 92
0.43
199.817
17.711
73.98
74.20
-0.29
210.928
17 .24 6
75.37
75.72
-0.47
222.039
16.760
77.00
77. 54
-0.70
233.150
16 .25 0
79.27
79.71
-0.57
241.761
15.633
81.14
81.72
-0.72
244.261
15 . 708
82.41
82.37
0.06
255.372
15.126
8 5.68
85.68
-0.01
266.483
14.439
89. 46
90.00
-0.60
277.594
13. 773
95.74
95 .01
-0.23
282.706
13.407
98. 89
99.72
-0.83
238.706
12.937
104.93
105.30
-0.36
299.817
11 . 886
111.84
122.47
-9.50
305.261
11.228
137.15
133.02
-0.64
310 . 928
10.35 3
156.53
165.91
-5.2 9
314.261
9.68 7
176.39
196.21
-11.23
316.483
9. 14 8
200.16
223.37
-11.59
317.594
8.644
222.69
238 . 79
-7.23
319.261
8. 349
254. 27
260 . 98
-2.64
320.372
7.998
270.62
271.62
-0.37
320.928
7.320
277.80
27*+ .61
1.15
322.039
7 . 46 8
284.97
274.66
3.62
322.706
7 .264
285.59
271 .01
5.11
323.706
6 . 972
265.22
262.63
7.92
324.817
6.670
281.83
256.13
9.12
324.817
6.670
282.20
256.13
9.24
325 .372
6.528
277.16
251 .11
9.40
326.433
6.261
258.30
240.78
6.73
327.594
b . 01 7
240.93
223.87
5.01
330.372
5.503
200.55
199.26
0.64
333.150
5.103
176.51
175.40
0.62
335.928
4.784
158. 91
157 .02
1.19
338.706
4.525
143.69
142.97
0.50
344 . 261
4.126
123.29
123.74
-0.36
355.372
3.594
104.42
103.65
0.73
366.483
3.241
94.49
93.94
0.58
366 .317
3.232
94. 24
93.73
0.55
THE CP ISOBAR AT P =
36.184
BAR
T t K
MOL/L
J/MOL/K
CALCD
PCNT
282 .706
13.675
94. 86
95.17
-0.33
283.706
13.260
98. 89
93.94
-0.05
299.817
12.389
106.21
108.67
-0.42
305.261
11 . 694
114.62
115 .53
-0.80
310 .923
11.310
123. 42
125.07
-1.33
316.483
10.647
134.61
137.82
-2.33
322. Q39
9.867
149.97
154.63
-3.11
324.817
9.428
160.16
164.03
-2.41
327.594
6.957
168.20
172.82
-2.75
330 .372
6.467
176.13
179.23
-1.76
333.150
7.973
180.54
181.35
-0.45
334.817
“ 7.634 '
181.17
180.18
0.55
337.039
7.317
180.29
176.04
2.36
338*706
7.060
177.65
171.68
3.3b
341.483
6.665
170.23
165.13
2.99
344.261
6.311
1 6 1
157 . 81
2.46
349.817
5. 713
146.47
142.89
3.75
355.372
5 . 24 1
134.00
130.08
27T2
366.483
4.557
114. 24
112.09
1.88
T66'.'B'i 7
4.540
113.96
111.68
27TH
377.594
4.036
101.66
101.36
0.30
211
Table 20. Experimental and calculated specific heats, C (p,T), (continued).
THE CP TSOBAR AT P =
103.421 BAR
T »K
MOL/t
J/MOL/K
CALCD
PCNT
241.761
16.045
79.64
79.93
-0.36
244.261
15.929
80. 15
80 .44
-0. 37
255.372
15.394
82.79
82.99
-0.25
266.433
14.824
85.94
86 . 07
-0.15
277 .594
14.207
89. 84
89.86
-0.03
282.706
13.903
91.84
91.94
-0.11
283.706
13.528
94.73
94.74
-0.01
299.817
12.765
101.66
101.29
D7T7
305.261
12.349
105.68
105 .41
0.25
310 .928
11.881
110.34
110.57
-0.21
316.483
11.378
115.63
116.70
-0.92
322.039
10 .625
122.17
124.00
-1.50
324.817
10.528
126.44
128.06
-1.28
327.594
10 . 217
129.97
132.29
-1.79
333.150
9.555
137. 89
140.60
-1.96
3 3 8 • 7 0 6
8.855
144.81
146.68
-1.29
344.261
8.156
150.85
148.60
1.49
344.928
8 . 074
151.73
148 • 33
2724
345.928
7.953
151.48
147.78
2.44
348 .150
7.691
151.11
146 • 01
3# 3?
349.817
7.501
149.22
144.25
3.33
352.594
7.202
144.81
140.73
2.82
355.372
6.923
140. 91
136.97
2.80
A*
360.928
6.425
132. 35
130 .00
1777
366.483
5 . 396
126.82
123.53
2.60
366 *817
5 .972
126. 44
123.14
2 • 6 1
377.594
5.311
116.75
112.23
3.87
THE CP ISOBAR AT P =
120.658 BAR
T7K
MOL/L
J/MOL/K
CALCD
PUNT
324.817
11.192
113.73
113.36
0.33
33 3 . 15 0
10 . 439
120.28
120.95
-0.56
338.706
9. 903
124.68
125.75
-0.86
344.261
9.348
129.70
13 0 • 0 3
-0.25
347.039
9.06 8
131.60
130.98
0.47
349 . 81 7
8.790
132.74
131.44
0793
351.761
6.598
133.12
131.44
1.26
352.317
6.543
13 3* £3
131 • 39
1*38
355.372
6 . 2*+ 8
132.35
130.74
1.21
358.150
7.938
130.34
129.64
0.54
360.928
7.738
128.34
128.13
0.16
3bb . 483
7.274
124. 04
124.21
• 0 • 1 3
366.817
7.247
123.80
123.95
-0.12
377.594 67936 IT7726 115.09 TT99
THE CP ISOBAR AT P = 137. 895 9'AR
T,K
MOL/L
J/MOL/K
CALCO
PCNT
110 .928
21.095
6 8.19
68.45
-0*39
118.372
20.341
68.45
68.55
-0.15
122.039 —
— 20.716
68.56
6 8 .62
-3738
133 . 150
20.335
68.94
68.87
0.10
144.261
19.952
69.44
69 .23
0731
155.372
19.564
70.08
69.70
0.55
lbb .483
197773
73759 —
79729
U .41
177.594
18.768
71. 09
71.03
0.09
1367872
18.427 —
71158
71.75
-9". 24
188.706
18.358
71.71
71.91
-0.27
T99T3T7
177978
7 2.72
72 .94
• 0 • 3 13
210 . 928
17.507
73.98
74.15
-0.23
7727979 —
177967 —
f 5 . 3 (
75759
• DT73
233.150
16.603
77.13
77.14
-0.01
241 .761
lb • <?35
fS.bJ
f 3 • 53
0*13
244.261
16.126
79. 00
79.96
0.06
255.372
15.628 —
81.14
8 1 • O 3
0*13
266.483
15.105
83.41
83.42
-0.01
277.594
14.552
86.31
86.17
• 0.17
282.706
14.285
87. 70
87.58
0.13
288.706
13.961
89.71
89.39
0.36
299.817
13.325
92.97
93.22
-0.27
305.261
12.994
94. 86
95 .38
-0.55
310.928
12.633
97.88
97.88
0.00
322.039
iTTeT?
— nnrreo
103.63
5717
324.817
11.673
105. 43
105.26
0.16
333.150
11 . 041
110.45
110.54
-0.08
344.261
10.140
116.62
117.70
-0.93
355.372
9.204
120.28
120 . 81
-0.44
366.483
6.302
120.65
120.01
0.53
366.817
8 .276
118. 38
119.93
-1.30
377 .594
7.497
112.61
115 . 84
-2.87
212
Table 21. Comparison of Enthalpies for Saturated Liquid, J/mol
T, K Tester [70] This Report Difference
100
6 075
5 991
84
120
7 447
7 368
79
140
8 833
8 758
75
160
10 243
10 169
74
180
11 682
11 613
69
200
13 156
13 106
50
220
14 678
14 666
12
240
16 281
16 32 3
-42
260
18 006
18 125
-119
280
19 940
20 175
-235
300
22 720
22 950
-230
213
Table 22. Comparison of Enthalpies, J/mol
P = 20 atm P = 100 atm
T, K
H°
HT
TE
RG"
HT
TE
RG
280
31 228
29 493
29 457
29 535
--
3 20
33 348
32 169
32 169
32 137
24 122
23 774
24
019
360
35 666
34 781
34 799
34 708
29 715
29 733
29
72 0
400
38 188
37 493
37 515
37 391
34 185
34 270
34
134
460
42 353
41 837
41 862
41 718
39 680
39 771
39
564
HT = Tester [70], TE = Eubank et al. [18], RG = This Report,
Pressure of 20 bar; ** Pressure of 100 bar.
214
Table 23. Calculated P(T) isochores
The following pages give P(T) along isochores, as computed by
the equation of state. The third column DP/DD is the isotherm slope
(ciP/Bp) in units of the bar and mol/X. The last two columns give the
2 2
isochore slopes and curvatures cP /BT, S P/dT , in units of the
bar and K.
These tables show that the isochore curvatures are qualitatively
consistent with a maximum in the specific heat C v (p, T) at the critical
point.
215
Table 23. Calculated P(T) isochores.
THE ISOCHORE AT 1.00 MOL/L
T * K
P»BAR
DP/DO
DP/OT
02P/DT2
266.0
17.157
12.481
0.1051
-0.00021
274. 0
17.992
13.495
0.1035
-0.00017
282.0
18.815
14.482
0.1023
-0.00015
29 0.0
19.628
15.448
0.1012
-0.00012
298.0
20.434
16.395
0.1003
-0.00011
306.0
21.233
17.328
0.0995
-0.00009
314.0
22.026
18.248
0.0988
-0.00008
322.0
22.814
19.156
0.0982
-0.00007
330.0
23.597
20.055
0.0976
-0.00007
338 , 0
24.375
20.946
0.0971
-0.00006
346. 0
25.150
21.828
0.0967
-0.00005
354.0
25.922
22.704
0.0963
-0.00005
362.0
26.691
23.574
0.0959
-0.00004
370.0
27.457
24.438
0.0956
-0.000 04
378.0
28.220
25.298
0.0953
-0.00004
386.0
28.981
26.152
0.0950
-0.00003
394.0
29.740
27.003
0.0947
-0.00003
402.0
30.497
27.849
0.0945
-0.00003
410.0
31.252
28.692
0.0943
-0.00003
418.0
32.005
29.532
0.0941
-0.00002
426.0
32.757
30.369
0.0939
-0.00002
434. 0
33.508
31.203
0.0937
-0.00002
442.0
34.257
32.034
0.0936
-0.00002
450.0
35.004
32.863
0.0934
-0.00002
458.0
35.751
33.690
0.0933
-0.00002
466. 0
36.497
34.514
0.0931
-0.00002
474.0
37.241
35.337
0.0930
-0.00002
482.0
37.985
36.157
0.0929
-0.00001
490.0
38.727
36.976
0.0928
-0.00001
498.0
39.469
37.793
0.0927
-0.00001
506.0
40.210
38.609
0.0926
-0.00001
514.0
40.950
39.423
0.0925
-0.00001
522.0
41.690
40.235
0.0924
-0.00001
530.0
42.428
41.047
0.0923
-0.00001
538.0
43.166
41.857
0.0922
-0.00001
546.0
43.904
42.666
0.0921
-0.00001
554. 0
44.641
43.473
0.0921
-0.00001
562.0
45.377
44.280
0.0920
-0.00001
570.0
46.113
45.085
0.0919
-0.00001
578.0
46.848
45.890
0.0919
-0.00001
586.0
47.583
46.694
0.0918
-0.00001
594.0
48.317
47.496
0.0917
-0.00001
216
Table 23. Calculated P(T) isochores-
THE ISOCHORE AT 2.00 HOL/L
- (Continued)
T * K
P,BAR
DP/DD
OP/DT
D2P/DT2
290.0
31.339
8.269
0.2384
-0. 00066
298.0
33.227
9.482
0.2338
-0.00051
306. 0
35.082
10.654
0.2301
-0.00042
314.0
36.910
11.796
0.2270
-0.00035
322.0
38.716
12.915
0.2244
-0.00030
330.0
40.502
14.015
0.2222
-0.00026
330. 0
42.272
15.099
0.2202
-0.00023
346.0
44.027
16.169
0.2185
-0.00020
354. 0
45.769
17.228
0.2170
-0.00018
362.0
47.499
18.276
0.2156
-0.00016
370 . 0
49.219
19.315
0.2144
-0.00015
378.0
50.930
20.346
0.2133
-0.00013
386. 0
52.632
21.370
0.2123
-0.00012
394.0
54.327
22.387
0.2113
-0.00011
402.0
56.014
23.399
0.2105
-0.00010
410.0
57.695
24.404
0.2097
- 0.0 00 09
418 . 0
59.369
25.405
0.2090
-0.00009
426. 0
61.039
26.401
0.2083
-0.00008
434. 0
62.703
27.393
0.2077
-0.00007
44 2.0
64.362
28.380
0.2071
-0.00007
450.0
66.017
29.365
0.2066
-0.00006
458.0
67.668
30.345
0.2061
-0.00006
466. 0
69.314
31.323
0.2056
-0.00006
474.0
70.958
32.297
0.2052
-0.00005
482.0
72.597
33.269
0.2048
-0.00005
49 0.0
74.234
34.238
0.2044
-0.00005
498 . 0
75.867
35.204
0.2040
-0.00004
506.0
77.498
36.168
0.2036
-0. 00004
514.0
79.126
37.130
0.2033
-0.00004
522. 0
80.751
38.090
0.2030
-0.00004
530. 0
82.374
39.047
0.2027
-0.00004
538. 0
83.994
40.003
0.2024
-0.00003
546.0
85.613
40.957
0.2021
-0.00003
554. 0
87.229
41.909
0.2019
-0.00003
562.0
88.843
42.860
0.2016
-0.00003
570.0
90. 455
43.808
0.2014
-0.00003
578 . 0
92.065
44.756
0.2012
-0.00003
586. 0
93.674
45.701
0.2010
-0.00003
594.0
95.281
46.646
0.2008
-0.00003
217
Table 23. Calculated P(T) isochores- - -
THE ISOCHORE AT 3.00 MOL/l
T * K
P,BAR
DP/ DO
DP/OT
298.0
40.058
4.460
0.3967
306.0
43.187
5.8 49
0.3862
314.0
46.246
7.159
0.3788
322. 0
49.252
8.432
0.3731
330.0
52.218
9.682
0.3684
338.0
55.149
10.913
0.3645
346. 0
58.051
12.131
0.3611
354. 0
60.928
13.336
0.3582
362.0
63.782
14.532
0.3556
370.0
66.617
15.719
0.3532
378.0
69.435
16.898
0.3512
386.0
72.237
18.071
0.3493
394. 0
75.024
19.239
0.3476
402.0
77.799
20.401
0.3460
410.0
80.561
21.558
0.3446
418.0
83.313
22.710
0.3433
426.0
86.054
23.859
0.3421
434.0
88.787
25.004
0.3410
442. 0
91.510
26.146
0.3399
450.0
94.226
27.284
0.3390
458.0
96.934
28.419
0.3381
466.0
99.635
29.552
0.3372
474. 0
102.330
30.681
0.3364
482.0
105.018
31.808
0.3357
490.0
107.700
32.933
0.3349
498.0
110.377
34.056
0.3343
506.0
113.049
35.176
0.3336
514. 0
115.715
36.294
0.3330
522. 0
118.377
37.410
0.3325
530. 0
121.034
38.524
0.3319
538.0
123.688
39.637
0.3314
546.0
126.337
40.748
0.3309
554.0
128.982
41.856
0.3304
562.0
131.623
42.964
0.3300
570.0
134.261
44.070
0.3295
578.0
136.895
45.174
0.3291
586.0
139.527
46.276
0.3287
594. 0
142.155
47.378
0.3283
(Continued)
02P/DT2
-0.00163
-0.00107
-0.00080
-0.00064
-0.00053
-0.00045
-0.00039
-0.00034
-0.00031
-0.00027
-0. 00025
- 0.00022
- 0.00020
-0.00019
-0.00017
-0.00016
-0.00015
-0.00014
-0. 00013
- 0.00012
- 0.00011
- 0.00010
- 0.00010
-0.00009
-0.00009
-0.00008
-0.00008
-0.00007
-0.00007
-0.00007
-0.00006
-0.00006
-0.00006
-0.00006
-0.00005
-0.00005
-0.00005 Tj
-0.00005
218
Table 23. Calculated P(T) isochores- - - (Continued)
THE ISOCHORE AT 4.00 MOL/L
T » K
P > BAR
DP/DD
DP/OT
D2P/0T2
306.0
47.293
2.606
0.5608
-0.00241
314.0
51.716
4.014
0.5465
-0.00137
322. 0
56.049
5.384
0.5373
-0.00098
330.0
60.319
6.736
0.5304
-0.00076
338.0
64.539
8.079
0.5248
-0.00063
346.0
68.719
9.415
0.5202
-0.00053
354.0
72.864
10.746
0.5163
-0.00046
362. 0
76.981
12.074
0.5129
-0.00040
370.0
81.071
13.398
0.5098
-0.00036
378. 0
85.139
14.720
0.5072
-0.00032
386. 0
89.186
16.040
0.5047
-0.00029
394. 0
93.215
17.358
0.5025
-0.00026
402.0
97.228
18.674
0.5005
-0.00024
410. 0
101.224
19.988
0.4987
-0.00022
418. 0
105.207
21.301
0.4970
-0.00020
426. 0
109.177
22.612
0.4955
-0.00019
434.0
113.135
23.922
0.4940
-0.00017
442. 0
117.082
25.230
0.4927
-0.00016
450.0
121.018
26.537
0.4914
-0.00015
458.0
124.944
27.843
C . 4902
-0.00014
466.0
128.861
29.147
0.4891
-0.00014
474. 0
132.770
30.450
0.4880
-0. 000 13
482.0
136.670
31.752
0.4870
-0.00012
490.0
140.563
33.052
0.4861
-0.00011
498.0
144.448
34.351
0.4852
-0.00011
506.0
148.326
35.649
0.4844
-0.00010
514. 0
152.198
36.946
0.4835
-0.00010
522. 0
156.063
38.242
0.4828
-0.00009
530.0
159.922
39.536
0.4820
-0.00009
538.0
163.775
40.829
0.4813
-0.00009
546. 0
167.623
42.121
0.4806
-0.00008
554.0
171.466
43.412
0.4800
-0.00008
562. 0
175.303
44.702
0.4793
-0.00008
570.0
179.135
45.990
0.4787
-0.00007
578.0
182.962
47.278
0.4781
-0.00007
586.0
186.785
46.564
0.4776
-0.00007
594. 0
190.604
49.849
0.4770
-0.00007
219
(Continued)
Table 23. Calculated P(T) isochores- - -
THE ISOCHORE AT 5,00 MOL/L
T * K
P,BAR
DP/DD
DF/DT
D2P/DT2
306* 0
48.895
0.835
0.7449
-0.00551
314. 0
54.747
2.274
0.7225
-0.00167
322. 0
60.482
3.709
0.7120
-0.00104
330.0
66.148
5.155
0 .7049
-0.00077
338.0
71.765
6.610
0.6994
-0.00061
346. 0
77.342
8.074
0.6950
-0.00051
354. 0
82.886
9.546
0.6912
-0.00044
362.0
88.402
11.024
0.6879
-0.00038
370.0
93.894
12.508
0.6850
-0.00034
378.0
99.363
13.996
0.6824
-0.00031
386.0
104.813
15.489
0.6801
-0.00028
394. 0
110.246
16.985
0.6780
-0.00025
402. 0
115.662
18.484
0.6761
-0.00023
410.0
121.063
19.985
0 .6743
-0.00022
418.0
126.451
21.489
0.6726
-0.00020
426.0
131.826
22.994
0.6711
-0.00019
434. 0
137.188
24.502
0.6696
-0. 00018
442.0
142.540
26.010
0.6683
-0.00017
450.0
147.881
27.520
0.6670
-0.00016
458.0
153.211
29.030
0.6657
-0.00015
466.0
158.533
30.542
0.6646
-0. 00014
474.0
163.845
32.053
0.6635
-0.00013
482. 0
169.149
33.565
0.6624
-0.00013
490.0
174.444
35.078
0.6614
-0.00012
498.0
179.731
36.590
0 .6605
-0.00012
506.0
185.011
38.103
0.6595
-0. 00011
514.0
190.284
39.615
0.6586
-0.00011
522.0
195.549
41.128
0.6578
-0.00011
530.0
200.808
42.640
0.6569
-0.00010
538.0
206.060
44.151
0.6561
-0.00010
546.0
211.306
45.663
0.6553
-0.00010
554.0
216.545
47.173
0.6546
-0.00009
562.0
221.779
48.684
0.6538
-0.00009
570.0
227.007
50.193
0.6531
-0.00009
578.0
232.229
51.702
0.6524
-0.00009
586.0
237.445
53.211
0.6517
-0.00008
594.0
242.656
54.718
0.6510
-0.00008
1
Table 23. Calculated P(T) isochores- - - (Continued)
THE ISOCHORE AT 6.00 MQl/L
T,K
P»8AR
DP/DD
OP/DT
D2P/DT2
306.0
49.334
0.167
0.9259
-0.00990
314.0
56.633
1.634
0.9058
-0.00105
322. 0
63.853
3.183
0.8995
- 0. 00061
330.0
71.031
4.777
0 .8954
-0.00044
338.0
78.182
6.402
0.8922
-0.00036
346.0
©5.309
8.052
0.8896
-0.00030
354. 0
92.417
9.720
0.8874
-0.00026
36 2. 0
99.508
11.404
0.8854
-0.00023
370.0
106.584
13.102
0.8837
-0.00021
378.0
113.647
14.811
0.8820
-0.00019
386. 0
120.697
16.530
0.8805
-0.00018
394.0
127.736
18.257
0.8791
-0.00017
402. 0
134.763
19.992
0.8778
-0.00016
410.0
141.781
21.734
0.8766
-0.00015
418.0
148.789
23.481
0.6754
-0.000 15
426.0
155.787
25.233
0.8742
-0.00014
434.0
162.776
26.989
0.8731
-0.00013
442.0
169.757
28.750
Q.8721
-0.00013
450.0
176.729
30.513
0.8710
-0.00013
458.0
183.694
32.280
0.8700
-0. 00012
466.0
190.650
34.048
0.8691
-0.00012
474.0
197.599
35.819
0.8681
-0.00012
482.0
204.540
37.592
0.8672
-0.00011
490. 0
211.474
39.367
0.8663
-0. 00011
498.0
218.401
41.142
0.8654
-0.00011
506.0
225.321
42.919
0.6645
-0.00011
514. Q
232.234
44.697
0.8637
-0.00011
522.0
239.140
46.475
0.8628
-0.00010
53 Q . 0
246.039
48.254
0.8620
-0.00010
538. 0
252.932
50.033
0.8612
-0.00010
546 . 0
259.819
51.812
0.6604
-0.00010
554.0
266.699
53.591
0.8596
-0.00010
562.0
273.573
55.371
0.8588
-0.00010
570.0
280.440
57.150
0.8581
-0.00010
578. 0
287.302
58.928
0.8573
- 0. 000 09
586. 0
294.157
60.707
0.8565
-0,00009
594.0
3Q1.006
62.485
0.8558
-0.00009
221
Table 23. Calculated P(T) isochores- - - (Continued)
THE ISOCHORE AT 6.74 MOL/L
T,K
P,BAR
DP/DD
DP/DT
D2P/DT2
306.0
49.418
0.104
1.0528
-0.00000
314. 0
57.840
1.691
1.0527
-0.00001
322.0
66.261
3.401
1.0526
-0.00002
330.0
74.681
5.171
1.0524
-0.00003
338. 0
83.100
6.981
1.0521
-0.00004
346.0
91.515
8.823
1.0518
-0.00004
354.0
99.929
10.690
1.0515
-0.00005
362.0
108.339
12.578
1.0511
-0.00005
370.0
116.746
14.483
1.0506
-0.00006
378.0
125.149
16.403
1.0501
-0. 00006
386.0
133.548
18.336
1.0496
-0.00007
394.0
141.943
20.279
1.0491
-0.00007
402.0
150.333
22.233
1.0485
-0.00007
410.0
158.719
24.195
1.0479
-0.00008
418.0
167.100
26.165
1.0473
-0.00008
426. 0
175.476
28.141
1.0466
-0.00008
434.0
183.846
30.122
1.0460
-0.00008
442.0
192.211
32.109
1.0453
-0.000 09
450.0
200.571
34.100
1.0446
-0.00009
458.0
208.925
36.095
1.0439
-0.00009
466.0
217.273
38.093
1.0432
-0.00009
474.0
225.616
40.094
1.0425
-0.0 00 09
48 2.0
233.953
42.098
1.0417
-0.00009
490.0
242.284
44.103
1.0410
-0.00009
498.0
250.609
46.111
1.0402
-0.00009
506.0
258.927
48.119
1.0395
-0.00010
514.0
267.240
50.130
1.0387
-0.00010
522.0
275.547
52.141
1.0379
-0.00010
530. 0
283.847
54.152
1 .0372
-0.00010
538. 0
292.141
56.165
1.0364
-0.00010
546. 0
300.429
58.178
1.0356
-0.00010
554. 0
308.710
60.191
1.0348
-0. 00010
562.0
316.986
62.204
1.0340
-0.00010
570.0
325.255
64.216
1.0332
-0.00010
578.0
333.517
66.229
1.0324
-0.00010
586.0
341.774
68.241
1.0317
-0.00010
594.0
350.024
70.253
1.0309
-0.00010
222
Table 23. Calculated P(T) isochores- - - (Continued)
THE ISOCHORE AT 8.00 HOL/L
T,K
P,BAR
DP/DD
DF/OT
C2P/DT2
306.0
49.651
0.447
1.3126
0.01309
314.0
60.333
2.529
1.3477
0.00208
322.0
71.169
4.704
1.3601
0.00119
330.0
82.083
6.937
1.3680
0.00083
338. 0
93.051
9.214
1.3738
0.00063
346.0
104.060
11.524
1.3782
0.00049
354.0
115.100
13.861
1.3817
0.00039
362.0
126.165
16.221
1.3846
0.00032
370.0
137.251
18.600
1.3869
0.00026
378.0
148.354
20.994
1.3887
0.00021
386.0
159.470
23.403
1.3903
0.00017
394.0
170.597
25.824
1.3915
0.00014
402.0
181.733
28.255
1.3924
0.00011
410.0
192.876
30.696
1.3932
0.00008
418.0
204.024
33.144
1.3937
0.00006
426.0
215.175
35.599
1.3941
0.00004
434.0
226.329
36.060
1.3944
0.00002
442.0
237.485
40.526
1.3945
0. 00001
450.0
248.640
42.997
1.3945
-0.00001
458.0
259.796
45.471
1.3943
-0.00002
466.0
270.950
47.949
1.3941
-0.00003
474. 0
282.101
50.429
1.3938
-0.00004
482. 0
293.251
52.911
1.3935
-0,00005
49 0.0
304.397
55.396
1.3930
-0.00006
493.0
315.539
57.882
1.3925
-0.00007
506.0
326.677
60.369
1.3920
-0.00007
514. 0
337.811
62.857
1.3914
-0.00008
522.0
348.939
65.345
1.3907
-0.00008
530.0
360.062
67.834
1.3900
-0.00009
538.0
371.180
70.323
1.3893
-0.00009
546.0
382.291
72.812
1.3886
-0.00010
554. 0
393.397
75.301
1.3878
-0.00010
562.0
404.495
77.789
1.3869
-0.00010
570.0
415.588
80.276
1 .3 861
-0.00011
578.0
426.673
82.763
1.3852
-0.00011
586 . 0
437.751
85.249
1.3843
-0.00011
594.0
448.823
87.733
1.3834
-0.00011
223
Table 23. Calculated P(T) isochores- - - (Continued)
THE ISOCHORE AT 9.00 MOL/L
T,K
P,8AR
DP/00
OF/DT
C2P/OT2
306.0
50.818
2.236
1.6175
0.00728
314.0
63.920
5.028
1.6527
0.00291
322.0
77.221
7.822
1.6712
0.00186
330.0
90.644
10.640
1.6839
0.00136
338.0
104.155
13.480
1.6935
0.00106
346. 0
117.734
16.341
1.7011
0.00085
354.0
131.368
19.218
1.7072
0.00069
362. 0
145.046
22.110
1.7123
0.00057
370 . 0
158.762
25.014
1.7164
0.00048
378. 0
172.508
27.929
1.7199
0.00040
386.0
186.279
30.853
1.7228
0.00033
394.0
200.072
33.784
1.7252
0.00027
402. 0
213.882
36.723
1.7272
0. 00023
410.0
227.707
39.666
1.7289
0.00018
418.0
241.543
42.614
1.7302
0.00015
426.0
255.389
45.566
1.7312
0.00011
434. 0
269,242
48.522
1 .7320
0.00008
442.0
283.100
51.479
1.7326
0.00006
450.0
296.962
54.439
1.7330
0.00004
458.0
310.827
57.400
1,7332
0.00002
466.0
324.692
60.363
1.7332
-0.00000
474.0
338.558
63.326
1.7331
-0. 00002
4e2. 0
352.422
66.289
1.7329
- 0. 0 00 03
490.0
366.284
69.252
1 .7326
-0.00005
498.0
380.143
72.215
1.7322
-0.00006
506.0
393.998
75.178
1 .7316
-0.00007
514. 0
407.849
78.139
1.7310
-0.00008
522.0
421.695
81.100
1.7304
-0.00009
530.0
435.535
84.059
1.7296
-0.00010
538.0
449.369
87.017
1.7288
-0.00010
546.0
463.196
89.973
1.7279
-0.00011
554. 0
477.015
92.928
1.7270
-0. 00012
562.0
490.828
95.880
1 .7261
-0.00012
570.0
504.632
98.831
1.7250
-0.00013
578.0
518.428
101.779
1.7240
-0.00013
586.0
532.216
104.725
1.7229
-0. 00014
594.0
545.995
107.669
1.7218
-0.00014
224
Table 23. Calculated P(T) isochores- - - (Continued)
THE ISOCHORE AT 10.00 MOL/L
T,K
Pf BAR
DP/ CD
DF/DT
D2P/DT2
306. 0
55.121
7.041
2 . C 254
0. 00422
314.0
71.438
10.701
2.0519
0.00265
322.0
87.929
14.316
2.0699
0.00192
330.0
104.545
17.915
2.0834
0.00149
338.0
121.257
21.505
2.0941
0.00119
346.0
138.045
25.092
2.1027
0.00097
354. 0
154.896
28.677
2.1098
0.00080
362.0
171.799
32.261
2.1157
0.00067
370.0
188.745
35.843
2.1206
0.00056
378.0
205.726
39.424
2.1246
0.00046
386. 0
222.737
43.004
2.1280
0.00038
394.0
239.772
46.582
2.1308
0.00032
402. 0
256.828
50.158
2.1331
0.00026
410.0
273.901
53.732
2.1349
0.00021
418.0
290.986
57.304
2.1364
0.00016
426. 0
308.082
60.873
2.1375
0. 00012
434.0
325.186
64.440
2.1383
0.00009
442.0
342.295
68.004
2.1389
0.00005
450.0
359.407
71.564
2.1392
0.00003
45 8. 0
376.522
75.122
2. 139 3
0.00000
466 • 0
393.636
78.676
2.1392
-0.00002
474.0
410.749
82.226
2.1390
-0. 00004
482.0
427.859
85.773
2.1386
-0.00006
49 0.0
444.966
89.316
2.1380
-0.00008
498.0
462.067
92.856
2.1373
-0.00009
506.0
479.162
96.391
2.1365
-0.00011
514.0
496.251
99.922
2.1356
-0.00012
522.0
513.332
103.449
2.1346
-0.00013
530. 0
530.405
106.972
2.1335
-0.00014
538. 0
547.469
110.491
2.1324
-0.00015
546. 0
564.523
114.005
2.1312
-0.00016
554.0
581.567
117.515
2.1299
-0.00017
562.0
598.600
121.021
2.1285
-0.00017
570.0
615.623
124.522
2.1271
-0.00018
578.0
632.634
128.018
2.1256
-0.00018
586.0
649.633
131.510
2.1241
-0.00019
594.0
666.620
134.998
2.1226
-0. 00020
225
Table 23. Calculated P(T) isochores- - - (Continued)
THE ISOCHORE AT 11.00 MOL/L
T,K
P ,8 AR
DP/DD
DF/DT
C 2 P /0 T 2
298.0
46.355
12.389
2.5254
0.00353
306 . 0
66.658
17.137
2.5488
0.00244
314.0
87.118
21.783
2.5657
0.00184
322 . 0
107.698
26.365
2.5787
0.00144
330. 0
128.370
30.903
2,5890
0.00116
338 . 0
149.117
35.406
2.5974
0.00094
346. 0
169.924
39.881
2.6042
0.00077
354 . 0
190.781
44.332
2.6098
0.00063
362.0
211.678
48.763
2.6144
0.00052
370. 0
232.609
53.175
2.6181
0.00042
378. 0
253.567
57.570
2.6211
0.00033
386.0
274.546
61.950
2.6235
0.00026
394.0
295.541
66.316
2.6254
0. 00020
402.0
316.550
70.668
2.6267
0.00014
410. 0
337.568
75.007
2.6277
0.00010
418.0
358.592
79.334
2.6283
0.00005
426. 0
379.620
83.650
2.6286
0. 00002
434.0
400.648
87.954
2.6285
- 0.00002
442. 0
421.675
92.248
2.6283
- 0.00005
45 0.0
442.700
96.531
2.6278
- 0.00008
458. 0
463.719
100.804
2.6270
- 0.00010
466 . 0
484.732
105.067
2 .6261
- 0.00012
474. 0
505.737
109.320
2.6251
- 0.00014
482 . 0
526.733
113.564
2.6239
- 0.00016
49 0.0
547.718
117.798
2.6225
- 0.00018
498 . 0
568.693
122.024
2.6210
- 0.00019
506.0
589.655
126.240
2.6194
- 0.00020
514. 0
610.603
130 . 44 e
2.6178
- 0. 00022
522.0
631.538
134.647
2.6160
- 0.00023
530.0
652.459
138.838
2.6141
- 0.00024
538.0
673.364
143.020
2.6 122
- 0.00025
546 . 0
694.254
147.194
2.6102
- 0.00025
226
Table 23. Calculated P(T) isochores- - - (Continued)
THE ISOCHORE AT 12.00 MOL/L
T,K
P , BAR
DP/DD
OP/DT
02P/DT2
290 . 0
41.028
23.606
3.1812
0.00170
294. 0
53.766
26.598
3.1875
0. 00146
298.0
66.527
29.555
3.1929
0.00127
302. 0
79.308
32.483
3.1977
0.00112
306.0
92.108
35.385
3.2019
0.00098
310.0
104.923
36.264
3.2056
0.00087
314. 0
117.751
41.123
3.2068
0.00076
318.0
130.593
43.963
3.2117
0.00067
322.0
143.445
46.785
3.2142
0.00059
326. 0
156.306
49.592
3.2165
0.00052
330.0
169.176
52.384
3.2184
0.00046
334.0
182.053
55.162
3.2201
0.00040
338.0
194.937
57.928
3.2216
0.00034
342. 0
207.826
60.681
3.2229
0.00029
346. 0
220.719
63.423
3.2239
0.00025
350.0
233.617
66.154
3.2248
0.00020
354. 0
246.518
68.875
3.2256
0.00016
358.0
259.421
71.587
3.2261
0.00013
362.0
272.327
74.289
3.2266
0.00009
366.0
285.234
76.982
3.2269
0.00006
370.0
298.142
79.666
3.2271
0.00003
374.0
311.050
82.342
3.2271
0. 0 00 0 0
378. 0
323.959
85.011
3.2271
-0.00002
382.0
336.867
87.672
3.2270
-0.00005
38 6. 0
349.774
90.325
3.2267
-0.00007
390 . 0
362.681
92.972
3.2264
-0.00009
394.0
375.586
95.612
3.2260
-0.00011
398. 0
388.489
98.245
3.2255
-0.00013
402. 0
401.390
100.872
3.2250
-0.00015
406.0
414.288
103.492
3.2243
-0.00017
410. 0
427.184
106.107
3.2237
-0.00018
414.0
440.077
106.715
3.2229
-0.00020
418. 0
452.967
111.318
3.2221
-0.00021
422.0
465.854
113.915
3.2212
-0. 00022
426.0
478.737
116.507
3.2203
-0.00024
430.0
491.616
119.094
3.2193
-0.00025
434.0
504.492
121 .676
3.2183
-0.00026
438.0
517.363
124.252
3.2172
-0.00027
442. 0
530.229
126.823
3.2161
-0.00028
446.0
543.092
129.390
3.2150
-0.00029
450. 0
555.949
131.952
3.2138
-0.00030
454.0
568.802
134.509
3.2126
-0.00031
458. 0
581.650
137.062
3.2113
-0.00032
462. 0
594.493
139.610
3.2101
-0.00032
466.0
607.331
142.154
3.2087
-0.00033
470.0
620.163
144.694
3.2074
-0.00034
474.0
632.990
147.229
3.2060
-0.00035
478.0
645.811
149.761
3.2046
- 0. 0 00 35
482. 0
658.627
152.288
3.2032
-0.00036
486. 0
671.437
154.811
3.2018
-0.00036
490.0
684.241
157.330
3.2003
-0.00037
494 . 0
697.039
159.846
3.1988
-0.00037
227
Table 23. Calculated P(T) isochores- - - (Continued)
THE ISOCHORE AT 13.00 MOL/L
T,K
P r BAR
DP/DD
DP/DT
D2P/OT2
278.0
29.111
39.986
4.0115
-0.00049
282.0
45.153
43.672
4.0095
-0.00048
286.0
61.188
47.321
4.0076
-0.00048
290. 0
77.215
50.936
4.0057
-0.00048
294.0
93.234
54.518
4.0038
-0.00048
298.0
109.245
58.072
4.0019
-0.00048
302. 0
125.249
61.597
4.0000
-0.00048
306.0
141.245
65.096
3.9980
-0.00049
310.0
157.233
68.571
3.9961
-0.00050
314. 0
173.213
72.022
3.9941
-0.00050
318.0
189.186
75.452
3.9920
-0.00051
322.0
205.150
78.861
3.9900
-0.00052
326. 0
221.105
82.251
3.9879
-0.00052
330.0
237.053
85.621
3.9858
-0.00053
334.0
252.992
86.974
3.9836
-0.00054
338. 0
268.922
92.310
3.9815
-0.00055
342.0
284.843
95.630
3.9793
-0.00055
346. 0
300.756
98.935
3.9771
-0,00056
350.0
316.660
102.224
3.9748
-0.00057
354. 0
332.554
105.499
3.9725
-0.00057
358. 0
348.440
108.761
3.9702
-0.00058
362.0
364.316
112.009
3.9679
-0.00058
366.0
38 0.183
115.245
3.9655
-0.00059
370.0
396.041
118.468
3.9632
-0.00060
374.0
411.889
121.680
3.9608
-0. 00060
378.0
427.727
124.880
3.9584
-0.00061
382.0
443.556
128.070
3.9559
-0.00061
386.0
459.374
131.248
3.9535
-0.00061
390. 0
475.183
134.417
3.9510
-0.00062
394.0
490.983
137.575
3.9486
-0.00062
398.0
506.772
140 .724
3.9461
-0. 00063
402.0
522.551
143.863
3.9435
-0.00063
406.0
538.320
146.993
3.9410
-0. 00063
410 . 0
554.079
150.114
3.9385
-0. 00064
414.0
569.828
153.227
3.9359
-0.00064
418.0
585.567
156.331
3.9334
-0.00064
422.0
601.295
159.427
3.9308
-0.00064
426.0
617.013
162.514
3.9282
-0.00065
430.0
632.721
165.594
3.9256
-0.00065
434.0
648.418
168.667
3.9230
-0.00065
438 . 0
664.105
171.732
3.9204
-0.00065
442.0
679.781
174.790
3.9178
-0.00065
446.0
695.447
177.840
3.9152
-0.00066
228
Table 23. Calculated P(T) isochores-
THE ISOCHORE AT 14.00 HOL/L
(Continued)
T,K
P,OAR
266.0
27.449
270.0
47.640
274.0
67.779
278.0
87.870
282.0
107.915
286. 0
127.916
290 . 0
147.876
294. 0
167.797
298.0
187.680
302. 0
207.526
306. 0
227.338
310.0
247.116
314.0
266.862
318.0
286.577
322. 0
306.261
326. 0
325.916
330.0
345.541
334.0
365.139
338.0
384.710
342.0
404.254
346.0
423.772
35 0. 0
443.265
354.0
462.733
358.0
482.176
362.0
501.595
366. 0
520.990
370.0
540.362
374.0
559.712
378.0
579.039
382.0
598.343
386.0
617.626
39 0.0
636.888
394.0
656.128
398. 0
675.347
402. 0
694.545
DP/DD
67.107 5
71.553 5
75.957 5
80.323 5
84.651 5
88.944 4
93.204 4
97.431 4
101.627 4
105.794 4
109.932 4
114.044 4
118.130 4
122.191 4
126.229 4
130.244 4
134.238 4
138.210 4
142.162 4
146.095 4
150.009 4
153.905 4
157.783 4
161.645 4
165.491 4
169.320 4
173.135 4
176.935 4
180.720 4
184.492 4
188.250 4
191.995 4
195.727 4
199.448 4
203.156 4
DF/DT
D2P/0T2
.0 545
“0.00345
.0412
“0.00323
. 0286
“0.00304
.0168
-0.00287
. 0 057
-0.00272
.9951
-0.00258
.9850
-0.00246
.9754
-0.00236
.9661
-0.00226
.9572
-0.00217
.9487
-0.00210
.9405
-0.00202
.9325
-0.00196
.9248
-0.00190
.9173
-0.00184
.9100
-0.00179
.9030
-0.00175
.8961
-0.00170
.8893
-0.00166
.8827
-0.00163
.8763
-0.00159
. 8700
-0.00156
.8638
-0.00153
.8578
-0.00150
.8518
-0.00148
.8460
-0.00145
.8402
-0.00143
.8345
-0.00141
.8289
-0.00139
. 8234
-0.00137
.8180
-0.00135
.8126
-0.00133
.8074
-0.00131
.8 021
-0.00130
.7970
-0.00128
229
Table 23. Calculated P(T) isochores- - - (Continued)
THE ISOCHORE AT 15,00 MOl/L
T,K
P,BAR
250.0
20.439
254.0
45.843
258.0
71.129
262.0
96.306
266.0
121.379
270.0
146.355
274.0
171.238
278.0
196.034
282.0
220.746
286. 0
245.379
290.0
269.936
294.0
294.421
298.0
318.836
302.0
343.185
306.0
367.471
310.0
391.694
314.0
415.839
318.0
439.967
322. 0
464.020
32 6. 0
488.019
330. 0
511.967
334. 0
535.865
338.0
559.714
342. 0
583.516
346. 0
607.272
35 0.0
630.983
354. 0
654.651
358. 0
678.276
OP/OD D
103.276 6.
108.584 6.
113.846 6.
119.061 6.
124.232 6.
129.361 6.
134.449 6.
139.498 6.
144.509 6.
149.484 6.
154.425 6.
159.331 6.
164.206 6.
169.050 6.
173.865 6.
178.650 6.
183.408 6.
188.140 6.
192.846 6.
197.528 5.
202.185 5.
206.820 5.
211.432 5.
216.023 5.
220.593 5.
225.143 5.
229.674 5.
234.185 5.
P/DT 02P/0T2
3663 -0.00782
3360 -0.00732
3077 -0.00687
2810 -0.00647
2559 -0.00610
2321 -0.00578
2096 -0.00548
1883 -0.00520
1680 -0.00496
1486 -0.00473
1301 -0.00452
1124 -0.00433
0955 -0.00415
0792 -0.00399
0636 -0.00384
0485 -0.00369
0340 -0.00356
0200 -0.00344
0064 -0.00333
9933 -0.00323
9806 -0.00313
9683 -0.00304
9563 -0.00295
9447 -0.00287
9334 -0.00279
9224 -0.00272
9116 -0.00265
9011 -0.00259
230
Table 23. Calculated P(T) isochores- - - (Continued)
THE ISOCHORE AT 16.00 WQL/L
T* K
P,8AR
232.0
18.224
234.0
34.221
236.0
50.161
238.0
66,04®
24 0.0
81.882
242. 0
97.666
244. 0
113,400
246. 0
129.087
248.0
144.728
25 0.0
160.325
252.0
175.877
254.0
191.388
256. 0
206.858
258. 0
222.287
26 0.0
237.678
262.0
253.031
264.0
268.348
266.0
283.628
268.0
298.874
270.0
314.085
272. 0
329.264
274.0
344.410
276.0
359.524
278. 0
374.608
280. 0
389.661
282.0
404.665
284. 0
419.680
286.0
434.647
288.0
449.586
290 . 0
464 .499
292.0
479.385
294. 0
494.245
296.0
509.080
298. 0
523.890
30 0. 0
538.675
302.0
553.437
304.0
568.175
306.0
582.891
308. 0
597.584
310.0
612.255
312. 0
626.904
314.0
641.532
316.0
656.139
318.0
670.725
320.0
685.291
322.0
699.837
DP/OD D
153.066 8.
156.194 7.
159.307 7.
162.407 7.
165.494 7.
160.568 7.
171.629 7.
174.677 7.
177.713 7.
180.737 7.
183.750 7.
186.750 7.
189.739 7.
192.717 7.
195.683 7.
198.639 7.
201.585 7.
204.519 7.
207.444 7.
210.359 7.
213.263 7.
216.158 7.
219.044 7.
221.920 7.
224.787 7.
227.645 7.
230.494 7.
233.335 7.
236.167 7.
238.991 7.
241.806 7.
244.614 7.
247.413 7.
250.205 7.
252.989 7.
255.766 7.
258.535 7.
261.298 7.
264.052 7.
266.800 7.
269.541 7.
272.276 7.
275.003 7.
277.724 7.
280.439 7.
283.147 7.
P/DT D2P/0T2
0124 -0.01443
9840 -0.01395
9566 -0.01349
9301 -0.01306
9043 -0.01265
8794 -0.01226
8553 -0.01188
8319 -0.01153
8092 -0.01119
7872 -0.01086
7657 -0.01055
7449 -0.01025
7247 -0.00997
7050 -0.00970
6859 -0.00944
6673 -0.00919
6491 -0.00895
6315 -0.00873
6142 -0.00851
5974 -0.00830
5810 -0.00810
5650 -0.00790
5494 -0.00772
5342 -0.00754
5193 -0.00737
5047 -0.00720
4904 -0.00704
4765 -0.00689
4629 -0.00674
4495 -0.00660
4365 -0.00646
4237 -0.00633
4112 -0.00620
3989 -0.00608
3868 -0.00596
3750 -0.00585
3634 -0.00574
3521 -0.00563
3409 -0.00553
3300 -0.00543
3192 -0.00533
3086 -0.00524
2983 -0.00515
2880 -0.00506
2780 -0.00498
2681 -0.00489
231
Table 23. Calculated P(T) isochores- - -
THE ISOCHORE AT 17.00 HOL/L
T * K
P , BAR
212. 0
22.625
214. 0
42.745
216.0
62.771
210.0
82.704
220. 0
102.548
222.0
122.307
224. 0
141.982
226.0
161.577
228.0
181.094
230.0
200.535
232.0
219.904
234. 0
239.202
236.0
258.431
238.0
277.593
240.0
296.691
242. 0
315.726
244.0
334.699
246.0
353.614
248.0
372.471
250.0
391.271
252. 0
410.017
254.0
428.710
256. 0
447.351
258.0
465.942
260.0
484.483
262.0
502.977
264. 0
521.423
266. 0
539.824
268.0
558.181
27 0. 0
576.493
272.0
594.764
274. 0
612.992
276.0
631.181
278. 0
649.329
28 0. 0
667.438
282.0
605.510
DP/DD
CP/OT
219.957
10.0847
223.563
10.0362
227.155
9.9893
230.735
9.9441
234.300
9.9004
237.853
9.8582
241.393
9.8173
244.920
9.7777
248.434
9.7394
251.936
9.7023
255.426
9.6664
258.904
9.6315
262.370
9.5977
265.825
9.5649
269.268
9.5330
272.700
9.5020
276.121
9.4719
279.532
9.4427
282.931
9.4142
286.321
9.3866
289.700
9.3596
293.069
9.3334
296.428
9.3070
299.77 7
9.2029
303.117
9.2586
306.448
9.2349
309.769
9.2110
313.081
9.1892
316.384
9.1672
319.679
9.1457
322.964
9.1247
326.242
9.1041
329.510
9.0841
332.771
9.0644
336.024
9.0452
339.268
9.0264
(Continued)
02P/DT2
-0.02469
-0.02303
-0.02301
-0.02223
-0.02140
-0.02077
- 0.02010
-0.01946
-0.01004
-0.01026
-0.01770
-0.01717
-0.01666
-0.01617
-0.01571
-0.01526
-0.01403
-0.01442
-0.01403
-0.01366
-0.01330
-0.01295
-0.01262
-0.01230
-0.01199
-0.01170
-0.01142
-0.01114
-0.0108e
-0. 01063
-0.01039
-0.01015
-0.00993
-0.00971
-0.00950
-0.00930
232
Table 23. Calculated P(T) isochores- - - (Continued)
THE ISOCHORE AT 18.00 HOL/L
T ♦ K
P , BAR
DP/DD
OP/DT
D2P/0T2
188.0
9.323
304.719
12,8014
- 0.04276
190.0
34.841
308.783
12.7175
- 0. 04110
192.0
60.195
312.839
12.6369
- 0.03953
194 . 0
85.391
316.885
12.5594
- 0.03804
196 . 0
110.435
320.923
12.4847
- 0.03662
198.0
135.332
324.952
12.4128
- 0.03528
200.0
160.088
328.972
12.3436
- 0.03401
202 . 0
184.708
332.983
12.2768
- 0.03280
204.0
209.196
336.985
12.2123
- 0.03165
206 . 0
233.558
340.977
12.1501
- 0.03056
208.0
257.798
344.961
12.0900
- 0.02952
210. 0
281.920
348.936
12.0320
- 0.02853
212 . 0
305.928
352.903
11.9759
- 0.02759
214.0
329.825
356.860
11.9216
- 0.02669
216.0
353.615
360.809
11.8691
- 0.02584
218.0
377.302
364.749
11.8182
- 0.02502
220.0
40 o.eag
368.680
11.7690
- 0.02424
222.0
424.379
372.603
11.7213
- 0.02349
224 . 0
447.775
376.517
11.6750
- 0 . 0227 e
226.0
471.080
380.423
11.6301
- 0.02210
228.0
494.297
384.321
11.5866
- 0.02145
230.0
517.427
388.211
11.5443
- 0. 02083
232.0
540.474
392.092
11.5032
- 0.02024
234 . 0
563.441
395.965
11.4633
- 0.01967
236 . 0
586.328
399.831
11.4245
- 0.01912
238.0
609.140
403.688
11.3868
- 0.01860
240.0
631.876
407.537
11.3501
- 0.01810
242.0
654.541
411.379
11.3144
- 0.01762
244.0
677.135
415.213
11.2797
-0.01715
246 . 0
699.660
419.040
11.2458
- 0.01671
233
Table 23. Calculated P(T) isochores- - - (Continued)
THE ISOCHORE AT 19.00 MQt/L
T » K
P ,BAR
OP/CD
DF/DT
D2P/DT2
163. 0
6.143
419.883
16.3415
-0.07340
164. 0
22.448
422.072
16.2689
-0.07174
165.0
38.681
424.264
16.1980
-0.07014
166.0
54.844
426.458
16.1286
-0.06858
167.0
70.939
428.655
16.0608
-0.06707
168. 0
86.966
430.854
15.9945
-0.06560
169.0
102.928
433.056
15.9296
-0.06418
170.0
118.826
435.259
15.8661
-0.06280
171.0
134.661
437.465
15.8040
-0.06146
172.0
150.434
439.672
15.7432
-0.06016
173.0
166.148
441.881
15.6836
-0.05889
174.0
181.802
444.092
15 .6254
-0.05767
175.0
197.399
446.304
15.5683
-0.05647
176.0
212.939
448.517
15.5124
-0.05531
177.0
228.424
450.732
15.4576
-0.05419
178.0
243.855
452.949
15.4040
-0.05309
179.0
259.232
455.166
15.3515
-0.05203
180.0
274.558
457.385
15.2999
-0.05099
181.0
289.833
459.604
15.2495
-0.04999
182. 0
305.057
461.825
15.2000
-0.04901
183.0
320.233
464.046
15.1514
-0.04806
184. 0
335.360
466.268
15.1038
-0.04713
185.0
350.441
466.491
15.0572
-0.04623
186.0
365.475
470.715
15.0114
-0.04535
187. 0
380.464
472.939
14.9665
-0.04450
188.0
395.408
475.164
14.9224
-0.04367
189.0
410.309
477.389
14.8791
-0.04286
190 . 0
425.167
479.615
14.8367
-0.04207
191.0
439.982
481.840
14.7950
-0.04130
192.0
454.757
484.067
14.7541
-0.04055
193.0
469.491
486.293
14.7139
-0.03982
194.0
484.185
488.520
14.6744
-0.03911
195.0
498.840
490.747
14.6356
-0.03842
196. 0
513.456
492.974
14.5976
-0.03774
197.0
528.035
495.201
14.5602
-0.03708
198.0
542.577
497.428
14.5234
-0.03644
199.0
557.082
499.655
14.4873
-0.03582
20 0. 0
571.552
501.882
14.4518
-0.03521
201. 0
585.986
504.109
14.4168
-0.03461
202. 0
600.385
506.336
14.3825
-0.03403
203.0
614.751
508.562
14.3488
-0.03346
204.0
629.083
510.789
14.3156
-0.03291
205.0
643.382
513.015
14.2830
- 0. 03237
206. 0
657.649
515.241
14.2508
-0.03184
207.0
671.884
517.466
14.2193
-0.03133
208 . 0
686.088
519.692
14.1882
-0.03083
234
Table 23. Calculated P(T) isochores- - - (Continued)
THE ISOCHORE AT 20.00 MOL/L
T,K
P,BAR
OP/DD
DP/OT
D2P/OT2
137.0
16.308
575.795
21.0926
-0.12851
138. 0
37.337
577.966
20.9658
-0.12506
139.0
58.241
580.153
20.8424
-0.12174
140.0
79.023
582.356
20.7223
-0.11853
141.0
99.687
584.579
20.6053
-0.11543
142. 0
120.235
586.816
20.4914
-0.11245
143.0
140.670
589.068
20.3804
-0.10956
144. 0
160.997
591.335
20.2722
-0.10678
145.0
181.216
593.616
20.1668
-0.10408
146. 0
201.331
595.911
20.0640
-0.10148
147.0
221.345
598.219
19.9638
-0.09897
148.0
241.260
600.540
19.8661
-0.09654
149.0
261.078
602.873
19.7707
-0.09419
150.0
280.802
605.219
19.6777
-0.09192
151.0
300.434
607.575
19.5869
-0.08972
152. 0
319.976
609.943
19.4982
-0.08760
153. 0
339.431
612.322
19.4116
-0.08554
154.0
358.800
614.711
19.3271
-0.08354
155. 0
378.086
617.110
19.2445
-0.08162
156.0
397.290
619.519
19.1639
-0.07975
157. 0
416.414
621.937
19.0850
-0.07794
158.0
435.460
624.364
19.0080
-0.07618
159. 0
454.431
626.800
18.9326
-0.07448
160.0
473.326
629.245
18.8590
-0.07284
161.0
492.149
631.697
18.7869
-0.07124
162.0
510.901
634.158
18.7165
-0.06969
163.0
529.583
636.626
18.6475
-0.06819
164. 0
548.196
639.101
18.5801
-0.06673
165.0
566.743
641.584
18.5141
-0.06532
166.0
585.225
644.073
18.4494
-0.06395
167. 0
603.643
646.569
18.3862
-0.06262
168.0
621.998
649.072
18.3242
-C. 06132
169.0
640.291
651.581
18.2635
-0.06007
170.0
658.525
654.095
18.2040
-0.05885
171.0
676.700
656.615
18.1458
-0.05767
172.0
694.817
659.141
18.0887
-0.05652
235
Table 23. Calculated P(T) isochores- - - (Continued)
THE ISOCHORE AT 21.00 HOL/L
T » K
P,BAR
DP/DD
DP/OT
02P/0T2
109.0
8.092
782.786
28.1089
*0.24813
110.0
36.078
784.450
27.6650
-0.23973
111.0
63.825
786.177
27.6294
*0.23170
112.0
91.340
787.964
27.4015
*0.22402
113. 0
118.631
789.810
27.1812
-0.21668
114. 0
145.705
791.713
26.9681
-0.20965
115.0
172.569
793.669
26.7618
-0.20292
116.0
199.230
795.677
26.5621
*0.19647
117.0
225.695
797.735
26.3688
-0.19030
118.0
251.970
799.841
26.1814
-0.18438
119.0
278.060
601.994
25.9999
-0.17871
120.0
303.972
604.191
25.8240
-0.17326
121.0
329.710
606.431
25.6533
-C.168C4
122.0
355.280
808.712
25.4878
-0.16303
123. 0
380.687
611.034
25.3272
-0.15822
124. 0
405.936
613.394
25.1713
-0.15359
125.0
431.031
615.790
25.0200
-0.14915
126.0
455.977
618.223
24.8730
*0.14488
127.0
480.779
620.690
24.7301
-0.14078
128.0
505.439
623.190
24.5913
-0.13683
129.0
529.962
825.722
24.4564
-0.13303
130. 0
554.353
628.285
2 A . 3 252
-0.12938
131.0
578.614
830.878
24.1976
-0.12586
132.0
602.749
833.500
24.0735
-0.12247
133.0
626.762
836.149
23.9526
-0.11921
134. 0
650.656
838.825
23.8350
-0.11606
135.0
674.433
641.526
23.7205
-0.11303
136.0
698.098
844.253
23.6089
-0.11011
THE
ISOCHORE AT
22.00 HOL/L
T t K
P,BAR
DP/OD
OP/DT
C2P/0T2
96.0
533.498
1074.777
33.3642
-0.28865
97.0
566.720
1076.862
33.0810
-0.27785
98 . 0
599.663
1079.053
32.8083
-0.26758
99.0
632.339
1081.344
32.5456
-0.25782
100.0
664.750
1083.732
32.2925
-0.24854
101.0
696.927
1086.211
32.0484
-0.23971
236
Table 24. Calculated P(o) isotherms
The following pages give P(p) isotherms, as computed by
the equation of state (5). The third column DP/DD is the isotherm slope
(3P/Bp) in units of the bar and mol/j£. The last two columns give the
isochore slopes and curvatures, DP/DT = (3P/3T), D2P/DT2 =
2 . 2
(B P/BT ) in units of the bar and Kelvins.
These tables show that 3P/Bp is non-negative, and that it increases
monotonically with density to pressures about twice those for adjusting
the equation of state.
237
Table 24. Calculated P
THE ISOTHERM AT
MOL/L
P> BAR
DP
21.50
4.806
911.
21.55
50.760
926.
21.60
97.480
942.
21.65
144.974
957.
21.70
193.253
973.
21.75
242.326
989.
21.80
292.204
1005.
21.85
342.897
1022.
21.90
394.418
1038.
21.95
446.777
1055.
THE ISOTHERM
AT 1
MOL/L
P , BAR
DP
21.35
31.210
871.
21.40
75.180
886.
21.45
119.908
902.
21.50
165.402
917.
21.55
211.671
933.
21.60
258.726
949.
21.65
306.577
965.
21.70
355.234
981.
21.75
404.708
997.
21.80
455.011
1014.
21.85
506.155
1031.
21.90
558.152
1048.
21.95
611.015
1066.
22.00
664.758
1083.
22.05
719.393
1101.
THE ISOTHERM
AT 1
MOL/L
P,BAR
DP
21.00
36.078
784.
21.05
75.660
798.
21.10
115.964
813.
21.15
157.000
828.
21.20
198.777
843.
21.25
241.305
858.
21.30
284.592
873.
21.35
328.649
888.
21.40
373.486
904.
21.45
419.114
920.
21.50
465.543
936.
21.55
512.785
953.
21.60
560.851
969.
21.65
609.754
986.
21.70
659.506
10 03.
21.75
710.120
1020.
isotherms.
00 CEG • K
DP/DT
D2P/DT2
32.9615
-0.359363
33.0105
-0.353331
33. 0636
-0.347309
33.1208
-0.341302
33.1826
-0.335313
33.2489
-0.329348
33.3202
-0.323411
33.3966
-0.317505
33.4782
-0.311636
33.5655
-0.305809
DEG. K
DP/OT
D2P/DT2
31.1230
-0.310639
31.1884
-0.305784
31.2572
-0.300928
31.3296
-0.296076
31.4057
-0.291231
31.4858
-0.286396
31.5700
-0.281575
31.6586
-0.276773
31.7517
-0.271991
31.8495
-0.267236
31.9523
-0.262509
32.0603
-0.257815
32.1736
-0.253157
32.2925
-0.248540
32.4171
-0.243968
DEG. K
OP/DT
D2P/CT2
27.8650
-0.239728
27.9509
-0.236564
28.0391
-0.233386
28.1297
-0.230198
28.2230
-0.227000
28.3189
-0.223795
28.4177
-0.220586
28.5196
-0.217375
28.6247
-0.214164
28.7332
-0.210957
28.8451
-0.207755
28.9608
-0.204561
29. 0803
-0.201377
29.2038
-0 .198208
29. 3315
-0.195054
29.4635
-0.191920
(P)
95.
'/DO
484
705
107
697
484
475
6 79
104
760
656
00 .
VCD
909
956
184
599
208
019
038
274
736
432
370
559
010
732
735
10 .
/CD
450
827
376
104
014
114
409
906
610
530
672
043
652
506
613
982
238
Table 24. Calculated P(P) isotherms (Continued)
THE ISOTHERM AT 120.00 OEG • K
MOL/L
P*8AR
DP/DD
DP/DT
02P/DT2
20.60
5.090
692. 070
24. 9991
-0.190010
20.65
40.029
705. 492
25.0963
-0.187977
20.70
75.642
719. 075
25.1949
-0.185923
20.75
111.939
732. 823
25.2952
-0.183852
20.80
148.927
746.739
25.3971
-0.181763
20.85
186.616
760.830
25.5008
-0.179658
20.90
225.013
775. 099
25.6065
-0.177539
20.95
264.129
789. 550
25.7141
-0.175407
21.00
303.972
804. 191
25.8240
-0.173264
21.05
344.551
819. 025
25.9361
-0.171111
21.10
385.877
834. C58
26.0506
-0 .168951
21.15
427.960
849. 296
26.1676
-0.166784
21.20
470.811
864. 746
26.2873
-0.164612
21.25
514.439
880. 413
26.4097
-0.162438
21.30
558.856
896. 303
26.5351
-0.160263
21.35
604.073
912. 424
26.6636
-0.158089
21.40
650.102
928. 783
26.7952
-0.155918
21.45
696.955
945. 386
26.9301
-0.153751
21.50
744.645
962. 241
27.0685
-0.151592
THE
ISOTHERM
AT 140.00
OEG. K
MOL/L
P f BAR
OP/OD
DP/DT
D2P/DT2
19.90
21.970
558. 809
20.5026
-0.120130
19.95
50.202
570. 510
20.6121
-0 .119339
20.00
79.023
582. 358
20.7223
-0 .118529
20.05
108.440
594. 355
20.8334
-0.117703
20.10
138.461
606. 504
20.9453
-0.116859
20.15
169.093
618. 808
21.0582
-0.115998
20.20
200.345
631. 271
21 . 1721
-0.115121
20.25
232.223
643. 894
21.2870
-0.114229
20.30
264.737
656. 683
21.4031
-0.113321
20.35
297.894
669. 641
21.5204
-0.112399
20.40
331.704
682. 771
21.6390
-0.111463
20.45
366.174
696. 078
21.7589
-0.110514
20.50
401.315
709. 565
21.8802
-0.109552
20.55
437.134
723. 237
22.0031
-0.108579
20.60
473.641
737. 098
22.1275
-0.107594
20.65
510.847
751. 153
22.2536
-0.106600
20.70
548.760
765. 407
22. 3815
-0.105595
20.75
587.391
779. 864
22.5112
-0.104583
20.80
626.750
794. 530
22.6428
-0.103563
20.85
666.848
809. 410
22.7764
-0.102536
20.90
707.695
824.510
22.9122
-0.101504
20.95
749.302
839. 835
23.0501
-0.10 0 466
239
Table 24. Calculated P(p) isotherms (Continued)
THE ISOTHERM AT 160.00 DEG. K
MOL/L
P * BAR
OP/DD
DP/DT
D2P/0T2
19.15
20.934
442. 231
16.8979
-0.078123
19.20
43.292
452.114
17.0083
*‘0 .077910
19.25
66.148
462. 126
17.1191
-0.077685
19.30
89.507
472. 268
17.2304
-0.077447
19.35
113. 377
482. 543
17.3422
-0 .077196
19.40
137.763
492. 952
17.4545
-0.076933
19.45
162.674
503. 498
17.5675
-0.076657
19.50
188.115
514. 182
17.6810
-0 .076369
19.55
214.095
525. 008
17.7953
-0 .076068
19.60
240.619
535. 978
17.9102
-0.075755
19.65
267.695
547. 094
18.0258
-0.075431
19.70
295.331
558. 359
18.1422
-0.075094
19.75
323.533
569. 776
18.2594
-0.074746
19.80
352.311
581. 348
18.3774
-0.074386
19.85
381.671
593. 078
18.4963
-0.074015
19.90
411.621
604. 568
18.6162
-0.073633
19.95
442.170
617. 023
18.7371
-0.073240
20.00
473.326
629. 245
18.8590
-0.072837
20.05
505.098
641. 638
18.9820
-0.072424
20. 10
537.493
654. 205
19.1061
-0.072001
20.15
570.521
666. 952
19.2314
-0.071568
20.20
604.191
679. 880
19.3579
-0.071127
20.25
638.512
692. 995
19.4858
-0 .070677
20.30
673.494
706. 301
19.6150
-0.070219
20.35
709.146
719. 8C1
19.7456
-0 .069753
20.40
745.477
733. 501
19.8778
-0.069281
*
240
Table 24. Calculated P(p) isotherms (Continued)
THE ISOTHERM AT 100.00 OEG • K
MOL/L
P > BAR
DP/DD
DP/OT
D2P/DT2
0.05
0.729
14. 231
0.0043
-0.000002
10.35
15.706
342. 424
13.8992
-0.050964
18.40
33.031
350. 573
14.0043
-0.051014
10.45
50.765
358. 831
14.1099
-0.051056
18.50
68.916
367. 202
14.2158
-0.051090
10.55
87.487
375. 685
14. 3222
-0.051117
18.60
106.486
384. 263
14.4290
-0.051136
18.65
125.918
392.998
14.5362
-0.051147
18.70
145.788
401. 829
14.6438
-0.051149
18.75
166.103
410. 760
14.7519
-0.051144
18.80
186.868
419. 852
14.8605
-0.051131
18.85
208.090
429. C 47
14.9696
-0.051109
18.90
229.775
438. 366
15.0792
-0.051079
18.95
251.929
447. 811
15.1893
-0.051041
19.00
274.558
457. 365
15.2999
-0.050994
19.05
297.669
467. 069
15.4112
-0.050939
19. 10
321.269
476.925
15.5230
-0.050876
19. 15
345.364
486. 896
15.6355
-0.050804
19.20
369.961
497. 003
15.7486
-0.050724
19.25
395.067
507. 250
15.8624
-0.050636
19. 30
420.688
517. 638
15.9768
-0.050539
19.35
446.833
528. 170
16.0920
-0.050435
19.40
473.508
538. 849
16.2080
-0.050322
19.45
500.720
549. 678
16.3247
-0.050202
19.50
528.478
560.658
16.4422
-0.050074
19.55
556.789
571. 794
16.5606
-0.049938
19.60
585.660
563. 088
16.6799
-0.049795
19.65
615.100
594. 542
16.8001
-0.049644
19.70
645.117
606. 162
16.9212
-0.049486
19.75
675.719
617. 949
17 .0434
-0 .049321
19.80
706.915
629. 907
17.1665
-0.049149
19.85
738.713
642. 041
17.2908
-0.048971
241
Table 24. Calculated P(P) isotherms (Continued)
THE ISOTHERM AT 200.00 DEG. K
MOL/L
P,9AR
DP
0.05
0.814
15.
0.10
1.596
15.
17.50
13.541
258.
17.55
26.647
265,
17.60
40.085
272.
17.65
53.859
278.
17.70
67.973
285.
17.75
82.433
292.
17.80
97.243
299.
17.85
112.409
306.
17.90
127.935
314.
17.95
143.826
321.
18.00
160.088
328.
18.05
176.725
336.
18.10
193.743
344.
18.15
211.147
351.
18.20
228.943
359.
18.25
247.135
367.
18.30
265.729
375.
18.35
284.732
384.
18.40
304.147
392.
18.45
323.982
400.
18.50
344.242
409.
18.55
364.933
418.
18.60
386.061
426.
18.65
407.631
435.
18.70
429.650
444.
18.75
452.125
454.
18.80
475.061
463.
18.85
498.465
472.
18.90
522.344
482.
18.95
546.704
492.
19.00
571.552
501.
19.05
596.894
511.
19.10
622.739
521.
19.15
649.092
532.
19.20
675.962
542.
19.25
703.356
553.
19. 30
731.280
563.
DP/OT
D2P/DT2
0.0042
-0.000001
0.0087
-0.000005
11.3605
-0.032662
11.4570
-0.032ei5
11.5539
-0.032964
11.6512
-0.033110
11.7489
-0.033251
11.8469
-0.033389
11.9454
-0.033522
12.0443
-0.033651
12.1437
-0.033775
12.2434
-0.033895
12.3436
-0.034009
12.4442
-0.034120
12.5452
-0.034225
12.6467
-0.034325
12.7486
-0.034420
12.8511
-0.034510
12.9540
-0.034595
13.0573
-0.034674
13.1612
-0.034748
13.2656
-0.034817
13.3705
-0.034880
13.4760
-0.034938
13.5820
-0.034990
13.6886
-0.035036
13.7957
-0.035077
13.9035
-0.035113
14.0118
-0.035143
14.1208
-0.035167
14. 2304
-0.035186
14.3408
-0.035199
14.4518
-0.035207
14.5635
-0.035209
14.6759
-0.035205
14.7091
-0.035197
14.9031
-0.035183
15.0178
-0.035163
15.1334
-0 .035139
'/DO
975
285
847
425
097
864
727
686
743
899
155
512
972
535
203
977
859
849
950
163
489
930
487
163
959
877
919
086
381
806
363
054
882
849
957
209
608
156
856
242
Table 24. Calculated P(p) isotherms (Continued)
THE ISOTHERM AT 220. 00 DEG. K
MOL/L
P* BAR
DP/DD
OP/DT
D2P/DT2
0.10
1.768
17. 082
0.0086
-0.000003
0.20
3.411
15. 770
0.0178
-0.000014
16.60
17.768
190.467
9.2021
-0.020109
16.70
37.336
200. 940
9.3742
-0.020462
16.80
57.967
211. 733
9.5479
-0.020809
16. SO
7S.693
222. 851
9.7233
-0.021149
17.00
102.548
234. 300
9.9004
-0.021482
17.10
126.565
246. C88
10.0792
-0.021806
17.20
151.777
258. 222
10.2598
-0.022121
17.30
178.221
270. 708
10.4420
-0.022427
17.40
205.931
283. 554
10.6260
-0.022722
17.50
234.944
296. 769
10.8119
-0.023005
17.60
265.297
310. 360
10.9995
-0.023278
17.70
2S7.029
324. 337
11.1890
-0.023537
17.80
330.178
338. 710
11.3803
-0.023785
17. SO
364.784
353. 487
11.5737
-0.024018
18.00
400.889
368.680
11.7690
-0.024239
18.10
438.535
384. 300
11.9664
-0.024445
18.20
477.764
400. 359
12.1659
-0.024637
18.30
518.621
416. 870
12.3677
-0.024814
18.40
561.153
433. 846
12.5718
-0 .024976
18.50
605.407
451. 302
12.7783
-0.025124
18.60
651.430
469. 253
12.9873
-0.025256
18.70
699.274
487. 716
13.1989
-0.025373
18.80
748.991
506. 709
13.4133
-0.025475
243
Table 24. Calculated P(p) isotherms (Continued)
THE ISOTHERM AT 240.00 OEG. K
MOL/L
P t BAR
OP/DD
DP/DT
02P/CT2
0.10
1.940
18. 652
0.0085
-0.000002
0.20
3.766
17. 661
0.0176
-0.000009
0.30
5.473
16. 494
0.0272
-0.000022
0.40
7.066
15. 364
0.0374
-0.000044
0.50
8.547
14. 263
0.0483
-0.000076
15.50
9.671
124. 461
7.1561
-0.011002
15.60
22.499
132. 140
7.3023
-0.011333
15.70
36.108
140. 077
7.4502
-0.011664
15.80
50.523
148. 278
7.5998
-0.011994
15.90
65.772
156.749
7.7512
-0.012322
16.00
81.882
165. 494
7.9043
-0.012648
16.10
98.880
174.519
8.0592
-0.012972
16.20
116.795
183. 828
8.2159
-0.013293
16.30
135.656
193. 428
8.3743
-0.01 3611
16.40
155.491
203. 325
8.5345
-0.013925
16.50
176.331
213. 524
8.6964
-0.014235
16.60
198.206
224. 030
8.8601
-0 .014540
16.70
221.147
234. 852
9.0256
-0.014840
16.60
245.187
245.994
9.1929
-0.015135
16.90
270.357
257. 463
9.3620
-0.015423
17.00
296.691
269. 268
9.5330
-0.015706
17.10
324.222
281. 414
9.7058
J 0 .015981
17.20
352.985
293. 910
9.8805
-0.016250
17.30
383.016
306. 764
10.0571
-0.016511
17,40
414.350
319. 985
10.2357
-0.016764
17.50
447.025
333. 5e0
10.4162
-0.017008
17.60
481.079
347.560
10.5987
-0.017244
17.70
516.551
361. 935
10.7834
-0 .017471
17.80
553.480
376. 715
10.9701
-0 .01 7689
17.90
591.908
391.912
11.1590
-0.017897
18.00
631.876
407.537
11.3501
-0.018096
18.10
673.430
423. 604
11.5436
-0.018285
18.20
716.612
440. 125
11.7394
-0.018464
244
Table 24. Calculated P( p ) isotherms (Continued)
THE ISOTHERM AT 260.00 DEG. K
MOL/L
P,BAR
DP/DD
DP/DT
D2P/CT2
0.10
2.110
20.604
0.0085
-0.000001
0.20
4.116
19.511
0.0175
-0.000006
0.30
6.014
18. 446
0.0269
-0.000015
0.40
7.807
17. 423
0.0367
-0.000028
0.50
9.499
16. 433
0.0471
-0.000047
0.60
11.094
15. 465
0.0579
-0.000071
0.70
12.593
14.511
0.0693
-0.000103
0.80
13.997
13. 566
0 . 0811
-0.000143
0.90
15.306
12. 629
0.0935
-0.000193
1.00
16.523
11.698
0. 1065
-0.000255
14.30
17.323
75. 033
5.4238
-0.004694
14.40
25.089
80. 318
5.5430
-0.004975
14.50
33.393
85. 806
5.6639
-0.005257
14.60
42.257
91. 502
5.7865
-0.005538
14.70
51.701
97. 411
5.9108
-0.005819
14.80
61.747
103. 537
6.0368
-0,006101
14.90
72.416
109. 885
6.1646
-0.006382
15.00
83.731
116. 459
6.2941
-0.006663
15.10
95.715
123.264
6.4254
-0.006944
15.20
108. 392
130. 304
6.5584
-0.007225
15.30
121.784
137.585
6.6932
-0.007506
15.40
135.917
145. 110
6.8297
-0.007786
15.50
150.814
152. 885
6.9679
-0.008065
15.60
166.502
160. 915
7.1080
-0.008343
15.70
183.006
169. 205
7.2498
-0.008620
15.80
200.352
177. 759
7.3934
-0.008895
15.90
218.567
186.584
7.5387
-0.009169
16.00
237.678
195. 663
7.6859
-0 .009441
16.10
257.713
205. 064
7.8349
-0.009710
16.20
278.700
214. 731
7.9856
-0.009978
16.30
300.669
224. 690
8.1382
-0.010242
16.40
323.648
234. 947
8.2927
-0 .010 504
16.50
347.669
245. 509
8.4489
-0.010762
16.60
372.761
256. 381
8.6071
-0.011016
16.70
398.956
267. 571
6.7671
-0.011267
16.80
426.286
279. 086
8.9290
-0.011514
16.90
454.784
290. 932
9.0928
-0.011756
17.00
484.483
303. 117
9.2586
-0.011993
17. 10
515.419
315. 650
9.4263
-0.012226
17.20
547.625
328. 538
9.5961
-0.012453
17.30
581.139
341. 791
9.7679
-0.012675
17.40
615.996
355. 418
9.9418
-0.012891
17.50
652.235
369. 428
10.1177
-0.013101
17.60
689.895
383. 833
10.2959
-0.013305
17.70
729.015
398, 642
10.4763
-0.013503
245
Table 24. Calculated P(P) isotherms (Continued)
THE ISOTHERM AT 280.00 DEG. K
MOL/L
P» 8 AR
OP/DO
DP/DT
D2P/0T2
0.20
4.464
21. 334
0.0174
-0.000004
0.40
8.537
19. 416
0.0363
-0.000020
0.60
12.240
17. €35
0.0568
-0.000048
0.80
15.595
15. 518
0.0789
-0.000091
1.00
18.610
14.238
0.1026
-0.000152
1.20
21.292
12.596
0.1279
-0.000235
1.40
23.651
11. 005
0.1549
-0.00 0346
1.60
25.699
9. 482
0.1836
-0.000496
1.80
27.449
8. 034
0.2141
-0.000706
12.80
29.399
35.601
3.8292
0.000011
13.00
37.133
41. 834
4.0105
-0.000486
13.20
46.172
48.656
4.1979
-0.000961
13.40
56.637
56. 100
4.3915
-0.001425
13.60
68.656
64.199
4.5916
-0.001882
13.80
82.363
72. 985
4.7981
-0.002336
14.00
97.898
82. 492
5.0112
-0.002789
14.20
115.410
92. 751
5.2310
-0.003244
14.40
135.051
103. 798
5.4575
-0.0C3700
14.60
156.984
115.667
5.6908
-0.004157
14.80
181.375
128. 392
5.9309
-0.004617
15.00
208.400
142. 008
6.1780
-0 .005 078
15.20
238.240
156. 553
6.4320
-0.005539
15.40
271.085
172. 064
6.6931
-0.006000
15.60
307.133
188. 579
6.9613
-0.006459
15.80
346.587
206. 139
7.2367
-0.006915
16.00
389.661
224. 787
7.5193
-0.007366
16.20
436.577
244. 567
7.8092
-0.007812
16.40
487.566
265.527
8.1066
-0.008250
16.60
542.870
287. 718
8.4116
-0.008679
16.80
602.739
311. 197
8.7244
-0.009097
17.00
667.438
336.024
9.0452
-0.009502
17.20
737.243
362. 265
9.3742
-0.009894
246
Table 24. Calculated P(P) isotherms (Continued)
THE ISOTHERM AT 290.00 DEG. K
MOL/L
P » 8 AR
DP/DO
OP/DT
D2P/DT2
0.20
4.638
22. 237
0.0173
-0.000004
0.40
8.898
20. 396
0 . 0361
-0.000017
0.60
12.805
18. 691
0.0563
-0.000040
0.80
16.379
17. 052
0 . 0780
-0.000076
1.00
19.628
15. 448
0.1012
-0.000124
1.20
22.561
13.862
0 . 1258
-0.000187
1.40
25.185
12. 368
0.1519
-0.000268
1.60
27.512
10.922
0.1793
-0.000369
1.80
29.559
9. 554
0.2082
-0.000496
2.00
31.339
8. 269
0.2384
-0.000659
2.20
32.872
7. 068
0.2701
-0.000872
2.40
34.172
5. 945
0.3033
-0.001165
11.80
36.715
19. 597
3.0333
0.002241
12.00
41.028
23.606
3. 1812
0.001695
12.20
46.187
28. 061
3.3345
0.001209
12.40
52.284
32. 991
3.4934
0.000760
12.60
59.417
38. 427
3.6582
0.000336
12.80
67.691
44. 398
3.8289
-0.000074
13.00
77.215
50.936
4.0057
-0 .00 0 476
13.20
88.105
58. 070
4.1888
-0.000873
13.40
100.484
65. 832
4.3781
-0 .00 1268
13.60
114.482
74. 253
4.5739
-0.001665
13.80
130.232
83. 366
4.7762
-0.002063
14.00
147.876
93. 204
4.9850
-0.002465
14.20
167.564
103. 798
5.2005
-0.002869
14.40
189.448
115. 183
5.4227
-0.00 3278
14.60
213.692
127. 392
5.6516
-0 .003689
14.80
240.462
140. 461
5.8874
-0.004103
15.00
269.936
154. 425
6 . 1 30 1
-0.004520
15.20
302.294
169. 319
6.3798
-0.004937
15.40
337. 728
185. 183
6.6365
-0.005355
15.60
376.435
202. 056
6.9003
-0.005772
15. 8Q
418.620
219. 977
7.1713
-0.006187
16.00
464.499
238. 991
7.4495
-0 .006599
16.20
514.293
259. 142
7.7352
-0.007007
16.40
568.235
280 . 4ei
8.0285
-0.007408
16.60
626.567
303. 059
8.3294
-0.007802
16.80
689.545
326. 934
8.6381
-0.008187
247
Table 24. Calculated P(p) isotherms (Continued)
THE ISOTHERM AT 300.00 DEG. K
MOL/L
P,BAR
DP/CD
CP/DT
02P/CT2
0.20
4.811
23. 137
0.0173
-0.000003
0.40
9.258
21. 366
0.0355
-0.000014
0.60
13.367
19. 733
0.0559
-0.000034
0.00
17.156
18. 164
0.0773
-0.000064
1.00
20.634
16.630
0 . 1001
-0.000103
1.20
23.810
15. 132
0.1241
-0.000154
1.40
26.691
13. 685
0.1495
-0.000216
1.60
29.289
12. 304
0.1760
-0.000 291
1.80
31.618
11. 000
0.2038
-0.000380
2.00
33.694
9. 778
0.2328
-0.000486
2.20
35.534
8. 6 39
0.2628
-0.000611
2.40
37.155
7. 580
0.2940
-0.000760
2.60
38.572
6. 596
0 . 3262
-0.000940
2.80
39.798
5.681
0.3594
-0.001160
3.00
40.848
4. 630
0.3936
-0.001439
3.20
41.734
4. 040
0.4289
-0.001803
3.40
42.468
3. 308
0.4653
-0.002303
3.60
43.062
2.633
0. 5028
-0.003045
3.80
43.525
2. 015
0.5420
-0.004278
18.20
44.034
5.581
2.0913
0.006320
10.40
45.307
7.188
2.1950
0.005196
10.60
46.926
9. 043
2.3028
0.004369
10.80
48.942
11.169
2.4150
0.003717
11.00
51.413
13. 590
2.5321
0.003176
11.20
54.399
16. 331
2.6541
0.00 2708
11.40
57.968
19. 419
2.7813
0.002289
11.60
62.192
22. 879
2.9139
0.001903
11. 80
67.147
26.737
3.0518
0.001540
12.00
72.915
31. 022
3.1954
0.001191
12.20
79.586
35. 762
3.3446
0.000852
12.40
87.252
40. 963
3.4997
0.000517
12.60
96.013
46. 717
3.6607
0.000185
12.80
105.975
52. 992
3.8278
-0.000148
13.00
117.248
59. 838
4.0010
-0.000482
13.20
129.950
67. 285
4.1803
-0.000820
13.40
144.204
75. 365
4.3660
-0.001162
13.60
160.140
84. 108
4.5581
-0.001509
13.80
177.894
93. 547
4.7566
-0.001860
14.00
197.607
103. 714
4.9616
-0.002217
14.20
219.430
114. 641
5.1733
-0.002579
14.40
243.517
126. 362
5.3916
-0.002945
14.60
270.030
138. 911
5.6167
-0.00 3316
14.80
299.139
152. 322
5.8485
-0.003690
15.00
331.019
166. 632
6.0873
-0.004067
15.20
365.854
181. 877
6.3329
-0.004446
15.40
403.834
198. 094
6.5856
-0 .00 4826
15.60
445.159
215. 324
6.8455
-0.005206
15.80
490.034
233. 608
7.1125
-0.005585
16.00
538.675
252. 589
7.3868
-0.005962
16.20
591.306
273.515
7.6686
-0.006335
16.40
648.161
295. 236
7.9580
-0 .006704
16.60
709.484
318. 205
8.2551
-0.007067
248
Table 24. Calculated P(p) isotherms (Continued)
THE ISOTHERM AT 305.37 DEG. K
MOL/l
P,BAR
DP/DD
DP/DT
02P/DT2
0.40
9.451
21. 864
0.0358
-0.000013
0.80
17.570
18. 754
0.0770
-0.000059
1.20
24.474
15. 792
0.1233
-0.000140
1.60
30.230
13. 029
0.1746
-0.000260
2.00
34.937
10. 563
0.2303
-0.000424
2.40
38.723
8. 420
0.2902
-0.000641
2.80
41.713
6. 571
0.3539
-0.000925
3.20
44.014
4. 977
0.4207
-0 .00 1304
3.60
45.725
3.616
0.4904
-0.001823
4.00
46.939
2. 491
0.5623
-0.00 2567
4.40
47.751
1.609
0.6361
-0.00 3696
4.80
48.257
0.962
0.7110
-0 .005536
5.20
48.547
0.519
0.7866
-0.008912
5.60
48.693
0.232
0.8625
-0.016770
6.00
48.748
0. 057
0.9383
-0.049009
6.40
48.755
0.000
1.0104
-0.480413
6.80
48.755
-0. 000
1.0567
17.287460
7.20
48.755
0. 002
1.1174
0.285379
7.60
48.764
0. 064
1.2016
0.061370
8.00
48.828
0. 264
1.3013
0.025533
8.40
49.022
0. 730
1.4149
0.014647
8.80
49.453
1. 486
1.5429
0.009849
9.20
50.265
2. 655
1.6862
0.007230
9.60
51.649
4. 362
1.8458
0.005584
10.00
53.846
6. 749
2.0227
0.004434
10.40
57.159
9.974
2.2179
0.00 3554
10.80
61.960
14. 212
2.4324
0.002828
11.20
68.688
19. 649
2.6672
0.002185
11.60
77.865
26.485
2.9232
0.001586
12.00
90.091
34.930
3.2012
0.001002
12.40
106.052
45. 204
3.5022
0.000416
12.80
126.528
57. 535
3.8269
-0.000183
13.20
152.387
72. 162
4.1760
-0.000801
13.60
184.596
89. 327
4.5502
-0.001443
14.00
224.220
109. 262
4.9500
-0.002108
14.40
272.428
132.288
5.3762
-0.002795
14.80
330.493
158. 613
5.8292
-0.003500
15.20
399.799
188. 540
6.3097
-0.004219
15.60
481.845
222. 370
6.8182
-0 .004942
16.00
578.258
260. 428
7.3556
-0 .00 5664
16.40
690.800
3 0 3. 0 83
7.9229
-3.006373
249
Table 24. Calculated P(d) isotherms (Continued)
THE ISOTHERM AT 310.00 DEG. K
MOL/L
P » BAR
DP/OD
OP/DT
02P/DT2
0.40
9.617
22. 329
0.0358
-0.000013
0.80
17.926
19. 259
0.0767
-0.000055
1.20
25.044
16. 354
0.1227
-0.000129
1.60
31.035
13. 645
0.1734
-0.000237
2.00
35.999
11. 228
0.2285
-0.000382
2.40
40.061
9. 130
0.2875
-0.000564
2.80
43.342
7. 320
0 . 3499
-0.000789
3.20
45.949
5. 758
0.4153
-0.001059
3.60
47.978
4. 424
0.4831
-0.001378
4.00
49.519
3. 318
0.5526
-0.001736
4.40
50.664
2. 447
0.6234
-0 .00 2101
4. 80
51.507
1. 804
0.6948
-0.002402
5.20
52.133
1. 359
0.7664
-0.002528
5.60
52.614
1. 066
0.8384
-0.002353
6.00
53. COO
0.885
0.9112
-0.001801
6.40
53.339
0. 837
0.9862
-0.000910
6.80
53.682
0. 879
1.0648
0.000162
7.20
54.045
0. 945
1.1483
0.001334
7.60
54.451
1. 113
1.2383
0.002503
8.00
54.961
1. 474
1.3372
0.003449
8.40
55.664
2. 084
1.4474
0.004001
8.80
56.672
3. 018
1.5713
0.004148
9. 20
58.134
4. 377
1.7106
0.003995
9.60
60.246
6. 283
1.8665
0.00 3667
10.00
63.253
8. 880
2.0402
0.003253
10.40
67.463
12. 326
2.2325
0.002803
10.80
73.250
16. 794
2.4443
0.002337
11.20
81.060
22. 472
2.6765
0.001860
11.60
91.416
29.559
2.9300
0.001371
12.00
104.923
38. 264
3.2056
0.000866
12.40
122.272
48. 808
3.5040
0.000340
12.80
144.244
61.417
3.8260
-0.000211
13.20
171.713
76. 330
4.1723
-0.000789
13.60
205.647
93. 788
4.5436
-0.001393
14.00
247.116
114. 044
4.9405
-0.002024
14.40
297.290
137. 357
5.3635
-0,002679
14.80
357.445
163.996
5.8134
-0.00 3352
15.20
428.968
194.244
6.2906
-0 .004040
15.60
513.361
228. 402
6.7958
-0.004734
16.00
612.255
266. 800
7.3300
-0.005427
16.40
727.416
309. 808
7.8940
-0.006111
250
Table 24. Calculated P(p) isotherms (Continued)
THE ISOTHERM AT 320.00 DEG. K
MOL/L
P j BAR
DP/DD
DP/DT
02P/DT2
0.40
9.974
23. 285
0.0357
*0.000011
0.80
18.691
20. 340
0 . 0762
-0.000047
1.20
26.265
17. 554
0.1215
-0.000110
1.60
32.758
14. 954
0.1712
-0.000198
2.00
38.266
12.637
0.2250
-0.000311
2.40
42.909
10. 627
0.2825
-0.000445
2.80
46.805
8. 893
0. 3431
-0.000597
3.20
50.055
7. 395
0.4064
-0.000758
3.60
52.749
6. Ill
0.4719
-0.000916
4.00
54.973
5. 043
0.5393
-0.001054
4.40
56.814
4.201
0.6082
-0.001 146
4.80
58.363
3. 581
0.6785
-0.001168
5.20
59.706
3. 164
0.7504
-0.001100
5,60
60.916
2. 911
0.8243
-0.000934
6.00
62.052
2. 791
0.90D8
-0.000677
6.40
63.171
2. 834
0.9810
-0.000343
6.80
64.335
2.994
1.0657
0.000043
7.20
65.572
3. 205
1.1558
0.000466
7.60
66.918
3. 557
1.2526
0.000906
8.00
68.451
4. 153
1.3576
0.001327
8.40
70.281
5. 050
1.4725
0.001689
8.80
72.541
6. 319
1.5990
0.001956
9.20
75.398
8. 055
1.7391
0.002108
9.60
79.062
10. 374
1.8942
0 .00 2142
10. 00
83.793
13.415
2.0659
0.002069
10.40
89.910
17. 330
2.2555
0.001906
10.80
97.797
22. 293
2.4640
0.001669
11.20
107.909
28. 488
2.6925
0.001372
11.60
120.778
36. 112
2.9419
Q. 00 1 025
12.00
137,017
45. 376
3.2130
0.000633
12.4 0
157.326
56. 497
3.5067
0.000202
12.80
182.493
69. 702
3.8236
-0.000266
13.20
213.397
85. 226
4.1645
-0 .00 0770
13.60
251.015
103. 313
4.5301
-0.001305
14.00
296.423
124.213
4.9210
-0.001871
14.40
350.795
148. 185
5.3379
-0.002462
14.80
415.416
175. 499
5.7813
-0.003074
15.20
491.678
206. 438
6.2519
-0.003701
15.60
581.090
241. 306
6.7505
-0.004338
16.00
685.291
280. 439
7.2780
-0.004976
251
Table 24. Calculated P(o) isotherms (Continued)
THE ISOTHERM AT 330,00 OEG • K
MOL/L
P f B AR
DP/DD
DP/DT
02P/0T2
0.40
10.330
24.236
0.0356
-0.000010
0.80
19.451
21. 408
0.0758
-0.000041
1.20
27.475
18. 734
0.1205
-0.000094
1.60
34.461
16. 238
0.1694
-0.000168
2. 00
40.502
14. 015
0.2222
-0.000260
2.40
45.713
12. 088
0.2784
-0.00 0365
2.60
50.208
10. 426
0.3377
-0.000477
3.20
54.084
8. 990
0.3997
-0.000589
3.60
57.427
7. 759
0.4640
-0.000689
4.00
60.319
6. 736
0.5304
-0.000765
4.40
62.846
5. 936
0.5987
-0.000804
4.60
65.097
5. 361
0.6690
-0.00 0794
5.20
67.163
4.997
0.7415
-0.000731
5.60
69.119
4. 811
0.8168
-0.000612
6.00
71.031
4. 777
0.8954
-0.000444
6.40
72.966
4. 929
0.9782
-0.000232
6.80
74.993
5.218
1.0659
0.000010
7.20
77.150
5. 583
1.1594
0.000276
7.60
79.482
6. 119
1.2597
0.000555
6.00
82.083
6. 937
1.3680
0.000829
8.40
85.077
8. 096
1.4859
0.001078
8.80
88.615
9.669
1.6148
0.001283
9.20
92.880
11. 751
1.7563
0.001426
9.60
98.099
14. 455
1.9121
0.001496
10.00
104.545
17.915
2.0834
0.001489
10.40
112.551
22.281
2.2719
0 .00 1408
10.80
122.513
27. 722
2.4785
0.001258
11.20
134.897
34. 421
2.7045
0.001045
11.60
150.244
42. 572
2.9508
0.000776
12.00
169.176
52. 364
3.2184
0.000456
12.40
192.401
64. 073
3.5081
0.000092
12.80
220.714
77. 864
3.8207
-0.000314
13.20
255.004
93. 993
4.1569
-0.000758
13.60
296.252
112. 701
4.5174
-0.001237
14.00
345.541
134.238
4. 9030
-0.001747
14.40
404.054
158. 863
5.3142
-0.002283
14.80
473.079
186. 846
5.7517
-0 .002841
15.20
554.017
218. 473
6.2164
-0.003416
15.60
648.384
254. 051
6.7089
-0.004002
252
>
Table 24. Calculated P (P ) isotherms (Continued)
THE ISOTHERM AT 3^0.00 DEG, K
MOL/L
P * BAR
OP/OD
OP/OT
02P/CT2
0.40
10.686
25. 181
0.0355
-0.000009
0.80
20.207
22. 465
0 . 0754
-0.000036
1.20
28.675
19. 898
0 .1196
-0.000082
1.60
36.148
17. 501
0.1679
-0.000145
2.00
42.712
15. 368
0.2198
-0.000221
2.40
48.480
13. 521
0.2751
-0.00 0 306
2.80
53.563
11. 931
0.3334
-0.000394
3? 20
58.054
10. 558
0.3944
-0.000478
3.60
62.035
9. 383
0.4579
-0.000550
4.00
65.587
8. 413
0.5236
-0.000600
4.40
S8.795
7. 666
0.5916
-0.000621
4.80
71.751
7. 150
0,6620
-0.000606
5.20
74.545
6. 853
0.7352
-0.000553
5.60
77.259
6. 748
0.8115
-0.000463
6.00
79.965
6. 813
0.8915
-0.000339
6.40
82.737
7. 083
0.9761
-0.000 185
6.80
85.652
7. 508
1.0659
-0.000009
7.20
88.756
8. 030
1.1616
0.000134
7.60
92.103
8. 752
1.2643
0.000386
8.00
95.800
9. 788
1.3750
0.000588
8.40
99.984
11. 201
1.4950
0.000775
8.80
104.820
13. 064
1.6257
0.000934
9.20
110.508
15. 473
1.7686
0.0G1053
9.60
117.287
18. 543
1.9250
0.001121
10.00
125.447
22. 402
2.0964
0.001132
10.40
135.334
27. 2C2
2.2842
0.001082
10.80
147.356
33. 105
2.4896
0.000973
11.20
161.990
40. 293
2.7137
0.000806
11.60
179.787
48. 958
2.9576
0.000586
12.00
201.380
59. 306
3.2223
0.000317
12.40
227.485
71. 552
3.5086
0.000001
12.80
258.905
85.920
3.8173
-0.000356
13.20
296.535
102. 643
4.1493
-0.000752
13,60
341.366
121. 964
4.5053
-0.001183
14.00
394.485
144. 131
4.8860
-0 .00 1645
14.40
457,084
169. 403
5.2921
-0.002134
14.80
530.458
198. 051
5.7243
-0.002645
15.20
616.014
230. 363
6.1834
-0.003174
15.60
715.278
266. 648
6.6703
-0.003715
253
Table 24. Calculated P(d) isotherms (Continued)
THE ISOTHERM AT 360.00 OEG . K
MOL/L
P » BAR
OP/DD
DP/DT
D2P/0T2
0.40
11.393
27. 058
0 .0353
-0.000007
0.80
21.708
24. 554
0.0748
-0.000028
1.20
31.053
22. 187
0.1182
-0.000064
1.60
39.478
19.977
0.1653
-0.000111
2.00
47.068
18. 015
0.2160
-0.000166
2.40
53.927
16. 325
0.2698
-0.000226
2.80
60.160
14. 878
0.3267
-0.000286
3.20
65.857
13. 637
0 . 3863
-0.000341
3.6-0
71.095
12. 588
0.4487
-0.00 0 385
4.00
75.954
11. 742
0.5137
-0.000414
4.40
80.519
11. 124
0.5814
-0.000423
4. 60
84.866
10. 750
0.6521
-0.000410
5.20
89.152
10. 616
0.7261
-0.000375
5.60
93.408
10. 698
0.8039
-0.000317
6.00
97.737
10.982
0.8859
-0.000239
6.40
102.226
11. 507
0.9729
-0.000144
6.80
106.966
12. 219
1.0654
-0.000035
7.20
112.018
13. 065
1.1642
0.000085
7.60
117.452
14. 162
1.2700
0.000211
8.00
123.397
15.629
1.3839
0.000336
8.40
130.013
17.533
1.5069
0.000455
8.80
137.492
19.953
1.6402
0.000558
9.20
146.057
22. 986
1.7850
0.000638
9.60
155.978
26. 747
1.9426
0.000687
10.00
167.569
31. 365
2.1143
0.000699
10.40
181.203
36. 987
2.3013
0.000670
10.80
197.314
43. 773
2.5050
0.000597
11.20
216.400
51. 899
2.7263
0.000479
11.60
239.036
61. 554
2.9664
0.000316
12.00
265.874
72. 939
3.2264
0.000110
12.40
297.646
86. 266
3.5071
-0.000138
12.80
335.175
101. 758
3.8095
-0.000424
13.20
379.372
119. 644
4.1344
-0.000747
13.60
431.242
140. 165
4.4825
-0.001103
14.00
491.888
163. 570
4.8548
-0.001489
14.40
562.516
190. 118
5.2519
-0.001901
14.80
644.438
220. 081
5.6747
-0.002336
15.20
739.075
253. 751
6.1240
-0.002788
254
Table 24. Calculated P(P) isotherms (Continued)
THE ISOTHERM AT 360.00 DEG. K
MOL/L
P t BAR
DP/DD
DP/OT
D2P/CT2
0.40
12.099
28. 922
0 .0352
-0.000006
0.80
23.198
26. 613
0.0743
-0.000023
1.20
33.404
24. 434
0.1170
-0.000051
1.60
42.764
22. 400
0.1634
-0.00 0 087
2. 00
51.356
20. 603
0.2130
-0.000130
2.40
59.282
19. 068
0.2659
-0.000175
2.60
66.642
17. 766
0 . 3217
-0.000219
3.20
73.522
16. 665
0.3804
-0.000259
3.60
79.999
15. 754
0.4420
-0.000290
4.00
86.153
15. 0 51
0.5065
-0.000310
4.40
92.071
14. 584
0.5741
-0.000317
4.80
97.854
14. 375
0.6450
-0.000308
5.20
103.606
14. 426
0.7196
-0.000283
5.60
109.427
14. 718
0.7983
-0 .00 0244
6.00
115.411
15. 240
0.8817
-0.000 191
6.40
121.656
16. 035
0.9702
-0.000126
6.80
128.267
17. 046
1.0646
-0.000052
7.20
135.315
18.227
1 . 1653
0.000030
7.60
142.888
19. 701
1.2732
0.00 0 115
8.00
151.132
21. 595
1.3692
0.000200
8.40
160.229
23. 980
1.5141
0.000280
8.80
170.392
26. 936
1.6491
0.000350
9.20
181.868
30. 565
1.7952
0.000404
9.60
194.949
34.982
1.9537
0.000436
10.00
209.976
40. 319
2.1255
0.000442
10.40
227.346
46. 719
2.3120
0.000417
10.80
247.515
54. 343
2.5144
0 .00 0 359
11.20
271.006
63. 362
2.7336
0.000264
11.60
298.415
73.962
2.9708
0.000133
12.00
330.413
86. 342
3.2271
-0.000035
12.40
367.754
100. 711
3.5033
-0.000238
12.80
411.276
117.289
3.8005
-0.00 0 476
13.20
461.909
136. 303
4.1194
-0.000747
13.60
520.675
157. 993
4,4610
-0 .00 1048
14.00
588.694
182. 608
4.8262
-0.001376
14.40
667.186
210. 407
5.2157
-0.001730
255
Table 24. Calculated P (p ) isotherms (Continued)
THE ISOTHERM AT 400.00 DEG. K
MOL/L
P,BAR
DP /DO
DP/DT
02P/DT2
0.40
12.802
30. 774
0.0351
-0.000005
0.80
24.679
28. 650
0.0738
-0.000019
1.20
35.736
26. 648
0.1161
-0.000041
1.60
46.015
24. 783
0.1618
-0.000070
2.00
55.593
23. 146
0.2107
-0.000104
2.40
64.567
21. 764
0.2627
-0.000139
2.80
73.035
20.611
0.3176
-0.000174
3.20
81.082
19.657
0.3758
-0.000204
3.60
88.786
18. 894
0.4369
-0.000229
4.00
96.226
18. 345
0.5010
-0,000244
4.40
103.495
18. 044
0.5685
-0.000250
4.80
110.698
18. 017
0.6396
-0.000244
5.20
117.946
18. 269
0.7146
-0.000228
5.60
125.348
18. 784
0.7939
-0.000200
6.00
133.008
19. 558
0.8781
-0.000163
6.40
141.036
20. 635
0.9678
-0.000117
6.80
149.547
21. 954
1.0634
-0.000064
7.20
158.625
23. 473
1.1655
-0.000007
7.60
168.370
25. 327
1.2749
0.000053
8.00
178.948
27. 647
1.3922
0.000113
8.40
190.559
30. 503
1.5185
0.000169
8.80
203.434
33. 983
1.6547
0 .00 0217
9.20
217.842
38. 188
1.8017
0.000253
9.60
234. 097
43.238
1.9606
0.000272
10.00
252.563
49. 264
2.1326
0.000271
10.40
273.658
56. 410
2.3186
0.000246
10.80
297.861
64. 836
2.5198
0.000194
11.20
325.719
74. 711
2.7373
0.000114
11.60
357.848
86. 220
2.9721
0.000003
12.00
394.939
99. 559
3.2253
-0.000140
12.40
437.767
114. 934
3.4978
-0.000312
12.80
487.187
132. 564
3.7905
-0.000515
13.20
544.149
152. 675
4.1045
-0.000747
13.60
609.690
175. 505
4.4405
-0.001007
14.00
684.948
201. 303
4.7995
-0.001291
256
Table 24. Calculated P(P) isotherms (Continued)
THE ISOTHERM AT 420.00 DEG. K
MOL/L
P* BAR
DP/DD
DP/DT
D2P/DT2
0.40
13.503
32. 616
0.0350
-0.000004
0.60
26.153
30. 668
0.0735
-0.000015
1.20
38.051
28. 835
0.1154
-0.000034
1.60
49.238
27. 133
0.1605
-0.000058
2.00
59.787
25. 654
0.2088
-0.00 0 085
2.40
69.795
24. 425
0.2602
-0.000114
2.80
79.358
23. 423
0.3146
-0.000141
3.20
83.560
22. 621
0.3721
-0.000 166
3.60
97.480
22. 014
0.4327
-0.000186
4.00
106.201
21. 629
0.4966
-0.000199
4.40
114.818
21. 505
0.5640
-0.000204
4.80
123.443
21. 670
0.6351
-0.000201
5.20
132.194
22. 134
0.7104
-0.000190
5.60
141.189
22. 884
0.7902
-0.000171
6.00
150.539
23. 919
0.8751
-0.00 0 144
6.40
160.368
25. 285
0.9655
-0.000111
6.80
170.801
26.917
1.0620
-0.000074
7.20
181.932
28. 780
1.1651
-0.000032
7.60
193.875
31. 014
1.2755
0.000011
8.00
206.811
33. 757
1.3939
0.000053
8.40
220.958
37. 060
1.5211
0.000092
8.80
236.564
41. 072
1.6580
0.000124
9.20
253.919
45. 840
1.8057
0.000 147
9.60
273.356
51. 504
1.9649
0 .00 0 157
10.00
295.259
58. 196
2.1367
0.000150
10.40
320.070
66.063
2.3222
0.000 124
10.80
343.287
75. 262
2.5224
0.000076
11.20
380.480
85. 964
2.7384
0.000004
11.60
417.283
98. 351
2.9711
-0.000093
12.00
459.411
112. 6 18
3.2217
-0.000217
12.40
507.655
128.969
3.4909
-0 .00 0 368
12.80
562.893
147. 620
3.7799
-0.000545
13.20
626.089
168. 800
4.0895
-0.000747
13.60
698.301
192. 744
4.4207
-0.000975
257
Table 24. Calculated P(p) isotherms (Continued)
THE ISOTHERM AT 450.00 DEG. K
MOL/L
P,BAR
DP/DD
DP/DT
02P/CT2
0.40
14.552
35. 366
0.0345
-0.000003
0.80
28.352
33.667
0. 0731
-0.000012
1.20
41.498
32. 077
0.1145
-0.000026
1.60
54.030
30. 612
0. 1590
-0.00 0 044
2.00
66.017
29. 365
0.2066
-0.000065
2.40
77.555
28. 365
0.2572
-0.000087
2.80
88.739
27. 593
0.3109
-0.000108
3.20
99.656
27. 025
0.3678
-0.000127
3.60
110. 3e6
26. 663
0.4279
-0.000142
4.00
121.018
26. 537
0.4914
-0.000153
4.40
131.654
26. 692
0.5586
-0.000159
4.60
142.414
27. 162
0.6298
-0.000159
5.20
153.427
27. 959
0.7053
-0.000153
5.60
164.823
29. 075
0.7856
-0.000142
6.00
176.729
30. 513
0.8710
-0.000126
6.40
189.284
32.323
0.9622
-0.000107
6.80
202.627
34. 433
1.0596
-0.000084
7.20
216.866
36. 816
1.1637
-0.00 0 059
7.60
232.136
39. 623
1.2751
-0.000033
8.00
248.640
42. 997
1.3945
-0.000008
8.40
266.619
47. 010
1.5226
0.000014
8.80
286.346
51. 757
1.6603
0.000030
9.20
308.137
57. 347
1.8083
0.00 0 040
9.60
332.353
63. 9C4
1 . 9677
0.000039
10.00
359.407
71. 564
2.1392
0.000026
10.40
389.771
80. 474
2.3239
-0.000002
10.80
423.974
90.791
2.5227
-0.000047
11.20
462.614
102. 687
2.7367
-0.000111
11.60
506.359
116. 343
2.9667
-0.000195
12.00
555.949
131. 952
3.2138
-0.000300
12.40
612.208
149. 718
3.4789
-0.000427
12.80
676.040
169. 855
3.7631
-0.000575
13.20
748.439
192. 591
4.0671
-0.000745
258
Table 24. Calculated P(p) isotherms (Continued)
THE ISOTHERM AT 5C0.00 DEG, K
MOL/L
P» BAR
DP/DO
DF/DT
D2P/CT2
0,40
16.295
39. 920
0 . 0348
-0.000002
0.80
31.994
38. 610
0.0726
-0,000008
1.20
47.194
37. 402
0.1134
-0.000018
1.60
61.931
36. 315
0.1572
-0.000030
2.00
76.275
35. 445
0.2039
-0.000044
2.40
90.321
34. 827
0.2537
-0.000059
2.80
104.168
34. 445
0.3065
-0.000074
3.20
117.906
34. 281
0. 3625
-0.00 0 087
3.60
131.623
34. 346
0.4220
-0.000099
4.00
145.418
34. 676
0.4850
-0.000108
4.40
159.407
35. 323
0.5519
-0.000114
4.60
173.724
36. 327
0.6230
-0.000117
5.20
188.518
37. 704
0.6986
-0.000117
5.60
203.937
39. 454
0 .7792
-0.000114
6.00
220.132
41. 586
0 . 8652
-0.000109
6.40
237.265
44. 153
0.9570
-0.000102
6.80
255.499
47. 071
1.0552
-0.000094
7.20
274.966
50. 327
1.1601
-0.000084
7.60
295.829
54. 088
1.2723
-0.000075
6.00
318.324
58. 503
1.3924
-0.000067
8.40
342.729
63. 649
1.5212
-0.000062
8.60
369.354
69. 623
1.6593
-0.000061
9.20
398.553
76. 541
1.8074
-0.000065
9.60
430.730
84. 534
1.9664
-0.000076
10.00
466.341
93. 740
2.1371
-0.000096
10.40
505.903
104. 310
2.3204
-0.000127
10.80
549.993
116. 406
2.5170
-0.00 0 169
11.20
599.254
130. 198
2.7280
-0.000225
11.60
654.402
145. ee9
2.9542
-0.000295
12.00
716.226
163. 612
3.1966
-0 .00 0 380
259
Table 24. Calculated P (P ) isotherms (Continued)
THE ISOTHERM AT 550.00 DEG. K
MOL/L
P,9AR
DP/DD
DP/OT
02P/0T2
0.40
18.032
44. 448
0 . 0347
-0.00 Q002
0.80
35.616
43. 5C1
0 . 0723
-0.000006
1.20
52.844
42. 655
0.1127
-0.000013
1.60
69.756
41. 933
0 . 1559
-0.00 0 022
2.00
86.421
41. 433
0.2020
-0.000032
2.40
102.938
41. 194
0.2511
-0.000043
2.80
119.410
41. 207
0.3033
-0.00 0 054
3.20
135.935
41. 458
0 . 3588
-0.000065
3.60
152.610
41. 963
0.4177
-0.000074
4.00
169.545
42. 767
0.4803
-0.000082
4.40
186.871
43. 925
0.5469
-0.000089
4.80
204.738
45. 482
0.6178
-0.000093
5.20
223.312
47. 460
0.6933
-0.00 0 097
5.60
242.763
49. 861
0.7739
-0.00 0 098
6.00
263.260
52. 702
0.6600
-0.000099
6.40
284.991
56. 035
0.9520
-0.000099
6.80
308.139
59. 768
1.0504
-0.00 0 098
7.20
332.858
63. 900
1.1555
-0.00 0 097
7.60
359.337
68. 611
1.2679
-0.000097
8.00
387.845
74. 057
1.3882
-0.000099
8.40
418.690
80. 313
1.5169
-0.000103
8.80
452.217
87. 485
1.6549
-0.000110
9. 20
488.816
95. 692
1.8026
-0.000121
9.60
528.927
105, 069
1.9609
-0.000138
10. 00
573.046
115. 761
2.1305
-0.000 162
10 . 40
621.731
127. 921
2.3122
-0.000 194
10.80
675.601
141. 715
2. 5C68
-0.000234
11.20
735. 343
157. 315
2.7151
-0.000285
260
^able 24. Calculated P(0) isotherms (Continued)
THE ISOTHERM AT 600.00 DEG. K
MOL/L
P BAR
DP/DD
DP/DT
D2P/DT2
0.40
19.766
48.957
0.0346
-0.000001
0.80
39.222
48.356
0.0720
-0.000005
1.20
58.462
47. 858
0.1121
-0.000010
1.60
77.525
47. 469
0.1549
-0.000017
2.00
96.485
47. 353
0.2006
-0.000025
2.40
115.445
47. 492
0.2492
-0.000033
2.00
134.514
47. 900
0 . 3009
-0.000042
3.20
153. 800
48. 572
0.3559
-0.000051
3.60
173.409
49. 526
0.4144
-0 .0 0 0 059
4.00
193.465
50. 812
0.4766
-0.00 0 066
4.40
214.111
52. 491
0.5429
-0.000073
4.80
235.517
54. 613
0.6135
-0.000079
5.20
257.864
57. 202
0.6888
-0.000084
5.60
281.341
60. 262
0.7693
-0.000088
6. 00
306.139
63. 818
0.8552
-0.000092
6.40
332.470
67. 922
Q .9472
-0.000096
6.80
360.534
72. 472
1.0454
-0.000099
7.20
390.507
77. 477
1.1504
-0.000104
7.60
422.604
83. 132
1.2627
-0.000109
8.00
457.121
09. 596
1 . 3827
-0.000116
8.40
494.398
96. 947
1.5112
-0.000125
8.80
534.811
105. 291
1.6486
-0.000137
9. 20
578.781
114. 756
1.7957
-0.000153
9.60
626.783
125. 479
1.9531
-0.000173
10.00
679.352
137. €10
2.1214
-0.000198
10.40
737.081
151, 308
2.3015
-0.000230
261
I
I
Table
25. The
Joule-Thomson inversion locus.
T » K
P,BAR
MCl/L
TfK
P,BAR
MOL/L
425
467. 3
11.93
25 0
26.3
15.06
430
474.2
11 .85
255
47.2
14.95
435
481.0
11.77
260
67.3
14.85
440
487.6
11.70
265
86.7
14.75
445
493.9
11.62
2 7 0
105.3
14.65
450
50 0.1
11.55
275
123.4
14.55
455
506.0
11.47
28 0
140.6
14.45
460
511. 7
11.40
285
157.6
14.36
465
517. 3
11.32
29 0
173.8
14.26
470
522.6
11.25
295
189.5
14.16
475
527.8
11.17
300
204.7
14. 07
480
532.7
11.10
30 5
219.5
13.97
48 5
537.5
11.03
310
233.7
13 .ee
49 0
542. 1
10.95
315
247.5
13. 7 C
495
546.5
10 . 88
320
260.9
1 3. 69
500
550. 7
10.81
325
273.9
13.60
505
554.8
10.73
33 0
296.5
13.51
510
558.6
10.66
335
296.7
13.42
515
562.3
10.59
340
310 . 6
13.33
520
565. 8
10.52
345
322.1
13.24
525
569.1
10.44
35 0
333.3
13.16
530
572.3
10.37
355
344.1
13.07
535
575.2
10.30
36 0
354.7
12.96
540
578. 0
10.23
365
364.9
12.90
545
58 0.7
10.16
370
374.9
12.81
550
563.2
10.09
375
384.6
12.73
555
585.5
10.01
330
393.9
12.65
560
587.6
9.94
38 5
403.1
12.57
565
569.6
9.87
390
411.9
12.48
570
591.4
9.80
395
420.6
12.40
575
593.0
9.73
40 0
428.9
12.32
580
594. 5
9.66
40 5
4 37.1
12.24
585
595.9
9.59
4 10
445.0
12.16
590
597. 1
9.52
4 15
452.6
12.08
595
596. 1
Q. 44
42 0
4 6 0.0
12.01
600
599. 0
9.37
262
Table 26. Thermophysical properties of the saturated liquid
This table was computed by integrating first along isotherm
of Figure 9> then along isobar P^, and finally along each iso-
therm down to the saturated liquid boundary <>
Column headings have the following interpretations --
DPS/DT
=
dP^ /dT, vapor pressure,
DDL/DT
=
dp^/dT, saturated liquid,
DP/DT
=
(dP/ST), single phase,
DP/DD
=
(dP/6p), single phase,
Q, VAP
=
AH , heat of vaporization
vap
CV
C (P , T)
V
CS
=
C (T)
cr
CP
=
C (P , T)
P
W
=
speed of sound
263
PROPERTIES OF SATURATED LICJIO ETHANE
d
cr
r a
<v
4->
d
X
vO
J’
vO
CM CV
v£)
n
-*
cO
in
M3
cr
in
CVJ
CM
fO IT
M>
CO
go in
cr rs
ao
cr
aO
H
CM iC
eg
X®
o
M>
in
X
<o
cr ^ co
■*
M>
N-
GO
03
x»
M3
4iHNN
vO
cr
4 cvi
-h oi
in
cr
4
4
r- cr
K
oo
CM
ro
M>
K. U> 4- <M i* cr
<30
M3
X
o
ad
m>
j’
CM
O KIT
CV)
O' IM ■#
^ x«
j-
o
N-
ro
ao tr
GO
eg
M3
S3
GO
lC
vO
v£)
tO
M3 U>
in
in
in
in
in
4-
4
ro ro
ro
CVJ
CVJ CVJ
CM t-
4
4
o
a
O' o
00
GO
N.
M)
in
H
4
H
4 ^>
4
4
4
▼■4
*H
▼g
4 i-
4
4
4 4
*■» ^
4
H
4
4
4
a
O
LT\
vO PO
M>
CM
<5
N.
rl
0^
cn
cn x-
ro
in -4
CO
03
in n*
in co
ro
cr
4
in
4 C
ro
o
co
in
cr
a
4
CNJ
^ X*
O
■f
ao
H
in
N.
cn
a
o
cr
M3 cv
vO
cr
4 4
O N
ro
M>
GO
03
CN
X*
M3
vO
in
ao
X.
M3
X
O GQ
N*
m
ro
CVJ
o
GO
M)
in
ro
o
S3 v£
ro
ca
oo in
CM OC
in
4
X»
ro
O' 4
CO
eg
in
X.
n.
vjD
vO
M>
M3
m> in
in
in
in
in
in
«*
**
-*
io rr
ro
ro cvj eg
CM -T-
4
4
o
a
O' o
00
S3
N.
vO
in
4
4
4
4
4 -H
4
4
*■4
4
■»-*
4
4
4 T-
4
4
4 4
4 ▼-
4
H
4
4
a
-i
eg eg
eg
eg
CM
CM
eg cvi
eg
CM CM
CM
CM
1 CM
CM
CM
eg
CM
CM
CM
CM
CM
CM
eg
CM
1 CM
CM CM
CM
CM
rj
CM
▼H
1 ^4
▼4
4
41
a
o
o a
o
o
o
a
o a
o
o
o
a
CD
a
a
Q
a
o
ca
o
a
O
ci
o
q
1 o
o
a
a
o
a
o
a
a
a
o a
i a
o
O
o
N>
s;
o o
o
a
o
a
o a
o
a
a
a
O
, o
a
O
a
a
o
o
a
o
o
a
a
o
o
a
o
G5
a
o
o
a
o
o a
> ca
o
o
ca
a
X
+ 4-
4
4
4
4
4 4
4
4
4
4
4
4
4
4
4
4.
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 4
4
4
4
4
o
_J
in 4
cr
eg
O
ro
X ▼-)
J-
in
ro
X
in
CM
O
O
a
CM
ro
in
in
4
T-)
v£)
co
» co
in
ao
X
ro
in
CM
4
O'
*4 H
1 O'
GO
eg
vO
1
CM -H
cr
■H
m
▼4
O' a
eg
&
CM
cr
CO
> o
ro
r^.
CM
GO
in
ro
Cvj
eg
ro a
M3
cr ro
X
CM
<c
4
’ T-l
in
4
GO
o' in
> M>
4
O'
o
a:
M3 Ml
o
M3
CM O'
m
■H
X)
4
T-) CO
M3
ro
o
ao
in
ro
tH
cr r-
in
« rH
i cr
co
03
in
ro
<N
l •*
ao
M3
4
ro ro
» ro
4
in
QO
cDrrcn<TcoaoN-x.LOM)M:ininin^.3'-±.^rofororoxxxxc\j4.H44444(T«3x*M)in^rox44-*x
►-^4«rg4444«HT-j44444Tg444*H4-*-|44444*-|OCaOOOaCDOCDOOCDOCacaOOOOO
D\oooooooaocDoaoc5oaaaoaoaoooaoaaaoaac30ooaoooooooo
N^G^ooooaooaooaaoaoCToaoaoaooaaaaoaooaooooooooooooo
a.<+4 + 444-4^ + 4*f + 4+ 44444+]+ + 44 + 4-4-4 + 4+ +4++ + + 4l4 + +4444 +
DCDsro^co^a^rocoro^ir>N4-^foa>on^H4-crs®o^^in<Hfvjcovflsc?cDHaoHooi^CT'ro^vDroro
Lfi^N.o(VJinflH^®(\jNHo® { no>^movO^ , Noqa'n'®Kf , n^'(VJii>
UMT\(NJH(T‘Nv04 , fON'Haa'
K vD vD in ^MWfgHHoa\Oa^OvDHNNflO^OvOHNW(rifiOI»)
ro
ro
ro
ro
CM
CM
eg
(M
eg
eg eg
X
4
■H
4
4
4
4
4
▼g
4
4
4
4
4
cr
cr
S3
S3
X*
x~
M3
M3
in
in
in
4
4.
3.
ro
X
X
<M
4
4
4
CM
4
O
a
■H CM
4
43
ao
4
in
cr
ro
h-
ro
CO
j-
a
N»
in
ro
X
4
fM
ro
in
cr
4
cm -4 ro
cr
OO
ro
M) cfl
>
X
in
CD
X
CD
X
CD
vO
vO
m0
vD
n
mQ
M3
v£>
43
M3
X-
X- N*.
S3
CO
cn
O'
CD
4
4
X
ro
j-
in
MJ
03
cr
4
ro
in
N.
cr
X
M3
CD
in
i X
4
ro
X
J-
O'
r^
CD
TO
ro
ro
ro
ro
ro
ro
rH
ro
ro
o
»0
ro
ro
ro
ro
ro
ro
4
4
4
4
4
4
f
4
4
4
4
in
in
in
in
in
M3
M3
X-
N
. S3
IT
o
CM
in
CM
r^
ca
o
o
o
a
o
a
ca
a
a
o
o
a
o
a
o
a
CD
CD
o
ca
a
CD
CD
a
CD
a
a
a
CD
CD
CD
a
o
CD
o
o
CD
a
1 CD
CD
4
4
-• CM
CD
o
CD
1
CD
1
a
1
o
l
CD
1
CD
1
CD
1
a
i
a
i
CD
1
a
1
a
l
CD
1
a
l
CD
1
a
1
CD
•
CD
1
CD
1
a
t
CD
l
CD
CD
1
a
1
CD
1
a
i
o
i
CD
1
CD
1
a
1
CD
t
a
i
0
1
CD
1
CD
1
0
1
CD
1
G
1
1 CD
•
CD
1
CD
1
CD
1
ca
1
CD
1
4
1
CD
\D
M3
<D
in
in
4
4
4
4-
ro
ro
ro
ro
ro
X
X
X
X
X
CM
eg
CM
X
X
4
4
4
4
4
4
4
4
4
4
4
4
4
T"
1 4
4
4
4
4
4
CD
CD
o
CD
CD
a
CD
CD
o
a
a
CD
a
a
CD
CD
a
o
CD
CD
CD
CD
CD
CD
CD
o
O
a
O
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
a
1 CD
a
CD
CD
CD
a
CD
CD
o
CD
CD
CD
O
CD
CD
CD
CD
CD
o
a
a
a
a
a
O
a
CD
CD
a
a
CD
CD
CD
CD
CD
CD
CD
a
a
a
CD
CD
CD
CD
O
a
1 CD
o
a
CD
CD
a
CD
CD
vO
eg in
X
CD
4
M>
4*
ro
X
X
in
4
in
ro
CD
X
4
X
4
M3
X
X
ro
X
■H
<r
ao
ao
cr
ro
S3
X-
O' LT>
X-
in
X o
4
^-4
X-
ro
S3
r ^
S3
in
X
J-
in
S3
XJ
4
cr
XJ
X
ro
ro
S3
m0
a>
X
Xw
in
S3
M3
4
ro
ro
M3
,0
X.
4
is.
in
aO
ro
CD
CD
X
X-
in ‘0
a
S3
o
rr
<n
4
ro
<o
X
in
ro
x
eg
&
a
cr
in
4
ao
X-
X
4
in
4
X
in
4
in
ao
X
co
4
ro
in
CO
CD
ro
M3
cr
ro
X*
4
in
r
4
• O'
in
CD
r^
ro
4
CD
ca
eg
eg
oo
CM
in
4
CM
in
S3
4
X
ro
in
CO
4
4
X
X
ro
4
in
M3
ao
cr
4
4
4
4
X
X
X
X
ro
ro
4
4
4
5.
5.
M3
x.
S3
cr
4
4
in
in
in
4
-X
ro
ro
ro
CM
X
X
X X
4
4
4
4
4
4
4
CD
o
CD
a
O
CD
CD
a
a
a
CD
CD
CD
H
4
4
1 4
4
4
4
4
4
tH
4
CD
a
CD
o
CD
a
CD
a
CD
a
CD
a
CD
a
CD
a
a
CD
CD
a
CD
CD
CD
CD
CD
a
CD
CD
CD
a
o
a
CD
CD
CD
CD
O
a
1 CD
CD
CD
CD
ca
CD
CD
CD
CD
o
CD
CD
CD
CD
a
a
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
a
CD
CD
CD
CD
CD
CD
CD
CD
CD
a
CD
CD
CD
CD
O
a
1 CD
CD
CD
CD
CD
CD
CD
CD
4
4
4
4
4
4
4
4
4-
4
4
4
4
4
4
4
4
4
4
-4-
4
4
4
4
4
4
+
4
4
4
4
4
4
4
4
1
1
i
1
1
1
1
1
1
1
1
4
ro
S3
kD
in
CD
CM
CM
4
CM
X>
ro
4
S3
cr
43
X-
X
ro
cr
ro
X-
CD
4
X-
N.
in
X
cr
4
H
r^
X
S3
M3
<0
in x
4
X
ro
O'
CD
.*
O
4
X
o
o>
ro
X)
X
cr
4 )
4
X
ro
4
4
cr
ro
X
4
ro
X
X.
X
X-
CM
cr
ro
CD
M3
4
<M
r^
cr
CD
ro
ro x»
X
M3
X-
j-
4
S3
S3
CM
4
in
CO
CM
m0
co
4-
ro
cr
a
cr
X
4
ro
eg
4
S3
4
4
O'
X
au
ao
cr
ro
CO
ro
CD
r^.
4
X
CD
in
X
4
1 4
ro
in
ao
X
M3
r-
CM
x
CM
4
m
CM
4
X)
4
ro
-
4
ao
43
4
ro
X
4
4
4
ao
X-
in
4
ro
ro
X
X
X
4
4
4
4
cr
no
X-
. M3
in
4
ro
ro
X
4
4
ro
ro
CM
CM
CM
CM
MJ
cr
ro
cr
in
ro
X
ro
in
cr
in
ro
ro
in
CD
co
cr
ro
4
ro
cr
4
ao
4
CM
4
CD
CD
4
M3
ao cr
M3
n
in
X
4
03
4
\c\
,-T\
•o
N.
^—4
m
cr
4
S3
o
m
*o
S3
ro
ao
4
CD
JD
X
,T»
in
X
CD
S3
vO
4
4
ro
4
in
X-
CD
*
cr
o
in x-
o
3 -
ro
'•-0
rr
4
ro
ML,
lU
w
aJ
r -
N.
u_.
-u
cc
O'
rr<
CD
CJ
eg
X
ND
jf
Li t
lit
aJ
X-
OJ
■ao
at
CD
4
eg
ro
4
in
X-
co
O'*
4
ro u»
U.J
u3
CD
<xi
ro
u_
-r
M’
r
M-
4-
r
4-
4
4
4
in
in
in
n
in
in
in
in
in
m
in
in
m
in
m
m
M3
O
l0
M3
M3
.O
M>
MJ
M3
X-
X,
X-
X-
S3
S3
cr
O'
X
cr
C“ )
r~3
ra
CD
fD
CD
CD
CD
CD
<"D
CD
CD
D
CD
CD
CD
CD
<"D
4)
CD
CD
CD
o
CD
CD
CD
CD
CD
CD
CD
CD
CD
r~)
CD
CD
CD
r
1 CD
CD
CD
CD
CD
4
*— 4
CD
a
a
CD
CD
CD
O
a
CD
CD
CD
a
CD
CD
CD
a
CD
CD
CD
CD
CD
CD
CD
a
CD
CD
O
CD
CD
CD
CD
CD
CD
CD
CD
a
a
CD
• CD
CD
CD
CD
CD
CD
CD
ca
o
m0
in
-X
-4
ro
ro
4
cr
in
CD
4
43
in
ro
aO
CD
CD
SD
cr
cr
4
M)
X
4
4
4
in
X
CD
cr
M3
CD
X-
in
CD
i in
X
r^
X.
in
CD
S3
ca
no
N.
rn
4
ro
in
K.
4
X
4
0
N.
S3
rr
CD
CD
4
■4
CD
O'
TO
X-
in
ro
CD
X-
ro
rO
»o
X-
CD
4
X
X
rr
in
r r
M3
x.
4
ro
4
4
■JJ
vO
vr
ro
4
cr
N-.
in
4
X
CD
ao
43
4
X
4
cr
X
in
ro
CD
aO
M3
4
X
CD
X-
in
X
O
X-
in
X
cr
M3
X
cr
in
i 4
X-
X
IS.
CD
▼“4
▼H
tH
4
4
CD
O
CD
CD
CD
CD
cr
er
m
(T
cr
S3
ao
j_
aa
cO
X-
X-
X-
x^
X.
vO
M)
M3
M>
n
m
in
4
4
4
ro
O
i o
X
X
4
4
ca
MU
'0
rv ;
r\J
rj
rj
XI
XI
XJ
XJ
XJ
XJ
X
4
4
4
■4
■»— J
4
4
•r-l
•"*
4
t-4
4
T— 1
r-l
4
4
4
4
▼— i
»-i
•J
4
4
4
1 4
4
4
4
4
4
uv
in
in
M-
g-
4-
ro
ro
ro
CM
X
X
X
X
4
4
4
4
4
4
CD
CD
CD
CD
CD
a
CD
CD
O
CD
CD
a
4
4
4
4
4
4
1 4
4
4
4
4
4
4
4
r~i
CD
CD
rD
CD
a
CD
CD
CD
a
CD
CD
CD
CD
CD
CD
CD
a
CD
CD
O
CD
CD
O
CD
cd
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
i CD
CD
CD
CD
CD
CD
CD
ca
C3
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
o
CD
a
CD
CD
CD
CD
CD
CD
CD
CD
CD
a
CD
CD
CD
a
CD
a
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
ca
CD
ca
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
l
1
1
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
CD
X.
X)
O
in
ro
cr
m0
X
CM
X
ro
CD
4
X
43
cr
co
in
cr
co
M3
X
X
CO
ao
X
CD
4
X
S3
in
4
M3
X
a*
CD
i in
M3
M3
in
S3
a?
S3
M3
•4
O
AJ
4
CM
■n
X)
4*
0
cr
X-
ro
CD
X.
43
4
4)
S3
\D
M3
ro
4
X
X-
CD
rO
X-
X
cr
CD
in
■ 0
X
CD
•T*
4
4
4
i r
CD
4
4
4
n
fO
X.
r D
CD
m0
4
'D
4-
■o
m
cr
X
X
co
X
43
4
4
CD
X
S3
ao
CD
ro
X
tH
X-
ro
CD
cr
S3
CD
X
M3
4
ro
4
X^
r
X
l 4
S3
4
•n
cr
ro
S3
S3
4
4
ro
4
ro
N.
4
ro
43
4
X
ro
43
rr
4
X
ro
4
in
X-
4
4
4
X
X
ro
4
4
m
X-
S3
cr
4
4
4
X
1 X
X
ro
ro
<o
4-
cr
4*
cr
a
CD
CD
D
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
a
o
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
a
CD
CD
i CD
CD
CD
CD
o
CD
CD
CD
T>
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
o
CD
CD
CD
CD
CD
O
CD
CD
a
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
ca
CD
CD
IX
-O
CD
■O
CD
D
CD
CD
CD
CD
CD
O
CD
_D
CD
CD
CD
a
CD
ID
CD
CD
CD
CD
CD
CD
a
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
O
ca
CD
CD
ro
cr
a
in
CD
in
CD
m
CD
in
CD
in
CD
in
CD
in
CD
in
CD
in
CD
in
CD
in
CD
in
a
in
CD
in
CD
n
a
in
CD
in
CD
in
CD
in
CD
in
CD
in
CD
in
n
TD
m
cr
CD
D
4
CVJ
X
O
ro
4
4
iri
in
o
43
X-
o
CO
cr
cr
CD
CD
4
4
X
X
ro
ro
4
4
n
in
• r
•o
X
x^
S3
S3
cr
rr
O
CD
ra
4
t— 4
4
T— 4
4
h
4
4
4
■»— J
tH
4
T— 1
4
4
4
4
4
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
i r\j
X
X
X
X
fO
ro
ro
N '
264
T P E H S CV CS CP W CS » XPT
DEG K 3 AR J/MOL J/MCL J/MOL/K J/MOL/K J/MOL/K J/MOL/K M/SEC J/MOL/K
39.639 I.GIO-lIOj 9293.6 92 36.6 76.497 44.06 68.50 68.50 2231 68.16
IS
CO
in
o
fS
4f
-t iO
O
in
w
04
aO
LA LTi <S
in
in
CP
40
ro r<
o
in
aO
H N. l£
tH
N»
CP
tH
in
N.
ro
ro
cO
04
IS
40
•H
OJ
in
aO
d w ^ io a>
*H
O
x
fs»
•h in
o
m
a
40
ro c
eo
40
in
40
s. a
in
tH
o
fO
<p
-5
CD
<P
N»
CD
tH
<p
•
•
•
•
•
<
•
•
•
•
•
•
•
•
•
• <
•
•
•
•
. «
•
•
•
•
• 1
•
9
•
•
•
•
•
•
•
•
•
•
•
GO
aO
Q0
aO
GO
<30
CP (P (P
(P
CP
a
c
CD
tH
tH
OJ CV
ro
ro
S
LA v£j
40
N.
CO
(P
a fv
ro
in
N»
CP
tH
in
<P
CD
o
N.
CM
(P
-0 vO
40
40
40
40
ic
0
40
40
40
p-
N
N-
P.
N»
0- hn
N.
N.
N. N,
N.
CO «3
ao
co
ao
ao
CP
ai
(P
O
tH
CM
ro
IS
tH
tH
tH
tH
tH
t-
in
0 -4 LTV
tH
0^
eo
tH
in
<p
o
x
O
BMn j
x
OJ
o
<r oi
SO
40
in
ro (4
o
k>
o
40
a
in
in
CM
S’
On ro
rO N.
vO
a
in
40
vO
04
CO
CP
in
a
40
04 OQ
■4-
o
40
OJ
ro
CP
in
tH
ro <T
in
o
vO
OJ
r^
M
aO
ro
CO
fO
N.
a
tH
04 tH
▼4
o
a
cp
40
CO
N.
40
m
in
in
mt
•4* M
ro
ro
04
CM
— 1 T-
o
o
L3
CP
Q\ OJ
44
«0
r^.
N.
40
ifl
in
in
Mr
ro
ro
CM
04 04
eg
04
CM
tH
rH
tH
tH
H
tH
r<
tH
H
^ *H
▼4
*H
*H
t-4
^4 H
-H
tH
tH
OiflJfOMiOaSNOWO
t
•^ir\CMfocr'oo<\)(\jN.eoirior^inaofO'^if^MPoj-j-irivOLrv
iji«5rM 1 fioinHK'Oo'nS'Oifl^o ■tfr>r-r^o^-cr' r r)r>
PO T*
fs. rn
N S J
•O >D OO
c6<ncocotoea 4 (j'CJ'(J'(J'oqawr<(\*Ni<((o^uM^tONooo'WNf<)ifl(voNu\(j'j^o'W(Nj^afo
iO^OvavD>DvD\4iX)vD^vDh'NtP»KN-N.N.P>^^P>.^.p»r^Ni^N-«OoOoocOoO(7*(I'CJ'(T>c^'r-t.rHroir\cr'a(\j
tH tH tH H tH X CP
OiflJ-rOWiflqKvOWCMO'cjWO'O'IO'rtMO'O'iniDWNStnfVJOO'rlOCr'fOiOiOOlflfOOrtNQJ'
<o«'oeco»oici'i3'0'o'o(SortT((\j(\jN)ro-J4 , W'Ds®o'OT(W4i^scr | wj’r>.
lO lO O Oi\flifl>OvO>.OiflS.NP.NP.KKN.NP>NN.P»NS.P.«!0®^a5(Oina' l 7'l7'
N, J- L I\ 4 - O' o
O —< C\J J- 35 (\J
tH tH tH tH tH f^
vOML^i)L^nHoOinnHOH^vDHCOCO(?fOCnScO
00(^rON^^fONr4a(rcpNvU^ir>UMn^vfl^ r O
1
u'iv0CT'LT>rNjo>juiCT'i£>u'i^'<H®ocr'
roir\NOK) l a<j'(\ii£ioj’0'r<)(3'j'
o (\JMP
PJ H lO in
^^■Poronr)inr*lPr>roroPO(\)c4 0 ^ t ^6J ( ^nd(\(fNj<\j(Mpjf»5P<3roPoro^-j-^-S-Lf\t^>iJ.OiflP~s.50'T'o^o
4tnp.io^op.MNiDv04’0'iDONHinif|io40'foooi5J'a(D(M4-MnwfO'Hinroa3i-ti<)or<5jN
NP-0'44H4NCT'HU\^0<HN^O'Hain\BP5iCN4l!'Nl*5<-IO'ir>OmOintHiOCOWO l D^4'OOH
inf\jK^f04-MH<0inomc0i\j^^!j)0M!'(5'0'(t)r^^D4MH0'.0-tP4iT's.4N(T'p.j)in4inc0in-}'
vflc=>roh-orovi)(T'-r-ij-r^iT>-H4'iC 0 o i:3 nvJ4*ioa3aC44'^coo. I -iPOLrir>-a3otNj^ifNN-cr , T-(PoinN.oir>
N.io'O-oa'cr'O'a'oooo-H-^tTH.r-ifijMtNjojtsjroPOPOPoroj'j-j-j-^j-inL^iriiriLnin'.DvO o >d n s
ul(M(\iiC4'0'rtOC!'aj<t('JHP>^U'WJNW«OiDJiJl\jrl0'M®P)in\fli»iDO(0iDiB(\JuiWnj'
in®H-p®(\jj)4'Qsoscoaioff'a) 1 floP3^wMnioin«'Da'oKWSHiB4SiiNJ'a)^«oj)
aj-p'ipkM.flr<;)oinojiH^mn)4'H®inNo«NifiiC l fl»(i'M'noinNoa(ur-n-o(j'uiiD
f0^cr>P0^ar»5r^o4I^'>-l4c0'^ir\cD(\)^Qcr’P0r^T-t4a3<\J>Da-4«) r, >P^t\Jv0^^i3'rH>DT-tS.^ , 5o<7'4-
in tn lp dx)p-n»p ~'0 onrMiT'ooo-iH^MWio'OP) it j in ip ip ,o o k n n cp''5'ooriPJ | 'J-fLP
fi *— < tH tH tH tH tH »H ^4 rH tH t— i tH tH H t— I tH tH tH tH tH t— ( tH t— 1 C\J C\J C 4 C\J C\J f'j C\J
ir\(\j(\j^4 , a'^ooos V D(T'\jO'T‘a(ra'c\jdir>QorocvjN(\jafONi)ina'iDLA>j-t)ro(\jmK^ii>ro^iD'' n
^COr4J-COC\J5)^acO
CD -J-a^rONCNJvDHvDO
X O p x
LH in LO 0
D- 1 -
a cd
CD X S. CD -t- N. tH
N N N U OC' 93 O'
vDi-D-DOCD'DCDO
onaoooonaoa
I I I I
a) o ir» ro
i i I
f\J N. ro
□ D r9 □
cj* 0 in <t\ (\i (\j
N H ^ D H C\J n CJ3
CD DCDCDCDCDOcDCDCDOO
□ QOGGaQOQOQQ
□ g □□ a oG □ a □ d a
CD n
m ry\
o LO a lA
0 0 - 9-4
CD n CD n
PI pj X x
ai
OJ
O
4 “
ro
in
(P
JV
cr
N
ro
0 J
03
40
ro
-0
m
CD
ro
*
s
4 *
P-
X
4 -
CD
0
X
CP
•D
cr
in
tH
40
OJ
30
cr
CD
j*
tH
ip
0 -
Lp
ro
ro
ro
s
40
co
tH
n
CD
40
-J-
ro
n
CD
X
ro
tH
0 -
0
ao
tH
in
TO
OJ
Q
<P
ro
CD
•r
rO
OJ
0
CD
TD
PJ
■0
tH
n
CD
S
O'
P
rr>
m
CD
n-
in
X
0
CP
CP
CD
CD
CD
tH
tH
tH
CM
OJ
ro
ro
ro
s
s
in
in
n
40
40
r^-
X
CO
X
(P
IP
CD
H
tH
OJ
X
J-
tH
tH
tH
tH
•H
tH
tH
tH
tH
H
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
OJ
CM
PJ
OJ
PJ
PJ
CM
tH
— H
tH
tH
tH
tH
O
O
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
—4
tH
tH
tH
■-H
tH
-H
tH
tH
-H
tH
CD
CD
-CD
CD
CD
CD
a
CD
a
4 D
CD
CD
CD
O
a
CD
CD
CD
CD
CD
CD
a
CD
CD
CD
a
CD
a
O
D
CD
CD
CD
CD
CD
a
CD
CD
CD
a
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
<"D
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
1
1
i
1
1
1
1
4 *
+
• 4 -
+
♦
4 -
+
4 -
4 -
♦
4 *
4 -
4 -
4 *
4 »
4 -
4 -
4 -
4 -
+
4 -
<>
4 -
4 -
4 -
s
OJ
o
CP
cO
in
CP
<o
-0
OJ
OJ
o
o
0 J
CD
cr
04
r^
cO
n
tH
o
OJ
CP
CD
n
o
0
n
X
0
X
0
fs
40
40
CO
40
-0
ro
OJ
Of
CD
ro
n.
OJ
CP
CD
n
-0
0 J
a
CP
tH
M-
tH
CP
CD
J"
tH
tH
in
X
r^
40
cr
■tH
CD
OJ
CO
o
CD
ro
tH
ro
O
CP
ro
CD
OJ
0
*H
ro
s
r^
<n
OJ
cr
O
tH
n
<P
X
X
o
CP
tH
OJ
ro
in
fM
tH
tH
tH
0 J
OJ
ro
^r
2 f
in
N.
rO
<P
tH
tH
tH
tH
tH
0 J
PJ
OJ
ro
ro
ro
2 T
9 T
r
CD
O
CD
CD
CD
o
=D
CD
CD
CD
CD
CD
<D
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
■CD
D
CD
CD
CD
>D
CD
D
CD
a
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
-D
CD
CD
CD
CD
CD
r D
CD
CD
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
4 D
CD
a
CD
CD
CD
CD
a
CD
a
O
CD
a
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
'CD
CD
CD
CD
X
CD
in
CD
in
CD
in
CD
in
CD
in
a
in
CD
in
CD
in
CD
m
O
n
CD
n
CD
n
CD
n
CD
n
CD
n
CD
n
u%
IP
m
-O
■o
K-
N»
TD
co
CP
<P
'CD
CD
tH
tH
OJ
OJ
ro
rO
tf
t
<n
in
•o
0
rs.
*v_
X)
ro
rr>
X
CD
CD
H
tH
t-H
tH
tH
tH
tH
tH
tH
H
OJ
0 J
0 J
OJ
PJ
0 J
P!
0 J
PJ
pj
pj
pj
OJ
0 J
pj
0 J
PJ
PJ
OJ
<\J
ro
X
X
265
3 c 3 . 2 178.420
Table 27. Thermophysical properties along isobars
The following pages give physical and thermodynamic properties
along selected isobars, as computed by methods of section 3 of the
text.
The first line of each table refers to freezing liquid on the P(T)
melting line.
Each table P<P C contains a blank line for the transition from
saturated liquid to vapor, as seen by the abrupt decrease of density.
Table headings for partial derivatives have the following inter-
pretations - -
DP/DT s dP/6 T,
DP/DD = d P /d p .
The specific heat interpretations are -
CV = C (P , T),
v
CP - C (P , T) .
P
*These tables are extrapolated beyond the range of P-p-T data used for
adjusting the equation of state (P~350 bar).
266
Table 27. Thermophysical properties along isobars
ETHANE ISOBAR AT P = 0.1 BAR
A>
o
H
o
If'
O'
O'
in
y
v£>
ro
O'
vO
ro
O'
in
CM
K
ro
O'
y
O'
y
O'
y
O'
ro
©
OJ
0 -
^■4
in
O'
y
®
OJ
©
o
ro
N-
■•H
©
O'
OJ
©
©
ro
o
y
r4
©
UJ
ro
ro
9-4
CD
O
9-4
OJ
ro
ro
OJ
ro
y
y
in
vO
kO
o-
0 -
©
©
O'
O'
o
CD
H
*■4
OJ
OJ
ro
ro
ro
y
y
©
©
©
©
©
r^
N-
®
©
O'
©
©
o
*■4
OJ
OJ
on
C\J
00
▼4
CD
O'
OO
0 -
U)
O)
0J
0J
CM
CM
0J
CM
OJ
CM
CM
CM
0J
0J
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
fO
ro
ro
ro
ro
y
y
y
y
y
v
T
OJ
00
OJ
OJ
9-4
9-4
9-4
»rH
H
LL
XL
o
o
y
ro
CD
o-
ro
ro
ro
o-
O
ao
*"4
©
y
CM
UJ
y
o-
ro
y
©
in
y
0 «-
0 -
y
CM
OJ
v4
vl
*-4
o
©
r-
y
©
in
O'
▼4
CM
CM
®
o-
CM
y
C_>
X
©
©
OJ
CD
9-4
y
O'
in
in
o
in
CM
ao
vO
y
CM
▼H
o
©
o
*-4
CM
ro
in
r^
O'
CM
y
r^
o
ro
©
O'
CM
in
©
o
ro
©
O'
t4
ro
©
©
O
ro
©
©
CM
o
ao
00
00
CO
O'
O' O'
CD
o
O'
O' o
CD
H
0J
ro
y
in s£>
©
O'
©
CM
ro
in ©
K
O' ©
r4
0J
y
©
©
©
© o
**4
ro
y
©
©
®
o
OJ
y
N-
O'
T
©
©
©
©
a?
v£>
©
K
r^
ro
ro
y
J*
y
y
y
y
y
y
y
y
y
in
in
in
in
an
in
in
in
©
©
vO
©
©
©
©
©
O-
h-
N-
©
©
©
©
©
>
© ©
©
If*
9-4
in
9-4
o
®
y£)
CM
CM
0O
CO
ro
ro
K
v£> O'
©
r^
O'
O'
*■4
©
OJ
O'
©
0 -
©
©
ro
©
0 -
OJ
©
©
O' O'
©
©
O' ©
OJ
o
V
o
o O'
N-
LO
CM
o
®
®
y
CD
y
O'
©
N.
©
vO
©
r^
®
©
■*»4
ro
©
©
*■4
ro
©
O'
0J
©
©
•r4
y n-
o
ro
©
©
o
OJ
y
©
o
ro
© N-
O'
O
J-
y
ro
ro
ro
ro
ro
0J
OJ
o
CM
ro
ro
y
m
u;
K
©
O'
o
CM
ro
y
in
©
©
O'
o
ro
y
in
© O'
<*■4
CM
ro
y
© o-
©
© CM
y
©
©
©
r
x
y
J-
-J-
y
y
y
y
y
y
fO
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y y
y
in
in
© ©
m
in
© ©
© © ©
©
© ©
©
©
r^
K 0 -
©
1/7
*
ro
©
©
©
9-4
in
O'
ro
0 -
in
*4
m
y
in o-
©
©
ro
a
o'
©
O'
CM
y
©
©
©
K
O' CM
y
y
© O'
©
©
©
O
r^
ro
<*■4 O'
©
V
O' K O'
y
y
O' in
O'
®
y
K
O'
y o'
©
O' ro
ro
o
y
in
ro
o
in
©
©
»4
o
©
©
t4 ©
© y ©
©
©
O' ® K
©
OJ
© © K
OJ
ro
OJ
-j
J-
©
ro
ro
ao
CD
QD
CD
in
O' ro
in
vD K
©
K
0 -
©
in
ro
O'
N-
y
*■4
O'
©
ro
O'
©
ro
O'
©
OJ
®
y
o
©
OJ
®
y ©
©
©
©
©
©
i
©
©
ro
o
©
9-4
r**
CM
®
o
OJ
m
0 -
O'
ro
in
o-
O'
ro
in
©
©
©
OJ
ro
in
n-
ao
o
0J
ro
©
©
o
OJ
ro
©
©
®
o
s-4
y
o
ro
vO
O-
t ^
oo
cr
O'
o
CD
▼H
0J
OJ
0J
0J
OJ
ro
ro
ro
ro
ro
y
y
y
y
y
in
in in
in
in
in
© ©
©
©
©
©
N* N-
K
0 -
©
©
©
© O' O' ©
9-1
9-4
0J
CM
CM
OJ
CM
CM
CM
CM
OJ
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
OJ
CM
CM
OJ
OJ
OJ
CM
CM
CM
CM
CM
CM
CM
CM
OJ
CM
CM
OJ
OJ
I
-j
.1
.9
.5
®
y
CM
9-4
in
ro
0J
ro
.9
,5
©
^■4
0J
O' ©
©
©
O
®
y
©
o
in
n.
©
in
OJ
O
N.
©
.1
.7
OJ
©
y
CM
OJ
©
®
o
© o
y
9*4
X
O'
©
OO
ao
9-4
00
CD
O'
O-
OJ
y
y
ro
O
U)
*-4
r^
ro
O
O'
©
©
y
o
®
O'
ro
©
©
ro
©
©
ro
H
y
©
r^
r^
©
ro
©
©
©
©
©
V
O'
CD
O'
©
©
in
®
ro
0J
ro
in
©
0J
© OJ
©
©
in
y in
©
*■4
©
*■4
®
r^
©
o
ro
©
y
CM
▼4
OJ
y
©
ro
©
©
®
vD
©
y
“5
00
ro
O'
©
ro
CD
y
y
y
CD
OJ
UJ
©
y
©
ro
CM
UJ
©
©
r^
OJ
©
ro
O'
in
©
y
o
r-
y
^-4
©
©
CM
©
o-
y
CM
©
y
tH
©
©
in
©
O'
UJ
o.
ao
0D
O'
O'
in
in
VO
OJ
r^
0 -
©
©
O'
O'
O
o
CM
CM
ro
IO
y
y
in
©
©
r--
©
ao
©
O
©
▼*=<
CM
OJ
ro
y
©
©
©
o
ro
CM
evj
0J
0 J
CM
0J
0J 0J
0J
CM
0J
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y
y
y
y
y
©
©
©
UJ
-1
©
©
tH
ro
O'
r^
©
vD
CD
H
ro
y
v£>
y
®
y
©
O'
©
CM
©
y
r-
o
©
©
r^
ro
©
ro
©
CM
o-
y
©
y
O'
o
©
y
y
©
CM
©
OJ
OJ
©
X
CD
©
©
o-
CD
r-
O'
CD
o-
OJ
y
ro
O'
y
0 *
©
OJ
y
r^
H
©
CM
o
<r4
ro
©
©
n.
o
o-
©
O'
y
ro
y
©
©
y
*■4
©
©
©
©
CD
y
9-4
V
O'
o
O'
r^
©
© in
in
®
£2
O'
ro
\D
O'
y O' © ro
e=4
o
^4
Kl
in
O'
y
©
©
©
©
©
y O'
©
y
ro
ro
©
©
rvj
CD
y oj
•4
ro
o
<►4 kD
■£>
0 o
ro
a
©
ro
©
n*
y
y
OJ
y
aj
y
o-
y
©
CM
©
CD
y
©
CM
©
©
©
m
Q
©
▼4
©
N*
ro ©
©
y
O
o-
y
■*=4
©
CD
©
o
©
©
©
©
©
ao
CO
O'
O'
y
y
y
in
in
in
\D
©
vO k
0 -
®
©
©
O' O'
O
CD
CM
CM
ro
ro
y
y
©
©
© O-
r-
© O' O'
o
OJ
y
©
®
CM
CM
OJ
CM
CM
CM
CM
CM
0J
OJ
CM
CM
0J
OJ
OJ
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y
y
o
_J
J-
O' cm
o O'
CO
©
ro
in
<r-« 0 *
CD
*-4
tH
O' K
y
*-4
O-
nj
©
ro
0 *
0J
©
o
y
©
0J
©
O'
ro
©
O' CM
©
© OJ
y
©
ro
©
©
y
o' y
O'
y
o
o
o -4-
9-4
o
y
r*» r»- fs»
0J
o
CM
vO
in
O'
CM
©
©
y
r^-
y
©
^4
in
©
OJ
m
©
CM
©
©
CM
in
©
CM ©
co
CM
©
CM
©
CD
©
y
*-» r—
y
s
r
©
J-
0J
ro
9-4
in
©
v£>
y
ro
O'
CD
l 0
y
ro
o
©
©
in
ro
▼H
©
©
©
in
ro
*■4
o
©
© ©
ro
▼4
©
©
©
©
ro
©
© ©
©
r4
©
©
v4
©
CD
-i
00
H
9-4
94
CD
©
O'
vD
OJ
ro
ro
y
in
0 -
©
O'
O'
o
^-4
CM
ro
y
y
in
©
K-
©
O' O'
©
v4
OJ
ro
y
y
©
©
r^
©
©
cr
o
▼4
fO
y
©
©
O'
»
©
©
©
r*-
a
9-4
y
v-4
«r-(
CM
0J
CM
CM
CM
CM
CM
CM
CM
CM
OJ
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y
y
K BAR
CO
O' CD
r^
©
©
in
y
y
ro
O'
CD
in
OJ
ro
©
y
U''
in
ro
y
O
ro
O'
r^
0 -
©
OJ
©
OJ
©
©
y
ro
ro
y
©
©
©
▼“i
y
r^
©
y
®
ro
©
CM
©
ro
©
y
CD
CM
©
O'
OJ
k
UJ
"V
o
©
ao
0 -
©
in
©
CD
CD
r^
ro
O'
JD
ro
o
r-
m
ro
©
©
r^
u\
y
ro
CM
©
O'
©
r^
UJ
U)
©
y
ro
ro
CM
CM
▼4
tH
o
CD
CD
O'
©
p-
r^-
UJ
V
CL
0 -
OJ
r^
oo
CO
in
tH
y
vO
vD
in
in
in
U'
y
y
y
y
y
ro
ro
ro
ro
ro
ro
ro
ro
CM
0J
CM
CM
CM
OJ
CM
OJ
CM
CM
OJ
OJ
OJ
CM
CM
CM
CM
'H
▼4
v4
v4
9-4
LL
<1
CD
CD
CD
r^
O'
U'
y
in
y
CD
o
CD
CD
©
©
©
©
©
©
o
a
©
©
a
o
o
o
©
©
©
©
©
O
©
©
©
o
©
CD
©
©
o
o
CD
©
CD
CD
CD
CD
CD
Lj
CD
CD
o
CD
CD
©
o
o
o
CD
o
©
o
O
o
©
o
o
©
o
CD
o
©
O
CD
o
©
©
o
CD
CD
o
CD
©
CD
CD
CD
CD
CD
CD
©
CD
©
LT>
•*H
N-
y
0 J
o
co
ao
O
CD
CD
O
©
©
o
o
©
©
©
o
o
o
o
o
CD
CD
©
©
o
o
©
©
o
©
©
©
o
O
o
O
©
o
CD
©
CD
CD
O
CD
CD
ro
ro
ro
OJ
0J
0J
0J
CD
O
CD
CD
©
o
o
©
©
o
o
o
o
o
©
©
©
o
o
O
o
©
©
O
o
o
o
o
o
o
a
©
©
o
CD
O
CD
CD
O
O
O
_J
_l
ro
ro
OJ
OJ
©
ro
in
CM
nD
vD
y
0 *-
ro
ro
©
O'
r-
ro
©
©
ro
O'
y
©
ro
y
©
y
ro
OJ
O' s.
y
o
©
OJ
CM
©
OJ
©
ro
©
9-4
O
O
9-4
9-4
O'
n-
If
y
ro
ro
ro
O'
O'
y
r-
CM
0 -
CM
0 -
©
O'
ro
©
o
ro r-
o
ro
©
O'
OJ
©
r^
CD
ro
©
©
ro
©
©
v4
ro
©
CM
r-
*■4
v£>
>
X
©
©
©
0 -
ao
cn
CD
tH
O'
O'
ro
^-4
in
®
CM
in
O'
CM
©
O'
CM
©
O'
ro
©
O'
ro
©
O'
CM
©
O'
CM
© ©
CM
©
O'
CM
©
©
CM
©
©
y
O-
X
J-
y
y
J-
y
y
in
in
in
_J
cd
o
o
o
CD
CD
o
CD
CD
ro
*-i
CD
co K
m
ro
CM
©
©
U'
ro
CM
CD
©
©
ro
CM
©
®
©
ro
CM
©
©
r^
©
ro
CM
O
©
O-
©
CM
©
©
CM
©
CM
ro
y
y
in
vO
K.
ffl O' O'
o
CM
ro
y
y
in
© N
oo
O' O'
©
»s=4
0J
ro
y y
© ©
K
© O' O'
©
*■4
fO
y
© © O'
O
o
o
CD
O
CD
©
o
O
•-4
^4
<r4
^4
*-4
*■4
OJ
CM
CM
CM
OJ
0J
0J
0J
OJ
OJ
CM
0J
ro ro
ro
ro
ro
ro
ro
ro
to
to
to
to y y
y y
y y
y
2
-J
a
©
y
y
ro O'
9-4
V©
N.
® OJ CM vO ^ UN
O' m ro cm y o»
o © 0J
O' © m
y
y y in h*. o> <h
y
e *
OJ ©
v*4
©
*■4
ro © n.
©
UJ
V
©
»4
© O'
CM ©
N*
&
in
0 ^
ro
© K
y oj ©
© © y
ro
©
0 ON «6
in
y ro
0J «-4
©
©O' ©
©h*©©©©yyrooj^4
©
©
o
J
©
©
ro
O'
in
0J
©
y
y
CO
o-
r^
vO
v£)
V©
in
in
in
in
y
y
y
y
y
y
fO
ro
ro
ro
ro
ro
ro
(O
ro
ro
OJ OJ
CM
CM
CM
OJ
OJ
OJ
CM
OJ
OJ
OJ
CM
OJ
OJ
o
o
a
o
o
o
©
©
©
©
©
©
©
o
o
©
O
o
©
&
©
©
a
©
©
©
©
©
©
G
©
©
©
©
©
©
©
©
o
©
©
©
x
«^4
H
9-4
©
o
CD
O' O'
O'
o
o
o
S3
o
O
©
©
o
©
©
o
©
©
©
o
©
o
©
©
©
o
©
o
©
o
©
&
O
o
©
©
©
©
©
©
©
o
©
©
o
OJ 00
CO
CM
CM
0J
«*4
■**4
o
®
o
e
©
o
©
o
o
o
©
O
©
©
©
o
©
©
©
©
©
o
©
©
©
©
©
o
©
o
©
©
©
O
©
©
o
©
O
©
©
JtL
▼0
O
©
o
o
O
o
®
90
co
o
o
o
o
©
©
©
©
©
&
©
©
©
©
o
©
©
©
o
©
©
©
o
o
©
©
©
o
©
©
©
o
©
©
©
o
©
©
©
©
o
o
o
©
o
o
o
o
90
CO
o
o
o
©
©
©
©
©
©
©
o
©
©
©
©
©
o
©
©
©
©
©
©
©
©
©
©
©
©
©
©
©
©
©
©
o
©
©
©
©
OEG
O' o
©
o
o
o
O
®
ro
ro
o
o
o
©
o
©
©
©
©
©
o
©
©
©
o
©
o
©
©
o
©
©
©
o
o
©
©
©
o
©
©
©
©
©
©
©
©
©
©
©
O' o
o
o
©
CD
o
o
o
a
o
CD
©
o
o
o
o
©
©
©
o
o
Q
©
o
©
©
©
o
o
©
©
©
©
©
e
o
o
©
©
©
©
o
O
©
o
o
©
©
©
CD
O'
CD
H
0J
ro
y
in
in
in
vD
o-
©
O'
©
CM
ro
y
in
©
r^
OO
O'
o
*-4
OJ
ro
y
in
©
f*v
©
CP
o
▼4
OJ
ro
y
©
©
r-
®
©
o
OJ
y
©
©
o
9-4
9-4
9-4
9-1
T-t
▼*4
^-4
0J
OJ
CM
CM
0J
CM
CM
CM
CM
OJ
ro
fO
ro
ro
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y
y
y
y
y
©
©
©
© ©
V0
267
ETHANE ISOBAR AT P = 0.5 BAR
I
I
t
2 o
LU
in
v
2:
tH CD IP
n fO H
t\J (\J H
X X X
CT'(T'iri-*-vD-rHN-'X>
OOriPjWLna)^
OO'lTN^ir-JJ
CVJ H rH H rH H tH
x x y
y y IP
CVI CM (\J
o cm co pd on
vT S S flO eo
CVJ CM CVJ CM CVI CM
j- O' m
c? cr o
CM CM CO
® n s
O H rH
pd ro ro
cm kD tH ip O'
cm cm pd pd pd
pd pd pd pd ro
PD X tH LP O'
y y Uv IP UV
ro ro ro ro ro
PD X tH UV ®
vD vO S S
PD PD PD PD PD
CM nO O' PD O
O B ® O' O
PD PD PD PD y
X y tH
O H CM
y y y
T5
03
3
C
c
o
u
Qfi
C
O
rt
w
Q3
>H
03
(X
o
5h
a
nJ
cj
w
CL
0
O
PD
PD
CD
nD
PD
O
CM
CO
CM
x
CM
CD
a;
PD
NO
uv
cr
aj
CM
tH
PD
O
X
CO
*H
NO
PD
CD
<r
CO
CO
x
X
IP
y
CM
cu
y
CP
CM
IP
NO
IP
O
y
PD
X
CJ
X
to
IP
VO
®
y
CP
IP
CM
O
PD
CM
NO
CM
CO
vO
J-
PD
CM
CM
PD
y
uv
NO
0D
0
PD
IP
CO
tH
PD
03
CP
CM
IP
O
tH
y
vO
cr
tH
y
NO
CD
CD
y
X
O'
tH
CM
O
CO
00
CO
CD
O'
CP
CP
O
H
CM
CM
tH
tH
CM
CM
PD
y
ip
NO
X
OD
cr
0
tH
CM
y
IO
NO
X
O'
0
tH
CM
y
IP
03
00
O'
0
t<
PD
y
IP
NO
®
0
CM
-2-
X
O'
t:
vO
vO
nO
03
03
nT3
X
X
X
x
-5-
-T
y
y
y
y
y
y
y
y
y
LTN
IP
lp
lp
IP
IP
IP
IP
nO
NO
nO
NO
NO
nO
VO
vO
X
x
X
X
X
X
X
<30
®
co
CO
®
“3
>
vO
NO
ip
IP
NO
CM
NO
03
UV
O
IP
03
y
03
y
uv
CM
CM
IP
CM
CM
y «>
y
tH
O
O'
O'
®
®
CD
X
no y
tH
X
X
NO
O'
0 0
uv
IP O' ®
X
O
V
0
0
O'
X
LP
CM
CD
CD
03
IP
IP
CM
X
.y
O'
ao
X
X
X
<x>
O'
O
CM
y
nO
CO
tH
y
X
O'
CM LP
®
tH
y
X O
PD
uv
®
O
X
IP X
0
PD IP X
O'
0
y
J-
PD
PD
PD
PD
PD
CM
CM
CM
CM
CM
CM
PD
y
y
UN
nO
X
03
O'
CD
CM
PD
y
uv
NO
CO
O'
O
tH
PD
y
UV
X
CD
O' tH
X
PD
y
NO
X
CO O'
X
y nd co
O
r
y y
j-
y y
S
-y
-y
«y
-y
J-
PD
PD
PD
PD
PD
PD
PD
PD
PD
PD
y
y
y
y
y
y
y
y
UV
uv
uv
LP
uv
uv
IP
uv NO
nO nO nO
NO
NO
NO NO
N K N K
CO
CD
O'
0
PD
PD
PD
00
CM
IT.
X
0
X
NO
O
nO
X
X
03
CM
tH
tH
uv
O'
nD
O'
tH
y
tH
CM
O'
y
X
O'
tH
PD
X
CM
CO x
X
O
y
X
tH
y cr no
y x tH
X
O'
X
cr
CD
IP
cr
nO
CM
CM
X
uv
03
tH
NO X
y
CO
O
O'
X
CM
NO CO
®
®
nO
PD
e
UV
O'
PD
uv X
®
O'
®
X
uv
x ® O' x x y
PD
-j
J-
IP
X
PD
PD
CD
O
ao
-y
ao
ao
O'
X
O'
CM
ro
PD
CM
tH
0
co
X
y
CM
O
X
y
tH
CD
IP
CM
O' IP
tH
®
y 0
NO
X
®
y
0
vO tH
X
pd y y
y
2:
NO
03
fD
O
03
*~4
X
vD
CD
O'
H
PD
NO
CO
CD
CM
y
NO
®
O'
«H
PD
IP
X
CO
CD
CM
PD
IP
X
®
CD
CM
PD
LP x
®
0
tH
PD
uv
vO ao
tH
y x cd
PD
X
X
X
CO
O'
O'
O
CD
H
tH
CM
CM
CD
H
CM
CM
CM
CM
CM
CM
PD
PD
PD
PD
PD
y
y
y
y
y
y
IP
LP
LP
IP uv
IP
NO
NO
NO
nO
nO nO
X
XX®
®
“3
H
vH
CNJ
CM
CM
IM
CM
CM
CM
CM
CM
CM
CM
CM
CM
l\J
CM
CM
CVJ
CNJ
CNJ
CM
CVJ
CM
CVJ
CM
CM
X X
X
X
X
X
X
X X
X
XXX
X
I
-J
tH
IP
H
•y 0
X
nO
NO
H
.5
.7
X
CM
PD
X
PD
ao
O'
tH
tH
CM
O'
nO
X
IP
PD
PD
CD
m
UV
tH
Uv
O' CM
uv
X
.8
.6
X
y
x y
®
.4
.1
0
.3
.0
.0
X
£
tH
X
PD
CD
O
CM
cr
O
NO
O
uv
0
O'
y
X
X
nO
uv
PD
tH
O'
O'
O
PD
CO
UN
y
NO
tH
O'
O'
CM
O'
®
O
UN PD
y
X
ro
tH
tH
y o'
y
IP X PD
X
X
O
0
CP
ao
X
NO
ip
03
X
NO
PD
IP
nO
O'
CM
NO
H
X
y
CM
0
O
CM
y
X
CM
CD
IP
y
PD
y
X
CD
IP
CM
O' ®
co
O'
X
NO
tH
x ^
PD
no y no
X
—3
PD
fD
CP
vO
PD
CD
X
-y
CD
CM
uv
O'
PD
ao
CM
X
tH
NO
tH
vO
tH
vO
•H
NO
CM
X
PD
O'
LP
tH
X
y
CD
X
PD CD
X
y
X
O'
X
y x
CD
y tH ao
NO
uv
LP
UN
NO
X
CD
a?
O'
O
CD
NO
NL>
N 13
X
X
ao
CO
O'
O'
CD
CD
tH
tH
CM
CVJ
rr>
PD
y
y
UN
NLJ
NO
X
®
ao
O' CD
0
tH
X
X
PD
y uv
NO
CD 0 H
PD
CM
CM
CM
CM
CM
CM
CM
CM
CM
PD
PD
PD
PD
PD
PD
PD
PD
PD
PD
PD
PD
fD
PD
PD
PD
pd y
y
y
y
y
y
y y
y
y uv uv
uv
LU
—1
CO
CM
OD
CD
IP
PD
0
CD
LP
<X)
CD
X
ao
PD
IP
CM
CD
X
NO
y
uv
fD
-
Uv
IP
NO
CD
ao
PD
IP
IP
IP
y
PD
-
O'
,6
.0
X
tH
UN
PD
y
,7
.1
PD
O X nO
PD
n
CD
IP
CD
CO
X
CD
X
cr
X
PD
®
CM
UV
uv
PD
O'
PD
X
tH
LP
CD
NO
PO
CM
PD
X
CM
CM
NO
PD
PD
NO
CM
O
X x
y
y
NO
tH
®
X O'
X
X X NO
y
V
cr
O
cr
X
NO
nO
IP
ip
nO
®
IP
PD
ao
IP
O
UV
fNJ
O'
CO
X
CD
O'
fM
NO
tH
X
IP
y
y
UN
®
CM
X
y
X
•H tH
PD
nO
O nO
X
O O'
tH
® cr y
y
~3
CM
PD
O'
NO
PD
O
X
-y
O
CD
0
y
X
y
ao
tH
uv
O'
PD
X
CM
NO
tH
LP
CD
LP
0
uv
CD
NO
tH
X
PD
O' IP
tH
X
y
O
X
y 0
UV
o' y 0
NO
lp
IP
ip
nO
X
<D
CO
cr
CD
O
S
uv
uv
uv
nO
nO
NO
X
X
X
CO
CO
O'
O'
O
O
tH
tH
CM
CM
PD
PD
y
y
IP
IP nO
X
X
®
O'
O'
CD tH
X
PD UN X
®
▼H
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
PD
PD
PD
PD
PD
PD
PD
PD
PD
PD
PD
PD PD
PD
PD
PD
PD
PD
y y
y
y y y
y
D
-J
ip
03
0
X
J-
<r
PD
CM
X
CD
X
O
O'
(M
X
y
03
PD
X
CO
X
y
O'
PD
nO
X
<0
<E>
X
NO
y
CM
O' nD
CM
®
y O
LP
O
UV
O
uv
O' PD
x o' x y
0
O
O
03
X
ip
J-
O
PD
-y
UN
tH
X
O'
ao
UV
y
ao
y
O
UV
CD
uv
0
y
O'
PD
X
tH
UV
O'
fD X
tH
y
®
CM
IP
O' PD
N 0
O
PD
X
O
PD X
y
cd x y
tH
X
z
IP
IP
PD
s
PD
X
ao
CO
0
PD
X
-y
PD
CM
0
O'
ao
NO
uv
fD
CM
0
ao
X
uv
y
CM
0
O' X
nD
y cm
tH
O' X NO
y
PD
tH
O' ®
no y
tH
® y tH
®
CD
_J
CM
tH
O
nO
cr
CO
PD
CM
CD
PD
-y
LP
nQ
X
X
CO
o>
O
tH
CM
PD
PD
y
IP
nO
X
®
®
O'
O
tH
CM
PD
PD
y uv
NO
X
®
®
O'
O tH
PD
y no ®
O'
1
NO
03
03
X
O'
-T
CO
PD
ao
X
tH
wH
-r -4
tH
tH
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
PD
PD
PD
PD
PD
PD PD
PD
PD
PD
PD
PD
y y
y
y y y
y
K BAR
O'
CP
CO
X
NO
nO
IP
-y
«y
PD
PD
►—
CO
CM
nO
PD
X
CM
CM
PD
X
NO
uv
PD
NO
IP
CD
CM
nO
CO
CD
y
LP
CM
X
uv
NO
tH
CD
X
O'
PD
O'
NO
uv
vO CO
tH
LTV
tH
®
UV
y pd
y
«o lp y
uv
X
x
X
au
au
NO
03
CD
CM
UN
-y
ao
CM
CO
vu
PD
tH
tH
CM
y
X
O
y
ao
CM
X
CM
®
PD
O'
UN
CM
CD
LP
X
O' NO
y
t— |
O'
NO
y
x 0
NO
X O' NO
PD
X.
ct
vO
CM
X
CO
ao
IP
cr
PD
X
O
<X 3
X
uv
y
PD
CM
tH
CD
O'
ao
CD
x
nO
NO
uv
uv
y
y
ro
PD
PD
CM
CM
X
tH «H
tH
tH
0
CD
CD
0 0
O'
O' ® GO
®
LL
<1
CD
CD
0
X
CP
IP
*y
UN
X
CM
OD
D
CM
CM
CM
CM
CM
CM
CM
CM
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH tH
tH
tH
tH
tH
tH
tH tH
CD
CD CD CD
CD
O
aj
•
•
•
•
t
•
t
•
•
•
•
O
O
O
CD
O
O
O
O
CD
O
O
O
CD
O
O
CD
O
O
O
O
CD
O
O
O
O
O O
O
CD
O
O
O
O O
CD
CD O CD
O
IP
IP
tH
X
J-
CM
0
ao
vO
LP
-y
O
O
O
O
O
O
CD
O
CD
O
CD
O
CD
O
O
O
O
CD
CD
O
O
O
CD
CD
CD
O CD
O
CD
O
CD
CD
O CD
O
OOO
O
PD
PD
PD
CM
CM
CM
CM
H
O
O
O
C 5
O
O
O
O
O
CD
O
CD
O
CD
CD
CD
O
O
O
O
O
O
O
CD
CD
0 .
0 .
O
O
O
O
O
O O
O
CD O CD
O
_J
_J
CM
PD
CM
CM
nO
PD
IP
CM
LP
LP
CM
H
ao
w~i
uv
PD
NO
IP
O
PD
y
CM
O'
LP
CD
y
NO
O'
O
tH
tH
tH
CJ
O' ®
nO
J- C\J
O
X
y
tH
®
y tH
PD
IP X ® O'
O
0
tH
*H
cr
X
LP
-J
PD
ro
PD
>y
X
NO
03
CD
CO
CO
X
nO
IP
fD
tH
O'
nO
y
CM
O' NO
ID
tH
CO
IP
CM
O' uv
CM
O'
vO PD
O
NO
ro
O
NO
PD O
PD
NO O' X
uv
!>
2:
03
NO
03
X
ao
cr
O
T -1
CM
PD
PD
O
PD
O
X
y
tH
ao
uv
CM O'
UV
CM
O'
nO
CM O'
nO
PD
O' vO
fD
a* no
PD O'
nO PD
O
NO
PD
O
vO
PD O
PD
NO O' PD
NO
X
y
* 2 -
J-
J-
J-
-y
IP
IP
IP
IP
IP
-J
0
0
O
CD
CD
0
O
O
O
O
O
co O'
CM
y
NO
X
O'
tH
CM
y
NO
X
O'
*-4
CM
y
NO
X O'
tH
CM
y
nO
X
O' tH
PD
y
NO
CD
O'
tH PD
nO O' X 43 O'
CM
CM
fD
PD
PD
PD
PD
PD
y
y
y
y
y
y
uv uv
uv
uv uv IP
NO
NO
NO
NO
NO
NO X
X
X
X
X
X
co ao
®
® O' O' O'
0
0
O
O
O
0
CD
O
O
CD
O
z
-J
0
X
IP
«y
PD
0
nO
PD
0 ,y
«y uv x
O
O
y
^4
OD UV
0
PD
n£
uv
0
«3
0
vO LP s£)
tH
® X
ao
tH
uv x
0 O' 0 X
uv
O' uv
®
IP LP 00 PD
UJ
X
® X
H IP cr
PD
03
ao
O
nO 0
*4 IP
a
03
y cm cm pd y
nO
<D
w UV
«
PD
X
CM X
PD
®
y
a
X
PD O X
PD
tH ® LP
X O uv tH X PD
0
a
-J
NO
03
PD
O'
IP
CM
co
-y
X
03
LP
•y
CM
CD
O'
X
nO
UV
y
PD
CM
tH
0
0
O'
CO
<D
X
X
NO
NO
uv
uv
LP
y
y y
PD
PD
ro
X
XXX
tH
tH O O
0
0
PD
PD
PD
PD
CM CM CM CM
CM CM
CM
CM
CM
CM
tH
tH
tH
tH
tH
tH
tH
tH
tH tH
tH
tH
tH
tH
tH
tH tH
tH
tH H H
tH
X
tH
tH
tH
CD
O
CD
cr cr cr
CO
ao
CD
O
O
O
CD
O
O
CD
O
O
O
O
O
CD
0
0
O
O
CD
O
CD
O
O
O
O
O O
CD
O
O
O
0
O O
O
O CD CD
O
CM
CM
CM CM CM CM
*4
O
O
O
O
e
O
O
O
e
O
O
O
O
O
0
0
O
O
O
O
O
CD
O
O
0
a
CD
O
e
0
0
O O
CD
O O O
e
p-
*:
X
O
0
O
O
O
0
0
O
O
PD
PD
O
O
O
0
O
CD
CD
0
O
O
CD
O
CD
0
0
O
O
O
O
O
O
O
O
O
e 0
O
a
e
O
0
0 e
O
O O O
0
O
O
0
O
O
O
CD
0
O
O
O
O
O
0
CD
O
O
0
O
O
O
O
O
CD
0
O
®
O
O
O
O
O
O
CD
0 0
O
0
0
O
0
0 0
O
O O O
0
CD
O' 0
O
O
O
O
O
0
O
CD
S
O
O
O
0
O
CD
O
0
O
O
O
O
O
O
0
O
O
O
CD
O
O
O
O
O
0 0
O
0
0
O
a
0 0
O
O CD O
0
O
O'
O
0
CD
a
CD
O
0
O
O
CM
CM
O
O
O
0
O
O
O
0
O
O
O
O
O
O
0
CD
O
O
O
O
O
O
O
O
0 0
O
0
0
O
0
0 0
O
OOO
0
X)
cr
0
tH
CM
PD
-y
NT'
03
X
X
X
cr
CD
H
CM
PD
y
uv
NO
X
ao
O'
O
tH
CM
PD
y
uv
NO
X
®
O'
CD
tH
X PD
y
lp
NO
X
®
O' 0
X
y no ao
CD
tH
tH
H
▼-<
CM
CM
CM
CM
(M
CM
CM
CM
CM
CM
PD
PD
PD
PD
PD
PD
PD
PD
fD
PD
y
y
y y
y
y
y
y
y
y uv
LP
UV LP uv
nO
268
427
Table 27. Thermophysical properties along isobars (Continued)
ETHANE ISOBAR AT P = 1.0 BAR
<s»
3
o
9-4
©
©
CT'
CD
©
-S’
vD
9-4
x
y
CO
CO
CM
<o
in
9-4
©
CM
x
ro
OO
ro
00
CM
x
9-4
©
CD
in
O'
ro
x
9-4
in
O'
ro
X
9—4
in
CO
CM
©
O'
ro
o
x
y
9—4
CC
LU
©
ro
o
9-4
9-4
CM
©
in
©
GO
y
y
in
in
©
X
X
CO
CO
O'
O'
o
o
9-4
9-4
CM
CM
ro
ro
ro
y
y
in
in
in
vD
©
x
x
x
60
CO
GO
CP
CD
CD
9—4
CM
CM
c r
CM
CM
9-4
o
O'
OO
X
©
in
y
©
PO
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
-S'
y
-J-
J-
J-
x
Y
CM
CM
CM
CM
■*—4
■H
9-4
t
rH
9-4
9-4
U-
DC
O
O
©
ro
O
©
CM
©
9-4
CD
CM
ro
CM
9—4
O'
9-4
y
in
ro
CO
CO
ro
CM
©
CM
CM
y
x
ro
o
co
Vi)
in
y
ro
9-4
O'
X
ro
O'
ro
x
O'
O'
O'
J-
ro
x
in
O'
o
V.
©
IT*
©
so
9-4
y
O'
in
CM
O
9-4
©
O'
9-4
in
CM
O'
x
©
in
in
©
x
OO
O
CM
y
©
O'
CM
y
x
CD
ro
©
O'
9-4
y
x
O'
CM
y
©
00
o
-S’
x
O'
9-4
CM
O
©
OO
OO
CO
CT
o'
o'
o
*4
CM
©
ro
CM
ro
ro
y
-5-
in
©
x
CO
O' o
9-4 ro
y in
©
x
O' CD
9*4
ro
y in
©
GO
O' o
9-4
ro
y
in
©
OO
O
CM
y
x
O'
vD
vD
03
vO
vD
©
vD
x
X
x
x
X
■2T
y
y
y
2 S*
2T
y
y
y
y
in
in
in
in
in
in
in
in
©
©
©
©
©
©
©
©
X
x
x
x
x
x
x
GO
GO
cn
CO
GO
\
2*
X
X
©
vO
CM
vD
CM
CM
X
O'
O'
CM
ro
CD
Vi)
O'
O'
y
y
O'
CO
X
©
©
X
y
CM
©
©
©
©
O'
X
in
CM
©
X
O'
o
o
©
©
o
CP
CM
o
X
o
o
O'
X
in
rj
o
GO
vD
in
in
vD
y
X
y
rl
O'
CO
CO
CO
CD
O'
CM
y
©
O'
y
X
©
©
©
O'
CM
y
X
©
©
in
®
o
CM
in
X
©
©
©
X
O'
o
J-
J-
ro
ro
ro
ro
ro
CM
CM
CM
CM
CM
ro
ro
y
in
in
vD
X
CO
O'
o
CM
ro
y
in
©
©
O'
CD
CM
©
y
in
X
®
O'
v-i
CM
©
y
©
X
®
CP
CM
y
©
©
o
r
X
J-
y
J-
J-
s
«y
-y
-y
y
y
ro
ro
ro
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y
y
y
in
in
in
m
in
in
in
in
©
©
©
©
©
©
©
©
X
X
X
X
©
to
9-4
v£>
O'
O'
O'
ro
X
CD
CM
y
CM
Vi)
CM
m
vD
O'
y
CD
CM
CO
CD
m
m
CM
CD
vs
in
©
y
O'
y
©
CM
y
CM
©
X
CM
y
©
a)
X
X
X
X
X
o
©
co
ro
ro
CO
J-
O'
vi>
CD
in
O'
Vi)
X
O'
ro
ED
CM
O'
O'
in
X
X
in
in
X
©
©
©
y
o
©
©
y
X
O'
O
o
©
O'
X
y
vl
O'
y
©
in
-J
in
in
X
ro
ro
CO
CD
-y
CD
O'
VO
vO
O'
ro
y
y
ro
ro
▼-*
o
CO
©
y
CM
O'
©
©
CD
X
y
X
y
o
©
CM
O'
in
■cH
©
CM
®
y
in
in
©
©
©
X
©
©
ro
o
i£>
X
vD
O
y
Vi)
vD
X
CD
CM
y
vD
CD
o
CM
y
in
X
O'
<*H
CM
y
©
©
O'
©
y
©
©
CP
CM
y
©
X
O'
©
CM
in
©
y
X
X
X
X
00
O'
O'
O
O
■v-1
CM
CM
CM
o
CD
CM
CM
CM
CM
CM
CM
ro
ro
ro
©
©
©
y
y
y
y
y
y
m
in
m
m
m
m
©
©
©
©
X
X
X
-J
vH
▼H
CM
CM
CM
CM
IM
CM
CM
CM
CM
CM
IM
CM
CM
IM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
IM
CM
CM
CM
CM
CM
CM
VM
CM
VM
CM
I
J
vO
y
H
ro
O'
vO
-y
O'
CM
O
X
vO
O
y
ro
O'
CM
H
<*>
Q0
vO
in
O'
y
O'
©
X
^-4
©
in
in
y
+4
X
CM
GO
©
©
y
©
©
©
X
O'
©
O'
2~
ro
O'
in
CM
-y
ro
CD
y
CD
y
O'
(M
Vi)
O
CM
ro
ro
y
Vi)
O'
ro
CD
©
©
CM
X
©
X
©
©
©
in
©
O'
©
y
in
©
©
©
©
X
O'
©
X
CD
CD
O'
CO
X
vD
vO
vD
X
co
ro
in
O'
ro
X
*-}
X
PO
CD
CD
x
X
®
in
O'
in
©
CM
in
©
©
O
X
©
©
X
O
y
CP
in
©
in
r\j
y
o
ro
ro
O'
ID
ro
CD
X
-y
co
vD
CP
Vi)
CD
ro
X
CM
vO
vD
CD
in
CD
in
tH
©
X
©
CP
in
X
©
CD
X
©
CD
X
y
CM
CP
©
y
CM
CD
y
©
©
U'
in
in
vD
X
GU
a?
O'
CD
CD
•sH
vO
ID
X
X
CD
GO
O'
O'
CD
CD
CM
CM
ro
ro
y
y
in
©
©
X
©
©
O'
©
CD
v-i
CM
CM
©
y
in
©
cu
©
r-i
©
•H
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
©
©
©
©
©
©
©
©
©
y
y
y
y
y
y
y
y
y
y
in
m
in
LU
_J
CD
CO
J-
in
CD
X
ro
vD
GO
in
CM
CM
CD
X
CD
y
X
y
CM
y
Vi)
CD
▼H
CM
X
©
©
CM
©
o
CM
in
©
©
y
O'
©
©
X
o
©
X
©
CM
O'
O'
X
O'
y
CD
X
X
O'
i£>
0D
vD
CM
CD
in
CM
vD
ro
ro
CD
VD
CM
CD
y
CD
CD
CM
©
CM
©
©
in
©
C T
in
y
©
©
CP
©
y
©
m
©
©
o>
©
X
O'
o
O'
X
vD
in
in
in
vD
CD
CD
CM
X
vD
vO
CM
O'
vD
in
y
m
X
C3
y
O'
in
PO
CM
CVJ
©
©
o
in
IM
©
O'
©
y
O'
y
O'
©
©
©
X
©
©
CM
ro
o*
Vi)
ro
CD
X
-y
vH
GO
Vi)
O'
▼H
ro
X
o
y
X
m
O'
ro
X
CM
©
CD
m
CD
in
CD
m
o
©
X
©
©
in
r-i
X
©
O
X
©
©
in
O'
y
©
©
in
if*
in
vO
X
CO
CO
O'
CD
CD
tH
vH
in
in
in
vD
vO
vf)
X
X
X
©
00
O'
O'
CD
CD
v-J
CM
CM
©
©
y
y
m
in
©
X
X
©
CP
O'
CD
CM
©
in
X
©
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
©
©
©
©
©
©
©
©
©
©
©
©
©
©
©
©
y
y
y
j
y
y
y
O
—J
9-4
v£>
CM
o
X
ro
CP
▼H
CM
■r-V
CM
y
ro
ro
in
▼H
v£>
©
X
ro
X
O'
O'
X
y
CD
in
©
▼-I
©
in
©
©
in
in
©
CM
CD
X
y
©
▼H
©
y
y
o
o
J-
ro
CM
ro
O'
J-
in
v£>
■y
CD
y
O'
in
O'
CM
ro
ro
CM
CD
GO
U'
X
ro
O'
y
O'
y
O'
y
O'
©
X
CM
©
o
y
©
CM
©
O
y
©
in
CM
©
X
y
X
X
vD
X
in
vD
O'
CD
CD
ro
ro
y
ro
ro
CD
OO
X
vO
in
y
CM
O
©
X
in
y
CM
O'
GO
©
in
©
CM
©
O'
X
in
y
CM
O'
X
©
y
©
y
©
D
—J
CM
9 H
CD
vO
O
O'
ro
CM
in
vD
y
y
in
v£>
X
CO
O'
o
CM
CM
ro
y
in
©
X
X
®
O'
©
CM
©
©
y
in
©
X
©
©
O'
CD
©
y
©
©
O'
0
vi)
©
Vi)
X
O'
in
SD
ro
CO
ro
>5-C
«r-<
'H
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
©
©
©
©
©
©
©
©
©
©
©
©
y
y
y
y
y
y
y
(X
O'
O'
CO
X
vj0
vD
in
-y
y
ro
ro
ro
CD
b-
*
X
in
©
y
X
y
CM
IT.
©
in
CM
©
©
CM
©
O'
©
O'
in
©
CM
o
O'
X
©
©
O'
©
O'
©
O'
©
©
©
©
©
CM
©
©
X
CD
©
CM
o
CM
CD
©
9-4
©
CJ
X
y
x
O'
O'
X
©
©
y
X
X
©
©
O
O'
©
X
9H
O'
©
©
©
©
y
©
©
X
Vi)
Vi)
X
©
o
CM
in
©
CM
in
O'
y
©
©
©
y
O'
©
9-4
©
VD
O'
ro
X
X.
a:
©
CM
X
©
©
in
CM
CP
©
O
CM
©
in
CM
O'
X
y
CM
9-4
O'
X
©
in
©
CM
9H
O
O'
©
©
X
©
in
m
y
©
©
CM
CM
9-4
9-4
CD
O
©
O'
©
X
X
©
LL
«a
O
CD
o
X
O'
in
y
in
X
CM
©
CM
in
in
in
y
y
y
y
y
©
©
©
©
©
©
©
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
9-4
9-1
9*4
9— 1
9-4
U
CD
©
©
©
©
o
©
©
©
©
o
©
o
o
o
O
©
O
O
©
CD
o
o
©
O
O
CD
©
CD
CD
CD
©
O
O
CD
©
CD
CD
CD
in
in
X
y
CM
©
©
©
in
©
©
CD
o
CD
o
o
CD
©
©
©
©
©
o
o
o
©
o
CD
CD
O
©
CD
CD
©
CD
CD
O
CD
CD
O
©
CD
CD
CD
CD
CD
CD
CD
©
©
©
©
CM
CM
CM
CM
▼H
o
©
CD
©
o
O
CD
CD
©
o
©
o
o
o
O
©
CD
©
o
CD
CD
CD
©
CD
o
©
CD
©
CD
O
CD
©
CD
CD
CD
©
CD
O
-J
-J
CM
©
CM
©
©
in
CM
y
y
©
©
in
®
©
©
O'
O'
y
©
©
y
© in
©
o
CM
CM
CM
9-4
O'
X
in
CM
O'
in
9-4
X
©
®
©
©
©
®
CM
9-4
O'
X
y
(_>
o
O'
X
©
y
©
©
©
y
©
q—1
CM
CM
©
X
©
O'
in
O
in
o
in
O'
©
GO
CM
©
O
y x
9-4
in
CP
CM
©
CD
©
X
©
y
X
9-4
y
®
©
9-4
GO
©
CM
>
z
©
©
©
X
©
CP
o
CM
©
y
in
GO
©
CM
o
O'
X
Vi)
in
©
CM
©
©
X
in
y
CM
9-4
O' x
©
y
CM
9-4
O'
©
©
y
©
9-4 O'
©
©
y
9-4
®
y
9-4
©
X
y
y
y
y
y
y
in
in
in
in
in
cn
-J
©
©
©
©
©
©
©
©
©
©
©
©
y
in
©
X
X
©
0>
©
9-V
CM
© ©
y
in
vO
X
©
©
O'
©
9-4
CM
©
©
y
in
©
X
©
©
O'
CD
9-4
©
y
©
©
0 1
s-i
9-4
9-1
9«^
9-4
CM
CM CM
CM
CM
CM CM CM
CM
CM
CM
CM
©
©
©
©
©
©
©
©
©
©
©
©
y
y
y
y
y
y
y
fcD
©
o
o
©
©
©
©
o
©
o
©
z
©
O
X
in
in
y
o
CM X
y
CM X
©
m
y
<H ©
y
o
© X
cm y
® m
CM O' m
©
©
in
©
©
O' X
a> ■* n
©
CM O
CM
©
CM
o
9-4
X
■*-5
9-4
X
X
©
X
GO X
4
in
O' ©
©
©
o
o
CM
y
CM
x in
X
€VI
X
©
O
©
GO
y o
©
vo m in m
©
X O'
9-4 y x
©
y
©
CM
©
©
9-4
9-4
©
©
X
©
o
-J
©
©
©
CP
©
CM
GO
y
X
©
X
in
9-4
©
in
©
o
©
©
in
©
9-4
©
O' x
©
in
y
©
CM
9-4
©
o
CP co
©
X
©
©
©
©
y
y
©
CM
9-4
CD
o
o
©
©
©
in
in
m
in
y
y
y
y y y ©
©
©
©
©
©
©
©
©
©
CM
CM
CM CM CM
CM
CM
CM
CM
CM
CM
CM
CM CM
CM
Y
tH
•r-V
CD
CD
O
O' O'
O' ©
©
©
©
©
O
©
CD
o
a
a
©
o
©
O
o
©
©
©
©
o
o
O
o
©
©
o
o
©
©
o
CD
o
©
o
o
CD
©
CD
CD
O
CM
CM
CM CM CM CM
©
o
O
©
©
©
o
o
o
©
©
o
©
o
©
CD
©
o
©
©
©
©
©
o
o
o
©
©
O
o
©
o
o
CD
©
©
O
©
X
in
©
o
CD
o
©
CD
©
©
©
©
©
©
o
©
©
CD
o
o
o
©
o
o
o
o
©
©
©
o
o
o
o
©
O
o
o
o
©
©
o
o
o
©
O
o
CD
O
©
©
o
t-i
©
o
©
CD
©
o
O
©
©
O
o
o
©
©
©
©
©
©
o
o
©
o
o
o
©
o
o
©
o
o
o
CD
o
o
o
o
o
o
o
CD
Q
©
CD
o
a
o
CD
DEG
O'
o
o
O
o
o
o
o
o
©
©
©
©
o
o
©
©
o
©
o
o
o
©
©
©
©
©
©
©
o
o
©
©
©
©
o
o
©
©
©
o
o
©
O
©
CD
CD
o
o
CD
O'
o
o
O
©
©
o
o
©
O
©
y
y
o
©
©
©
o
©
©
©
©
©
o
©
o
©
©
©
o
©
©
©
©
o
o
o
CD
o
CD
©
©
O
CD
CD
CD
O
o
CD
O
©
O'
CD
CM
m
y
in
©
X
©
©
©
O'
CD
9—1
CM
©
y
in
©
X
©
O'
CD
9-4
CVJ
©
y
in
©
X
©
O'
CD
9-4
CM
©
y
in
©
X
©
O'
CD
CM
y
©
©
©
tH
▼H
-H
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
©
©
©
©
©
©
©
©
©
©
y
y
y
y
y
y
y
y
y
y
©
©
©
©
©
©
269
T OEN VOL OP/CT OF/OD F H S CV CF W
DEG K MOL/L L/MCL ESfi/K BAR-L/MOL J/MCL J/60L J/MCL/K J/MCL/K J/MOL/K M/SEC
89.922 21.681 0.09612 35.0616 962.716 5299.2 5306.1 76.503 99.07 68.50 2231
OJ -f
ro HOHHf\JMLf\vO®o®
(\jHoo'cosvou>^ropofvj
OJ (\J(\JHrlr<THrHr(rlrHH
OrOI'OO^WOHNrtOJS
UNsDaUrHj’O'UNOJCD^-trosi)
(oaocoo'CJ'cr'OHpvjwj-j
iD^CvDvD'CvDKN-K-NKN
P si)
a O'
-f ro
-f J-
kD (\ J
P m
ro ro
-f jf
sD (\J
OJ CD
ro ro
-f «f
c\j p
OO si)
oo ro
J- J”
<J\ CD
in <d
ro ro
-f J-
O' 00
si) P
OO Oo
J- Of
OO U'
lO 00
UN P
st> ro
P 0O
IT. J-
ro ro
ro ro
O X)
CP CP
CT O0
P- -f
CD CD
rH P
CD CD
Us st>
CD UN
oo J-
rH v£)
<D sO
CP J*
p co
CD JT
ro oo
oo so
ro p
cr p
<D CO
00 00
-J- CD
rH P
•rH CO
ro co
LO in
OO CD
-T ro
CD P
su ro
su p
in ro
s£> ro
sD sO
CD P
CD CD
00 vD
UN ro
sD P
of -H
CO CD
CO v£>
CO LO
CO —4
CO Si)
CD rH
CO CD
CM -J
in -h
ro m
no oo
in cd
i in
P in ao O' -f of sD
^oNtDU'insirHNjin
otoo-voinininsooooj'o
w «' id ro o n 4 rH cu si) ro us
in in so o* «coo'ooh(\joo
injroorooovDinooHiiNrH
C'CTri(OJ^floa)rocoi[NN
CDvDcOvO*HOdMinin'DinvD
HHHosacoroMincMn
vt) ajNO'Hincurocoroo'co
crcosxxinj-^roroovjoo
coou\rHHojNjnroroH
Nootrocv^ooHroTi
OOCOO'vOvD(\JtH 04 'HU>C\J
OONU^a^finCDOOWjM
ro H(\j^ro^H^^(\jocr
’Ha'Nin 4 rororo 4 vCO'H
lUvDNcoO'OHOorojlfivU
j- -f-fj-j-minininu^inin
aoooQooaoooa
CD CD CD CD CD CD O CD CD CD O CD
DsDsOin^roaOvDro<DCOsO
P HlO(T'IOvDcDOHO(D(J'
a)MCT'int\jcoj-HNroaDN
• •»•••••••••
HHOooCTO'crcOoONN
NCUMNCNJHHHHHHH
OOOOOCOOOOOJ
CD CD CD O CD CD O O CD CD CD sO
CD CD O CD CD O CD CD CD O CD rH
OCDOOCDOCDOCDCDOO
OHMIO^UUDNCDO'D'
CD
lD
ro
cp
in
rH
sO
OJ
p
CM
r^
OJ
lD
"-I
in
o
jf
ao
ro
in
CP
ro
r^
-f
CO
00
vD
CP
ro
O
p
Jf
r 4
co
in
in
sO
sO
p
co
co
CP
CP
CD
CD
T — 4
OJ
OJ
ro
ro
ro
of
jf
in
in
in
sO
vO
r^
0 -
P
ao
ao
ao
CP
CD
CD
OJ
OJ
oo
CM
oo
oo
OJ
00
OO
OJ
CM
iO
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
-f
-f
J-
«f
J-
-f
ro
ao
co
CD
CD
si)
P
~f
in
CP
p-
CD
J-
CD
p-
in
ro
oo
CD
au
U'
CM
ac
J-
ao
▼-■(
ro
ro
ro
P
Si)
CD
GO
00
-f
CO
-f
00
o
CT
ao
ao
0 ‘
Cj
ro
in
ao
o
ro
in
CD
J-
r-
CP
OJ
in
r^
CD
CM
in
P
CP
-f
P
CD
ro
J*
-f
in
SO
p
P
00
CP
o
CM
ro
J-
UN
sO
ao
CP
CD
ro
J-
UN
si)
ao
CP
o
0 J
ro
UN
sO
ao
O
OJ
UN
P
CP
or
-f
■f
-T
-f
-f
Jf
-f
-r
in
in
in
in
in
in
UN
in
sO
vO
vO
sD
sD
v£>
sO
vD
0 -
p
p
P
P
P
CO
ao
an
an
cn
in
CD
CT
p
ro
s D
-f
p
in
k
CM
CD
UN
o
Vi)
J-
ro
CM
CM
CM
CD
CP
vO
ro
(J
-f
ao
O
St)
si)
CD
O'
ro
CM
p
ro
rH
o
CP
CP
CP
CD
rH
ro
UN
P>
CP
OJ
Of
r^
CD
ro
sO
CP
CM
in
CD
ro
in
<D
CD
ro
in
P
CD
ro
sO
P
O'
«f
J-
in
sO
p
p
co
CP
r -4
CM
ro
m
si)
au
O'
CD
OJ
ro
J-
UN
P.
ao
CP
"H
OJ
ro
•f
Si)
P
CO
CP
CM
J-
si)
co
CD
ro
ro
ro
ro
ro
ro
ro
ro
rf
J"
-J
J-
Of
J-
UN
UN
in
UN
m
UN
in
m
sO
sD
sO
sO
sO
sO
si)
si)
P
P
P
p
00
ro
J-
00
ro
CD
ro
CD
p
CD
ro
CP
ro
si)
CM
CD
«f
in
ro
CD
P.
ro
CD
ao
CD
CP
sD
ro
00
«f
aj
Of
-f
J-
U'
P
ro
CD
ao
co
00
o
J"
ro
CD
ro
ro
CM
ro
s D
p-
s
sD
-f
O
sO
»~4
J-
p-
CP
•H
^-4
4
CD
CO
in
0 J
ro
*— 4
s D
CD
P
co
sO
p
CD
CT
O'
CO
0 -
sO
of
CM
CD
p.
in
CM
CP
St)
ro
CD
r-
ro
O
sO
00
ao
in
P
ro
co
-f
CD
CM
OJ
OJ
OJ
J-
sO
CO
CD
C\J
-f
vX
ao
CD
CM
J*
sD
r^
CP
CM
J-
sO
ao
CP
^4
ro
-f
Vi)
P-
CP
OJ
J-
UN
p
CP
OJ
UN
ao
-f
CD
o
CD
r -4
rH
rH
rH
rH
00
CM
CM
00
CM
CM
ro
ro
ro
ro
ro
ro
J-
J-
-J-
Of
in
in
UN
in
UN
in
sD
si)
sD
P
P
OO
l\J
OO
OO
CM
CM
CM
CM
OO
CM
CM
CM
CM
CM
IM
IM
CM
O 0
00
IM
OJ
CM
IM
IM
CM
CM
CM
OJ
CM
CM
CM
CM
CM
SM
CM
IM
IM
CO
H
J-
CP
H
CD
-f’
r^
s O
P-
in
OJ
O
CM
CP
ro
Jf
ro
O
SD
O
0 J
P-
<D
J"
sO
CT
ro
Of
00
vD
UN
UN
CD
CD
-X
UN
J 1
CD
-T
CO
u^»
CD
Si)
j-
J-
Si)
o
si)
sO
CD
ro
•H
UN
CD
^4
in
CM
■rH
CM
in
*-«
P
O'
P
l> *
J
CM
sO
rH
sD
OJ
CP
sD
9 f
-S’
-T
sD
CD
00
P-
ro
CP
CP
o
ro
P-
00
C
Vi)
UN
UN
sD
CP
ro
CO
-f
CM
CD
ro
«_4
ro
CD
CO
OJ
p
rH
SO
CD
in
CD
in
CD
in
CD
si)
▼H
p-
ro
au
jt
p.
ro
CD
Si)
ro
CD
P-
-f
▼H
(P
si)
-f
CM
ao
-f
^4
QJ
Si)
ID
p
p
aj
ao
O'
O'
cd
CD
tH
CM
00
ro
ro
of
■S
in
SO
so
p-
CD
CD
CP
CD
CD
■»— 4
CM
CM
ro
-T
U'
v£>
<o
CD
y-i
ro
00
00
00
OO
OO
00
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
J-
Of
-f
*f
-f
J-
-f
Of
-f
UN
in
UN
CD
00
ro
CT
ao
p
J-
OJ
p~
J-
in
-T
-f
P-
UN
CP
CD
CP
in
-H
sD
CP
CD
CD
OJ
▼“4
-f
CP
P
J-
J-
<D
in
U'
P
OO
CO
in
CD
ao
P
in
ro
CP
O'
CD
ro
CD
UN
in
r-
ro
CD
UN
OJ
ro
O'
Si)
r^
CD
in
OO
CM
Jf
ro
ao
CP
-T
CM
CO
sO
OJ
ao
in
ro
CM
fM
ro
-S'
fM
P-
ro
CD
CD
00
in
CP
C 7
(P
CD
co
CD
ro
ao
ro
CD
CO
P
CP
in
sO
OJ
CM
ro
SO
CD
ro
p
rH
UN
O'
ro
p~
^-4
Si>
CD
UN
CD
in
CD
UN
CD
U'
p-
CM
co
J
r -4
p-
ro
CD
P
ro
CJ
«f
O-
-f
CD
si)
in
UN
sO
sO
sO
P
P
p
CO
ao
CP
a>
CD
CD
■*-4
CM
CM
ro
ro
or
J-
in
in
sD
0 -
0 -
ao
CP
CP
o
H
CM
ro
in
P
ao
CM
Oo
CM
00
CM
00
00
00
oo
oo
CM
00
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
or
J-
-f
J-
-f
a
J-
oo
in
cp
00
0 -
CD
00
in
H
v£)
r-
J-
OD
O'
co
of
<P
fH
CM
CM
co
J-
CD
J-
<D
J-
sD
P
ao
ao
V D
r»D
CP
ro
CO
p
ro
CO
CD
00
00
rH
o
CO
in
CM
CP
in
*-4
ro
CO
Of
CP
or
CP
ro
GO
ro
P-
▼H
SO
CD
of
ao
CM
CD
ou
si)
ro
in
ro
ro
00
00
H
CD
CP
CO
sD
in
CM
CD
D
r^
in
0 J
CP
CD
Vi)
in
ro
OJ
CD
CP
P
UN
-f
v -4
p
-f
*-4
ao
in
sO
p
ao
O'
CD
CD
H
OJ
ro
J-
UN
vD
r^
r^
CO
CP
CD
*-4
CM
oo
ro
of
in
si)
p
ao
ao
CP
O
▼H
ro
-f
si)
CO
O'
*H
rH
rH
rH
rH
oo
CM
CM
00
CM
00
CM
00
00
00
00
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
«f
-J
-f
«f
-f
of
si)
CD CD
in
O
UN
ro
O'
CO
P
or
sO
ri
CP
P
so CM
P
O'
ao
CM
0 J
P
P
CM
CD
OJ
au
sO au
ro
CD
ro
-f
ro
CP
00
■f
^-4 ro
^-4
U 1
OJ
ro
si)
0 J
CD
CD
t -4
-f
p
CM
ao U'
00
CD
O'
O'
O'
O'
CD
CM
-f
si)
au
rH -f
au
OJ
CD
O'
CT
U'
rH
in
■*—4 <X)
CM
co
in
CM
CP
P
in
ro
T-t
O'
p
vO
-f ro
00
r -4
O'
CO
p
sD
sO
UN
-f
ro
0 J
OJ rH
CD
CD
<p
p
vt)
U'
UN
CD
au P
P
Vi)
SD
sD
in
U'
in
Us
us
-T
~f
-T
of ~r
-T
-f
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro ro
ro
ro
oo
CM
00
IM
l\J
CD
CD CD
O
O
o
CD
CD
O
o
CD
CD
O
CD
CD
CD CD
CD
CD
CD
CD
CD
CD
CD
CD
o
CD
CD
CD CD
o
CD
CD
CD
CD
CD
CD
CD
CD CD
o
CD
o
CD
CD
CD
o
CD
CD
CD
CD
O
CD CD
CD
CD
CD
CD
CD
CD
CD
CD
o
CD
CD
CD CD
CD
CD
CD
CD
CD
CD
CD
O
CD CD
CD
O
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
CD O
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD CD
CD
CD
CD
CD
O
CD
CD
ro
SO 00
H
in
in
*— 4
in
P
P
UN
▼-4
P
OJ
UN
ao cd
OJ
ro
~f
-f
ro
ro
OJ
CP
CO
sO
ro rH
CP
V £)
O
-f
P
CD
OJ
CP
si) si)
in
ro
y-4
(P
so
ro
CD
P
Of
CD
P
ro
O' so
CM
OJ
-f
CD
so
OJ
co
~3
CP
in
rH
P ro
SO
-f
Si)
P
au
CD
r-<
t -4
vi) CM
co
«f
CD
in
P
ro
ao
J-
CD
in
▼H
vO 00
aO
ro
CP
in
CD
sO
rH
P
CM
<XD
-f
cp in
CD
sO
p
au
CP
rH
OJ
CD
CD t -4
^4
CM
ro
ro
J-
J
UN
Us
sO
P
p
au
uj O'
O'
CD
o
▼H
CM
OJ
ro
ro
*f
JT
UN
US sO
P
P
a)
U'
CD
OO
ro
«H »™4
y*
H
y*
**
W
•H
«-4 y*
*"■4
CM
CM
CM
00
CM
0 J
CM
0 J
CM
CM
CM CM
00
CM
CM
CM
ro
OJ
ro
sO a
<©
0 J
CO
CD
vO
ro
O'
00
CD
■r -4
cr
CO CNJ
UN
sO
UN
o
CM
O
-f
CM
UN
ro
UN
CD <js
CM
P
p
P
P
in
rH
^-4
P ao
ro
-f
CO
UN
vO
ao
ro
CP
ao
CO
O'
-f CP of
CD
P
UN
ro
OJ
rH
r -4
0 J
ro
UN v£>
CP
p
-f
oo
rH
rH
ao
ro co
-f
CD
v£)
ro
o
P
in
00
CD
CO
sD
in
ro
o
CP
P
sO
in
-f
ro
00
rH
CD
CP
ao P
s D
sO
-f
ro
oo
rH
CD
CP
O' ao
CO
<o
P
P
p
vO
vO
sO
sO
in
in
UN
UN UN
UN
J-
-f
-f
«f
J-
rf
-f
-f
ro
ro ro
ro
ro
ro
ro
ro
ro
ro
o
CD o
CD
CD
CD
CD
o
o
o
CD
CD
CD
CD
CD
CD O
CD
CD
CD
CD
CD
CD
o
CD
CD
CD
CD
CD CD
CD
CD
CD
CD
CD
CD
CD
o
CD CD
CD
CD
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD O
CD
CD
o
CD
CD
CD
CD
-f
<=> CD
O
CD
CD
CD
CD
CD
CD
CD
O
O
CD
CD
CD CD
O
CD
CD
CD
CD
CD
o
CD
CD
CD
CD
CD CD
CD
CD
CD
CD
CD
CD
CD
X)
CD CD
o
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
O CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
O
O CD
CD
CD
CD
CD
CD
CD
CD
^4
CD CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
CD O
CD
O
O
CD
CD
O
CD
CD
CD
CD
CD
CD O
CD
CD
CD
CD
CD
CD
CD
00
CD CD
CD
CD
CD
CD
O
CD
CD
O
CD
CD
CD
CD
O CD
CD
CD
CD
O
O
CD
CD
CD
CD
CD
CD
CD CD
CD
CD
CD
CD
CD
CD
CD
CP
CD y-i
CM
ro
-f
UN
sO
P
ao
CP
CD
4
OO
ro
-T UN
s£)
P
ao
O'
CD
r -4
OO
ro
Jf
UN
vD
P 30
CP
CD
OJ
-T
sO
CO
CD
^—4
00 00
CM
CM
OJ
CM
OJ
CM
OJ
CM
ro
ro
ro
ro
ro ro
ro
ro
ro
ro
-f
-f
-f
-J
Of
-f
-T
DT -f
Of
UN
in
UN
in
in
JJ
*
•#
270
ETHANE ISOBAR AT P = 2.0 BAR
<D
2
C
C
o
u
CuD
c
o
oj
</)
<u
£
<u
a
o
Jh
3 o
UJ
</)
> ^
O V
I ~J
0
1
a _j
o o
\ £
H- *
CJ
V. c*
o o
> 2_
z -J
LU V
O _J
o
X
H- *
o
UJ
o
rH
CD
LA
CP
O
LA
LA
S
tH
LA
OJ
LA
OJ
ro
o
r^
ro
O'
LA
o
UJ
<0
tH
U>
O
LA
O'
y
aO
0J
UJ
tH
IA
O'
ro
P-
CD
y
CO
OJ
UJ
O'
r^
CD
p-
tH
CO
ro
ro
tH
o
«H
tH
OJ
ro
LA
UJ
CO
o
ro
LA
LA
UJ
UJ
p.
rw
CO
CT
O'
o
CD
H
H
OJ
OJ
OJ
ro
ro
y
J-
LA
LA
IA
U>
U>
K
0.
ao
00
CO
O'
CD
CD
tH
0J
OJ
CM
00
tH
o
CT
<30
vD
LA
y-
ro
ro
OJ
OJ
CM
OJ
OJ
0J
CM
OJ
OJ
0J
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
J-
y
y
•J
J-
CM
CM
<\J
OJ
tH
tH
H
tH
tH
H
tH
tH
O
o
ro
ro
O
LA
tH
CP
O
UJ
O
LA
UJ
O'
CD
ro
0D
O'
OJ
IA
UJ
-J
p-
U'
r^
ro
OJ
ro
UJ
tH
0-
y
OJ
O*
LA
0J
<30
J-
O'
ro
LA
r^
0-
UJ
o
O'
OJ
o
ro
LA
LA
U)
CO
tH
J-
O'
J-
OJ
O
tH
ro
LA
ro
J-
OJ
o
UJ
y
OJ
tH
tH
tH
OJ
ro
LA
r^
O'
tH
J-
vO
O'
0J
y
P-
CD
ro
LA
CO
o
ro
LA
p-
O'
tH
IA
p-
CD
0J
ro
CD
00
ao
<P
CP
(A
O
«H
OJ
ro
y
LA
LA
LA
LA
U>
U>
ao
O'
O
tH
0J
ro
J-
LA
U>
60
O'
o
tH
ro
y
LA
K
CO
O'
o
0J
ro
y
LA
UJ
CO
O
OJ
LA
P-
O'
UJ
UJ
UJ
U>
UJ
U>
U>
P-
p-
0-
p-
r^
-3-
y
y
y
J*
-5-
S’
y
LA
IA
LA
LA
LA
LA
LA
IA
LA
vD
UJ
UJ
UJ
vD
UJ
UJ
U>
P-
r^
p-
r^
p-
ao
an
ao
CO
CO
r^
Jj
r^
OJ
r-
ro
0J
ao
CD
CD
O'
J-
LA
j*
v£>
CD
CD
J-
vD
OJ
ro
r^
LA
LA
00
ro
O' K
LA
J-
J-
ro ro
CD
CD S
o
LA
CP
0J
CM
r^
r-
<rH
o
ro
CD
CD
O'
r^
LA
0J
CD
ao
U>
U>
UJ
vA
<t)
O' O vO
ro
°
o
CD
CM
ro
LA
N.
O'
0J
J- N.
CD
ro
a>
O' CM
LA
00
cd ro
vO
0O
o
ro
LA
r^
CD
ro
vA
ao
O'
JT
S'
ro
ro
ro
ro
ro
CM
CM
0J
OJ
CM
OJ
J-
LA
LA
a>
r^-
CD
O'
o
CM
ro
J-
U'
UJ
ao
O' O
CM
ro
J-
IA o-
CD
O'
O CM
ro
S
sV
ao
O'
CM
-T
•A
cu
CD
y
y
y
J-
J-
y
y
J-
y
y
S
ro
ro
ro
ro
ro
ro
ro
^ -3-
^ j-
s-
^ LA
LA
LA
LA
LA LA
LA
LA
vD s£)
vD
\D
vD
vO
vD
vD
0-
0-
S-
ao
LA
CC
CD
JT
N-
O
ro
o
LA
▼H
J-
ro
LA
O'
tH
tH
j-
UJ
tH
tH
o
o
ro
CD
y
UJ
LA
y
ro
0J
tH
0J
LA
O'
LA
ro
ro
LA
o
o*.
CO
o
tH
ro
LA
CD
LA
oe
ro
ro
r-
ro
CO
LA
O'
J*
CM
ao
vA
O'
0J
CD
ao
s-
LA
CM
U)
CO
K
y
O'
CM
y
y
ro
tH
CO
y
O'
ro
UJ
ao
O'
CD
o
O'
N-
LA
tH
CM
tH
u>
CD
N-
LA
LA
ro
ro
ao
o
CO
r-
O'
O'
CD
LA
O'
tH
ro
ro
ro
ro
CM
▼H
O'
N-
LA
ro
CD
ao
LA
0J
O'
UJ
0J
O'
LA
CM
<30
y
CD
r*-
ro
CO
y
CD
UJ
r^
CD
CO
<XJ
ao
A
vA
ro
o
UJ
tH
UJ
o
J-
ao
OJ
ro
ro
UJ
o
CM
-y
vA
CO
cr*
tH
ro
IA
r-
00
CD
0J
ro
LA
r^
ao
CD
OJ
ro
LA
N-
ao
o
tH
ro
LA
u>
CP
OJ
LA
<30
tH
K
©
O'
O'
CD
o
<7-1
T~<
(M
CM
CM
ro
o
CD
a
CD
tH
tH
tH
tH
tH
tH
CM
CM
CM
OJ
0J
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y
LA
LA
LA
LA
LA
LA
UJ
UJ
UJ
N-
V— 1
tH
tH
OJ
CM
CM
0J
CM
CM
CM
OJ
OJ
CM
CM
CM
CM
CM
CM
CM
OJ
CM
OJ
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
OJ
CM
CM
CM
CM
CM
IM
vA
S
O'
CM
r^
s-
Jf
UJ
ro
ro
CM
tH
CM
O'
tH
UJ
CD
tH
CD
■y
CO
<©
CM
ro
LA
O'
ao
tH
OJ
O'
y
K
CO
u>
tH
0J
O'
O'
y
CD
y
OJ
ro
UJ
O'
IA
ao
ro
ao
UJ
LA
at)
LA
r^-
LA
S'-
-y
ao
CO
O
«y
ro
UJ
r^
LA
OJ
ao
J-
tH
O'
O'
CD
ro
CD
UJ
Of
CD
LA
y
LA
O'
UJ
UJ
ao
0J
O'
CP
tH
y
CD
r-
a
CD
CD
UJ
CD
O'
ao
r^
vA
vD
U)
r^
O'
LA
U)
tH
CD
LA
tH
r^
-y
0J
tH
CD
tH
ro
LA
O'
LA
tH
CD
o-
r-.
O'
tH
LA
CD
u>
y
ro
ro
LA
N-
tH
r^
ro
tH
O'
ro
CD
ro
O'
ro
ro
O'
vl)
ro
CD
r*-
j-
CO
UJ
ro
O'
tH
OJ
UJ
LA
CD
LA
CD
LA
CD
LA
CD
LA
tH
r-
CM
ao
y
CD
K-
ro
CD
UJ
ro
CD
r^
y
tH
CP
UJ
y
CM
o-
y
tH
CD
LA
U>
UD
IA
OJ
CD
CO
O'
CD
CD
CM
OJ
r^
N-
r^
CD
a;
O'
O'
CD
CD
tH
tH
CM
CM
ro
ro
y
y
LA
u>
UJ
r^
<30
co
O'
CD
CD
tH
CM
OJ
ro
-j
U'
UJ
ao
CD
tH
ro
•H
»H
CM
CM
0J
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y
y
y
y
y
IA
LA
LA
ro
vA
U)
CD
LA
▼H
CD
O'
CP
ro
OJ
ao
<A
ao
-y
o
tH
O'
ro
O'
LA
LA
LA
N-
0-
UJ
UJ
tH
OJ
O'
y
N.
OD
O'
r-
y
O'
O'
UJ
CD
ro
tH
w
CD
ro
y
ao
CP
-I*
O'
U)
UJ
CD
LA
U)
-y
CD
u>
ro
U)
r^
OJ
LA
ro
r^
CD
O'
CD
CD
<u
O'
^4
LA
tH
O'
CD
ro
0D
a-
ao
OJ
O'
O'
OJ
a-
LA
UJ
CP
LA
ro
r*D
IA
y
CD
tH
UJ
y
O'
CD
ao
0-
<A
LA
LA
LA
UJ
CO
o
-y
LA
LA
CM
ao
LA
OJ
o
O'
O'
O
CM
LA
o
LA
0J
O'
O'
CP
CD
ro
r^
ro
O'
K»
K
r-
O'
CM
UJ
OJ
O'
N-
vO
co
LA
u>
tH
tH
(M
ro
O'
UJ
ro
CD
K
J-
«J
UJ
ro
O'
LA
UJ
O'
ro
A'
tH
«y
ao
ro
tH
UJ
CD
LA
O'
y
O'
LA
CD
LA
tH
UJ
0J
CD
y
CD
r»
ro
CD
UJ
ro
CD
y
O'
y
CD
UJ
LA
LA
LA
UJ
r^-
CO
<X)
O'
CD
CO
tH
OJ
CM
LA
LA
LA
U)
vA
r^
r^
n.
ao
ao
O'
O'
CD
O
CD
tH
tH
0J
fO
ro
y
y
LA
LA
UJ
I s -
0-
00
O'
O'
CD
tH
CM
ro
LA
K
co
*H
tH
CM
OJ
0J
CM
0J
OJ
CM
0J
0J
CM
0J
0J
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y
y
-J-
-i-
N-
A-
ro
jr
CM
CM
O'
ro
O'
tH
CO
vA
vA
0-
UJ
O'
-y
s
CM
O'
ao
CD
UJ
y
u>
LA
tH
LA
UJ
LA
CM
r*.
CD
ro
y
ro
CM
CD
U>
OJ
ao
0J
O'
y
UJ
h-
UJ
O'
IT.
A
O'
co
j-
O
CO
U)
O
UJ
o
O'
tH
o
vA
tH
s
U)
UJ
UJ
vA
-y
0J
o
y
tH
h-
ro
O'
LA
O
U)
tH
u>
tH
U)
tH
LA
CD
y
CP
p-
UJ
y
0J
CD
r^
o
CO
O'
ao
ro
LA
r-
N>
O'
00
O'
K
ao
O'
CP
ao
<30
N-
u>
LA
y
ro
OJ
tH
o
ao
u>
y
ro
tH
o
O'
N*
UJ
y
fO
tH
CD
ao
N»
LA
ro
CD
N-
y
tH
<30
OJ
OJ
o
r-
CD
O'
ro
CM
LA
0J
O'
-y
«y
LA
kO
f*-
<20
(JD
o
tH
0J
ro
-y
LA
UJ
UJ
r-
ao
O'
o
tH
CM
0J
ro
y
LA
UJ
r*.
CD
co
CP
CD
tH
ro
y
UJ
CO
CP
vA
UJ
vA
N-
O'
LA
00
ro
<30
ro
O'
LA
tH
tH
tH
tH
tH
0J
0J
CM
CM
0J
CM
CM
CM
CM
0J
0J
ro
ro
ro
ro
ro
ro
ro
(O
ro
ro
ro
ro
y
y
y
y
y
y
y
O'
O'
00
N-
vA
u>
LA
■4"
ro
ro
CM
0J
y
tH
ao
UJ
LA
ao
tH
CD
O'
CM
LA
CO
r>w
y
O
y
CO
ro
tH
o
o
IA
O'
O'
tH
0J
tH
y
tH
CD
CD
tH
CD
r^-
ro
LA
ro
CO
GO
ro
ro p-
UJ
CO
y
UJ
tH
LA
CD
ro
CD
CD
CD
tH
CD
tH
y
O'
0J
ro
y
UJ
CO
ao
y
0J
tH
O'
ro
CM
LA
tH
o
CM
0-
ro
tH
CD
tH
ro
UJ
®
LA
CD
P*
y
CM
CD
CP
O'
O' O'
CD
tH
ro
r>-
ro
O*
P-
LA
LA
CM
ao
CP
CP
UJ
0J
tH
CD
y
tH
O'
CO
0J
y
ao
CM
GO
y
CD
N»
y
tH
aj
UJ
y
CM
o
ao
UJ
LA
ro
0J
o
O'
OJ
P-
LA
y
ro oj
OJ
tH
CD
co
r^
LA
y
ro
CD
O
CD
0-
CP
LA
y
LA
co
CM
CO
y
y
tH
tH
CD
O'
O’
ao
CD
au
P-
r^.
P-
UJ
UJ
UJ
UJ
UJ
LA
LA
LA
LA
LA
LA
y
y
y
y
y
y y
y
y
y
ro
ro
ro
ro
ro
•
•
9
•
•
•
•
•
•
•
•
•
•
tH
tH
tH
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
o
CD
CD
CD
O
O
CD
®
CD
o
CD
o
CD
CD
O CD
CD
o
CD
CD
CD
CD
CD
o
LA
LA
tH
N-
y
OJ
CD
co
UJ
LA
ro
OJ
▼H
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
O
CD
CD
o
CD
CD
O
CD
CD
CD
CD
CD
CD
O
CD
CD
O
CD CD
CD
CD
CD
CD
CD
CD
CD
CD
ro
ro
ro
CM
CM
0J
0J
*"*
tH
tH
CD
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
O
CD
o
CD
CD
o
O
O
O
CD
CD
CD
CD
CD CD
CD
CD
CD
CD
CD
CD
CD
CD
CM
ro
tH
CM
LA
ro
y
tH
y
y
0J
O'
ro
ro
0-
CO
CD
ao
O
O'
u>
CP
tH
tH
CD
ao
y
O'
y
<30
tH
y
U>
ao
O'
CD
tH
tH
tH
tH
tH CD
CP
CO
P-
y
tH
S-
ro
CO
tH
tH
O'
LA
y
ro
ro
ro
y
UJ
OD
CD
CD
CO
y
CD
y
O'
CM
UJ
O'
ro
UJ O'
tH
y
UJ
O'
tH
y
UJ
co
CD
0J
LA
P-
O'
tH
ro
LA P-
<30
o
0J
UJ
CD
ro
p-
o
UJ
UJ
UJ
N-
ao
O'
CD
tH
0J
ro
y
LA
A-
CO
00
ro
UJ
0J
UJ
tH
LA
O'
y
ao
0J
P-
tH
LA
O'
y co
OJ
UJ
tH
LA
CP
ro
p-
CM
U)
cd y
ao
ro
P-
LA
y
ro
CD
a*
y
y
y
y
y
y
LA
LA
LA
LA
LA
LA
LA
CD
CD
CD
CD
CD
o
CD
CD
CD
CD
CD
CD
CD
r^
P*
CO
ao
CP
O'
CD
CD
CD
tH
tH
CM
CM
ro
ro
ro
y
y
LA
LA
UJ
UJ
UJ
P-
p-
CO
GO
O' CP
O'
o
CD
tH
CM
ro
y
y
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH <tH
tH
CM
CM
CM
CM
CM
CM
CM
O
CD
CD
CD
CD
o
O
CD
CD
o
CD
O
O
tH
ao
UJ
UJ
u>
0J
y
O'
r ^
y
e
«H
LA
U)
O' CD
ro
y &
0J
LA
tH
CO
tH P»
ro
«0
u>
UJ
CO
tH
LA
o
O
O
tH
tH
K»
O' UJ
GO
y LA N
y
ro
y
IA
ao
K
tH
LA
O'
ro
UJ
©
o
tH
tH
O'
ro
tH K 00 \D
tH
CM
N>
UJ
O'
y ro
ro
u> o n.
y
ro
ro
LA N*
o |A
m la
OJ
O'
JD
y ro
OJ
CM
CM
ro
u>
CD
IA
tH
UJ
UJ
ro
CP
LA
CM
ao
y
tH
r^
ro
co
LA
OD
U>
O'
ro
ao
ro
C0
y
CD
p*
y
tH
co
UJ
fO
tH
O' P-
LA
ro
OJ
CD
O'
rs.
UJ
y
ro
CM tH
o
O'
CO
UJ
y
ro
tH
CD
8
•
•
•
•
e
•
•
•
•
•
0
0
0J
CM tH
tH
o
o
O' O' O'
co
<s ao
N N» S
UJ UJ
UJ lO vO UJ LA IA
LA
LA
LA
LA LA LA
y
y
y y
y
y
y
tH
tH
tH
CD
O
CD
O'
CP
CP
ao
CO
K
r^
tH
tH
tH
tH
*H
o
o
a
o
CD
O
CD
o
o
CD
o
o
o
CD
o
O
o
o
CD
o
o
CD CD
CD
o
CD
CD
CD
CD
CD
CD
CM
eu
CM
OJ
CM
CM
tH
tH
tH
tH
tH
tH
tH
CD
O
O
CD
CD
CD
o
CD
o
<o
CD
o
o
o
O
O
o
o
&
CD
CD
o
CD
CD
CD
CD
o
CD CD
CD
CD
CD
O
CD
CD
CD
CD
CD
o
CD
CD
CD
CD
CD
O
o
CD
CD
O
tH
tH
O
o
O
CD
O
o
CD
CD
o
CD
o
CD
o
o
CD
CD
CD
®
O
o
CD
O
CD
CD
O
o
CD CD
CD
CD
CD
CD
CD
CD
CD
CD
ro
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
O'
CP
o
o
CD
O
o
CD
a
CD
o
CD
CD
CD
o
o
O
O
CD
o
o
o
CD
o
CD
CD
o
o
CD CD
CD
CD
CD
CD
CD
CD
O
CD
CP
a
CD
CD
O
CD
O
CD
O
O
CD
CD
tH
tH
CD
CD
CD
o
CD
o
o
CD
o
O
CD
CD
o
®
CD
CD
Q
CD
CD
CD
CD
CD
O
O
CD
CD
CD CD
O
CD
CD
CD
CD
CD
CD
CD
O'oooooooooooao cocdoooooocdooooocdcdocdoooooooooooooocdocdcdo
CDa>OH(\jm4'U>vDNoOOT(P 0TOH(\jmjinvDN®0'OHNr04 , tf(v0N©0'OH(\jr0JinvDN®Cro(\J^^CDO
HHHHHHHHHHrH tHPjcMojCMCMCMCMOjojCMforororororororororoyyyyyyyyyyiAiAiAiAiAUJ
271
T DEN VOL DF/CT DF/DD E H S CV CF W
DEG < MOL/L l/NOl BAR/K BAR-L/MOl J/HCL J/ROL J/MCL/K J/HOL/K J/MOL/K M/SEC
89.946 21.681 0.04612 35.0522 962.947 5299.7 5313.6 76.509 44.06 68.50 2231
■c-
oir*ooLOirN-rvjaoLT*ro,Ho
r-HHrHH^VjrOlfllDOPOfVjvD
cxjrHDO'coNvDir'jnnroH
CVJ CM (\J t-4 *-l t-4 t-4 t-4 t-4 t-4 t-4 t-4 t-4
o ro t\j O' if' h co
LP vO CO CD 4 CP 4
O ' IP CP TO ro 4
th o o ro ® th
cococcrcj'O'OHCMrj-ins
vDvDvDvDvD^DKSK^KN.S
COSNPOCOmn®OHDlJ'(P
OO'M^WOCOiOvOvDKcOO
4rororororocMCMCMCVJCMCMro
4444444444444
OnrO(\JU‘'OOOr4r4COMHin
lPN-CMCVJvOPJK4aofM*-4v04
iftsronooocoj-NO'crMr
W O r4 N
S- ao (p CP CD cd
rl vD D ^ CO (\J U>
H H (\J (\J (\J ro fO
fOCOIfiMO'KO'OlfC^UcO
N(\JO(T(\J»0©U>ONMn
^OcrNK^NNCT(\Jlf»ON
n o vd r^) o s j tH co vO r*o «-( vu
ir'\oa)N < ^coo'ODr4(\jr r iro
^CKOJ'eOfOCVjOHiDCOlfi
ntDlBlfNniTino'^OON
cDao^voiPiPiPvOK-cD4(PLP
poo'a)fooN4^®vunouj
lfcif\vDN®aO(rooH(\jroro
rrrHrocoNovUvoif'vDnrofvj
SH^vXJ-J'0'f^rOC\jCP(POr4
rocMrocMf'-aocpcMCMrocMiPCP
(MCMCMTHP-c3(P4ro^DroroLP
^aJN^H^concono 1 ^^
0'<oSd)vDir'j^mroc\jrj(\j
cOMNrO'HHLTiOCONSJ-O 1
CUCNJPOrOLCCO^COCOOrOHN
f\JCOO'CPO)C\J(\IO^(\JOCO(\J
oaN(ru'ju>cu('jcoin<\J4'
l^HNJ-rjocOvDlf'f^MHC'
roHMin(\j^ororoHoo®o
H(^Ninj-rororo^^(C(\j4'
cDcDNCOO'OHCVjroJ-l^ScO
44444lpipipiplpipipip
CDCDCDOCDCDCDCDCDCDCDCDCD
OOOOOOOOOOOOO
cr>N.aoN.4vpcMCPr^f04cr'ro
f'-THipcprovocpoTH^-icpipcM
vDnO'lTiroaOJ-rHNrOtO^H
H»HOOO(T'(J'(rcD<OKKK
CDCDCDCDCDCDCDCDCDCDCDOvP
ODODOOOODDDOH
OOCDCDOOOCDCDCDOC54
ooooooooooooh^
O'OHWroj’invDNcoo'oo
t-4 H rH H H H H H »-4 t-4 C\J C\J
4
vD
ro
CD
vO
CVJ
CO
ro
(P
>3-
CP
-3-
<p
.3-
ao
ro
N-
vO
CD
J-
CO
CM
vD
o
-3
ao
ip
CP
ro
CD
-3
CO
ITS
LP
vP
r-
N-
0D
eo
CP
(P
CD
CD
t-4
4
OJ
CM
ro
ro
-3
IP
ip
IP
lO
vD
r^
r^
ao
ao
CO
CP
O
CD
t-4
CV
CM
CV)
CVJ
CVJ
OJ
CM
CM
00
00
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
-3
-3
-3
-3
>3
LP
O
IP
CD
4
CM
o
vP
ao
VP
r^
ro
CM
J-
ao
ro
CP
v£>
CM
CP
LP
ip
CD
ro
LP
vi)
vP
J-
co
vP
CD
vP
au
4
-3“
>3
CO
ro
o
CD
vP
vP
O-
ao
CD
CM
jr
lO
OJ
ro
vO
CP
CP
CM
t3
vO
CD
CM
IP
GO
CD
CM
ro
K
CO
(P
CP
o
^4
cm
ro
-3-
vO
0-
ao
CP
o
CM
ro
J-
IP
CD
CP
CD
CM
ro
J*
IP
N-
co
CD
CM
IP
P-
CP
4
4
4
4
-3-
4
4
IP
IP
LP
ip
IP
IP
IP
ip
IP
v£>
vD
vD
vO
vD
vO
vO
lO
N-
P-
P-
CD
ao
co
ao
an
O
00
o
CM
IP
vP
4
vP
ao
ip
4
IP
a>
OJ
CD
ao
K
vO
-3
CM
CD
CM
P-
CD
ro
-3
ro
00
ao
CM
t-4
-3
CVJ
IP
ro
CM
CM
OJ
ro
4
vO
ao
CD
CM
IP
ao
▼*4
ro
\£>
<P
CM
IP
OO
H
ro
vD
CO
tH
ro
IP
p-
o
ro
vO
ao
CP
vp
vP
\P
0-
CO
(P
O
T-4
00
ro
-3
IP
K
CD
CP
CD
OO
ro
J-
IP
r^
OD
CP
^—4
CM
ro
-3
Vi)
r^
co
O'
CM
.3
vP
ao
CD
ro
ro
ro
ro
ro
ro
-3-
4
-3-
4
-3-
4
-3
-3
-3
IP
IP
LP
IP
IP
ip
IP
IP
vO
vD
vD
v£>
Vi)
vP
vP
vP
P-
r^
P-
ao
PO
o
ip
tH
vP
ro
CD
r-
ao
ao
CVJ
ro
ro
vO
CM
o
ip
CP
CM
ip
CO
CM
.3
ro
ro
IP
CD
Vi)
LP
O'
ro
p-
t-4
IP
CD
<P
<p
H
ip
4
<0
0-
ro
vO
ip
IP
CO
CP
CP
-3-
H
vO
o
-3
vD
ao
<P
(P
00
.3
CM
t-4
vP
CP
CO
ro
ip
r-
h*
K
vD
ip
4
CM
o
CO
vD
ro
CD
r-
-3
wH
ao
IP
*H
ao
<3
o
vO
CM
ao
.3
CD
vP
CM
ro
t3
-3
.3
.3
*4
CVJ
4
vP
CC
o
OJ
-3
vO
ao
o
tH
ro
ip
r^
CO
CD
CM
ro
IP
r-
oo
CD
CM
ro
ip
vO
cD
CD
tH
ro
vO
<P
CM
IP
<C
o
CD
CD
o
CD
t-4
t-4
tH
t-4
OJ
CM
00
CM
OJ
oo
ro
ro
ro
ro
ro
ro
-3
*3
>3
-3
<3
*3
IP
IP
IP
ip
LP
vP
vP
vP
CM
CVJ
IVJ
oo
CVJ
OJ
CVJ
IVJ
CVJ
CM
oo
CO
oo
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
IVJ
CM
CM
CM
CM
CM
CM
CM
CM
CM
IVJ
vO
o
IP
ao
ro
CM
IP
t-4
K-
K
-
-
ro
ao
ao
-3
vD
-3
CP
O
CO
CD
K
00
CM
ro
CO
CD
CP
ro
CO
4
rv*
o
Vp
vP
ro
(P
t-4
0J
-3
0-
CM
ao
SV
VO
OJ
ro
•H
TH
CP
CD
CD
CM
P«.
IP
Vi)
ao
ro
O’
OD
CM
T-T
LP
«H
o
00
o
r-
IP
4
ro
ro
IP
K
CD
4
CD
kD
-3
ro
ro
ip
CO
CM
ro
CD
t-4
CM
LP
CP
w4
ao
P-
T— 4
CP
ao
4
LTV
CD
4
CP
-3
CP
-3
CP
4
CD
IP
*— 1
vO
OJ
cc
-3
CD
vU
ro
CP
a>
ro
CD
r-
•3
T-4
ao
Vi)
-3
t-4
P-
-3
CD
00
u>
r--
<o
cu
cc
O'
CP
CD
CD
t-4
CM
CM
ro
ro
-3
J-
IP
VJD
UJ
GU
CP
a
CD
tH
CM
CM
ro
JT
IP
VP
ao
CD
t-4
ro
CVJ
CVJ
CVJ
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
-3
-3
-3
-3
*3
J-
t3
-3
J-
IP
LP
U'
CVJ
IP
vD
CO
ro
CD
OO
vD
CP
-3
vD
J-
CM
ro
r-
n-
ro
ao
-3
ao
o
N-
CD
P-
ao
tH
IP
CP
CD
IP
CM
CD
CP
ro
CD
<0
CD
CP
IP
CP
OJ
ip
CP
4
CD
CD
ao
CD
-3
^4
ro
ao
a?
P-
CD
r^-
IP
o
vO
IP
IP
P-
CD
.3
vi)
CM
CD
o
CD
N-
vJO
4
4
-3-
vD
ao
♦-4
vP
CM
CD
kD
vO
lD
ao
ip
CD
IP
IP
ip
P-
CD
IP
CD
r*.
IP
-3
vO
ro
-3
O
O
<u
cr
00
Vi)
CD
4
00
00
OJ
T-4
IP
CD
-3
O'
-3
(P
-3
O
ip
Vi)
CM
au
-3
CD
p-
ro
CD
Vi)
ro
CD
-3
a
-3
CD
VP
ip
IP
VP
VP
r-
N-
<D
CO
CP
CP
CD
CD
o
«r-4
CM
ro
ro
J-
-3
IP
IP
vO
K-
p-
ao
CP
O'
CD
tH
CM
ro
IP
r-
ao
(VI
00
CM
00
CM
CM
0J
00
00
OJ
00
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
or
-3
*3
-3
-3
-3
-3
a-
CD
r-
H
CP
N-
(P
0-
-3
OJ
ro
03
CP
ip
vD
~3
CD
o
CP
ip
CP
t-4
CM
CD
ao
ro
CO
t-4
ro
-3
CM
vP
co
P-
00
tH
t-4
u .
K
IP
00
o-
■*-4
<3
vO
r-
P-
lO
ip
-3
00
CD
r^
IP
t-4
ao
*3
t-4
ro
to
-3
CP
IP
CD
CD
CD
(P
ao
P-
o
*“*
tH
t4
▼-4
tH
CD
CD
CP
ao
r^
v£)
IP
<3
ro
CM
CP
ao
LP
ro
t-H
CD
®
P-
LP
J-
ro
O
r^
ro
o
P-
4
IP
vO
K-
GO
CP
CD
OO
00
ro
-3
IP
vP
r^
ao
CP
O
a
CM
ro
-3
ip
vP
P-
ao
CP
CD
t-4
ro
j-
vP
<x>
CP
tH
tH
▼4
«r4
tH
tH
CM
00
CM
CM
0J
00
00
0J
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
-3
-3
<3
-3
J-
«3
*3
Pt
-3
tH
CO
IP
ro
CD
CM
P-
vp n-
ao
J-
CM
t-4
r^
O'
r-
o
ro
tH CM
CM
CD
-3
IP
CVJ
4
4
ro
ao
CO
CD
t-4
CP
LP
VP
P-
ao
h-
CM
CM
P-
vp ao
ro
t-4
r4
ro
VP
T-4
CD
VP
VP
VP P*
cd ro
CM
ro
CD
P-
ro
t-4
CD
tH
4
CO
-3
ro
-3
vP
CP
ro
CO
ro
O)
-3 o
P-
-3
t-4
co
IP
ro
O
CO
vp
-3 CM
T-4 (P
P-
vP
4-
ro
CM
O
ao
vP
4
CM
CD
VP
vO
ip
•J
ro
CM
CM
T-4
tH
CD
CD CD
CP
CP
O'
ao
co
®
au
p-
p-
p. p.
P- VP
VP
VP
VP
VP
vi)
VP
IP
LP
UV
uv
U'
tH
t-4
tH
t-4
t-4
T-4
t-4
T— 4
t-4
T-4
t-4 t-4
CD
CD
CD
CD
CD
CD
CD
CD
CD
o o
CD CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
o
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD CD
o
CD
CD
O
CD
o
CD
CD
CD
o o
CD CD
CD
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
CD
CD
CD CD
CD
CD
CD
CD
CD
o
CD
CD
CD
CD CD
O O
O
CD
O
O
CD
CD
CD
CD
CD
CD
CD
CO
CM
CD
CM
CP
T— 4
CD
r^
ro
-3 .3
CM
O
vP
CM
h-
CM
vO
CP
CM
IP P-
CP t-4
CM
4-
IP
LP
vP
VP
r-
vO
vD
4
ro
ro
CM
J-
LP
IP
vP
vP
LP
IP
J-
ro cm
t-4
CD
CO
IP
-3
CM
o
CP
P- LP
ro cm
CD
co
vP
4
CM
CD
vP
CM
au
4
CD
ro
-3
r^
CD
ro
vP
CP
CM
LP
ao
T-4 -3
P-
CD
CM
ip
ao
t— 4
-3
r-
(P
CM U)
CO t-4
-3
vP
CP
CM
LP
CO
ro
LP
4
CD
vP
LP
IP
U'
vP
vP
VP
vP
P-
r^
r^
ao ao
OJ
<P
CP
CP
O'
CD
CD
CD
CD
t-4 t-4
t-4 CM
CM
CM
CM
ro
ro
ro
4
4
LP
VP
VP
t4
t-4
tH
t-4 t-4
^4 t-4
tH
tH
H
*"*
T-4
■*"*
H
*“*
-3
.3
t-4
ro
P-
ro
ao
^4
CD
-3 t-4
CP
CM
CP
p-
IP
O
CM
OD
P-
O' ro
V0 O
ro
4-
ro
o
ro
ro
t-4
CD
CO
ro
ro
ro
CM
CM
CM
t-4 \P
ao
-3
IP
CP K
r^
T-4
vP
4- -3
vP
CP
ro
CP
vD LP
-3 IP
vD
ao
t4
IP
CP
-3
Vp
CD
IP
ro
CM
p.
-3
-3
IP
r^
CD
ro
r^
CM
P-
CM ao
-3
T-4
r^
-3
t-4
CD
IP
ro
CD
OD vP
-3 CM
CD
co
P-
ip
ro
CM
CP
4
CM
CD
o
ao
P-
vP
LP
IP
ro
ro
CM
CM t-4
tH
t-4
a
CD
CD
CP
CP
CP
CP
aO ao
CO CO
ao
P-
vP
vO
vP
vO
VP
t-4
t-4
t-4
t-4
^4
t-4
t-4
t4
t-4
t-4 t-4
t-4
t-4
t-4
t-4
CD
CD
CD
CD
CD o
o o
CD
CD
CD
CD
o
CD
CD
CD
CD
o
CD
CD
CD
CD
O
O
CD
CD
O
CD
CD
CD CD
CD
CD
CD
O
CD
CD
O
CD
CD
CD o
CD CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
O
VP
CD
O
CD
o
CD
CD
CD
CD
CD
CD CD
CD
CD
CD
CD
CD
O
CD
CD
CD
O CD
CD CD
O
CD
CD
CD
CD
CD
CD
CD
O
o
CD
^—4
OD
CD
CD
CD
CD
CD
CD
O
CD
CD CD
CD
CD
CD
CD
CD
CD
O
O
CD
CD O
CD CD
CD
CD
O
O
CD
CD
CD
CD
CD
CD
O
-3
CD
O
o
CD
CD
CD
CD
CD
CD CD
CD
CD
CD
CD
CD
CD
O
o
CD
CD O
CD O
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
o
P-
CD
o
CD
CD
CD
O
CD
CD
O
O CD
CD
CD
CD
O
CD
CD
CD
CD
CD
CD CD
O O
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
T— 4
CM
ro
-3
IP
vO
P-
CO
CT
CD t-4
CM
ro
-3
LP
vD
r^
co
CP
CD
t— 4 CM
ro .3
IP
vP
P-
ao
CP
CD
CM
4
VP
ao
CD
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro ro
ro
ro
ro
ro
ro
ro
ro
ro
-3
-3 -3
4" ~3
4
4
4
4-
4
IP
LP
LP
LP
IP
VP
I £•
272
T OEN VOL DF/CT DP/OO E H S C V CP W
DEG K MOL/L L/MCL BAR/K BAR-L/MOL J/MOL J/MOL J/MOL/K J/MOL/K J/MOL/K M/SEC
89.961 21.682 0.CL612 35.0460 963.101 5300.1 5318.5 76.513 44.09 68.49 2231
1 CD
<x>
o
o
©
©
©
(M
cr
©
a
CVJ
cr
CVJ
a
cr
©
ro
cr
in
vi
O-
CVJ
r^
CVJ
K
CVJ
r-
vi
©
o
in
cr
ro
O-
vi
in
cr
ro
vi
in
cr
CVJ
CD
O'
-a-
vi
ro
vi
vi
vi
vi
CVJ
ro
ITk
©
OO
CD
oj
ro
O
in
in
©
N.
r^
OO
cr
cr
CD
o
vi
vi
CVJ
CVJ
ro
ro
a
a
a
in
in
©
vP
©
O'
O-
CO
CO
00
cr
CD
o
vi
CVJ
CVJ
1 OJ
H
©
O'
OO
O-
©
in
a
ro
ro
(VJ
vi
vi
OO
CVJ
CVJ
CVJ
CVJ
CVJ
CVJ
CVJ
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3
a
-T
a
-a-
1 OJ
Co
CVJ
vi
vi
vi
vi
vi
vi
▼4
v4
H
vi
vi
1 ©
ro
C\J
cr
J-
O
CO
J-
o-
O
O
in
vi
o
00
O'
r^
ro
CVJ
cr
in
r^
-a-
in
o
CO
GO
o
a
OO
ro
oo
-a-
cr
ro
r-
vi
ro
in
in
in
ro
UV
CVJ
U'
vi
ro
©
©
®
o
a
cr
3
CD
o
ro
OO
©
in
ro
vi
o
ro
00
in
ro
vi
vi
vi
CVJ
ro
m
vD
GO
ro
in
oo
o
ro
in
©
O
ro
in
o>
cr
*“•
ro
©
cr
vi
ro
-a-
©
GO
OO
cr
cr
cr
CD
vi
CVJ
ro
a
in
r-
e
cr
cr
cr
cr
cr
o
vi
CVJ
ro
a
in
©
N.
OO
cr
vi
CVJ
ro
a
©
r-
oo
O'
CVJ
ro
-a-
in
O'
00
©
CVJ
in
r^
cr
• ©
vP
©
©
©
©
O'
r^
o-
o-
r^
r^
a
a
a
a
a
in
in
in
in
in
in
in
in
in
in
©
©
©
©
©
©
©
©
o-
r^
r^
O'
o.
CO
CO
oo
on
or
cr
®
oo
a
oc
a
3
cr
vi
CVJ
vi
cr
®
a
©
CD
CD
in
o J-
3 CD
CD
in
ro
ro
vP
i<-
ro
o
cr n.
in
OJ
cr
-a*
cr oj
3
in
in
o
cr
ro
CVJ
in
o
cr
in
CVJ
©
CO
©
©
vP
N-
00
vi
ro
o
ro
cr
©
in 3
3 in
kD S.
cr
w4
ro
vP
GO
-a
n-
o
oj in
cc
•H
ro
vP
GO «H
ro
in
k
ro
lD
ao
cr
a
ro
ro
ro
ro
ro
(VJ
oo
CVJ
CVJ
CVJ
(VJ
ro
ro
O'
o.
CO
o
OJ
ro
-a-
in
n-
CO
cr
O
OJ
ro
-a-
VP
n- oo
O'
OJ
ro
a«flN
OO
cr
OJ
j-
VP
oo
CD
a
-a-
a
a
a a
-a-
-a-
.a-
-a-
3
3 -
a
3
ro
ro
ro
ro
ro -a-
-a- 3
-a-
3
3
-a-
-a-
m m
in
in
in
m in m
\P
vP
cP
wD vP
vP
vP \P N-
0-
h-
0*
QO
ro
in
3
ro
N-
cr
CD
o
CD
vP
©
0*
0-
ro
cr
cr
ro
©
r^
CD
O
©
0-
OJ
ro
©
o
▼4
CD
o-
a
OJ
©
©
©
^4
©
OJ
o
▼4
©
©
*4
o-
ro
3
lO
h
in
vP
ro
^4
cr
3
®
in
K
o
©
©
O
N*
cr
©
OJ
a
a
>*4
©
O'
*4
OJ
*4
cr
©
*4
©
cr
OJ
a
©
©
©
a
OJ
cr
CD
cr
©
0-
in
ro
ro
CO
o
00
a*
r-
cr
©
a-
y-i
in
©
cr
CD
*4
©
cr
®
N»
in
ro
▼4
©
©
ro
o
ro
CD
O-
ro
cr
©
OJ
©
a
O
©
OJ
cr
cr
O
CD
CD
vP
ro
o
vP
r^
vP
CD
a-
©
OJ
©
©
©
H
ro
©
©
CD
^4
ro
in
o-
cr
OJ
a
©
©
cr
H
ro
a
©
0-
©
*4
OJ
a
©
N-
cr
o
ro
©
o
ro
©
r^
00
cr
cr
CD
o
CVJ
(VJ
OJ
ro
ro
ro
o
O
o
O
O
*4
^4
^4
▼4
*4
*4
OJ
OJ
OJ
OJ
OJ
OJ
ro
ro
ro
ro
ro
ro
a
a
a
a
a
a
©
©
©
©
©
©
*"•
y-i
tH
tH
OJ
CVJ
OJ
CVJ
CVJ
CVJ
CVJ
OJ
cvj
CVJ
CVJ
OJ
CVJ
CVJ
CVJ
CVJ
CVJ
VVJ
OJ
(VJ
OJ
CVJ
OJ
CVJ
OJ
CVJ
CVJ
0J
CVJ
OJ
VVJ
OJ
OJ
CVJ
CVJ
OJ
r^
cr
O
vP
ro
in
©
©
in
o
o
ro
©
a
CVJ
©
N.
o
in
©
©
a
©
ro
cr
K
©
ro
OJ
K
OJ
OJ
r^
©
o
©
CD
ro
CD
®
©
*4
©
vP
ro
ro
Sp
CVJ
a-
CVJ
QD
ro
o
o
CVJ
o
©
©
©
©
©
r^
m
^4
r^.
a
OJ
*4
OJ
a
cr
©
©
©
OJ
©
©
*4
©
OJ
*4
ro
©
CVJ
cr
©
a
©
CD
o-
CVJ
o
cr
GO
N-
r^
®
cr
CVJ
©
0-
ro
©
©
in
in
©
®
»4
a
cr
in
OJ
o
cr
cr
*4
a
©
a
CD
®
©
©
CD
ro
OJ
O'
©
©
cr
CD
©
ro
CD
vP
ro
CD
r^
a-
so
©
ro
CD
CVJ
©
©
ro
6D
ro
CD
ro
©
a
cr
a
CD
©
OJ
c-
ro
©
©
OJ
O'
©
Cvj
©
©
3
*4
©
©
m
▼4
TV.
ro
©
©
©
VP
VP
r-
GO
co
cr
O
o
CVJ
ro
ro
3
r^
0-
©
CD
cr
cr
o
CD
*4
▼4
OJ
ro
ro
a
a
in
©
©
r^
r^
©
©
©
CD
«4
OJ
OJ
ro
3
©
©
©
CD
*4
ro
^4
*■4
^4
*4
OJ
0J
CVJ
CVJ
OJ
CVJ
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
to
ro
3
a
a
a
a
a
a
a
a
©
©
©
n>
o
GO
CD
CVJ
«a-
GO
in
O
cr
H
cr
O
OJ
r-
CVJ
©
a
ro
in
»4
h
CD
in
CD
cr
©
ro
ro
©
©
CD
*4
CD
©
®
▼4
CD
a
CD
©
o-
©
©
©
*4
©
CVJ
CO
3
vP
CVJ
ro
r^
v4
©
r^
a-
©
©
N-
cr
in
o-
0-
in
CVJ
cr
©
in
a
©
o
©
a
©
©
©
a
©
©
©
©
©
CVJ
©
r^
©
*4
CVJ
cr
CVJ
CD
®
CD
r^
VP
in
in
in
vP
rw
O
ro
©
in
©
00
cr
©
©
®
cr
•4
a
0*
OJ
©
in
ro
ro
ro
©
®
OJ
©
©
ro
CVJ
ro
©
©
ro
©
©
ro
ro
©
»4
TO
®
ro
cr
VP
ro
o
r^
-a-
CD
©
ro
o
©
0J
cr
▼4
m
cr
ro
r**»
CVJ
©
©
m
<T
a
cr
a
cr
a
cr
©
CD
©
OJ
©
a
CD
©
ro
cr
©
ro
o
a
cr
a
cr
©
m
in
vP
r^
GO
cc
cr
O
O
^4
CVJ
ro
ro
a-
in
©
©
©
0-
©
©
cr
cr
cr
CD
o
*4
Oj
OJ
ro
3
a
©
©
©
0-
0-
©
©
<T
o
«r4
OJ
ro
if'
©
®
>»H
▼4
CVJ
OJ
CVJ
CVJ
OJ
CVJ
OJ
OJ
OJ
OJ
OJ
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
a
a
a
a
a
a
a
OJ
in
o
CD
<r
cr
3
vP
OJ
in
rvj
O
OJ
©
a-
3
ro
in
©
a
OJ
a
ro
o
©
0-
cr
a
a
cr
cr
©
0-
©
OJ
©
©
©
CVJ
©
cr
o
CD
©
©
Oj
©
a
cr
in
ro
in
in
o
vP
CO
N-
©
▼4
©
ro
0J
r^
o
m
r^
in
*4
©
CD
OJ
a
in
©
©
©
a
ro
▼4
cr
r^
a
^4
©
©
*4
k
a
CD
▼4
Cvl
ro
ro
ro
vP
in
0-
vP
ro
ro
vP
vP
©
O
ro
©
OJ
a-
in
in
m
in
in
in
a
3
to
0J
*4
o
cr
©
r^
©
©
ro
0J
^4
O
©
©
a
ro
OJ
cr
©
ro
CD
0-
CVJ
OJ
OJ
GO
CD
a-
ro
©
ro
a-
»4
a-
in
©
©
cr
o
^4
CVJ
ro
3
in
©
N-
©
©
cr
o
»4
CVJ
ro
a
©
©
©
N*
©
<T
o
t4
OJ
a
©
CO
cr
ip
\D
cr
in
cr
ro
©
ro
cr
m
▼4
O
*4
t4
^4
CVJ
OJ
OJ
OJ
OJ
oj
OJ
OJ
0J
OJ
OJ
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
a
a
a
a
a
3
a
cr
®
vP
vP
in
a-
3
ro
ro
CVJ
CVJ
CVJ
0J
CVJ
©
cr
*4
© O
CD
CD
a
O'
©
cr
ro
©
cr
©
O'
©
©
o
*4
0-
a
o
©
©
ro
a
a
CD
cr ®
a ©
CVJ
OJ
ro © © -h
0J
CVJ CP
©
vi
©
©
O'
ro
©
©
® CVJ
©
ro
a
©
O
®
©
ro
©
ro
©
CVJ
CVJ
OJ
o
©
©
a
©
o
©
U'
to
© © ©
© t4
©
OJ
O' N- © fv*
®
© (VJ
©
o
ro
O'
ro
OJ
®
CP
<r
© ro
CVJ
▼4
©
OJ
©
a
©
a
©
CD
©
©
cr
*4
a
r-
*4
©
v4
0*
OJ
©
©
v4 © ©
oj o
0*
©
0J © ® ©
a
ro -h
©
©
OJ
O'
0-
CD
CD
o*.
cr
© j-
©
©
OJ
®
©
OJ
*4
©
CVJ
*4
CD
©
rv
©
©
in
3
a
ro
ro
OJ
OJ
vi
•*4
tH O CD
CD ©
CP
CP
u» (jy © ©
©
© co
o.
r-
r^
©
©
0J
CVJ
0J
*4
*4
*4
*4
t4
y-i
v4
vi
r4
vi
vi
vi
4 H ti
vi vi
©
o
© © © o
o
CD ©
o
©
o
©
©
©
•*4
r-
a
CVJ o
©
©
©
ro
OJ
«4
CD
cr
CD
CD
CD
O
CD
O
CD
CD
CD
©
O
CD
CD
CD
CD
©
o o o
CD O
o
o
© CD CD CD
CD
O O
CD
CD
o
CD
CD
ro
to
CVJ
OJ
OJ CVJ
*4
*4
*4
*4
▼4
*4
CD
©
O
o
O
CD
O
CD
CD
©
o
©
O
O
CD
O
O CD CD
0.
0 .
o
o
o o o o
o
o o
o
O
o
CD
O
OJ
*4
*4
©
oj ro
O
0J
CVJ
CD
©
O
©
©
ro
©
N-
OJ
ro
^4
N-
y-i
ro
a
a oj
o
t-
ro
© ro ©
Oj ©
©
^4
a © ® ©
OJ
ro j-
©
©
©
cr
cr
*4
cr
r^
©
a ro
ro
ro
a
©
®
0J
©
©
©
o
a
©
OJ
©
©
O
ro
©
0-
CP
vi
ro
3
©
s O' o
oj ro
a
©
rv. ® cr vi
OJ
ro a
©
®
o
CVJ
a
©
©
N-
©
O' o
*4
OJ
ro
a
©
o-
©
<r
O
OJ
a
©
cr
▼4
ro
©
©
©
OJ
a
N.
O'
vi
ro
© rv o
cvj a
©
®
© oj a n
cr
vi ro
O'
<4
©
o
a
a
a
a
a
a ©
©
©
©
©
©
©
©
©
©
CD
CD
©
© ©
O
©
©
©
o
o
©
©
a
a
a
a
a
If.
©
©
©
©
©
9
9
©
rv.
7
7
8
8
8
©
©
9
9
o
9
O'
© o
©
^4
vi
CVJ
OJ
vi ^i
vi
vi
vi
vi
vl
o
CD
O
o
CD CD
O
CD
o
o
o
©
o
©
o
cr
cr ®
© ©
a
*4
cr
vP
© ro
K.
OJ
a
<j4
ro
© © OJ
a
<r © cr
©
©
o
ro
0J
© 0J ©
ro ©
ro
©
«h <r ® cr
cr
O' 0-
©
©
a
ro
ro
©
*4
© <r
ro ©
cr
v4
*4
*4 cr ©
o
<T
O' O'
©
ro
*4
©
©
ro a 0J
ro
© cr
ro
cr ©
O' ro ©
© © ©
©
cvj © oj cr
Pv,
vP ©
©
ro
vi
vi
ro
©
ro
O'
©
OJ ©
a
*4
o-
ro
©
a
o
©
o-
a
ro
ro
a
©
©
*4
©
cr
a ©
a
cr
©
v4 ® a
v4 ®
©
OJ
© O' © OJ
©
® ©
CVJ
cr
©
ro
o
a
ro
0J
© cr
©
NKlO
©
©
a
a ro
ro
rO OJ OJ OJ -ri
*4
v4
vi © © ©
©
O' O'
O'
©
©
©
©
*4
*4
o
o
o cr
cr
cr
©
©
N>
r-
©
OJ
0J
0J
OJ
OJ
▼4
^4
♦4
v4
vi
vi
v4
v4
v4
v4
H H 4
vi *4
s4
r4
4 4 4 4
vi
o o
o
©
CD
o
©
OJ
OJ
CVJ 0J
0J *4
*4
*4
▼4
^4
^4
^4
©
o
o
©
©
©
O
©
CD
©
©
CD
©
O
©
©
© © ©
© O
CD
O
© O O O
©
© o
CD
CD
CD
CD
o
CD
CD
o
o
O O
©
O
©
©
O
O
CD
^4
v4
s
©
©
©
©
©
©
©
©
©
O
©
O
O
©
© © O
© O
©
©
o © © ©
O
© o
o
O
O
o
o
CD
CD
CD
o
CD CD
CD
O
CD
O
O
©
O
a
a
©
©
©
©
©
o
O
©
©
©
©
©
©
©
©
o © o
O CD
O
o
o © © o
©
o o
o
o
o
©
©
O
CD
O
CD
O CD
O
o
O
©
©
o
o
©
©
o
©
©
©
©
o
O
O
O
o
o
O
©
©
O
© o ©
& o
o
o
© © o o
o
© o
o
o
o
CD
CD
o
CD
CD
©
o o
©
o
o
o
©
o
o
a
a
o
o
©
©
©
o
©
©
O
o
©
o
o
o
o
CD O O
O CD
o
o
o © o o
©
o o
©
o
©
©
CD
CP
CD
«4
Oj
ro a-
©
©
rv.
©
CP
CD
^4
*4
H
OJ
ro
a
©
©
©
cr
o
*4
CVJ
ro
a
©
©
O'. © c r
CD y-i
OJ
ro
a © © O'
©
cr ©
OJ
a
©
©
CD
▼4
▼4
^4
*4 *4
▼4
*4
t4
▼H
0J
0J
CVJ
OJ
OJ
OJ
OJ
OJ
OJ
CVJ
OJ
OJ
to
ro
ro
ro
ro
ro
ro
ro ro ro
3 3
a
a
a a a a
a
a ©
©
©
©
©
©
273
Table 27. Thermophysical properties along isobars (Continued)
$
~z
o
CD
X
CD
tH
X)
x>
CO
ro
CP
p
ip
ro
o
P
ro
3
CM
CP
X
ro
CP
IP
CD
X
tH
X
^4
X
CD
X
CP
-3-
X
CM
P
X
X
ro
p
tH
3
X
CM
X
X
-3-
tH
p
LiJ
ro
ro
H
tH
tH
tH
CM
ro
LT>
X)
<x>
o
CM
3
LP
LP
IP
X
X)
P
x
CO
CP
o
CD
tH
tH
CM
CM
ro
ro
ro
-3-
<3-
X
X
X
X
X
p
p
X
X
X
X
X
CD
tH
CM
CM
l/)
(\j
CM
tH
O
X
en
p
X)
X
3
ro
ro
CM
tH
CD
o
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
-3
3
-3-
3
\
I
CM
C\J
CM
CM
tH
tH
tH
tH
- 1
tH
H
tH
CL
x
X
CM
CM
X
3
O' 1
X)
P
CM
x
O'
p
P
P
CO
IP
P
-3-
CM
CM
00
X
3
o
CM
O'
tH
X
ro
ro
X
p
X
X
ro
p
o
CM
3
X
X
3
ro
X
tH
P
X
o
P
3
3
X
x
O
3
CO
3
tH
O
o
CM
p
IP
P
CO
o
IP
IP
X
ro
(P
P
X
X
X
X
X
CP
tH
ro
X
p
o
CM
.3-
p
X
CM
3
X
X
o
CM
3
P
a'
Pi
X
-3-
O
CD
CO
CO
x
X
CP
X
o
tH
CM
ro
-3-
ip
P
CP
(P
tH
O
o
O
tH
CM
ro
3
X
X P
X
O
tH
CM
ro
X
X
P
X
X
tH
CM
ro
3
X
p
X
CD
CM
X
p
X
TL
x
X
x
X
-X)
X)
X)
p
p
p
p
P
p
p
p
IP
IP
IP
IP
ip
LP
IP
ip
X
X
IP
IP
X
X
X
X
X
X
X
X
X
P
P
p
p
P
P
p
X
X
X
X
X
>
CD
o
X
X
X
X
X
X
c
CM
CM
CM
o
X
X
X
tH
ro
X
X
X
tH
3
ro
X
CM
rH
ro
p
ro
CD P
X
3
CM
o
X
X
tH
X
tH
3
X
p
X
H
O
3
CM
X
O
V
*■*
tH
X
P
X
CM
CD
X
P
X
X
P
X
tH
X
X
X
X
X
p
X
X
X P
X
CD
CM
3
X
X
CM
3
p
CD
ro
X
X
3
X
X
tH
ro
X
P
3
X
X
X
o
-3
3-
X
ro
ro
ro
ro
CM
CM
CM
CM
CM
CM
ro
ro
ro
p
X
X
O'
o
CM
ro
3
X
P
X
X
o
CM
ro
3
X
P
X
X
tH
CM
ro
3
X
p
X
X
CM
3
X
X
CD
2 :
■3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
ro
ro
ro
ro
3
3
3
3
3
3
3
3
3
X
X
X
X
X
X
X
X
X
X
X
X
X
X X
X P
P
p
P
X
P
— N
(/iscpxpujx<c>xoO'xroxcMtHxx
\T^roiroo^oif'rtirio®roK(\jGO
jifMf)Nnro®ocr^scrcDN^H(\j
noocc o(r^(r j
CMxroxo3Xtnx
iDN(T(J'OCr®MO
HnmNnj-HU)
vD^o^ncco'C
roHtrvofoos^
(Dcrortrovoo'U)
rocr»xxcM3xx
HS^osncrir
rlOO(\JM(\Jrl(J'
vDLftWOCVJHNO'
rlSWCTO^Hri
o
X
X
X
ro
CD
X
p-
^■H
X
CD
3
X
CM
X
CD
CD
X
ro
X
X
X
ro
X
p
X
CD
CM
3
X
p
X
tH
CM
3
X
P
X
O
CM
3
X
P
X
CM
X
X
3
V
r^
P»
X
X
X
o
CD
▼H
CM
CM
CM
ro
ro
3
3
X
O
CD
CD
CD
CD
■tH
tH
tH
tH
tH
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
3
3
3
3
3
3 X
X
X
X
X
*— 1
'—i
CM
CM
CM
CM
CM
CM
CM
CM
CM
C\J
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
(M
CM
l\i
CM
CM
CM
CM
X
_J
X
rl
X
X
CM
ro
o
CD
X
o
X
X
o
ro
CD
X
P
X
X
H
CM
X
ro
ro
H
3
P
ro
X
X
CD
3
CM
ro
X
X
CM
.9
.9
CM
X
CD
3
X
X
tH
tH
.9
.5
L.
ro
X
CD
r^
P-
X
X
X
X
p
ro
ro
CD
UD
X
3
X
X
X
CM
X
p
X
X
tH
ro
p
CM
X
X
CD
3
o
X
X
ro
X
X
P
X
3
o
X
X
P
X
3
rj
V
CM
CM
X
X
p-
p.
p
ec
O
CM
X
X
X
CD
X
X
X
X
P
X
3
X
ro
CD
P
X
X
X
P
tH
X
p
X
X
X
P
CD
3
CD
P
3
ro
P
X
X
X
~y
ro
ro
CD
X
ro
CD
p
3
▼H
X
X'
ro
▼H
X
X
P
p
CM
P
CM
P
CM
X
ro
X
3
CD
UN
tH
P
ro
X
vU
CM
X
X
CM
X
X
ro
tH
X
UJ
ro
tH
P
ro
CD
P
X
X
X
X
X
p-
X
X
CP
X
CD
CM
ro
ro
3
3
p
X
X
X
X
CD
CD
tH
tH
CM
ro
ro
3
3
UN
X
UJ
P
p
X
X
O'
CD
tH
CM
CM
ro
3
UN
X
X
CD
tH
ro
vH
^H
CM CNJ
CM
CM
CM ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3
3
3
3
3
3
3
3
3
X
X
X
UJ
_j
X
CD
CM
X
X
CD
▼H
ro
X
P
X
X
X
O
P
ro
P
X
X
X
X
X
CM
X
p
X
X
CD
X
ro
3
tH
3
CM
p
X
3
X
(M
CM
3
P
CM
X
3
3
X
X
X
X
CD
CM
r^
ro
CM
X
CM
O'
X
X
X
3
CD
X
CD
P
ro
X
P
CM
3
X
X
X
p
CD
3
CD
p
p
X
3
,H
ro
aj
X
X
X
3
tH
a
CM
X
P
X
X
X
X
O
CD
X
p-
X
X
X
X
X
P
X
ro
X
X
ro
P
CM
H
CM
3
X
X
ro
X
3
ru
CD
CD
CD
ru
X
CD
X
ro
tH
X
ro
X
tH
P
3
CM
tH
ro
CD
tH
p
P
“>
ro
ro
X X
ro
X
P
3
X
u>
ro
CD
X
X
X
w-i
X
X
ro
p
X
CD
3
X
3
a'
3
X
3
X
X
o
X
CM
X
3
o
X
ro
X
X
ro
CD
3
O'
3
X
X
X
X
X
X
p-
X
X O'
CD
CD
CM
ro
ro
3
3
X
X
X
P
p
X
X
X
X
X
CD
CD
tH
tH
CM
CM
ro
3
3
X
X
X
P
P
X
X
X
CD
tH
CM
ro
X
X
X
tH
t-H
■n
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3
3
3
3
3
3
3
D
_j
3
CD
X
CD
ro
p
CM
tH
X
X
P
CD
X
X
CM
X
X
X
P
CM
CM
CD
tH
P
CD
ro
X
tH
X
X
X
X
tH
CM
CD
3
X
3
CD
ro
3
ro
O
O
ro
tH
3
ro
O
o
X
vH
CD
X
3
X
CM
CD
ro
3
3
P
CM
CD
X
X
X
3
CM
ro
tH
X
X
X
X
CM
X
CM
UN
X
X
CD
tH
tH
tH
CD
X
P
X
ro
tH
X
X
CM
X
CM
3
X P
X
V
X
CM
CD
X
o
O
X
P
X
•H
•H
ro
CM
X
P
3
CD
3
X
X
X
O
O
CD
CD
CD
CD
X
X
X
P
X
X
X
3
ro
CM
o
X
X
P
X
3
ro
CM
CD
X
X
CM
X
X
o
—1
ro
ro
CM
ro
CM
X
H
O
X
3
P
3
3
P
ro
CM
3
X
X
P
X
o
CM
ro
3
3
X
X
P
X
X
a
tH
CM
ro
3
3
X
X
p
X
X-
o
tH
CM
3
X
p
X
1
X
X
X
P-
X
X X
ro
X
ro
X
X
▼H
X
CO
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3
3
3
3
3
3
3
CL
cu
CL
< I
dj
X
X
X
P-
X
X
X
3
3
ro
ro
CM
CM
CM
vH
p-
X
X
CD
O'
X
CD
X
CD
3
X
P
X
3
X
X
3
P
P
tH
P
CD
3
X
X
O'
CM
CD
X
p
ro
X
CM
CD
ro
o
X
X
o
CM
3
X
CM
tH
<_J
O'
X
UN
X
X
X
CM
CL
CD
ro
P
\u
U J
UN
CD
X
U'
3
P
CM
CM
X
U'
CM
tH
UJ
p
CM
CM
UN
tH
O'
tH
3
CD
p
p
X
CD
3
X
3
CM
CD
X
tH
X
3
3
CD
X
CL
ro
CM
X
O'
X
ro
ro
X
ro
X X
X
3
CM
3
X
P
X
X
P
O
ro
X
o
X
O
X
tH
X
ro
X
X
CM
X
X
3
tH
X
X
3
CM
P
3
o
P
3
•
LL
<1
CD
CJ
CD
p-
O'
X
3
X
CO
CM
X
X
CM
▼H
CD
CD
X
X
3
CM
*H
CD
U'
X
X
p
X
X
UN
X
3
3
ro
ro
CM
CM
CM
tH
tH
tH
tH
CD
CD
CD
CD
O'
O'
X
X
X
X
O
CD
C\J
CM
CM
CM
CM
CM
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
o
CD
o
CD
CD
X
X
p-
3
CM
CD
CO
X
X
ro
OJ
X
X
X
o
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
CD
CJ
CD
CD
CD
CD
O
ro
ro
ro
CM
CM
CM
CM
tH
▼H
tH
T-i
i-i
II
o
CD
O
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
O
CD
CD
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
o
O
CD
CD
CD
a
_J
_J
CM
CM
CD
3
ro
X
CM
X
X
X
X
X
P
3
CM
CM
X
P
X
X
CM
ro
ro
tH
X
X
CD
X
X
ro
X
X
CD
CM
3
X
X
X
X
X
X
X
X
ro
tH
X
X
o
O
tH
X
X
3
ro
CM
ro
3
X
X
CM
P
3
X
X
X
X
P
X
X
ro
(M
o
X
X
ro
tH
X
X
ro
tH
X
X
ro
CD
P
3
tH
X
X
CM X
X
CD
3
X
tH
X
p-
>
X
X
OJ
X
r^
X
X
CD
CM
ro
3
X
P
X
CD
CD
CM
3
X
X
o
CM
3
X
X
X
tH
ro
X
X
X
o
CM
ro
X
P
X
CD
CM
3
X
P
X
O
CM
X
X
CM
X
X
<1
\
3
3
3
3
3
3
X
X
X
X
X
X
X
X
X
X
QL
3
CD
_J
o
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CJ
CD
CD
ro
ro
ro
ro
3
3
3
3
3
3
UN
X
UN
X
UN
X
X
X
X
X
X
P
P
P
p
P
P
X
X
X
X O'
O'
O'
CD
CD
CD
CD
CD
CD
o
CD
CD
CD
CD
CD
CD
o
O
CD
O
(/)
z
-J
CM
CM
CD
CD
O
N.
X X
3
CM
X
▼H
P
(M
CM
O
X
X
p
X
3
X
3 X
X
X
CM
ro
3
CD X
X
o
X
X
X
P
ro
X
CM
ro
X
tH
X
tH
tH
3
X
X
PH
UJ
X
X
CM
X
CD
ro
X X
CM
O
X
^H
ro
3
X
X
X
O
CM
ro
tH
X
P
ro
ro
P
X
X
X X
j- in
X
ro
o
X
X
X
tH
X
X
CM
X
P
X 3
□
_J
X
X
ro
X
X
CM
X
3
P
ro
X
3
O
X
X
3
p
▼H
P
X
X
X
X
X
CD
ro
p
tH
X
CD
X
CD
X
CM
X
3
tH
X
3
tH
X
X
ro
CD
X
tH
P
ro
UJ
o
o
X P
X
3
ro
CM
tH
CD
CD
X
X
X
p
P
XXX
X
3
3
3
ro
ro
ro CM CM CM CM
tH
tH
O
o
o
z
X
CD
CD
CD
X X
X
X
X
p
P
P
X
X
ro
CM
CM
CM
CM
CM
CM
(M
CM
CM
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
<
CM
CM
CM
CM
CM
CM
"H
•H
▼H
▼H
X
p-
o
o
CD
CD
CD
o
O
CD
O
CD
CD
CD
CD
CD
O
CD
CD
o
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
LU
p-
P-
o
CD
O
CD
CD
CD
CD
CD
O
CD
CD
O
O
O
X
X
CD
CD
CD
CD
o
CD
CD
CD
CD
CD
CD
O
CD
CD
o
O
CD
O
CD
a
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
O
CD
CD
P-
CD
CD
CD
CD
CD
CD
CD
O
CD
O
O
O
o
CD
ro
ro
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
o
o
CD
O
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
O
o
CD
CD
L5
X
CD
CD
CD
CD
CD
CD
CD
CD
O
o
o
CD
CD
CD
3
3
O
CD
CD
CD
o
O
CD
O
O
CD
CD
CD
CD
CD
CD
a
CD
e
CD
o
CD
O
CD
CD
CD
CD
CD
CD
CD
o
CD
CD
CD
O
X
CD
CD
O
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
CD
o
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
CD
CD
X
X
CD
tH
CM
ro
3
X
X
P
X
X
CD
CM
CM
CM
ro
3
X
X
P
X
X
CD
tH
CM
ro
3
X
X
P
X
X
CD
tH
CM
ro
3
X
X
P
CO
X
CD
CM
3
X
X
CD
▼H
▼H
f-i
▼H
▼H
▼H
tH
▼H
▼H
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3
3
3
3
3
3
3
3
3
3
X
X
X
X
X
X
8f
i
274
197
ETHANE ISOBAR AT P = 6.0 BAP
4
T3
OJ
3
C
C
o
u
U)
(U
o
cn
DC
C
o
"rd
V)
0)
Jh
<D
*H
a
fd
u
3
o
t — 4
CD
P
o
•J-4
N.
P
(P
y
CD
K
ip
Of
t -4
p
CM
y
CO
UD
PO
CD
U)
CM
ao
y
CP
y
<p
-5*
CP
y
CO
PO
N.
CM
UJ
CD
y
CO
CM
U)
o
y
<30
CM
CP
UJ
PO
CD
UJ
PO
PO
t -4
t -4
t 4
t — 4
CM
PO
IP
K-
CO
CD
CM
y
LP
t -4
IP
IP
P
P^
QD
ao
CP
CP
CD
CD
t -4
tH
CM
CM
PO
ro
y
y
IP
IP
u>
UJ
UJ
ru
CO
ao
ao
CP
CP
CD
T— 1
CM
CM
to
CO
OJ
■3-)
CD
CP
CD
P-
P
IP
or
PO
PO
CM
t-I
O
CD
CM
CM
CM
CM
CM
CM
CM
CM
PO
PO
PO
PO
PO
PO
ro
ro
PO
PO
ro
PO
PO
PO
PO
PO
ro
ro
PO
PO
PO
ro
-3*
y
y
y
V
2T
CJ
CM
00
CM
t -4
t -4
t -4
t -4
t -4
■ h
t -4
t-H
t -4
t -4
t -4
t -4
a
*
O'
O'
CM
t 4
oo
PO
CP
UJ
UJ
t -4
PO
UJ
or
PO
CM
UJ
PO
O
P
UJ
N-
CP
r-
U>
IP
CM
IP
CM
y
CP
UJ
UJ
CP
y
r^
CD
CM
y
IP
ip
ip
PO
o
tH
r^
r^
ro
y
o
\
y
y
a)
CO
o
J-
ao
J-
t -4
O
o
CM
r-
P
*“•
r-
PO
P
ao
t-H
UJ
ro
t -4
o
CD
CD
tH
CM
ro
ip
n-
CP
t -4
y
UJ
CO
tH
PO
ip
CP
TH
PO
IP
P
©
CM
y
ip
o
P
QO
00
CO
(P
CP
CP
o
•H
CM
ro
J-
ip
K
CP
t -4
CM
CM
tH
t-4
CM
CM
PO
IP
UJ
r*.
ao
CP
o
tH
CM
PO
IP
UJ
N-
ao
CD
t -4
CM
PO
y
UJ
OD
CD
ro
LP
N-
CP
T*
P
P
P
P
P
P
P
r*-
r^
N.
ao
IP
IP
IP
IP
IP
IP
ip
IP
IP
IP
ip
IP
IP
UJ
UJ
UJ
u>
UJ
u>
UJ
UJ
p^
K-
r^
K-
OD
ao
flO
an
CO
\
”J
>
*
t ~4
H
CD
o
IP
CD
UJ
p
PO
ro
CM
v 4
CP
r^
CM
CD
ro y
P
O
©
P
P
tH
O'
©
y
p
P
CM O'
K
p
ro
t -4 S
fO
O' ro
p
GO
p
p
CM
T-4
p
ro
fx-
O
V
t -4
*"*
CD
ao
IP
PO
CD
CO
P-
U>
U) p^
O' H
p
©
P
ao
PO
CD
P
eQ
P ao
O'
CM
p
K
O' CM
p
K.
o
ro
p
O'
t -4
y
p
O'
t -4
ro
p
t -4
y
p
p
O'
o
y
y
-y
ro
PO
PO
PO
CM
CM
CM
CM
CM
CM
PO
ro
ro
CD
CD
O'
CD
o
T-H
CM
ro
y
P
ru
00
O'
o
CM
ro
y
p
p
O'
T-4
CM
ro
y
P
ru
p
O'
CM
y
p
p
©
X
V
y
y
-y
-y
*y
y
y
y
y
y
y
y
y
y
y
y
PO
PO
PO
y
y y
y y
J- -S’ ^ ^
y
p p
P
p
p
p
p
p
p
P
vC <£>
P
p
p
p
r^
N-
fu
p
i r
*
CM
a
GO
U)
a*
CD
O
CP P-
CM
p
CD
O'
CO
ro
P
ro
ro
tH
O' P
P
t -4
PO
p
O'
P
O'
O'
p
CM
p^
CM
pT.
ro
O' p^
P
p
O'
ro
h-
O'
©
O
O'
CM
CM
«y
IP
CP
ro
CD
y
o
y
O' K
p
tH O'
y
ao
O'
tH
p
ro
p
y o'
tH
t -4
P
ro uj
P
P Pw
p
CM
p^
CM
p
p O' ©
O
O' s P
r^
p
ro
P
p
-J
IP
ip
rs.
CM
CM
ao
CD
CO
y
p-
CO
k
y
t -4
CD
00
CO
CD
CM
CM
CM
o
P
N-
P
CM
©
p^
y
t -4
p
p
CM
p
P
t -4
h-
ro
©
P
t -4
ro
y
p
p
P
p
£
U)
UJ
PO
CD
UJ
*-|
Cw
tH
p
CD
y
CO
CM
p
CD
CM
ao
O'
CM
y
P
P
o
CM
ro
P
pu
O'
t -4
CM
y
P
pu
O'
t -4
CM
y
P
O'
t -4
CM
y
p
N-
o
fO
p
O'
CM
V.
N.
CD
CP
CP
CD
CD
▼-4
CM
CM
CM
ro
o
y
y
O'
O' o
CD
CD
CD
t -4
t -4
t -4
T-4
t -4
t -4
CM
CM
CM
CM
CM
CM
ro
PO
PO
ro
ro
ro
y
y
y
y
y
p
p
p
p
P
J
■"
t -4
*"*
t -4
CM
IM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
C\J
CM
X
-J
IP
o
IP
pw
CD
P
CD
viD
P
CM
ro
UJ
y
p
ro
y
o
.6
.6
P
CM
tU
CD
PO
t -4
CM
ro
O'
.5
.5
.1
P
O
P
y p
O
K.
fu
O
ro
P
CM
P
P
P
CM
P
y
t -4
X
00
CP
«y
ro
CD
tH
O'
P
CD
UJ
p
CM
au
T-4
au
ro
ro
t -4
T-4
P
P
CM
P
ro
p
ro
©
P
P
©
y
O'
p^
r-
©
y
t -4
T-4
CM
P
tH
P
ru
o
O'
CM
O'
O'
V
CM
CM
CD
IP
ao
ao
eo
CO
O
ro
p
ao
P
r4
O'
PO
p
pu
O'
T— 1
y
P
CM
p
y
CM
tH
O
t 4
y
Pu
Pu
y
ro
CM
ro
p
p
CM
P
y
CM
CM
P
y
p
ro
~J
PO
PO
o
r^
PO
CD
ps.
y
tH
O'
UJ
ro
t -4
CO
P
tH
©
t -4
u»
t -4
p
CM
r'-
CM
au
ro
O'
p
t -4
ro
O'
p
CM
P
p
CM
O'
p
ro
©
P
P
ro
t -4
ru
ro
o
r^
p
U>
UA
UJ
UJ
f^-
ao
CO
O'
CD
CD
CM
ro
ro
P
P
p
O'
O'
©
CD
tH
t -4
CM
CM
ro
y
y
p
p
p
P^
r^
p
O'
O'
o
T— 4
CM
CM
ro
y
P
p
p
©
T-4
ro
<rH
tH
CM
CM
CM
CM
CM
ro
PO
PO
ro
PO
PO
ro
ro
PO
ro
PO
PO
PO
ro
ro
ro
PO
y
y
y
y
y
y
y
y
y
p
p
p
LU
-J
CO
PO
-y
CD
CT
CP
ao
ao
CM
CM
P
^—4
CD
CM
p
P
r^
tH
CD
CM
CD
©
o
p
ro
O'
©
ro
p
T-4
©
ro
CM
ru
P
t -4
©
ro <p
r^
r^
p
y
CM
t -4
O'
p
ro
X
CD
UJ
PO
ro
CP
CD
ao
ro
ro
CO
P-
CM
y
P
CM
p
P
P
ro
O'
ro
UJ
o
y
©
p
r-
p
ro
O' r-
p
t 4
r^
P
r-
© p
ro
ro
p
O'
CM
tH
y
CM
ro
V
CD
o
«>
UJ
P
y
P
P
CP
ro
GO
y
ro
r-
y
PO
y
P
P
t -4
y O'
y
p
p
Pu
O'
ro n.
ro
©
eo
O'
T-4
p
O'
P
CM
©
O'
CM
O'
©
P
P
■J
PO
PO
CP
UJ
PO
CD
r^
y
ao
P
ro
CD
a-
p
CD
CM
y
p
CM
P
tH
p
O'
y
O'
ro
p
ro
p
ro
O'
y
©
P
t -4 N
ro
©
p
CM
O'
p
ro
O'
y
p
y
O'
u>
IP
IP
p
U)
1^-
CO
CO
O' o
CD
4
CM
ro
PO
y
P
P
p
P
K
h-
P
p
p
O'
O'
o
o
tH
t -4
CM
CM
ro
y
y p
P
p
h-
I s - GO
p
O'
o
©
CM
ro
p
p
p
*H
t -4
tH
t-H
T— 4
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
PO
ro
ro
ro
ro
ro
ro
ro
PO
ro
ro
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y
y
Q
_J
r*.
CD
-y
CM
p
UJ
UJ
P
au
CP
PO
CD
IP P
P
00
O'
O' P
P
y
O'
tH
K
©
P
y
o
y
p
ro
©
t -4
p
y
Pu
P^
CM
ro
t -4
P
p
fu
y
p
t -4
r*-
p
©
O'
O
o
o
ro
•y
UJ
CM
p
y
PO
CD
CM
P
CM
PO
y
CD
P
P
CM
T-4
p
y
t -4
y
P
P
PO
o
p
O'
ro
P
P
O' o
©
©
©
O' P
p
y
CM
©
f*.
CM
p
p
t -4
CM
\
X
y
ro
CM
-y <p
CM
P
UJ
<o
ru
CD
CM
o
CM
CM
P
tH
PO
y p
P P
P
P
p
P
p
y
y
PO
CM
tH
t -4
©
O'
CO
p
P
y
ro
CM
t -4
O' r-
y
t -4
O'
P
Q
-J
PO
ro
PO
ro
CM
ao
CM
H
P
y
P^
y
P
CO
y
P
y
y
P
r^
p
O'
CD
t -4
CM
PO
y
P
p
pu
p
O'
o
t — 4
CM
ro
ro
y
p
P
h-
p
O'
O
©
CM
y
P
r^
O'
1
UJ
UJ
U)
p^
CP
P
cp ro
CO
ro
(P
P
p
P
tH
t -4
t -4
t -4
t -4
T-4
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
PO
ro
ro
ro
y
y
y
y
y
y
y
K BAR
CP CP
ao
pw
U)
U>
P
y
y
ro
ro
CM CM
CM
t -4
t -4
K-
UJ
*y
IP
CM
N-
PO
CP
CD
UJ
ro
CM
CD
CD
CP
P
t -4
P
ru
CM
P
p
O'
P
CM
P
©
P
o
P
t -4
P
p
p
O'
r^
p
tH
p
P
y
p
p
r<-
CM
ro
©
O'
p
O
PO
CD
UJ
CD
P
O'
r-
PO
p
O'
y
y
P
y
O
CM
T-4
p
O'
UJ
O'
P
O'
O'
P
ro
p
T-H
ro
P
h-
O'
y
CM
CM
P
O'
P
ro
CM
ro
p
O'
O'
ro
t -4
T-4
m
\
ct
ro
ro
CO
CD
O
r^
PO
ro
CM
UJ
ro
CM
o
P
O'
ro
CM
O'
y
y
N»
ro
CD
O'
O'
©
CM
p
p
CM
P
©
p
©
p
CM
P
y
o
N-
y
tH
P
p
CM
ro
O'
p
t -4
a
«a
CD
CD
CD
CD
CD
U'
y
p
OJ
CM
CD
P
ro
t — 4
CD
p
y
CM
CD
p
P
p
y
CM
T-4
t -4
©
O'
GO
P
p-~
r-
p
p
p
U'
y
y
y
ro
ro
ro
CM
CM
CM
t-H
t -4
O
©
CD
o
CD
PO
PO
PO
CM
CM
CM
CM
CM
CM
CM
CM
t -4
T-4
t -4
t -4
T-4
t -4
t -4
t -4
t -4
T-4
t -4
t -4
T-4
■H
T-4
T — 1
t -4
t -4
t -4
t -4
T-4
tH
t -4
IP
u^
tH
P-
UA
CM
o
CO
UJ
p
PO
CO
CD
CP
CO
o
CD
CD
CD
CD
CD
o
©
©
©
O
©
O
©
O
©
©
O
O
©
O
©
O
CD
o
©
o
©
O
©
O
O
©
©
PO
ro
PO
CM
CM
CM
CM
*H
H
*-4
H
t -4
t -4
CD
CD
CD
CD
CD
o
©
CD
©
o
o
O
O
©
o
a
a
©
O
O
©
©
o
a
o
O
©
©
O
O
©
o
O
O
-i
_i
CM
CM
CD
y
CM
CP
^—4
^—4
CO
P
y
N-
r»
o
y
P
O'
P
CM
CM
© p O'
t -4
CM
CM
T— 4
O'
p
CM
P
y
O'
ro
N-
t -4
p
CO
t -4
ro
p
GO
o
y
r^
O'
ro
o
o
t -4
•sH
CP
N.
ip
y
PO
CM
PO
y
P
CD
CM
P-
y
p
p
ro
o
y
o
P
tH
P
CM
N-
CM
r-
TH
p
T—t
P
o
y
O'
ro
P
CM
P
T-4
p
O'
ro
p
p
y
CM
t -4
O'
D>
X
UJ
vD
U)
P^
CO
CP
CD
•H
CM
PO
y
P
P
o
t -4
r-
p
CD
t -4
ro
p
P
P
O'
t-4
CM
y
p
pu
p
©
t -4
ro
y
p
ru
P
o
t -4
ro
y
p
fu
p
t -4
y
N-
a
CM
V.
y
J-
-y
J-
y
y
P
P
P
p
p
P
p
P
p
P
-J
CD
CD
CD
CD
CD
o
O
CD
CD
CD
CD
O
CD
o
CD
CD
CM
CM
ro
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y
P
P
P
p
p
p
P
p
P
p
p
p
P
p
fu
h-
1 ^-
p
p
O
CD
O
CD
O
o
CD
CD
CD
O
CD
CD
O
o
CD
O
Z
_J
PO
PO
▼■4
CP
CD
UJ
P
t -4
y
<*■4
K
K>
o
t -4
P
CM
o
P
y
CM P
ro
ro p y
©
CM
©
P p ro
O' o y
O' ro p
p
t-4
t-4
p
O' O' P
CM
p
UJ
V
CO
GO
CM
U)
O
PO
P-w
CP
■sH
CM
CM
o
P»»
H fO ^
H S ^
MMP
CM ©
O'
p ©
t -4
pu O' P P
ee
P
P pu
ro
O O'
y
O'
p y ro p
CM
ro
®
p
□
-J
UJ
UJ
PO
O'
U)
CM
00
y
v -4
K
PO
O'
y
o
P
CM
PO
CM CM
y
O'
p
ro
CM
T-4
CM
y
P
GO
t -4
P
O'
ro
p
ro
p
y
a
p
CM
p
y
tH
P
p
O'
y
O'
y
o
o
p p ro
H cr ®
N» p P
y ro
CM
t-4
t -4
©
O' O' P
P N>
fu pu P
P P P
P
y
y
ro
ro
CM
CM
CM
X
t -4
CD
CD
CD
CP
CP
CP CO
ao
K.
K.
P
P
PO
ro
ro
ro
CM
CM
CM CM
CM
CM
CM
CM
CM
CM
CM
t -4
t -4
▼4
v -4
t-4
iH
t-4
t-4
tH
t-4
t -4
t -4
t-4
t -4
t -4
t -4
t -4
CM CM
CM
CM
CM
CM
•H
•u
■H
V*
<?=4
o
eo
CD
o
©
©
©
o
©
©
©
©
CD
O
O
O
©
O
Q
O
©
O
O
O
©
o
O
©
©
©
O
©
©
O
»—
PO
O
CD
o
CD
o
CD
CD
CD
O
CD
O
CD
O
O
O'
O'
CD
O
CD
CD
©
o
o
o
©
©
O
O
©
o
O
O
©
O
o
O
o
©
©
O
©
o
©
©
CD
©
©
O
©
CP
o
O
CD
CD
o
O
CD
o
CD
CD
o
CD
CD
o
O
CD
CD
o
CD
©
o
©
©
©
©
©
©
©
o
o
O
o
o
©
o
o
o
©
©
©
©
©
©
O
O
©
©
CD
©
o
CP
o
CD
CD
CD
®
o
CD
o
O
CD
o
CD
O
o
P
P
o
o
O
O
CD
©
o
o
©
©
©
©
CD
o
©
©
o
©
o
o
©
©
©
©
o
©
©
O
o
o
O
O
CD
o
(P
o
CD
O
CD
o
CD
CD
o
o
CD
o
CD
o
CD
P
P
o
o
CD
o
©
o
O
©
©
©
©
©
o
©
o
©
©
©
©
o
o
©
o
o
o
o
©
O
©
©
o
O
O
CD
CP
CD
CM
ro
y
P
U)
ao
CP
CD
t -4
CM
CM
CM
ro
y
P
p
p
O'
©
t -4
CM
ro
y
p
p
N.
p
O'
©
t -4
CM
ro
y
p
p
r^
p
O'
o
CM
y
p
P
o
■»— I
*-»
•'H
t -4
■»— 4
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y
y
y
y
y
p
P
p
p
P
p
275
Table 27. Thermophysical properties along isobars (Continued)
3
o
o
'X3
tH
p
P
cp
y
CD
CO
vO
y
CM
O'
LP
y
y
CM
CD
p
y
o
M3
CM
00
ro
oo
ro
CO
ro
P
CM
M3
tH
in
O'
y
CO
CM
M>
CD
y
P
o
O'
M>
r^
a
P
LU
ro
tH
tH
tH
tH
CM
ro
in
p
CO
o
CM
y
in
p
lp
in
M3
p
P
CO
O'
O'
CD
o
tH
tH
CM
CM
ro
ro
y
y
in
in
in
M3
M3
p
p
00
oo
00
O'
O'
CD
tH
CM
CM
l/>
C\J
tH
CD
CT
CD
p
M3
in
y
ro
ro
CM
tH
o
O'
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
y
J-
y
y
"V
r
CM
CM
CM
H
H
tH
tH
tH
tH
tH
tH
LL
O'
CM
tH
p
ro
CO
in
IT'
O'
CM
tH
O'
CO
tH
M3
M3
M3
CM
o
M3
tH
tH
ro
ro
tH
in
ro
m
o
oo
p
p
OO
CD
CM
ro
in
M3
M3
M3
in
CM
O'
O'
y
J-
O' O'
O
J-
M3
03
CD
y
CO
y
tH
O'
CD
CM
P
y
M3
J-
ro
ro
ro
O
H
y
O
p
in
y
J-
y
in
M3
00
O'
o
ro
U'
GO
o
CM
y
M3
oo
O
CM
J-
in
oo
tH
ro
y
in
o
CO
CO
CO
CT
O'
o'
o
tH
tH
ro
y
in
P
CT
CM
y
y
ro
ro
ro
ro
y
y
in
M3
p
00
O'
CD
tH
CM
y
in
M3
P
O'
O
tH
CM
ro
in
M> P
03
CD
ro
in
P
O'
x
M>
M3
M>
M3
vT
M3
p
p
p
p
P
p
p
p
oo
in
in
in
in
in
in
in
in
in
in
in
in
in
M3
M3
M3
M3
M3
M3
M3
M3
P
P
p
p
p
P
p
P
00
on
on
00
OO
“5
>
*
CM
o
tH
M3
p
M3
ro
CM
o
00
in
O'
O'
in
in
CM
CD
M3
O'
OO
<XD
00
o
-y
o
M3
ro
»“4
O'
M>
ro
CD
M3
tH
in
00
O' CD
O'
ro
CM
M3
y p
o
V
o
OO
in
ro
o
ao
r»-
M3
m> r^
CP
CM
in
CD
ro
ro
p-
ro
tH
CD
O'
O'
o
(M
ro
in
OO
o
ro
in
co
tH
ro
M)
O'
CM
-y p-
O'
ro
M3
pw
T* v0
co O'
C3
J-
y
ro
ro
ro
ro
CM
CM
CM
CM
CM
CM
ro
ro
-y
O'
O'
O'
CD
CM
CM
ro
in
M3
P-
CO
O'
tH
CM
ro
-y
M3 P-
CO
O'
CM
ro
«y
M3
r^
oo
O'
CM
-y
M3
03
o
X
p
y
y
y
y
y
y
-y
-y
-y
^y
-y
-y
-y
ro
ro
ro
-y
-J-
-y
-y
-y
-y
*y
*y
in
in
in
in
in
in in
m M)
M3
M3
M3
M3
M3 M3
M3 K
p p p
00
<SI
*:
M)
CM
CD
CD
CD
CD
-o
M3
O' CP
ro
O'
CM
O'
O'
o
-y
O'
in
CM
in
p-
CM
M3
O' O'
oo
M>
in
ro
CM
ro
*y
tH
O'
CM
m
M3
v.
CM
y
O'
OO
ro
O'
ro
O'
ro
in
CD
ro
O'
<x>
CO
O'
ao
in
ro
J-
O'
O
M3
o
o o' in
O'
CM
ro
CM
CD p.
ro
<D
CM
in p-
co
CO
P- M)
ro
M)
in
CM
in in
_J
in
p
CM
CM
ao
O'
CO
ro
P-
OO
co
■y
o
M>
▼H
J-
M3
r^
M3
M3
-y
ro
CO
M3
ro
■*H
ao
in
CM
00
in
00
O
M3
CM
ao
-y
o
tH
CM
ro
ro
ro
£
M3
ro
CD
M3
M3
M3
CD
CD
CM
M>
o
ro
0D
OO
CD
CM
<y
M3
OO
CD
CM
J-
M3
r^
O'
^4
ro
-y
M3
CO
O'
tH
ro
-y
M)
CD
O'
tH
CM
M3
O'
CM
in
CD
tH
\
P
CO
O'
O'
CD
O
CM
CM
CM
ro
ro
-y
O'
O'
O
CD
o
CD
o
«»H
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
■y
<y
-y
•y
in
in
in
M3
~5
tH
■*“*
H
CM
CM
CM
CM
CM
CM
CM
(M
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CVJ
CM
CM
CM
CM
CM
IM
CM
CM
CM
X
_J
in
y
in
O'
ro
ro
K
in
M3
CM
CD
M3
ro
00
CM
-y
-y
K
M3
ao
P*
CM
CM
O'
M3
K
in
CD
in
O'
O' O' CM
CM P.
H
ro
ro
O'
CD
P
00
M3
X
ro
00
in
y
p
ro
in
ro
00
ro
O'
O'
in
o
O'
ro
ro
CM
ro
ro
in
(M
in
M3
M3
in
J-
ro
J-
M3
o
M>
ro
ro
«y
ao
in
-y
-y
P-
tH
oo
M3
M>
CD
in
ro
y
P
ro
tH
O
O'
CD
<X3
co
cr
CD
ro
M3
▼-4
CD
r^
h-
CD
CD
p-
CD
ro
P-
M3
CM
O'
P-
M)
M>
P-
CD
ro
<X3
*y
O'
O'
CD
cm in
CD
in
CM
CD
CD
■y
CM
in
CM
“3
ro
CD
p
ro
CD
n-
j-
O'
M3
ro
H
03
M3
-y
CD
CD
in
CD
M)
M)
CM
P-
ro
ao
-y
o
M3
CM
CP
in
CD
in
tH
ao
M3
ro
CD
<D
in
ro
tH p.
ro
CD
p
in
U'
M3
MJ
p
CO
ao
O'
CD
CD
■»-H
CM
ro
ro
-y
in
CD
oo
ao
O'
O'
CD
CD
CM
CM
ro
-y
-y
in
in
M3
P-
r^
CO
O'
O'
CD
tH
CM
CM
ro
J-
in
M3
ao
CD
tH
m
- 1
wH
w<
CM
CM
PJ
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
*y
J-
J-
-y
<y
*y
«y
t*
-y
in
in
in
Uj
_J
CM
M3
tH
.9
.7
in
.y
in
ro
ro
M)
CM
CD
tH
O'
in
O'
-y
ro
M)
ao
r^
M3
-y
CM
CM
in
-y
ro
ro
in
CD
o
<y
ro
in
CM
CM
in
CD
in
CD
ro
tH
ac
y
oo
«H
X
in
CM
O
CM
<o
CP
M3
in
CD
CP
ro
ao
in
.y
-y
ro
O'
P^
CD
CD
oo
in
CM
O'
p-
M3
o
in
CM
CM
J-
<X3
in
in
P^
tH
p-
M3
M3
O'
ro
P
M3
O'
tH
V
CD
CO
p
M3
in
-y
in
r*«-
O'
ro
-y
CM
ro
-y
-y
P-
CP
CM
M>
CD
-y
C 1
r^.
ro
ro
-y
o
in
ao
M)
M>
P-
O'
ro
p-
ro
CD
<D
ao
CD
p
O'
y
in
“3
ro
O'
M3
ro
o
r^
-y
oo
U '
ro
CD
ao
M3
-y
ro
ro
r^
VL
CD
in
O'
-y
co
ro
ao
ro
CD
ro
O'
-y
O
in
ro
O'
M3
CM
O'
M3
CM
O'
y
oo
ro
o' in
in
in
M3
p
CD
oo
CP
CD
CD
CM
ro
ro
<y
in
M3
M3
M3
P-
P-
ao
aO
ao
O'
O'
o
o
*-♦
CM
CM
ro
J-
in
in
M3
M>
P.
ao
CO
<T> o
O CM
ro
in
M>
<D
H
H
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
*y
*y
-y
y
y
y
y
o
_J
tH
00
O'
M3
J-
<o
in
o
O' O'
M3
CM
in
N-
ao
O'
_<
J-
M3
-y
-y
in
CD
O'
-y
00
o
O'
P-
O'
J-
in
CD
CM O'
CM
ro
CD
J-
M3
CM
CD
o
y
CM
o
o
MJ
CO
CM
tH
in
M3
M3
CM
r^
O'
in
ro
M3
O'
-y
ro
ro
tH
ao
OO
ro
J-
•H
M3
co
O'
r^
in
*-i p.
<y p- o'
CM
ro
ro
CM
CM
tH
CD
CD
M3
CM
P
tH
y
P
\
LL
X
P
in
in
00
OO
ro
in
M)
CD
CD
CM
CM
in
r^
in
o
CD
-y
M>
ao
CD
CM
CM
CM
CM
CM
CM
CM
CD
O' ao
CD
r^
M>
in
-y
ro
CM
tH O'
CO
M3
ro
tH
oo
in
O
ro
ro
ro
CM
CP
CM
t-4
M3
in
ao
in
m
CD
y
CM
y
y
in
a?
p
CP
CD
tH
CM
ro
y in
M>
p
co
O'
CD
CD
tH
CM
ro
y
in
M3
P CO
O' O'
CD
CM
y
M3
p
CP
1
M3
M3
P
O'
tH
in
O'
ro
CO
ro O'
in
tH
oo
in
tH
tH
▼H
tH
tH
tH
CM
CM
CM
CM
CM CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro ro
ro ro
y
y
y
y
y
y
(X
•a
CD
K BAR
O'
oo
P
M3
M3
in
y
y
ro
ro
CM
CM
CM
tH
tH
P-
y
O'
ro
in
P
O'
in
CM
in
CD
in
ro
tH
CD
ro
CD
in
P
P
ro
ro
O'
CM
y
y ro
O'
CM
ro
in
tH
CO
tH
M3
CD
tH
p
y
CM OO
CM CM
p
p
M3
p
M3
p
LJ
P
p
p
CM
y
co
ro
tH
au
tH
in
tH
tH
ro
y
ro
y
y
O'
y
VL
CM
ro
ro
o
CP
O' cu
y
CO
p
tH
O
CM
O'
CO
tH
M3
ro
ro
in co
y tH
O'
CD
M3
M3
CD
p
CD
\
CL
CM
ao
CD
o
p
y
y
CM
P
y
ro
tH
p
CD
O'
ro
ro
CP
ro
tH
ro
P
ro
tH
O'
O' CD
CM
y
p
tH
in
O'
ro
ao
y
O'
in
tH
P ro
O P
ro
CO
CM
P
ro
00
•
LL
<l
CD
CD
ao
CD
in
j-
in
CD
CM
CO
in
ro
tH
tH
CD
CD
CD
M3
y
IM
o
CD
p
M3
y
ro ro
CM
tH
CD
CD
U'
ao
ao
P
p
M3
M3
M3
in in
in j-
y
ro
ro
(M
CM
tH
P
Cl
CD
y
y
ro
ro
ro
ro
CM
CM
CM
CM
CM CM
CM
CM
CM
CM
tH
tH
tH
tH
tH
tH
tH
tH
tH tH
tH tH
tH
tH
tH
tH
tH
tH
in
tH
P
in
CM
CD
co
M)
in
ro
CM
tH
CD
O'
CO
o
CD
CD
CD
CD
CD
CD
CD
CD
CD
O CD
CD
CD
o
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD o
CD CD
CD
CD
CD
CD
CD
CD
ro
ro
CM
CM
CM
CM
tH
tH
tH
tH
tH
tH
tH
II
CD
CD
CD
o
CD
CD
CD
o
CD
CD
O CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD CD
CD CD
CD
CD
CD
CD
CD
CD
a
_ 1
_l
CM
CD
O
y
tH
CM
ao
tH
CD
P
y
ro
in
in
P
CD
CD
P
p
ro
y
ro
CP
ro
M3
P P
M3
in
CM
CP
in
tH
M3
tH
in
O'
ro
M3
O' CM
in ao
CD
y
P
O
ro
in
o
O
tH
O'
P
in
y
ro
0J
ro
y
in
CO
CM
p
y
ro
P
P
CM
p
CM
M3
o
ro
P
CD
ro M3
O'
CM
in
P
CD
ro
in
ao
CD
CM
in
P
O' (M
y M)
O'
ro
P
CM
M3
CD
►—
T>
X
M3
M3
P
co
O'
CD
tH
CM
ro
y
in
p
M3
CD
CM
ro
ro
in
M3
M3
O'
tH
CM
ro
m
M3 P
CO
CD
tH
CM
y
in
M3
P
O' CD
tH
CM
ro in
M3 P
CD
tH
ro
M>
ao
tH
<i
P-
y
y
y
y
y
in
in
in
in
in
in
in
in
M3
M3
a:
<i
CD
—i
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
o
CD
CD
CD
CM
CM
(M
CM
CM
CM
ro
ro
ro
ro
3
3
ro
y
y
y
y
y
y
y
y
in
m
in
in in m in
in
M3
M>
u3
M3
P
O
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
O
1/3
z
-J
ro
CM
ro
ro
O
ro
CD
CO
P
y
co
in
tH
ro
CM
O'
p
y
ro
CD
00
CD
in
M3 y
y in in p in
tH
tH CM
00
p
p
y
P
ro
o oo
y co
OO
ro
O
in
tH in
t-H
UJ
p
ao
CM
M3
o
y p
CD
CM
CM
CD
p
CM
y
ro
O'
O' P
in
ro
ro
ro
p
y cm
<p y m>
y
M3 P
O
p
P
tH
00
ao
CD
in cm o
tH ro
p
CD
ao
CD P
P
□
-1
M3
ro
O'
M3
CM
CO
in
tH
P
ro
CP
y
O
in
CD
tH
tH
in
ro
y
p
CM
ao
M3
in
y in
M3
ao
CD
ro
P
O y
CP
ro
ao
y O' in tH
p ro
O' ro
M3
tH
in
O
UJ
o
CM
CM O' P
in ro fM
o
O' ® P M>
in
y y
ro
CM CM tH
CD
o O' O' co
O OO
P P
i0 i0 m
in
y
y
z
X
tH
tH
CD
CD
CD
O'
O'
CP
ao
oo
p
p
P
M3
M3
y
y
ro
ro
ro
ro
ro
ro
CM
CM
CM CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
tH
tH
tH
tH tH
tH tH
tH
tH
tH
tH
tH
tH
«I
CM
CM
CM
CM
CM
tH
tH
tH
tH
tH
tH
tH
tH
tH
X
p
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD CD
CD
CD
CD
CD
CD
CD
CD
CD
o
O
CD
CD
CD CD
CD CD
CD
CD
CD
CD
CD
CD
ID
ao
CD
o
o
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
tH
tH
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD CD
CD
CD
CD
CD
O
CD
CD
CD
CD
a
CD
CD
CD CD
CD CD
O
CD
CD
O
CD
CD
CD
CD
CD
o
CD
CD
CD
O
CD
o
O
O
CD
CD
O'
O'
CD
O
CD
CD
CD
CD
CD
CD
CD
o o
CD
CD
O
CD
CD
CD
O
O
CD
o
CD
CD
o o
o o
CD
O
CD
O
CD
O
o
CD
O
CD
CD
CD
CD
O
O
O
CD
CD
CD
O
CD
O'
O'
CD
CD
O
CD
CD
CD
CD
CD
CD
CD CD
CD
CD
a
CD
CD
O
o
CD
CD
CD
CD
CD
CD CD
CD CD
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
o
CD
CD
O
CD
CD
CD
O'
O'
CD
CD
o
CD
O
CD
CD
CD
CD
O CD
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
CD
CD
CD CD
CD CD
O
CD
O
CD
CD
CD
cr-
CD
tH
CM
ro
y
LT\
M3
P
CO
CP
CD
tH
CM
CM
CM
ro
y
in
vD
P
ao
O'
CD
tH
cm ro
y
in
M3
P
co
O'
o
tH
CM
ro
y
in
M3 P
ao CP
CD
CM
y
M3
OO
CD
tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro ro
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y
y y
y y
in
in
in
in
in
M3
276
Table 27. Thermophysical properties along isobars (Continued)
:r
o
CD
vjD
rH
CM
00
P
CD
in
rH
CP
K
in
ro
rH
UJ
CM
ro
<P
P-
s
rH
©
y
o
©
rH
P-
CM
p-
CM
©
rH
©
o
y
©
ro
K
rH
©
©
ro
p-
rH
©
©
ro
CD
P-
UJ
ro
rH
rH
H
rH
CM
s
in
P
CO
O
CM
j-
UJ
K
nr
in
in
U>
p-
<o
CD
<p
CD
©
rH
rH
CM
CM
ro
ro
y
y
©
©
©
©
©
P»
p-
p»
©
©
©
©
©
rH
<\J
CM
(/>
CM
H
O
©
©
P
U)
in
J-
ro
ro
CM
rH
CD
CP
CP
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
y
y
y
y
V
z
cm
CJ
CM
rH
rH
rH
rH
rH
rH
rH
rH
rH
rH
CL
it.
CP
CVJ
rH
p
CM
P
J-
ro
CO
CD
CM
CP
U)
ro
in
in
to
CP
CM
CM
CO
CP
CP
CM
CP
0‘
ro
CM
©
o
©
©
©
©
P-
©
©
©
©
y
CM
©
P.
rH
CD
©
©
CJ
s
S
©
CO
o
S
OO
H
CP
CD
CM
UJ
J-
UJ
ro
UJ
CP
O
ro
rH
CM
UJ
CM
o
©
p-
P-
©
CP
CD
CM
ro
©
P-
©
rH
ro
©
P-
©
rH
ro
©
©
©
(M
y
©
©
o
CO
CO
®
©
CP CP
CD
rH
rH
ro
S
in P-
<p
cm ro
in
in
s
•y y
y
If VO
©
K
©
<p
O
CM
ro
y
©
©
P- © o
rH
CM
ro
©
©
P»
©
o
ro
in
©
T-
\
©
©
©
UJ
UJ
U)
p
P
P
p
p-
r^
p-
ao
ao
in
in
in
in
in
in
in
in
in
in
in
in
©
©
©
©
©
©
©
©
r^
P~
P-
r^
r^
P-
©
©
©
©
©
>
f\J
rH
rH
P
▼H
p
P
CM
-3-
in
-3-
ro
rH
CP
in p-
in
CD CP
ao
o
ro
ro
©
rH
© P-
©
©
rH
©
©
CM
©
©
ro
®
ro
P-
o
rH
rH
rH
m
y
©
©
o
V
rH
O
CO
in
ro
o
OO
p
U)
u>
N-
(P
CM
in
o
CM
CD
CM U>
ro
CM
rH
rH
CM
ro
y
©
©
rH
ro
©
©
rH
y
© © CM
y p»
©
CM
y
©
©
rH
y
©
©
©
o
J-
J-
ro
ro
ro
ro
CM
CM
CM
CM
CM
CM
ro
ro
-3
-3
CD
CD
CD
rH
CM
ro
y in
©
p»
©
CP
rH
CM
ro
y
©
p-
©
©
rH
CM
ro
y
©
p-
©
©
CM
y
©
©
©
r
X
y
s
J-
•3“
-3*
S
-3-
s
y
^ -3 -3
<>3
J*
nt
s
s s
y y s
y
y
y
y
y y in in in in
©
©
©
©
©
©
©
©
©
© ©
©
P- P- P-
p-
©
i/j
o
s
CM
CP
▼H
©
OO
in
p
in
CP
ro
S
rH
rH
in
s in
©
in
UJ
in
rH
(M
CM
in
© ©
©
ro
y
CM
©
© CM
ro
©
p-
©
ro
©
y
CM
ro
CD
©
rH
y
V
PO
ro
00 K
CM
00
CM
CO
CM
u>
-3*
ao CM
P-
rH
rH
rH -3
rH CP
CM
rH
©
©
P»
y cp
cm y
y
ro
CD
©
CM
©
©
rH
CM
ro
CM
rH
©
CM
CM
©
CM
CM
-J
in
P-
CM
CM
OO
CP
©
ro
p
ao
CD
UJ
s
CD
UJ
rH
UJ
O
CM
ro
y
ro
ro
CM
O
©
©
y
rH
CP
©
ro
o
ro
CD
©
CM
©
©
rH
P-
ro
©
O
rH
rH
CM
CM
z
©
ro
©
UJ
rH
UJ
rH
UJ
o
J-
ro
CM
UJ
CD
ro
in
P-
O'
rH
ro
in
p-
O'' rH
ro
y
©
©
O
rH
ro
©
r-
®
o
CM
ro
©
©
©
©
rH
ro
y
©
rH
y
CD
\
p-
<o
© cp
O
o
rH
rH
CM
CM
CM
py
ro
s
s
s
CP
<p
Q
o
o
©
©
rH
rH
rH
rH
rH
CM
CM
CM
CM
CM
CM
ro ro
ro
ro
ro
ro
y
y
y
y
y
in
in
©
©
T "
rH
rH
rH
rH
rH
rH
rH
rH
rH
rH
rH
rH
INJ
IM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
IM
CM
CM
IM
CM
CM
IM
IM
CM
CM
CM
IM
CM
CM
CM
i
in
ro
.4
.7
H
in
.9
.6
rH
OO
K
o
in
in
ao
OO
P-
.1
.2
10
o
y
.9
.1
CM
CM
©
Pr
CM (P CP ©
CD y
©
ro
©
y
rH
©
ro
©
O' ao
rH
P-
rH
O
£
OJ
CM
CP
CP
rH
r-
OO
UJ
CM
UJ
CM
CM P-
CM
rH
in
CM
-3
CD
*H
y
CD
P.
y
©
rH
ro
©
o
y
CD
©
©
©
CM
©
©
©
P»
o
©
ro
to
y
rH
CM
©
®
o
V
ro
CM
o
CT
CP
oo
ao
CP
rH
ro
P-
CM
ao
p-
CD
rH
CP
CM P-
rH in
CP
y
©
©
y
CM
rH
CM
ro
©
©
y
O
© © ©
r^
© ro
p.
ro
o
©
®
CM
©
ro
rH
“J
ro
o
P-
ro
CD
p
-3-
rH
CP
UJ
ro
rH
<©
U)
-3
CD
CD
•y
CP
in
CD
in
rH P-
CM
®
y
CD
©
CM
OD
y
rH
©
y
rH
®
©
CM
CD
©
ro
©
©
ro
CD
©
in
©
UJ
p
CD
ao
CP
CD
CD
rH
CM
ro
ro
s
in
in
0D
ao
CD
CP
©
©
rH
rH
CM
CM
ro
y
y
©
©
©
P-
P-
©
©
©
CD
rH
CM
CM
ro
y
in
©
©
CD
rH
PD
rH
rH
rH
rH
rH
•H
rH
rH
rH
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y
y
y
y
©
©
©
UJ
-1
©
CO
CM
<P
UJ
CM
CP
®
J-
CM
rH
ro
in
CM
CP
ro
S
ro
U)
P-
rH
CD
CD
y
rH
©
-
y
CM
r^
rH
©
ro
y
©
©
ao
ro
CD
©
rH
ro
ro
CM
©
y
©
©
©
z
H
J-
rH
CP
rH
p
P
-3-
CP
ro
CO
U)
o
S
rH
in
CD
ro
CP
in
UJ
rH
ro
ro
ro
CM
ro
y
r^
rH
to
©
CD
©
ro
ro
©
rH
®
P-
®
CM
r^
rH
CM
P-
©
©
©
©
P^
in
in
y
s
in
UJ
CP CM
P-
-3
M
ro
u>
ro
CP
UJ
©
in
©
©
ro
rH
o
o
rH
y rv
CM
©
©
y
©
p*
rH
©
rH
CO
p-
© © ©
P-
ro
ro
-J
ro
O'
UJ
ro
o
P
s
rH
ao
u.
ro
O
oo
UJ
nr
Pr
J-
u>
rH
in
©
y
o' ro
©
PO
©
ro
CD
ro
©
y
© ©
rH
r-
ro
©
©
CM
©
©
CM
O' ro
©
ro
©
©
in
in
UJ
p
CO
CO
CP
O
o
rH
CM
ro
ro
>3
in
in
UJ
U> P-
r^
©
©
© CP
CP
o
o
rH
rH
CM
CM
ro
ro
y
©
©
©
©
P-
©
©
©
o
©
CM
ro
©
©
®
rH
rH
rH
rH
rH
rH
rH
rH
rH
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y
y
o
_J
j-
ro
in
UJ
rH
CM
rH
CM
CD
s
CP
-3-
CP
<3
in
CO
CM
UJ
CD
rH
UJ
©
ro
y
®
CD
CM
CP
rH
rH
rH
rH
ro
P~
y
©
rH
CM
©
rH
© y
©
y
ro
ro
y
©
©
o
o
rH
ro
©
CP
U)
CO
CD
P
ro
h-
J-
J-
CO
«3
cp in
CD
P-
-3
rH
rH
r^
©
©
rH
in
©
in
y
rH
CM
©
©
cm y
©
p»
©
p* p-
©
in
CM
©
ro
p-
rH
V
T.
P^
CP
rH
rH
p
CP
rH
J-
in
Nr
r^
o
CM
rH
CM
O
ao
UJ
CD
ro
in
© N.
® CP
CP
CP
CP
(P (T 00
©
P*
©
© ©
y
ro
CM
rH
© ©
©
p-
in
CM
o
fu
©
o
-J
ro
ro
J"
ro
CP
CM
CM
UJ
in
CO
in
U>
CP
in
ro
rH
ro
-3
UD
CO
CP
o
rH
CM
ro
y
in
©
P-
©
©
o
rH
CM
ro
y
©
©
P-
®
©
©
©
CM
y
©
ru
©
(1
UJ
U)
p-
O'
rH
in
(P
ro
00
ro
CP
in
rH
CO
in
s
rH
rH
rH
rH
rH
rH
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
fO
ro
ro
ro
y
y
y
y
y
y
BAR
K BAR
©
CO
ru
©
U)
in
J-
y
ro
ro
CM
CM
CM
rH
rH
rH
ro
y
in
CM
o
00
a*
CM
co
p-
CP
rH
UJ
ro
-3
O
rH
in
P-
y
CO
in
ro
P»
©
CM
CM
©
P*
©
P^
ro
ro
CM
©
CM
©
©
ro
rH
©
©
rH
©
CM
©
ro
O'
LJ
rl
©
y
p
CM
p
in
ro
UJ
rH
U’
rH
ro
CM
O'
J-
o
*3
UJ
y
©
in
rH
rH
CM
CM
rH
P-
O'
Pw
©
©
CM
o
o
ro
©
r^
UJ
©
CM
ro
r-1
ro
o
CD
O
\
CL
CM
00
o
o
CO
j-
s
ro
P
in
ro
rH
00
rH
CD
CD
UJ
rH
UJ
CD
m
in
©
ro
O
©
P.
©
a*
rH
y
©
rH
©
CD
©
CD
©
o
©
CM
®
in
®
CM
©
rH
©
•
CL
©
o
CD
O
in
j-
in
ao
CM
CO
in
ro
rH
rH
vH
P-
UJ
-3-
CD
P^
in
ro
rH
©
CP
p-
©
in
y
ro
ro
CM
rH
rH
o
O
©
CT,
©
©
r^
P.
u>
©
m
in
y
S
ro
CO
o
CD
-3
y
■y
ro
ro
ro
ro
ro
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
rH
rH
rH
rH
rH
rH
rH
rH
rH
rH
rH
rH
rH
©
rH
p
in
CM
©
ao
UJ
in
ro
CM
rH
CD
<P
CO
P-
CD
CD
CD
©
o
o
CD
©
Q
O
CD
CD
CD
CD
o
o
CD
CD
CD
CD
CD
O
CD
©
CD
O
CD
O
CD
CD
CD
CD
CD
ro
ro
CM
CM
CM
CM
rH
rH
rH
rH
rH
rH
rH
II
CD
O
O
©
CD
o
O
©
O
o
O
CD
O
CD
CD
CD
O
CD
CD
CD
O
CD
CD
O
CD
CD
O
CD
CD
CD
O
CD
CD
CL
-J
-J
CO
o
O
ro
o
rH
©
CD
CP
U)
ro
rH
ro
ro
in
O
00
ro
rH
CM
o
y
©
©
y
rH
©
O
y
©
o
rH
rH
rH
rH
CD
©
©
©
y
CM
o
P-
CM
in
©
rH
y
o
O
CP
P
in
y
ro
CM
ro
ro
in
ao
CM
p-
-3
ro
CM
P-
UJ
CD
ro
UJ
©
o
CM
y
©
P
CP
CD
rH
CM
y
©
©
©
©
©
O
rH
CM
to
y
y
©
p-
©
CD
rH
b~
>
X
©
UJ
P-
0D
O'*
o
rH
CM
ro
s
in
P-
CO
o
CM
ro
o
rH
ro
y
in
©
©
CP
©
rH
CM
fO
in
© P-
®
O'
CD
rH
CM
ro
y
©
P-
©
©
©
rH
ro
in
P-
CD
OJ
<X
s
y
J-
j-
J-
in
in
in
in
in
m
in
in
U)
UJ
u>
-J
CD
a
o
o
o
CD
O
o
CD
CD
CD
CD
CD
CD
CD
CD
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y
y
y
y
©
m
in
m
©
©
©
CD
O
o
o
o
o
o
CD
CD
o
o
CD
O
O
O
CD
o
O
(/)
z
«=1
J*
ro
4-
S
CM in CM
rH
o
P-
rH
oo UJ
ao
CM
s
rH
in
M J-
y p. cp ro
rH
©
© ©
rH
CD
CM
«H
ro
y
© ©
p*
ro
©
© ©
ro
©
rH
©
©
ro
ro
►H
UJ
CO
CM
vO
o J-
p
O
CM
ro
CM
rH
Pr
CM S
ro cm
nj
CM
u>
rH v0 m ro p. in
y
CM
(P y in cm
y
<H CM
K
© P-
CM &
©
ro p.
y
cm in ro
fP
©
©
o
-J
UJ
ro
CP
UJ
CM
CO
in
rH
p
ro
CP
-3-
o
in
o
CD
rH
CM
<y
rH
o
CM
©
rH
®
©
in
y
©
© ©
©
ro
©
©
ro
CM P-
CM
r^
CM
©
y
©
©
CM
©
©
UJ
o
©
10
ro
tT> S IT J N
rH
o
CP
© P. ©
©
©
y
ro
ro
CM
CM
rH
«=H
o
O
©
©
so ru
P-
©
©
z
2 :
rH
rH
o
o
o
CP
CP
CP
co
ao
Pw
K.
p-
vO
UJ
in
s
-3
-3
y ro
ro
ro
ro
ro
ro
ro
CM
CM
CM
CM
CM
CM CM
CM
CM
CM
CM
CM
CM
CM
CM
rH
rH
rH
rH
rH
rH
rH
«r
Co CM
CM CM
CM
rH
rH
rH
rH
rH
rH
rH
rH
rH
rH
rH
i
i-
CD
CD
o
o
©
©
o
©
©
o
©
©
o
©
o
©
Q
©
©
o
o
o
O
©
©
©
©
©
O
O
©
©
CD
UJ
1—
y
O
o
O
©
CD
CD
O
O
O
O
CD
O
O
CD
in
in
CD
©
©
©
0
©
o
o
©
o
©
o
O
o
o
©
©
O
CD
©
©
©
©
O
©
©
©
©
O
O
CD
©
CM
o
o
a
CD
o
CD
O
CD
o
o
CD
o
o
CD
CM
(M
O
o
©
©
o
o
o
o
©
o
©
©
©
o
©
©
©
o
O
CD
o
©
o
©
o
O
O
O
©
CD
©
O
930
o
©
o
o
o
o
CD
CD
CD
o
o
CD
CD
CD
O
©
o
o
o
©
©
©
o
©
©
o
o
©
©
©
a
o
O
©
o
CD
©
o
O
o
o
©
©
©
©
a
O
CD
o
o
o
o
o
CD
CD
CD
CD
CD
CD
o
CD
CD
o
CD
-3
*3
o
CD
©
©
o
©
©
©
o
o
O
CD
o
CD
o
o
CD
o
CD
o
o
CD
©
o
CD
©
CD
CD
o
CD
CD
CD
CT-
o
H
CM
ro
J-
in
U>
p
OO
CP
CD
rH
CM
ro
ro
ro
-3
in
UJ
p-
©
CP
a
rH
CM
ro
y
©
©
P-
©
©
CD
rH
CM
ro
y
©
©
r-
©
©
CD
CM
y
©
©
©
rH
rl
▼-4
rH
rH
rH
rH
rH
rH
rH
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
y
y
y
y
y
y
y
y
y
y
in
in
in
©
©
©
277
Table 27. Thermophysical properties along isobars (Continued)
X
o
O
K.
OJ
CO
CO
O
©
OJ
O'
CO
©
3
OJ
s-
,-4
ro
in
3
OJ
O'
©
OJ
CD
3
o
in
t-4
©
in
o
in
O'
3
CO
OJ
S'
t-4
in
O'
ro
0-
o
CO
in
ro
o
S-
LU
ro
t-4
t-4
t-4
t-4
OJ
3
LP
s~
ao
o
OJ
-3-
©
0-
t-4
in
in
©
k
N-
ao
O'
O'
o
tH
t-4
OJ
OJ
ro
ro
3
3
3
in
in
©
©
r^
s.
CO
CO
O'
O'
o
t-4
OJ
OJ
tn
OJ
t-4
O
O'
CO
K
OJ
in
3
ro
ro
OJ
t-4
O
O'
O'
OJ
OJ
OJ
OJ
OJ
OJ
OJ
OJ
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3
3
3
3
\
3:
CVJ
CO
OJ
t-4
t-4
t-4
t-4
**
■n
t-4
LL
U'
CO
o
s>
tH
©
ro
OJ
p'
CO
©
©
OJ
CD
CO
O'
O'
_
©
ro
r^
OJ
o
■3
OJ
O'
ro
3
o
o
OJ
CO
in
ro
OJ
CD
O'
r-
3
t-4
0-
3
CO
r'
CD
O
V
3
v£>
CO
O
3
CD
3
t-4
a
O'
OJ
©
3
in
OJ
CO
in
t-4
OJ
*"•
3
O'
©
ro
t-4
tH
H
OJ
ro
3
in
S'
O'
tH
ro
m
S'
O'
CD
OJ
3
©
s-
o
OJ
3
©
s-
o
CO
CD
CO
O'
O'
O'
o
tH
t-4
OJ
3
in
S'
O'
OJ
-2-
in
in
in
in
in
©
K
®
O'
O
nj
ro
3
in
©
ao
O'
o
tH
OJ
3
in
i D
K
CO
ro
in
N.
O'
27
©
©
©
©
©
©
S'
s-
S~
r^
r^
K
p'
ao
CD
in
in
in
in
in
in
in
in
in
in
in
©
©
©
©
vD
©
©
©
©
s>
S'
S'
S-
s>
S'
S-
S'
©
CO
CP
CD
CO
s
”5
> *
ro
OJ
OJ
CO
OJ
CD
CO
ro
in
©
in
3
OJ
CD
yD
co
CD
t-4
in
in
OJ
tJ
co
OJ
OJ
vO
ro
3
yD
CD
© OJ
O'
vO
ro
O' in
in
O'
r<
ro
ro
0J
yD
in
CO
vD
O'
O V
" H
CD
CO
in
ro
CD
ao
S'
©
©
S'
O'
OJ
©
CD
-3
yD
K
CD
©
3
ro
OJ
ro
3
in
O'
*4 3
yQ O'
tH
3
S'
O'
OJ
in
N-
O'
0J
3
vO
CO
3
vO
CD
O'
o
3
3
ro
ro
ro
ro
OJ
OJ
OJ
OJ
OJ
OJ
ro
ro
-3
>3
o
©
tH
OJ
ro
3
in
©
0-
CO
O'
▼H
CNJ
ro 3
VO
s-
ao
O'
t-4
CM
ro
3
yD
0-
CO
O'
CM
3
sO
00
CD
X
3
3
3
-2
-3-
-2
3
3
3
-3
3
3
-3
-3
3
■3
3
<3
3*
•3
3-
3
3
3
3
3
3
3
in
in
in in
in m
in
in
vO
vO
v0
vO
yD vO
vD
vO K
CO
00
3
VO
3
^-4
CM
OJ
O
h-
ro
in
OJ
3
vO
ro
3
Us
vO
ro
ro
yD
<E>
vD
vD
3
3
v£> ro
Us
3
CM
S'
0J
CM
S>
ro
©
©
© 0J
0J
t-4
S'
ro
\
ro
0J
N*
<rJ
in
ro
r^
CD
in
in
o
o
Us Us
ro
*-4
OJ
ao
3
CO
<©
v£>
0J
v£>
CO O'
co yD
ro
00
ro
vD CP
o
H O'
S' -H
tH
©
T* 0J
_J
in
r^
0J
CM
ao
O'
CO
ro
o-
CD
co
yD
3
CD
vO
3
vO
O'
CM
CM
CD
O'
O'
in
ro
CO
Us
0J
CP
vO
ro
CP
vO
OJ
©
in
r^
CM
© ©
t-4
t-4
0J
CM
i
vO
ro
CD
vO
^4
yD
H
vO
CD
3
co
0J
vO
CD
ro
vD
r^
S-
O'
0J
3
SO
CO
CD
wH
ro
Us
S'
CP
O
0J
3
in
S'
CP
©
0J
3
in
S'
O'
©
CM
ro s-
©
ro
©
CP
r-
co
O'
O'
CD
CD
fH
0J
OJ
CM
ro
ro
3
3
3
CP
O' O'
CD
CD
CD
CD
v-4
▼H
*-4
0J
0J
0J
0J
0J
OJ
ro
ro
ro
ro
ro
ro
3
3
3 3
©
©
©
©
H
H
H
*— (
**
CM
CM
IM
CM
CM
CM
CM
IM
0J
CM
CM
CM
OJ
CM
CM
OJ
CM
CM
0J
OJ
CM
CM
IM
OJ
OJ CM
CM
CM
CM
l\J
X
-i
in
0J
ro
in
O'
CM
in
0J
in
CO
O'
O
vO
ro
O'
CO
ro
in
r^
CD
3
vO
3
ro
in
CO O'
3
vjD
CD
<X>
0J
3
.5
.5
3
3
ro
H
©
0J
3
.1
.1
CM
©
0J
OJ
ro
vO
ro
CM
3
OJ
CD
in
o
in
3
o
3
ro
VO
CO
CD
ro
0-
O'
r4
CD
O'
VO
CM
ao
US
CM
*-4
CD
CM
u>
CD
S'
v£>
S'
CD
Us
©
o
CM CD
ro
t4
CM
©
V
3
0J
CD
O'
O'
CP
CD
*-4
3 r-
OJ
CP
r^
OJ
vD
CD
vD
vD
0J
3
CD
ao
yD
S'
O' OJ
vO
H
r^
in
ro
ro
3
S'
©
in
<H
©
yD yD
©
CP
CM
O'
ro
CD
o-
3
CD
0-
3
OJ
CP
yD
ro
CD
VO
3
^—4
ro
co
3
CP
U'
CD
VD
CM
r^
O)
CP
US
y-4
CO
3
r^
3
co
Us
0J
©
S'
in
0J
© ©
ro
O'
S'
3
in
yD
vO
CO
ao
O'
CD
CD
CM
ro
ro
3
in
VO
OD
au
CO
CP
CP
CD
*-4
rj
OJ
r>
ro
3
Us
in
so
O'
s-
CD
O'
O'
CD
r4
CM
OJ
ro
3
Us vu
©
O’
t-4
ro
r4
•H
CM
0J
CM
OJ
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3
3
3
3
3
3
3 3
3
3
©
©
UJ
-j
CD
CD
ro
O'
3
O'
3
3
O
VO
3
CM
0J
ro
OJ
3
ro
Us
CO
ro
in
ro
r-
3
O'
in
v£>
vO
3
3
so
CD
ao
CO
r4
vD
ro
®
3
,9
.6
©
tH
CP ©
£
OJ
3
CD
CO
CD
in
yD
ro
r-
in
ro
r^
CD
r-
O'
us
CP
N-
CM
«D
CD
in
CD
ro
in
co
r4
vo
OJ
CD
CD
0J
vo
ro
OJ
VO
^-4
O'
O'
©
3
O' in
S'
3
ro
©
CD
co
K-
in
in
3
3
in
vD
CP
0J
r^
ro
CM
CM
vD
CD
CD
in
o
3
CP
in
CM
O'
O'
vD
K
CD
» 4
in
CD
vD
ro
SJ
OJ
ro
Us
CP
ro
CP
S'
Us
3
3
©
CM
OJ
“>
ro
CP
vO
ro
CD
O-
3
CO
Us
ro
CD
co
VO
3
CD
US
SO
CD
US
CP
ro
co
ro
s.
CM
0J
ro
ao
3
O'
in
P'
ro
cp in
CM
©
in
IM
o' ro
©
ro
O'
U'
in
in
vO
0»
CO
00
O'
CD
CD
0J
ro
ro
3
Us
vO
yD
vO
N.
r^
CO
co
O'
O'
CD
CD
r4
t-4
0J
0J
ro
ro
3
US
in
vD
yD
P'
co
©
O'
O
© OJ
ro
©
\D
©
v-l
**
CM
OJ
OJ
0J
0J
CM
CM
0J
0J
ro
ro
ro
r)
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3
3 3
3
3
3
3
□
— J
<o
r-
tH
ro
CD
ro
co
'H
ao
O'
in
0J
O
K
3
ro
O'
ao
3
0J
ao
ro
0J
CP
yD
CO
yD
0J
s£
H
co
S'
o
vD
yQ
OJ
®
O'
in
©
o
ro
CP
o
o
vO
r-
vO
CO
vO
CD
ro
CP
3
ro
in
▼-4
O'
K
ro
in
0-
CM
O'
CP
in
yD
Us
3
yD
vD
in
ro O'
US
CP ro
S-
CP
ro
3
3
in
3
3 OJ
CP
©
t-4
©
N
X
CO
0J
in
in
H
3
in
O'
O'
CM
0J
in
CD
vO
CO
r^
in
O'
ro
r^
O'
ro
3
US
yD
vO
yD
vO
v£>
V0
Us
Us
3
3
ro
0J
CM
CD
CP
®
S-
yD 3
t-4
CP
s-
3
CD
-j
ro
3
3
ro
CD
ro
0J
vO
in
O'
vO
vO
CP
in
ro
o
ro
ro
in
vD
O'
o
CM
ro
3
in
vD
S'
CO
CP
CD
H
CM
ro
3
Us
vD
S'
S'
©
O'
CD OJ
3
©
S'
CP
i
yD
yD
r-
O'
0J
in
O'
ro
co
ro
O'
in
CO
Us
ro
*~4
*-4
▼H
f-4
CM
OJ
CM
0J
0J
CM
0J
0J
0J
0J
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3 3
3
3
3
3
PAR
K BAR
O'
CO
0-
vO
yD
in
3
3
ro
ro
0J
CM
0J
H
1—
co
yD
CD
3
r-
3
CM
3
O'
o-
vO
O'
in
0-
3
CD
CD
0-
GO
O
CO
ao
Us
CP
3
co
OJ
3
CD
ro
ro
vO
m
in
CM
3
s-
co
in
yv
®
oj ro
t-4
©
CD
CP
(_)
V
us
CD
vO
CD
US
CD
<o
CM
o-
3
VO
CP
CM
CM
vo
OJ
CD
CM
T-4
US
ro
vo
VO
vO
ro
U'S
ao
CM
3
3
CD
OJ
CP
▼H
s*
r'
©
vO
in
S'
ri
i^
© ©
s-
t-4
tH
3
CD
\
QCL
O'
CD
▼H
co
in
in
ro
CO
in
3
CM
co
OJ
vD
O'
3
O'
CD
yD
Us
N.
T~i
N-
3
0J
OJ
0J
ro
in
CP
ro
vD
o
in
CP
3
CP
Us
o
© ©
t-4
©
CP
ro
•
LL
<3
f-D
CD
ao
CD
in
3
us
co
CM
ao
U'S
ro
■*H
1-1
T-i
ro
ro
*-4
O-
ro
*-i
aj
vl)
3
ro
CD
CP
aj
s.
v£>
in
3
ro
ro
CM
CM
▼H
CD
©
CP
O' O'
© O'
S'
©
©
©
O'
O
Qj
Us
in
3
3
3
ro
ro
ro
ro
ro
ro
0J
OJ
CM
0J
0J
0J
0J
0J
OJ
CM
0J
0J
CM
tH
t-4 tH
t-4
tH
t-4
T-4
in
tH
r^.
in
0J
CD
co
yD
in
r^.
CM
V-4
CD
CP
CD
CD
CD
CD
o
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
©
o
CD
CD
CD
©
©
©
©
O
O ©
CD
CD
©
O
ro
ro
OJ
CM
0J
CM
w4
tH
wt
II
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
O
O
CD
o
o
CD
CD
CD
©
O
©
©
O
0
0
CD
CD
O
©
a
3
-1
0J
CP
CD
ro
o
0-
O'
CO
in
0J
CD
0J
0J
CD
O'
O'
O'
CO
in
CO
O'
CO
3
CD
3
rw
CP
CD
H
CD
O
CP
in
ro
CD
3
ro
CP f-4
t-4
OJ
t-4
t-4
O
O
<D
in
3
ro
0J
OJ
ro
in
ao
0J
P-
3
ro
CD
3
CD
CM
3
Us
vO
O'
<c
CP
CP
CP
CP
CD
CD
CD
CD
CP
CP
CP
<p
CP
CO
co
©
S'
s-
© ©
©
3
ro
OJ
i—
D>
X
UJ
yD
r-
CO
O'
CD
▼H
CM
ro
3
in
0-
co
CD
0J
3
CD
CO
O
t-4
0J
ro
3
US
vD
O'
CO
CP
CD
0J
ro
3
Us
US
vO
r^
co
O'
©
*-4
0J
ro
3
in S'
CP
t-4
ro
©
<3
V*
3
3
3
3
3
in
in
in
in
in
in
in
in
vD
yD
vO
cr
CD
_J
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
o
CD
CD
CD
▼-4
0J
0J
0J
CM
CM
CM
CM
0J
0J
0J
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3
3
3
3
3
3 3
3
©
©
us
CD
CD
CD
O
CD
O
CD
CD
CD
CD
CD
o
CD
O
O
o
O
(/)
Z
_J
3
3 in
yD
ro
K
3
ro
CM
CD
in
CM
CD
ro
Us Us
Us
ao
co
0J
CD
O'
3
\D
CD
o
co
CO
ro
CD
aO
CP
CO
tH
v£>
CP CD
v0
Us
© vO
S-
CP
S'
3
LU
V
CO
0J
vO
o
3 N.
o
OJ
ro
ro
ao
ro
in
3
CM
O'
ro
co
3 CD
O'
O' in
3 in
KMT
CP
o
r^
co
3
3
ao
vO vjD
CP v£)
3 Us
© ©
cp 3 in
t4
C_J
-J
VO
ro
O'
vO
CM
ao
in
tH
r*.
ro
CP
3
CD
in
CD
vO
CD
0J
ao
O'
Us
3
3
0-
0J
CO
Us
ro
0J
0J
OJ
3
Us
r^
CD
ro
vO
o
3
ao
ro
®
ro
CO CD
t-4
3
s-
t-4
UJ
o
3 ro O'
v£>
3 CM
CD
co
K.
m 3
ro
0J
▼H
o CP
a0 S*
yD
Us
in
3
ro
ro
0J
0J
tH
CD
CP
®
©
z
X
CD
CD
CD
O'
CP
O'
ao
ao
r-
N-
yD
vO in
u>
in
3
3
3
3
3
ro
ro
ro
ro
ro
ro
ro
ro
0J
0J
CM
0J
0J
0J
0J
CM
0J
0J
0J
0J
0J 0J
0J
t-4
tH
tJ
<L
CM
CM
0J
OJ
0J
tH
▼H
«H
+4
X
s—
CD
o
CD
CD
CD
CD
CD
CD
CD
CD
o
CD
CD
CD
©
CD
©
CD
CD
CD
o
CD
o
©
©
o
o
© O
©
O
o
O
u
h-
O'
CD
CD
CD
o
CD
CD
O
CD
CD
CD
CD
O
O
CD
3
3
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
O
CD
O
CD
CD
CD
CD
©
o
o
CD
©
©
o
©
©
o o
©
©
O
©
ro
CD
CD
CD
CD
CD
CD
CD
CD
O
O
O
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
O
o
CD
CD
CD
CD
CD
o
CD
CD
CD
©
©
CD
o
©
o
o
©
o
CD
© ©
O
o
©
CD
LD
CD
CD
CD
CD
CD
CD
CD
O
CD
O
CD
CD
O
CD
CD
r^
r^
O
CD
CD
CD
O
CD
o
CD
CD
O
CD
CD
CD
CD
O
CD
O
O
O
o
O
©
o
o
o
CD
o ©
O
o
©
©
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
o
CD
CD
o
CD
CD
r^
r-
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
©
o
o
o
©
CD
© o
a
CD
CD
CD
O'
CD
T-i
OJ
ro
3
in
vO
P-
<©
CP
CD
OJ
ro
ro
ro
3
in
vO
r-
CO
O'
CD
CM
ro
3
US
yD
r^
ao
CP
CD
H
OJ
ro
3
in
vD
S'
CO
CP
O OJ
3
yD
ao
©
tH
0J
0J
0J
CM
OJ
0J
0J
0J
0J
CM
0J
0J
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3
3
3
3
3
3
3
3
3
3
© ©
©
©
©
©
278
Table 27. Thermophysical properties along isobars (Continued)
-X
o
©
r^
rH
CM
CO
ao
*H
U)
CM
CD
CO
P
ro
P
CM
ro
CM
CD
P
P
3
CD
r^
ro
P
3
P
p
CD
p
P
3
P
ro
r^
CM
P
O
3
®
CM
P
O
®
P
ro
©
UJ
ro
rH
rH
rH
rH
CM
J"
p
K-
P
CD
CM
*3
p
r^
P
co
P
P
P
r*«-
ao
P
p
CD
CD
tH
fM
ro
ro
ro
3
3
p
p
P
P
r^
N-
CD
®
P
p
o
rH
CM
CM
</)
CM
•3—1
CD
CP
CO
r^
UJ
p
3
ro
r*-*
(V
CD
p
ao
CD
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3
3
3
3
2 ;
CM
r j
CM
■n
rH
rH
' H
tH
LL
P
O
UJ
rH
UJ
CM
P
UJ
CO
ro
P
ro
tH
P
3
ro
r^
ro
O
3
O'
®
P
P
p
®
p
p
p
3
o
®
p
p
3
CM
©
co
3
©
P
CM
P
ro
r^
P
O
v,
3
UJ
GO
CD
3
CO
-J
P
P
U)
ro
p
CM
P
CM
-3
3
▼H
CM
P
o
r^
P
3
3
3
P
p
P
CM
3
p
®
CD
CM
ro
P
r^
ec
ro
p
p
r-
o
CO
ao
CO
P
CP
CP
O
rH
CM
J-
p
N-
P
CM
P
P
P
N-
p
P
P
P
N*
®
p O
fM
ro
3 P
®
p o
ro
3
p
P f**-
®
ro
p
N-
p
X
v.
P
P
UJ
UJ
P
UJ
r^
N-
K.
r^
r^
k-
r-
CO
CO
00
IP
P
p
P
P
P
p
P
P
P
P
P
P
p
P
P
p
P
P
r^
r*-
r^
r^
N-
N.
CD
CD
CD
®
ao
D>
3
ro
ro
CO
ro
CP
P
J"
UJ
UJ
UJ
<3-
ro
CD
N-
ro
P
CD
P
p
P
O
3
p
ro
P
CM
CM
P
H
P
ro
p
P
CM
®
ro
r-
ro
P
P
3
©
p
p
o
o
V
rH
o
00
IP
ro
CD
CO
N-
UJ
vO
k
p
CM
UJ
o
p P
CM
-3 P
P
P
3
3
p
P
®
O
fM
3 K
P CM
3 K
©
CM
p r^
O
CM
3
P
®
3
p
®
o
o
3
J-
ro
ro
ro
ro
CM
CM
CM
CM
CM
CM
ro
ro
-3
3-
-3
rH
CM
ro
3
P
p
®
CD
CM
ro
3
p
r^
®
O
*-t
CM
ro
P
P
CD
P
CM
3
p
®
rH
T
^M
3
J-
3
J-
3
3
3
3
-3-
-3-
-3
J-
•3-
J-
3
-3
3
3
3
3
3
3
3
3
3
P
P
P
P
P
P
p
P
P
P
p
P
P
P
p
P
P
N-
K
r^
®
(/)
CD
CO
IP
CM
ro
CM
rH
CM
ro
p CD
▼H
CO
o
P
ro
3
r^
P
P
CM
P
CM
®
®
P
CM
3
p
N-
P
P
ro
o
®
P
p
P
3
®
p
P
s
ro
rH
U)
UJ
o
P
CD
UJ
CD
*3-
UJ
P
ro
ro
P
P
-S’
P
CO
o
3
CM
P
ro
®
P ®
P
CD
ro
3
3 CM P
P
O
3 h-
®
P P
®
p
O
©
K
rH
CM
_ 1
p
r*-
CM
CM
CD
CP
CO
ro
s.
co
CO
UJ
ro
CD
P
P
p
p
▼h
«iH
o
p
K
P
ro
▼H
P
P
ro
o
r-
ro
CD
N-
ro
p
P
r*-
ro
p
CM
CM
ro
ro
X
P
ro
CD
UJ
rH
UJ
rH
P
CD
-T
CO
CM
UJ
O
ro
r^
p
co
o
ro
P
N-
P CD
CM
3
p
®
P
ro
p
p
®
O
ro
3
UJ
®
p
fM
P
P
CM
P
®
V
N-
CO
CP
p
CD
CD
rH
tH
CM
CM
CM
ro
ro
-3-
-3
-3
<3-
p p
o
o
O
CD
O
vi
tH
H
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
3
3
3
3
P
P
p
rH
rH
rH
rH
H
*"*
*
CM
CM
CM
CM
CM
CM
tM
CM
CM
tM
CM
CM
CM
CM
CM
CM
CM
CM
(M
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
X
d
IT*
h
rH
.4
.7
CP
fM
P
ro
P
K
p
K
P
P
^-1
CD
3
N-
.9
.6
.6
CM
K
O
®
®
CM
CM
O
P
p
CM
ro
ro
.5
.7
ro
P
P
ro
CM
ro
£
CD
o
fM-
UJ
CD
3
UJ
ro
CO
ro
CD
CM
UJ
-3
ro
ro
CM
CD
CM
ro
P
3
®
a
CD
O
CD
O
CM
P
vs
co
P
p
O'
ro
p
r^
P
h*.
o
P
3
ro
P
O'
V
J-
ro
rH
CD
CP
CP
P
CD
rH
-3*
CM
P
r*-
CO
CM
ro
P
fM
ao
3
CD
r-
3
ro
CM
fM
ro
P
®
fM
3
©
CD
3
r^
CM
®
p
3
ro
®
s-
©
"5
ro
CD
3
a
r^
3
CM
O'
UJ
ro
®
UJ
-3
ro
3
CM
r^
ro
CD
3
CD
UJ
r*^
ro
P
p
h-
3
CD
K
3
®
P
CM
p
r^
3
fM
o
p
CM
p
r-
3
ip
P
UJ
r*.
CD
ao
P
CD
o
Cvj
ro
ro
-3
P
p
P
ao
«o
p
P
CD
CM
CM
ro
ro
3
P
p
P
r^
®
P
P
CD
C\J
ro
3
UJ
UJ
CD
O'
rH
ro
rH
rH
»H
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3
3
3
3
3
3
3
3
3
3
P
P
UJ
_J
ro
CM
3
CO
ro
UJ
P
3
P
CO
p
CD
ro
P
CD
P
CO
P
ro
P
CM
3
p
®
CM
p
3
ro
r^
o
CM
p
-
®
r^
®
P
P
CM
P
3
P
3
©
CM
£
CM
ro
CP
N-
CP
3
J-
rH
P
CO
ro
CD
ro
UJ
CM
P
CM
P
p
P
p
r^
p
w
r^
ro
®
P
ro
CM
3
CM
o
P
P
CM
©
o
ro
ro
©
CM
P
©
ro
V
o
®
UJ
IP
3
J-
3
P
UJ
CO
CM
ro
fM
P
P
P
®
ro
CO
3
o
N.
p
ro
ro
ro
P
®
CM
ro
•H
o
P
•H
ro
N.
®
P
ro
ro
P
ro
3
rH
ro
CP
UJ
ro
O
3
rH
CD
p
ro
CD
ao
UJ
-3
CM
ro
P
P
3
CO
ro
CM
r^
CM
r-
CM
r^
CM
®
ro
p
P
▼H
p
ro
O'
P
CM
®
P
CM
P
ro
®
ro
Q
UJ
P
ip
UJ
r^
CD
CO
P
CD
CD
CM
ro
ro
-3
P
P
p
P
P
r^
®
®
P P
o
o
tH
CM
CM
ro
ro
3
P
p
P
p
®
®
p o
o
CM
ro
p
P
CD
H
▼U
■ H
■n
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3
3
3
3
3
3
3
D
-J
CM
rH
N-
U)
IP
ao
CP
3
ro
P
r-
CD
P
■3
▼H
r-
P
CO
ro
P
▼H
CD
3
o
fu
®
fu
p
3
P
P
3
ro
3
K
ro
ro
p
o
o
P
CO
CM
3
P
P
P
O
O
CM
CM
CM
uJ
P
rH
UJ
UJ
P
CM
CM
p
-3
ro
3-
P
o
P
P
ro
P
CM
CM
P
ro
p
o
P K
3
CD
P
P
ro
p
®
CD
CM
ro
ro
ro
ro
GO
3
©
X
X
O
P
CP
CP
IP
CO
P
ro
«3-
r^
N.
o
ro
CM
■3
P
p
CM
P
h
3
P
CD
'H
CM
ro
ro
ro
3
ro
ro
ro
ro
CM
o
p
p
®
p
p
ro
rl
®
P
3
o
— J
J-
J-
3
ro
CD
ro
CM
r^
U)
p
P
S-
CD
P
-3
-3
ro
3
p
r-
CO
P
CM
ro
3
p
p
r^
®
p
CD
CM
ro
3
P
p
p
r-
®
p
a
CM
3
P
fM.
P
1
UJ
UJ
fM-
CP CM
ip
CP
ro
CO
ro
P
p
CM
CO
P
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3
3
3
3
3
3
ear
K BAR
P
CO
r^
U)
P
ip
3
-3-
ro
ro
CM
CM
CM
►—
O'
CM
CO
CO
ao
P-
P CM
CD
P
CM
O
CD
P
N-
P
®
ro
ro
P
®
ro
P
®
p
p
CD
3
K
3
o
CM
p
o
CM
p
o
3
CM
P
ao
L_)
V
CD
CM
CD
CM
CD
Ui
J-
ro
CO
-3
*r-<
«3-
CD
ro
CD
P
CO
P
UJ
UJ
ro
P
CM
3
r^
®
ro
O
1^
ro
r^
®
P
®
p
h-
ro
CM
3
CD
®
CO
CM
3
3
©
CM
O'
o
\
CL
O
CP
CD
rH
CO
UJ
IP
J-
CO
UJ
P
ro
P
ro
CM
P
P
N-
r^
ro
co
P
3
ro
3
r^-
CM
P
r^
P
p
p
p
®
O
ro
P
CD
3
CD
ro
r^-
CM
®
P
y-i
3
fM-
©
•
LL
«3
©
CD
CD
©
IP
3
UJ
CO
CM
aj
UJ
ro
i
CD
P
3
CD
p
ro
•H
O'
r-
p
3
CM
CD
O'
CD
P
P
UJ
3
3
ro
CM
CM
vl
©
P
U'
aj
r*-
fM-
o
o
CD
P
P
p
3
3
3
ro
ro
ro
ro
ro
ro
ro
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
rH
rH
rH
rH
-H
p
rH
r-
IP
CM
CD
CO
P
IP
ro
CM
CD
p
ao
r^
o
CD
CD
o
CD
CD
CD
o
o
o
CD
CD
CD
CD
o
CD
CD
CD
O
CD
©
CD
CD
CD
O
©
©
CD
©
©
O
©
ro
ro
CM
CM
CM
CM
rH
rH
▼u
It
CD
CD
CD
CD
O
O
CD
CD
o
CD
CD
CD
O
CD
CD
O
CD
CD
CD
CD
CD
O
CD
CD
CD
a
©
O
©
©
©
©
CL
-J
CM
CP
CD
ro
CP
rH
r-
P
CO
P
P
CD
P
CD
r*.
ro
3
ro
co
P
P K
ro
®
CM
P
®
P
P
P
®
r^»
P
ro
P
P
ro
o
r^
©
CM
3
P
P
o
O
^H
CO
N-
ip
ro
ro
ro
CM
ro
P
CO
H
r^
ro
ro
p
P
aj
O'
P
P
p
P
P
®
®
N.
P
P
3
ro
CM
o
P
CO
P
3
ro
CM
©
CO
P
CM
P
P
►—
>
X
UJ
U)
N-
CO
<P
o
rH
CM
ro
J-
P
r^
CO
o
CM
n3
j-
p
r^-
<XJ
p o
CM
ro
3
P
P
N-
®
P
o
CM
ro
3
3
p
p
r^
®
P
o
tH
CM
3
P
r-
P
<1
s.
J-
J-
J-
J-
3
P
UJ
P
p
P
P
p
p
UJ
p
P
p
CL
<
CD
— J
O
o
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
o
CD
CD
▼H
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3
3
3
3
3
3
3
o
o
CD
CD
CD
a
CD
CD
CD
CD
CD
CD
O
CD
CD
O
O
O
(/>
z
-J
P
U)
rw
N,
IP
CO
UJ
P
P
ro
90
u>
P
P
ro
p
P T-t
3
ro
P
P
P
O
®
&
ro
P
P rs.
CM P
3
©
r>-
P
3
©
3 3
P P
3
fM-
►H
UJ
V
ao
CM
P
CD
J-
fM-
o
CM
ro
ro
CD
ro
P
P
o
ro
■^4
®
h-
CO N*
p P CM
3 ®
3
®
O
P P fu
fO
P
©
ro
©
© CM S
3
P
P
CM
P
ro
o
-J
UJ
ro
CP
UJ
CM
CO
IP
H
r^
ro
P
-3"
CD
P
CD
p
3
3
a
P
3
3 N>
▼H
P
CM
CD
®
®
fu
®
P
'sH
ro
P
P CM
P
©
3
®
ro
ro
3
p
®
rH
UJ
o
O
P
ro
O
N»
P
ro
tH
O
® h.
P
3
ro
CM
©
©
p ao
fu
rw
P P P
3
3
ro
fM
rH
o
O
z
X
rH
rH
CD
CD
CD
(P
p
P
00
co
U)
P
p
P
P
P
p
P
3
3
3
3
3
ro
ro
ro
ro
ro
ro
ro
ro
ro
CM
CM
CM
CM
<M
CM
CM
CM
CM
CM
CM
(M
CM
CM
<1
CM
CM
CM
CM CM
rH
rH
vH
X
1—
o
CD
o
o
CD
o
O
CD
o
®
CD
o
o
o
o
©
o
©
CD
©
©
o
©
o
©
o
O
o
o
o
o
©
UJ
1—
P
O
o
a
CD
O
CD
O
O
CD
O
CD
CD
O
CD
Q
P
p
O
o
o
CD
Q
O
O
o
o
o
o
o
CD
o
©
©
©
©
©
O
o
©
CD
©
o
©
o
©
©
o
©
IP
o
CD
CD
CD
CD
O
O
CD
CD
CD
CD
CD
CD
O
CD
P
p
o
o
o
O
O
CD
o
CD
CD
o
o
o
CD
CD
CD
o
©
o
CD
CD
CD
O
o
©
o
O
©
o
©
o
©
o
o
o
CD
CD
CD
O
o
CD
CD
CD
CD
O
O
O
o
O
o
o
CD
o
o
CD
o
o
o
o
CD
o
o
CD
O
O
O
o
o
o
CD
O
o
©
©
©
a
o
o
©
o
©
O
a
O
o
CD
CD
CD
CD
CD
O
CD
CD
O
CD
O
o
CD
o
tH
a
o
o
O
o
CD
CD
o
O
CD
CD
CD
CD
o
o
©
CD
CD
a
CD
©
©
CD
O
o
©
o
a
o
©
o
CP
CD
rH
CM
ro
-3*
IP
UJ
r-
co
P
CD
•H
CM
ro
-3
-3
-3
p
p
r*w
co
p
CD
CM
ro
3
P
P
r^
ao
p
CD
▼H
CM
ro
3
p
P
r-
®
P
o
CM
3
UJ
®
©
rH
▼“I
*-»
rH
rH
T-»
rH
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
3
3
3
3
3
3
3
3
3
3
p
P
P
p
p
p
279
Table 27. Thermophysical properties along isobars (Continued)
3
O
o
P
(VJ
0
0
0
(VJ
P
PO
rH
CD
0
P
LP
rH
10
rH
CD
PO
ro
_»
rp
0
ro
CD
0
rH
P
rvj
30
CO
(VJ
P
(VJ
0
rH
IP
CP
PO
CO
(VJ
0
CD
p
IP
(VJ
O'
<D
UJ
0
H
rH
rH
rH
(VI
-4
LO
p
CP
rH
(VI
4
0
CO
0
ro
l P
LTV
0
p
P
CO
CP
CD
o
rH
rH
(VI
(VJ
ro
PO
4
4
LP
IP
0
0
V0
P
P
GO
ao
CP
O'
CD
rH
(VJ
0
(Vi
rH
O
CP
CD
p
0
iP
-4
PO
ro
(VI
rH
CD
CP
ao
CO
(VJ
(VI
(VJ
(VJ
(VJ
(VJ
(VI
PO
PO
ro
PO
PO
ro
PO
ro
ro
ro
PO
ro
ro
ro
ro
ro
PO
PO
ro
PO
ro
4
4
4
4
V
2 :
(VI
(VI
(VJ
rH
rH
rH
rH
rH
rH
rH
Li.
0
CP
IT.
O
-4"
o
CP
PO
PO
ro
CO
rH
ro
CO
0
o
(VI
p
p
(VJ
ro
IP
0
CD
IP
4
CVJ
p
P
ro
ro
V0
rH
p
ro
0
0
ro
(T
4
CP
PO
GO
(X*
0
CP
V0
(->
X
4
0
p
O
ao
-4
O
0
cr
rH
LP
ro
4
CD
IP
p
LTV
ip
PO
ro
CP
O'
(VJ
P
4
CVJ
CD
o
rH
(VJ
PO
4
0
p
CP
rH
(VJ
4
IP
P
CO
o
(VJ
4
0
r^
CO
o
CD
GO
CD
CP
CP
CP
CD
rH
rH
(VJ
4*
l P
P
0
(VJ
iP
ao
(VJ
rH
CP
CD
p
p
GO
CO
CP
o
•H
(VJ
PO
4
IP
V0
p
GO
0
CD
OJ
ro
4
IP
V0
p
cr*
rH
PO
IP
p^
O'
T’
V
0
if)
0
0
0
0
P
P
P
p
P
P
p
P
CO
GO
ao
0
0
to
ip
LP
ir>
IP
IP
IP
0
0
0
0
0
0
vD
0
0
0
P
P
p
P
P
P
p
p
GO
ao
<0
GO
CO
:>
*
0
4
-4-
CD
4
CD
CD
LO
ao
GO
P
0
4"
(VI
0
4
o
CD
GO
(VJ
0
O
0
(VJ
10
IP
ao
IP
IP
P
rH
IP
V0
(VJ
CO
ro
ao
(VJ
IP
P
CO
GO
p
CD
co
O'
(VJ
O
**
CD
CO
0
PO
rH
O'
P ^
0
0
P
0
(VJ
0
CD
0
^■1
4
PO
0
(P
P
p
p
CP
«H
PO
LP
<0
CD
PO
IP
GO
o
ro
IP
GO
CD
(VJ
4
0
CO
(VJ
4
P
co
CD
o
4
4
0
0
ro
PO
(VJ
(VJ
(VJ
(VJ
(VJ
(VJ
ro
PO
4
4
LO
(VJ
(VJ
(VJ
ro
PO
4
ip
V0
P
ao
0
rH
(VJ
ro
IP
0
p
ao
o
CVJ
ro
IP
0
P
CO
cr
(VJ
4
10
CO
_
X
4
4
-4
4
4
-4
-4
4-
4-
4
4-
4
4-
4
4
4
4
4
4
4
4
4
4
4
4
4
4
IP
IP
IP
IP
IP
LP
IP
IP
V0
V0
0
V0
V0
vO
V0
V0
V0
P
P
p
K
CO
“5
CO
S0
(VJ
a
IP
IP
4
rH 10
O
0
ro
rH
O'
0
o
CVJ
4
OJ
rH
0
0
O'
rH
CD
0
0
0
P-
CVJ
0
P-
CVJ
CD
0
0
CD
0
0
0
0
0
CVJ
P-
(VJ
0
0
rH
4
0
X
4
CD
4
4
GO
4
GO 4
CO
rH
O'
ro
IP
CD
O'
0
0J
(VJ
(VI
0
CD
rH
0
(VJ
0
0
0
0
rH
0
0
0
0
0
0
GO
(VI
0
GO
0
CD
0
0
OJ
0
rH
0
0
LP
P^
(VI
(VJ
N-
CP
P~ PO
10
0
r-
i0
0
CD
0
rH
P-
0
LP
0
(VI
(VI
OJ
,H
CD
0
0
4
OJ
O'
0
0
O
P-
4
CD
0
0
0
(VJ
P-
0
0
0
P
P
i
V0
ro
CD
10
rH
10
rH v0
CD
4
0
(VJ
0
CD
0
P-
O'
0
0
0
*H
0
0
P^
O'
rH
OJ
4
0
0
O'
rH
0
0
0
GO
CD
rH
0
4
0
0
0
rH
4
CD
0
0
P^-
Oj
O'
O'
CD
CD
rH rH
(VI
(VJ
(VJ
PO
0
4
4
4
4
O'
O'
O'
O
CD
CD
o
CD
rH
rH
rH
rH
rH
rH
(VJ
(VJ
0J
OJ
0J
0
0
0
0
0
0
0
4
4
4
0
0
0
rH rH
*"•
rH
■ rH
rH
" H
rH
rH
OJ
OJ
(\J
(VJ
l\J
OJ
(VJ
OJ
OJ
OJ
OJ
i\J
(VJ
OJ
(VI
(VJ
OJ
(VJ
CVJ
CXJ
OJ
OJ
CVJ
CVJ
IVJ
(VJ
(VJ
(VJ
CVJ
X
_j
4
O'
O'
CD
(VJ
ro
IP 00
CO
O'
CD
4
0
O'
O'
CD
0
0
O'
O'
0
0
4
O'
P-
4
0
O'
0
O
P-
0J
fp
4
0
(VJ
0
0
rH
0
4
0
CD
0
4
rH
0
0
(VJ
X
CO
r-
4
4
10
(VJ
ro cd
IP
CP
U1
ro
P-
CD
0
rH
P.
CD
0
rH
0J
rH
rH
0
P-
0
rH
P-
0
0
0
0
OJ
(VI
4
P^-
(VJ
0
Pt
P-
0
0J
0
O'
P»
0
OJ
0
v.
IP
ro
(VI
CD
CD
CD rH
(VI
4
0
PO
CP
0
0
(VJ
0
0
rH
rH
CD
0
0
4
(VJ
rH
rH
00
0
0
CP
4
CD
fp
0
4
4
0
ao
OJ
P*>
0
0
0
4
0
P
4
ro
CD
ps.
4
rH
<0
LP (VJ
O'
i0
ro
rH
co
0
4
0
O'
0
0
rH
P>
(VJ
0
4
CD
0
(VJ
0
4
CD
0
0
CD
0
0
CD
P*-
4
rH
0
0
4
0J
0
iP
OJ
0
0
4
u-t
10
10
P^
au
CO
O' CD
CD
rH
(VJ
ro
0
4
0
0
0
0
0
CP
CP
CD
CD
rH
(VJ
OJ
0
0
4
0
0
0
P-
P-
ao
0
0
CD
rH
rH
OJ
0
4
4
0
0
O'
rH
0
*“•
rH
rH
rH
rH
(VJ
OJ
0J
0J
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
0
0
UJ
_J
rH
r-
r-
GO
CD
CD
CD rH
P^-
4
rH
0
-
IP
(VI
P»
rH
0
co
0
O'
0
CVJ
CD
4
O'
0
0
-
0
OJ
4
0J
0
0
0
CD
CD
0
0
OJ
0
OJ
0
CD
0J
P
0
2 :
ro
rH
r-
IP
P-
(VJ
(VI GO
rH
4
0
4
p^
0
0
(VJ
CO
0
4
0
0
0
0
0
O'
CD
CD
,H
CVJ
0
CD
0
0
0
0
O'
4
OJ
OJ
4
P-
0
CD
O'
0
rH
0
0
V.
0
GO
id
IP
4
4
4 4
10
0
rH
0
«
CD
rH
4
P-
p^
rH
O'
0
0
CD
0
0
0
0
P-
O'
OJ
0
«VJ
CO
0
0
0
0
0
0
GO
4
rH
CD
C3
(VJ
CD
(VJ
0
0
“2
ro
O'
10
PO
CD
4 *H
co
LP
ro
O
0
0
4
(VJ
0
0
0
(VJ
p^
0J
P-
rH
0
rH
0
rH
0
(VJ
0
0
4
o
0
OJ
CO
0
rH
au
0
OJ
O'
0
0
0
0
4
LP
IP
10
p-
CO
ao
O' CD
CD
rH
(VJ
lO
0
4
0
0
0
0
0
P~
0
0
O'
O'
O
CD
rH
rH
OJ
(VI
0
0
4
0
0
0
0
0
0
0
CD
CD
OJ
0
0
0
0
■ rt
” H
rH
rH
OJ
CVJ
(VJ
OJ
00
CVJ
0J
(VJ
0
0
ro
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
Q
_J
CD
O'
O'
p^
CD
ro
O' 10
CD
h-
O'
O'
(VJ
0
rH
rH
OJ
rH
4
0
0
0
rH
0
CD
OJ
0
0
O'
4
0
0
0
p^
rH
p-
0
0
(VI
P-
0
rH
CD
4
0
P
0
o
O
ro
CD
IP
PO
P-
ip
(VJ IP
1^-
CD
0
0
0
0
P-
0
0
O'
p-
0
4
0
0
rH
OJ
CD
0
o
0
4
0
0J
0
0
rH
0
CD
4
p-
0
rH
0
0
0
4
0J
0
Vw
X
PO
ro
10
p>-
ro
i0
<0 (VJ
ro
10
P
CD
0
0
0
0
0
p-
(VI
0
0
p-w
CD
OJ
4
0
p-
0
0
O'
O'
0
0
0
GO
aO
CO
Pt
0
0
4
4
0
rH
0
P-
0
0J
CD
_J
4
IP
IP
4
^H
4
ro co
N-
CD
r^-
0
rH
K
0
0
0
CVJ
0
4
0
p-
CP
CD
rH
0J
0
4
0
0
P^
0
0
CD
"H
(VJ
0
4
0
0
p-
0
0
CD
OJ
0
0
P
0
1
V0
10
p-
O' (VI
IP
O' ro
GO
4
0‘
IP
(\)
0
0
PJ
O
rH
rH
rH
rH
rH
rH
(VJ
0J
0J
0J
0J
0J
0J
CJ
0J
0J
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
QZ
< l
Oj
K B4R
O'
GO
10
10
IP
4 4
ro
PO
(VI
(VJ
(VJ
rH
rH
P-
10
4
LP
LP
ao ro
(VJ
4
rH
CD
0
O'
4
(VJ
0
P^
P^.
4
4
0
(VJ
O'
OJ
0
O'
0
0
4
p-
0
0
rH
0
0
0
0
co
0
p-
0
P-
P-
0
0
0
(VJ
4
o
L0
IP
ro
GU
U'
ro
ro ro
O'
10
LP
(P
4
O'
0
0
(VJ
rH
CP
0
0
rH
P-
4
(VJ
O
0
0
0
CD
0
0
rH
0
0J
0
JJ
CD
0
rH
P-
0
0
CD
CVJ
OJ
U’
(VJ
O
\
(X
O'
CP
rH
rH
O'
i0
i0 ip
CP
P-
10
4
rH
4
4
0
rH
P-
0
0
4
0
0
O'
4
(VJ
(VJ
4
0
4
rH
0
p-
P-
P-
aO
0
rH
4
0
CD
0
Pt
rH
rH
rH
OJ
0
0
•
LL
«3
O'
CD
CU
CD
u\
4
u> co
(VI
0
IT.
PO
(VJ
rH
rH
rH
0
r>
rH
4
O'
0
rH
0
0
4
(VI
CD
0
P
0
4
0
CVJ
rH
CD
0
O'
GO
P-
0
U'
iP
4
r»j
OJ
rH
CD
(VJ
a
CL)
P-
P-
0
0
0
0
4
4
4
4
4
0
0
0
0
0
0
0
0
0J
(VJ
(VI
(VJ
OJ
0J
0J
(VJ
0J
CVJ
0J
0J
0J
rH
rH
N-
LP
(VJ
CD
0 V0
LP
ro
(VJ
rH
CD
CP
0
P-
0
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
ro
ro
(VI
CVJ
CVJ
(VJ
rH rH
rH
rH
rH
rH
rH
II
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
a
—i
_J
rH
CP
O'
(VJ
CP
o
10 P~
10
ro
O'
0
r-
0
0
4
0
0J
0
0
0
0
4
rH
0
0
O'
O'
O'
P-
0
OJ
0
4
0
4
0
0
P~
rH
4
0
0
0
0
P
4
o
O
rH
ao
10
LP
ro
ro
CVJ (VJ
PO
LP
r-
rH
0
0
(VJ
4
OJ
0
rH
rH
rH
CD
CP
0
0
4
(VJ
CD
0
0
4
0J
0
4
CVJ
0
P-
4
0J
0
0
4
rH
0
CD
4
0
0
h-
D>
X
L0
10
P-
CD
O'
CD
rH (VJ
ro
4
LP
fT
0
CD
(VJ
4
0
0
4
0
0
P~
0
O'
CD
rH
P0
0J
0
4
0
0
0
P*.
ao
ao
0
CD
rH
rH
OJ
0
4
0
P-
0
0
rH
•a
\
4
4
4
4
4
ip
LP IP
LP
IP
LP
iP
IP
0
0
0
0
QZ
<r
CD
_J
CD
CD
CD
O
0
o
O O
O
CD
O
CD
CD
O
CD
CD
CD
,H
rH
rH
rH
0J
0J
CVJ
CVJ
0J
(VJ
0J
0J
CVJ
0J
(VJ
0J
0J
0
0
0
0
0
0
0
0
0
0
4
CD
CD
CD
CD
a
CD
CD CD
CD
O
CD
CD
CD
o
CD
CD
CD
O
in
2
-1
10
GO
O'
CD
GO
CVJ
CD CD
O
O'
LP
4
4
O'
4
O'
(VJ
4
0
0
0
CVJ
O'
0
O'
4
O'
4
0
Pr
0
0
rH
0
0 P-
0
CO
0
0
4 0
0
CD
0
OJ
P
0
»-H
UJ
GO
(VI
i0
rH 4
GO
rH PO
4
PO
(VJ
O'
4
0
0
rH
O'
0
O'
0
CD
4
0
0
0
(VJ
0
0
O'
4
CD
0
0
O
CD
0
0
rH
4
CD
CD
0
0
CD
O
0 0
0
Q
_J
iD
ro
(J'
10
CVJ
cO
IP rH
P~
ro
O'
4
CD
IP
O
0
CD
0
O'
CD
0
p~
rH
0
0
O'
0J
0
OJ
0
0
4
4
0
4
4
0
CO
CD
0
0
0
(VJ
rH
o
0
CD
rH
UJ
o
(VJ
CD
0
(VJ
0
0
0
O
0
0
0
0
(VI
CD
0 0 Pv,
0
0
4
0
0J
(VJ
rH
CD
0
0
0
p-
0
0
4
2
X
rH
rH
CD
CD
CD
O'
O' O'
0
0
P-
P-
P~
0
0
0
0
p^
P-
0
0
0
0
0
0
4
4
4
4
4
4
0
0
0
0
0
0
0
0
0
0
0
(VJ
OJ
(VJ
(VJ
OJ
0J
CVJ
<1
(VI
(VJ
(VI
CVJ (VI
rH
rH
rH
rH
rH
rH
rH
rH
rH
rH
T
1-
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
UJ
P—
*
10
O
CD
CD
CD
CD
CD CD
CD
CD
CD
CD
CD
CD
CD
CD
O'
O'
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CO
CD
CD
CD
CD
CD
CD CD
CD
CD
CD
O
CD
CD
CD
CD
O'
O'
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
o
CD
CD
CD
CD
CD
CD
CD CD
CD
CD
CD
CD
CD
CD
CD
CD
rH
rH
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
O
o
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
o
CD
CD
CD
CD
CD
O
CD CD
CD
CD
CD
CD
CD
O
CD
O
P-
P^
O
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
CD
O
CD
CD
CD
CD
CD
CD
CD
CD
CD
CP
CD
rH
(VJ
ro
4
LP lO
P~
0
CP
CD
•*H
(VJ
0
4
4
4
0
0
P-
0
CP
CD
rH
0J
0
4
0
0
P^»
0
O'
CD
rH
OJ
0
4
0
0
fv.
ao
0
CD
OJ
4
0
0
CD
rH
rH
rH
rH
rH
rH rH
rH
rH
rH
(VI
(VJ
(VI
(VJ
OJ
0J
0J
0J
OJ
CVJ
0J
OJ
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
0
0
0
0
0
0
280
Table 27. Thermophysical properties along isobars (Continued)
ETHANE IS08AR AT P = 14.0 BAR
3 O
CD
CD
C\J
ro
CD
CD
ro
ao
ip
ro
CD
CP
p
y
aO
(P
ip
CO
0
40
y
CM
CD
40
ro
O'
IP
o
40
vO
t-4
40
CD
IP
©
y
ao
ro
P
▼H
SP
CP
p
y
OJ
CP
40
LU
ro
tH
■*-•
▼H
CM
ro
-2
ITv
p
cr
7-4
ro
-y
0
ao
CP
CD
ao
y
IP
40
p
ao
CP
CP
CD
CD
t-4
CM
CM
ro
ro
y
y
IP
IP
40
40
40
p
P
ao
CO
ao
cp
CD
<rH
CM
ir
OJ
T— <
o
CP
CO
P
0
IP
y
ro
ro
CM
7-4
o
CP
ao
CD
p
CM
CM
CM
CM
CM
CM
CM
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
y